RSTS/E

System Directives Manual

Order No. AA-D748C-TC

March 1983

This manual contains general information on run-time systems and de​scribes RSTS/E monitor, RSX emulator, and RT11 emulator directives for the assembly-language programmer.

OPERATING SYSTEM AND VERSION: RSTS/E
V8.0

SOFTWARE VERSION:
RSTS/E
V8.0

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Cor​poration. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip​ment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1981, 1983 by Digital Equipment Corporation. All Rights Reserved.

The postage-paid READER'S COMMENTS form on the last page of this document requests your critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

d BUD TM
DECwriter
RSTS

9
DIBOL
RSX

MASSBUS
UNIBUS
DECmate

PDP
VAX
DECsystem-10

P/OS
VMS
DECSYSTEM-20

Professional
VT
DECUS

DEC
Rainbow
Work Processor

Commercial Engineering Publications typeset this manual using DIGITAL's TMS-11 Text Management System.

Contents

Preface

Summary of Technical Changes Part I
Introduction

Chapter 1 Introduction

Page xi

1.1
Run-Time Systems . 1-1

1.1.1
Environments for People
. 1-2

1.1.2
Environments for Programs 1-2

1.2 Jobs. .1-5

Chapter 2
General RSTS / E Environment

Part II Chapter 3

2.1
How RSTS /E Allocates Memory - Physical and Virtual Addressing. .2-1

2.2
Job Space - High Segment and Low Segment .
.
.
.
.
.
.
.
.
.
.
.
. 2-4

2.3 Important Installation Options

2.3.1 The `Disappearing' RSX Run-Time System

2.3.2 Resident Libraries . .

.

2.4 Low-Segment Details - First 1000 Bytes of the Low Segment .

2.5 High-Segment Details - Pseudo Vectors
. .

. .

. .

. .

. .
.

.

.

.

.
. 2-6

. 2-6

. 2-6

. 2-7

2-15

2.5.1 Run-Time System Capability and Default Definitions .
. .
.
2-17

2.5.2 Synchronous System Trap Addresses.
. .
.
2-21

2.5.3 Asynchronous System Trap Addresses
. .
.
2-23

2.5.4 Entry Points

.
. .
.
2-25

Monitor Directives

General Monitor Directives

3.1 Introduction.

.
. .
.
.3-1

3.1.1 Summary of General Monitor Directives
. .
.
. 3-1

3.1.2 Prefix File COMMON.MAC
. .
.
. 3-3

3.1.2.1 How to Assemble with COMMON.MAC . . .
. .
.
. 3-3

3.1.2.2 Macros Provided in COMMON.MAC
. .
.
. 3-3

3.1.3 Error Mnemonics: Link-File ERR.STB
. .
.
. 3-7

3.1.4 Programming Hints
. .
.
. 3-7

3.2 CALFIP - Call the File Processor.
. .
.
3-10

3.2.1 ASSFQ (Assign a Device)
. .
.
3-11

3.2.2 CLSFQ (Close a Channel)
. .
.
3-14

3.2.3 CRBFQ (Create a Binary [Executable] File and Open it

on a Channel)

.
. .
.
3-17

3.2.4 CREFQ (Create a File and Open It on a Channel) . . .
. .
.
3-23

ill

3.2.5 CRTFQ (Create and Open a Temporary File). .
.
. .
.
.
.
. 3-32

3.2.6 DALFQ (Deassign All Devices)
.
. .
.
.
.
. 3-38

3.2.7 DEAFQ (Deassign a Device)
.
. .
.
.
.
. 3-40

3.2.8 DIRFQ (Get Directory Information)
.
. .
.
.
.
. 3-42

3.2.9 DLNFQ (Delete a File)
.
. .
.
.
.
. 3-50

3.2.10 ERRFQ (Return Error Message Text)
.
. .
.
.
.
. 3-53

3.2.11 LOKFQ (Disk File/ Wildcard Lookup)
.
. .
.
.
.
. 3-55

3.2.12 OPNFQ (Open a File/ Device on a Channel) . .
.
. .
.
.
.
. 3-65

3.2.13 RENFQ (Rename a File).
.
. .
.
.
.
. 3-74

3.2.14 RSTFQ (Reset a Channel)
.
. .
.
.
.
. 3-77

3.2.15 UUOFQ (Hook to File Processor)
.
. .
.
.
.
. 3-80

3.3
CCL - Check String for CCL Command
.
. .
.
.
.
. 3-81

3.4
CHAIN - Execute Under Same RTS
.
. .
.
.
.
. 3-86

3.5
CLEAR - Clear Keyword Bits
.
. .
.
.
.
. 3-87

3.6
CORE - Change Memory Size
.
. .
.
.
.
. 3-89

3.7
DATE - Return Current Date and Time
.
. .
.
.
.
. 3-92

3.8
ERLOG - Log an Error from RTS
.
. .
.
.
.
. 3-94

3.9
EXIT - Exit to Default Keyboard Monitor
.
. .
.
.
.
. 3-95

3.10
.FSS - Check File Specification String
.
. .
.
.
.
. 3-96

3.11
LOGS - Check for Logical Devices
.
. .
.
.
.
.3-109

3.12
MESAG - Message Send/Receive
.
. .
.
.
.
.3-116

3.12.1 Declare Receiver Subfunction
.
. .
.
.
.
.3-117

3.12.2 Remove Receiver Subfunction
.
. .
.
.
.
.3-119

3.12.3 Send Local Data Message Subfunction
.
. .
.
.
.
.3-120

3.12.4 Receive Subfunction
.
. .
.
.
.
.3-123

3.13
NAME - Install Program Name with Monitor
.
. .
.
.
.
.3-127

3.14
.PEEK - Look at Monitor Memory
.
. .
.
.
.
.3-129

3.15
PLAS - Access Resident Library
.
. .
.
.
.
.3-132

3.15.1 ATRFQ (Attach Resident Library)
.
. .
.
.
.
.3-133

3.15.2 CRAFQ (Create Address Window)
.
. .
.
.
.
.3-137

3.15.3 DTRFQ (Detach Resident Library)
.
. .
.
.
.
.3-143

3.15.4 ELAFQ (Eliminate Address Window)
.
. .
.
.
.
.3-146

3.15.5 MAPFQ (Map Address Window)
.
. .
.
.
.
.3-149

3.15.6 UMPFQ (Unmap Address Window)
.
. .
.
.
.
.3-154

3.16
POSTN - Return Current Horizontal Position
.
. .
.
.
.
.3-156

3.17
READ - Read Data from File or Device
.
. .
.
.
.
.3-158

3.18
RSX - Execute Job and Disappear (RSX only)
.
. .
.
.
.
.3-164

3.18.1 No Requests for Extra Space.
.
. .
.
.
.
.3-164

3.18.2 Request for Mapping a Window in APR 7 . . .
.
. .
.
.
.
.3-165

3.18.3 Request to Extend the User Job Image.
.
. .
.
.
.
.3-166

3.19
RTS - Pass Control to Run-Time System
.
. .
.
.
.
.3-167

3.20
RUN - New Program to Run.
.
. .
.
.
.
.3-172

3.21
SET - Set Keyword Bits
.
. .
.
.
.
.3-176

3.22
SLEEP - Suspend Job
.
. .
.
.
.
.3-178

3.23
SPEC - Special Functions for 1/O
.
. .
.
.
.
.3-180

3.23.1 SPEC for Disk
.
. .
.
.
.
.3-180

3.23.2 SPEC for Terminal
.
. .
.
.
.
.3-183

3.23.2.1 All but Private Delimiters
.
. .
.
.
.
.3-183

3.23.2.2 Private Delimiters
.
. .
.
.
.
.3-185

3.23.3 SPEC for Magnetic Tape
.
. .
.
.
.
.3-195

3.23.4 SPEC for RX01 /RX02 Flexible Diskette. . . .
.
. .
.
.
.
.3-200

3.23.5 SPEC for Pseudo Keyboards
.
. .
.
.
.
.3-202

.3-204 .3-206 .3-208 .3-209 .3-211 .3-212 .3-213 .3-214

.3-215 .3-222 .3-226

.3-229

3.24

3.25

3.26

3.27

3.28

3.29

3.30
STAT - Return Job Statistics

TIME - Return Timing Information

TTAPE - Enter Tape Mode

TTDDT - Disable Full-Line Buffering

TTNCH - Undo.TTAPE or.TTNCH

TTNCH - Stop Echo .

TTRST - Restart Output. .

3.31
ULOG - Assign /Reassign /Deassign Device or Assign /Deassign

User Logical . . .

. .

3.31.1 UU.ASS (Assign /Reassign a Device or Assign User

Logical)

.

3.31.2 UU.DEA (Deassign a Device or User Logical)

3.31.3 UU.DAL (Deassign All Devices and User Logicals).

3.32
UUO - Execute BASIC-PLUS SYS Call

3.32.1 UU.ACT (Accounting Information Dump)

3.32.2 UU.ASS (Assign /Reassign Device).

3.32.3 UU.ATR (Read/ Write File Attributes)

3.32.4 UU.ATT (Attach /Reattach Job/ Swap Console)

3.32.5 UU.BCK (Change File Statistics)

3.32.6 UU.BYE (Logout) .

3.32.7 UU.CCL (Add/Delete CCL Command)

3.32.8 UU.CHE (Enable/Disable Disk Caching)

3.32.9 UU.CHU (Change Password/ Quota, Disable Terminal,

Kill Job) . .

. .

3.32.10 UU.CNV (Date and Time Conversion)

3.32.11 UU.DAL (Deassign All Devices)

3.32.12 UU.DAT (Change System Date/Time)

3.32.13 UU.DEA (Deassign Device)

3.32.14 UU.DET (Detach) .

3.32.15 UU.DIE (System Shutdown)

3.32.16 UU.DIR (Directory Lookup)

3.32.17 UU.DLU (Delete User Account)

3.32.18 UU.DMP (Snap Shot Dump)

3.32.19 UU.ERR (Return Error Messages)

.3-235 .3-236 .3-238 .3-240 .3-246 .3-247 .3-250 .3-252 .3-254 .3-258 .3-260 .3-261 .3-262 .3-263 .3-264 .3-265 .3-270 .3-272 .3-273

3.32.20 UU.FCB (Get Open Channel Statistics (WCB/DDB /FCB)) . .3-275 3.32.21 UU.FIL (File Placement and Modification) .
.
.
.
.
.
.
.
.
.3-279 3.32.22 UU.HNG (Hang Up a Dataset)
.3-282 3.32.23 UU.JOB (Create Job) .3-283 3.32.24 UU.LIN (Login) .3-290 3.32.25 UU.LOG (Set Number of Logins)
.
.
.
.
.
.
.
.
.
.
.
.
.
.3-292 3.32.26 UU.LOK (Disk Directory Lookup by File Name/Wildcard

Lookup) .3-294 3.32.27 UU.MNT (Disk Pack Status)
.3-298 3.32.28 UU.NAM (Associate a Run-Time System with a File)
. . . .3-301 3.32.29 UU.NLG (Disable Further Logins) .
.
.
.
.
.
.
.
.
.
.
.
.
.3-302 3.32.30 UU.PAS (Create User Account)3-304 3.32.31 UU.POK (Poke Memory)3-307 3.32.32 UU.PPN (Wildcard PPN Lookup)3-308 3.32.33 UU.PRI (Change Priority /Run Burst /Job Size)
.
.
.
.
.
.
.3-310 3.32.34 UU.RAD (Read or Read-and-Reset Accounting Data)3-312 3.32.35 UU.RTS (Add/Remove/Load/Unload Run-Time System or

Resident Library) .3-314 3.32.36 UU.SLN (System Logical Names)3-326 3.32.37 UU.SPL (Spooling) .3-330

Part III Chapter 4

Chapter 5

3.32.38 UU.STL (Stall/ Unstall System)
. .
.
.
. 3-333

3.32.39 UU.SWP (Add, Remove, and List System Files) . .
. .
.
.
.3-334

3.32.40 UU.SYS (Return Job Status Information)
. .
.
.
.3-340

3.32.41 UU.TB1 (Get Monitor Tables, Part I)
. .
.
.
.3-343

3.32.42 UU.TB2 (Get Monitor Tables, Part 11)
. .
.
.
.3-345

3.32.43 UU.TB3 (Get Monitor Tables, Part III).
. .
.
.
.3-347

3.32.44 UU.TRM (Set Terminal Characteristics)
. .
.
.
.3-349

3.32.45 UU.YLG (Enable Logins)
. .
.
.
.3-353

3.32.46 UU.ZER (Zero Device)
. .
.
.
.3-355

3.33
WRITE - Write Data to File or Device
. .
.
.
.3-357

RSX and RT11 Emulator Directives

RSX Run-Time System Environment

4.1
Introduction .
. .
.
.
. . 4-1

4.1.1 Advantage: Transportable Code
. .
.
.
. . 4-1

4.1.2 General Services
. .
.
.
. . 4-2

4.1.3 RSX Directive Emulation Within RSTS/E Monitor
. .
.
.
. . 4-2

4.2
System Macro Library.
. .
.
.
. . 4-3

4.3
Directive Processing.
. .
.
.
. . 4-3

4.4
Directive Forms - $, $C, $S - and Their Expansions . . .
. .
.
.
. . 4-4

4.4.1 $ Form (and DIR$ Directive)
. .
.
.
. . 4-5

4.4.2 $C Form .
. .
.
.
. . 4-8

4.4.3 $S Form. .
. .
.
.
. . 4-9

4.5
First 1000 Bytes of Low Segment for RSX
. .
.
.
. . 4-9

RSX Emulator Directives

5.1
Introduction .
. .
.
.
. . 5-1

5.1.1 Perform Non-File-Structured Input /Output
. .
.
.
. . 5-1

5.1.2 Specify Trap Routines
. .
.
.
. . 5-2

5.1.3 Control Program Execution
. .
.
.
. . 5-2

5.1.4 Return System Information
. .
.
.
. . 5-3

5.1.5 Access Resident Libraries
. .
.
.
. . 5-3

5.2
ABRT$ - Abort .
. .
.
.
. . 5-4

5.3
ALUN$ - Assign Logical Unit Number
. .
.
.
. . 5-5

5.4
ASTX$ - AST Service Exit
. .
.
.
. . 5-7

5.5
ATRG$ - Attach Resident Library
. .
.
.
. . 5-9

5.6
CRAW$ - Create Address Window
. .
.
.
. 5-12

5.7
DTRG$ - Detach Resident Library
. .
.
.
. 5-17

5.8
ELAW$ - Eliminate Address Window
. .
.
.
. 5-19

5.9
EXIT$ - Task Exit .
. .
.
.
. 5-21

5.10
EXST$ - Exit with Status
. .
.
.
. 5-22

5.11
EXTK$ - Extend Task
. .
.
.
. 5-24

5.12
GLUN$ - Get LUN Information
. .
.
.
. 5-26

5.13
GMCR$ - Get MCR (CCL) Command Line
. .
.
.
. 5-28

5.14
GPRT$ - Get Partition (Job) Parameters
. .
.
.
. 5-29

5.15
GTIM$ - Get Time Parameters
. .
.
.
. 5-31

5.16
GTSK$ - Get Task (Job) Parameters
. .
.
.
. 5-33

Vi

Chapter 6

Chapter 7

5.17

5.18

5.19
MAP$ - Map Address Window

QIO$ and QIOW$ - Queue I/0 Request (and Wait)

SCCA$S - Specify Control/ C AST
.

.

.
.

.

.
5-36

5-39

5-46

5.20
SFPA$ - Specify Floating-Point-Processor Exception Address . .
.
.
5-48

5.21
SPND$S - Suspend. .
.
.
5-50

5.22
SVDB$ - Specify SST Vector Table for Debugging Aid
.
.
5-51

5.23
SVTK$ - Specify SST Vector Table for Task
.
.
5-53

5.24
UMAP$ - Unmap an Address Window
.
.
5-55

5.25
WSIG$ - Wait for Significant Event Flag.
.
.
5-57

5.26
WTSE$ - Wait for Single Event Flag
.
.
5-58

RT11 Run-Time System Environment

6.1
Introduction

. .
.
.
. 6-1

6.1.1 Advantage: Transportable Code
.
.
. 6-1

6.1.2 General Services .
.
.
. 6-3

6.2
System Macro Library .
.
.
. 6-3

6.3
Directive Processing. .
.
.
. 6-4

6.4
Call Forms .

. .
.
.
. 6-5

6.4.1 Format for Calls Using Argument Blocks
.
.
. 6-5

6.4.2 Format for Calls Not Using Argument Blocks
.
.
. 6-7

6.5
Channel Number and Device Block Arguments
.
.
. 6-7

6.5.1 Channel Number Arguments
.
.
. 6-7

6.5.2 Device Block Arguments
.
.
. 6-8

6.6
Low 1000 Bytes for RT11 Run-Time System
.
.
. 6-9

6.7
`Scratch Pad' Area in User Job Image
.
.
6-10

RT11 Emulator Directives

7.1
Introduction .
.
.
. 7-1

7.2
CHAIN - Pass Control to Another Program Under RT11
.
.
. 7-7

7.3
CLOSE - Close a Channel
.
.
. 7-9

7.4
CLRFQB - Clear the FIRQB
.
.
7-10

7.5
CLRXRB - Clear the XRB
.
.
7-11

7.6
CSIGEN - Examine String for RT Command, Open Files. . . .
.
.
7-12

7.7
CSISPC - Examine String for RT Command, Create Devblk . .
.
.
7-16

7.8
DATE - Return Current Date to RO
.
.
7-19

7.9
DATTIM - Return Date or Time
.
.
7-21

7.10
DELETE - Delete File from Disk or DECtape
.
.
7-23

7.11
.D000L - Do a RSTS/E CCL
.
.
7-24

7.12
.DOFSS - Do a RSTS / E .FSS
.
.
7-25

7.13
DORUN - Chain to Non-RT11 RTS Program
.
.
7-26

7.14
DSTATUS - Return Device Status
.
.
7-28

7.15
ENTER - Open File for Output
.
.
7-30

7.16
ERRPRT - Print RSTS/E Error Message.
.
.
7-32

7.17
EXIT -Program Exit .
.
.
7-33

7.18
.FETCH - Check for Device Available
.
.
7-34

7.19
GETCOR - Change Job Image Size
.
.
7-35

7.20
GTIM - Return Time-of-Day
.
.
7-36

7.21
GTLIN - Get Line from Job's Terminal
.
.
7-37

7.22
GTJB - Return Job High Limit
.
.
7-38

vii

Appendix A Appendix B

Appendix C

7.23
GVAL - Get Value from Scratch Pad
.
. .
.
7-39

7.24
HRESET - Hardware Reset
.
. .
.
7-40

7.25
LOOKUP - Open File for Input
.
. .
.
7-41

7.26
PRINT - Display String on Job's Terminal
.
. .
.
7-43

7.27
PURGE - Release Channel
.
. .
.
7-44

7.28
RCTRLO - Reverse CTRL/O.
.
. .
.
7-45

7.29
READ /.READW /.READC - Read Data
.
. .
.
7-46

7.30
RENAME - Rename a File
.
. .
.
7-48

7.31
REOPEN - Reopen File Closed with SAVESTATUS
.
. .
.
7-49

7.32
SAVESTATUS - Save Status of File for Later REOPEN . .
.
. .
.
7-50

7.33
SCCA - Pass CTRL/Z to User Program
.
. .
.
7-51

7.34
SETCC - Process CTRL/C
.
. .
.
7-52

7.35
SETFQB - Set Up FIRQB
.
. .
.
7-53

7.36 SETTOP - Expand to Start of Scratch Pad

7.37 SFPA - Set Floating-Point Error Address

7.38 SPFUN - Special Functions for 1/O

7.39 SRESET - Software Reset .

7.40 TRPSET - Intercept Traps to 4 and 10

7.41 TTYIN /.TTINR - One-Character Read from Terminal
7-54

7-55

7-56

7-58

7-59

7-60

7.42 .TTYOUT/.TTOUTR - Transfer One Character to Job's Terminal. .
7-62

7.43 TWAIT - Timed Wait .
7-63

7.44 WAIT - Check for Channel Open
7-64

7.45 WRITE / WRITW / WRITC - Write Data
7-65

7.46 ..V1.. /..V2.. -Use Version 1 /Version 2 Expansion
7-67

Full List of Errors

Device Information

B.1 Disks .
.B-2

B.1.1 MODE Values. .
.B-2

B.1.2 Disk Device Sizes .
.B-3

B.2 Flexible Diskettes .
. B-4

B.3 Magnetic Tape .
.B-5

B.3.1 File-Structured Processing.
.B-5

B.3.2 Non-File-Structured Processing
.B-6

B.4 Line Printers .
. B-7

B.5 Terminals .
. B-8

B.5.1 Terminal MODE and RECORD Values
.B-8

B.5.2 Echo Control Mode .
B-10

B.5.3 Escape Sequences .
B-12

B.6 Pseudo Keyboards .
B-14

Supplementary RSX Directives for Resident Libraries

C.1 RDB Directives .
. C-1

C.2 WDB Directives .
.C-2

Index Figures

2-1
How a Physical Address Is Formed
. 2-2

2-2
Memory Mapping with the APRs
.
. . .
.
. .
. .
. .
. .
.
.
.
.
.
. 2-3

2-3
Job Area in Virtual Memory
.
.
.
.
. .
. .
. .
.
. .
. .
. .
.
.
.
. 2-5

2-4
First 1000 Bytes of Low Segment
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 2-8

2-5
General FIRQB Format . 2-11

2-6
General XRB Format . 2-12

2-7
Format of Pseudo Vector Region of High Segment .
.
.
.
.
.
.
.
.
. 2-16

4-1
General Form of the Directive Parameter Block (DPB) .
.
.
.
.
.
.
.
. 4-3

4-2
Example of RSX Directive Forms
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 4-5

4-3
First 1000 Bytes of Low Segment for RSX .
.
.
.
.
.
.
.
.
.
.
.
.
.
4-10

Tables

3-1
Summary of General Monitor Calls
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 3-2

3-2
Fixed Monitor Locations. .3-130

3-3
Data Input with READ .3-158

3-4
Private Delimiter Masks
. .3-190

3-5
Special Functions for Magnetic Tape.3-197

3-6
Value Returned by SPEC for Magnetic Tape
.3-198

3-7
UUO Subfunctions - Calls to the File Processor (FIP)
.3-231

3-8
Data Output with WRITE
. .3-358

5-1
Vertical Format Control Characters 5-42

6-1
EMT Instructions Recognized by the RT11 Run-Time System
. 6-5

7-1
RT-11 Calls Not Functional on RSTS/E 7-2

7-2
RT11 Run-Time System Directives
. 7-2

B-1
MODE Values for File-Structured Disk Access (FIRQB+FQMODE) . .B-2

B-2
MODE Values for Non-File-Structured Disk Access

(FIRQB + FQMODE) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. B-2

B-3
Disk Device Sizes .
.B-3

B-4
Flexible Diskette MODE Values (FIRQB+FQMODE)B-4

B-5
Flexible Diskette RECORD Values (XRB+XRBLK)B-4

B-6
MODE Values for File-Structured Magnetic Tape

(FIRQB + FQMODE) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. B-5

B-7
CLUSTERSIZE Values for ANSI Magnetic Tape FilesB-6

B-8
Line Printer MODE Values (FIRQB+FQMODE).B-7 B-9
Line Printer RECORD Values (FIRQB+FQMODE)B-7 B-10 Terminal MODE Values (FIRQB+FQMODE)B-8 B-11 RECORD Values for Terminal Input (XRB+XRMOD)B-9 B-12 RECORD Values for Terminal Output (XRB + XRMOD)B-9 B-13 Echo Control Mode Character Set B-10 B-14 VT100 ANSI-Compatible Escape Sequences for Screen Control
. . . B-12 B-15 Pseudo Keyboard MODE Values (FIRQB+FQMODE) B-14 B-16 RECORD Option Bit Values for Pseudo Keyboard

Output (XRB + XRMOD).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. B-14 B-17 Possible Errors on Pseudo Keyboard Output Request. B-14

Preface

This manual describes directives to the RSTS/E monitor, the RSX emula​tor, and the RT11 emulator that can be used in MACRO programs. To use these directives, you should be familiar with the MACRO-11 assembly language. MACRO is the standard assembler for Digital Equipment Corpo​ration PDP-11 computers and is available under various operating systems for the PDP-11. The syntax is basically the same for all operating systems.

Associated Documents

For information about the syntax of MACRO assembly language, see the PDP-11 MACRO-11 Language Reference Manual.

For more information about the RSTS/E system, refer to:

RSTSIE System User's Guide BASIC PLUS Language Manual RSTSIE Programming Manual RSTSIE Programmer's Utilities Manual RSTSIE Task Builder Reference Manual

This manual cross-references these manuals where appropriate.

The system manager sets certain parameters that affect the monitor and, consequently, the monitor directives. Therefore, the RSTSIE System Generation Manual and the RSTSIE System Manager's Guide are refer​enced here.

Document Structure

This manual contains seven chapters and three appendixes:

Chapter 1
Gives an overview of run-time systems and jobs as they re​late to the system directives.

Chapter 2
Describes the RSTS/E environment-memory allocation and job space
for the general monitor directives.

Chapter 3
Serves as a reference guide for the general monitor direc​tives that can be used in programs compiled under either the RSX or RT11 run-time systems.

Chapter 4
Describes the RSX environment for the RSX directives.

Chapter 5
Serves as a reference guide for the directives processed by the RSX emulator in the RSX run-time system.

Chapter 6
Describes the RT11 environment for the RT11 directives.

Chapter 7
Serves as a reference guide for the directives processed by the RT11 emulator in the RT11 run-time system.

Appendix A
Lists the RSTS/E errors you can get during directive processing.

Appendix B
Summarizes MODE and RECORD values and other useful information for disks, flexible diskettes, magnetic tape, line printers, terminals, and pseudo keyboards.

Appendix C
Describes supplementary directives to the RSX emulator, useful if you are working with resident libraries.

Document Conventions

The following conventions are used in this manual:

The arrow means "points to," as when the stack pointer register points to, or contains the address of, the first item in the stack. For example:

SP
item at top of stack

item one word down from top of stack

()
Parentheses
mean
"the
contents
of "
the
item that
the parentheses surround. For example, the contents of the pro​gram counter would be represented as:

(PC)

[]
Brackets around an item in a line showing the general form of a directive indicate that the item is optional. For example:

QIO$ paraml [, param2]

Braces around two or more items in a line showing the general form of a directive indicate that you must choose one of the enclosed items. For example:

QIO$ QIOW$

The double arrow means "implies." For example:

Bit 0 = 1 > Error condition

< >
Angle brackets around two or more items in a line tell the MACRO assembler that the items make up a list. For example:

GLOBAL <namel[,name2,...]>

You must type the angle brackets.

Summary of Technical Changes

General Monitor Directives

Several RSTS/E monitor directives have expanded functions for V8.0, and one new directive (UU.STL) has been added. The following is a summary:

CALFIP (Call File Processor)

The CALFIP OPNFQ function returns the error ?Protection violation if a nonprivileged user tries to open a disk for non-file-structured access. See Section 3.2.12.

.MESAG (Message Send/Receive)

The Declare Receiver function of MESAG is available to nonprivileged users, with certain restrictions. In addition, three new parameters have been added to the data passed: outbound link maximum, packet maxi​mum, and packets per message. The last two parameters are used only in an EMT logging program. See Section 3.12.1.

UU.ASS (Assign /Reassign Device)

A nonprivileged user can reassign a device to a job running under the current account. See Sections 3.31.1 and 3.32.2.

UU.ATT (Attach /Reattach /Swap Console)

UU.ATT allows a nonprivileged user to attach to a job running under the current account. No password is required. In addition, UU.ATT includes a "swap console" function, which allows two jobs running under the same account to exchange ownership of a terminal. One job must be attached and the other detached. See Section 3.32.4.

UU.BYE (Logout)

UU.BYE allows a privileged user to log out without closing files, deas​signing devices, checking disk quotas, or performing other "clean-up" functions. In addition, UU.BYE returns information about log-out status as well as disk and detached job quotas.

A nonprivileged user can now use UU.BYE to kill the current job. See Section 3.32.6.

UU.CLN (Clean Disk Pack)

The UU.CLN directive is obsolete, and information on this directive has been removed from the manual. Use the ONLCLN program to rebuild a disk.

UU.DET (Detach)

The description of UU.DET includes changes made to the "close flag" in V7.2. See Section 3.32.14.

UU.FCB (Get Open Channel Statistics)

UU.FCB returns information about the file system's FCB (file control block) as well as the WCB (window control block) and the DDB (device data block). See Section 3.32.20.

UU.JOB (Create Job)

UU.JOB creates logged-in jobs as well as logged-out jobs. You can cre​ate both attached and detached logged-in jobs, and you can specify that the job either run a program or enter a keyboard monitor at the PHEW entry point. In addition, some functions of UU.JOB are available to nonprivileged users. See Section 3.32.23.

UU.MNT (Disk Pack Status)

UU.MNT has two new functions:

• Mount disk read/ write even if initialized read-only • Mount disk for use by single user (/NOSHARE) See Section 3.32.27.

UU.PAS (Create Account)

UU.PAS lets you position and preextend the User File Directory (UFD) when you create a user account. See Section 3.32.30.

UU.RAD (Read or Read and Reset Accounting Data)

UU.RAD lets you specify a wildcard project-programmer number. See Section 3.32.34.

UU.SPL (Spooling)

UU.SPL spools files to both the micro-RSTS and the standard RSTS/E spooling packages. See Section 3.32.37.

UU.STL (Stall /Unstall System)

UU.STL is a new directive that allows a privileged user to suspend all currently active jobs on the system except for the calling job. See Sec​tion 3.32.38.

UU.TB3 (Get Monitor Tables - Part III)

UU.TB3 returns addresses of four additional monitor tables: SATEND, UNTLVL, MFDPTR, and MAGLBL. The directive also returns the number of jobs currently on the system. See Section 3.32.43.

UU.ZER (Zero Device)

For disks, UU.ZER allows a nonprivileged user to delete all files in the current account regardless of their protection codes. Privileged users can delete files in any account regardless of their protection codes as well as deallocate UFD clusters. See Section 3.32.46.

.WRITE (Write Data to File or Device)

The WRITE directive returns a new value at XRB + XRBC: the number of bytes still to be written. This value is generally 0 except for line printers and terminals.

In addition, a "no stall" modifier is available for line printer and termi​nal output. This modifier causes the monitor to return control to your program if an output stall is to occur on the device. See Section 3.33.

Other Documentation Changes

A program running under the RSX run-time system can expand to (32K-32) words if the monitor contains RSX directive emulation code. The manual is updated as necessary to include this information. No other changes have been made to RSX or RT11 emulator directives for V8.0, other than correcting documentation errors.

Appendix B is expanded to include MODE and RECORD values for disks, flexible diskettes, magnetic tape, line printers, terminals, and pseudo key​boards. Values are given in both octal and decimal, and FIRQB and XRB offsets are listed. This appendix also contains other device-related informa​tion, such as VT100 ANSI-compatible escape sequences and disk sizes.

Chapter 1 Introduction

As an assembly language programmer, you should know that two MACRO assemblers are available on RSTS/E: one for jobs running under the RSX run-time system and one for jobs running under the RT11 run-time system. You will use one of these two run-time systems to assemble and, in most cases, run your programs. In addition to user programs, you can also write or modify run-time systems, which run under direct control of the RSTS/E monitor.

This manual describes the three types of system directives available to RSTS/E assembly language programmers: general monitor directives, RSX emulator directives, and RT11 emulator directives. Before you start using these directives, however, it is helpful to understand some basic concepts about RSTS/E run-time systems and jobs.

1.1 Run-Time Systems

There are several ways to look at run-time systems. From the system de​sign viewpoint, a run-time system is a way to implement code that, when it is resident in memory, can be shared by many users. In a time-sharing system such as RSTS/E, this is an important consideration. Run-time sys​tems are normally implemented as "pure code"; that is, as a series of instructions and fixed data only, containing no variable data. Such reen​trant code saves space, since many jobs can use it, and time, since run-time systems need not be copied to and from disk in the way that user programs are swapped in and out of memory. At least one run-time system is perma​nently resident. It is called the primary run-time system, because it is the first (and only) run-time system at system start-up. Other run-time sys​tems are loaded when requested, remain in memory as long as necessary, and may be removed when they are no longer in use. Because they contain no variable data, they need not be swapped out to disk; they are simply reloaded when they are needed again. To a user, run-time systems provide various services. Basically, they provide an environment for people or an environment for programs, and sometimes both.

1.1.1 Environments for People

The DCL, BASIC-PLUS, RSX, and RT11 run-time systems all provide what is called a "keyboard monitor." That is, they accept, analyze, and act on commands you type at a terminal keyboard. The RSTSIE System User's Guide gives an overview of the command environments these run-time sys​tems provide.

1.1.2 Environments for Programs

As a MACRO programmer, you are concerned with the environment for programs provided by the RSX and RT11 run-time systems. Both run-time systems include:

• A loader. This part of each run-time system loads a program from disk into memory and starts its execution.

• An emulator. The RSX and RT11 run-time systems include code that emulates directives handled by DIGITAL'S RSX-11M and RT-11 operat​ing systems for the PDP-11 computer.

A run-time system usually takes up space in the 32K-word area called the user job area. Therefore, a run-time system limits the size of your program to less than 32K words. Both the RSX and RT11 run-time systems take 4K words of virtual memory. However, an installation option allows the RSX run-time system to "disappear" in certain situations. In this case, an exe​cuting program can use the space normally taken by the run-time system. Space requirements are explained in greater detail in Chapter 2.

Should you program under the RSX or RT11 run-time system? RSX is usually a better choice, but your decision depends on:

• Whether you are coding MACRO subroutines for use in a high-level lan​guage program

• Which set of program development tools better satisfies your needs

• Whether you want to use resident libraries

High-Level Languages

When you write MACRO subroutines for use in high-level language pro​grams, the high-level language dictates which run-time system you must use. BASIC-PLUS-2, COBOL-81, PDP-11 COBOL, DIBOL, and FORTRAN-77 all run under the RSX run-time system, while FORTRAN-IV runs under the RT11 run-time system. You must compile, link, and run all the modules in your program under the same run-time system, whether your program is written in MACRO or a high-level language.

1-2 Introduction

Program Development Tools

RSTS/E provides a set of program development tools for the RSX environ​ment and a set for the RT11 environment. While the tools for each environ​ment perform similar functions, they differ in their speed and capabilities:

• Assemblers.
RSTS/E
supports
two
MACRO-11
assemblers,
the RSX-based MAC assembler and the RT11-based MACRO assembler. The two assemblers are nearly identical in function and produce similar output.

• Linkers. RSTS/E supports two linkers: the Task Builder (TKB) for RSX-based programs and LINK for RT11-based programs. While LINK is faster than the Task Builder, the Task Builder is more powerful. It can link much larger and more complex overlay structures than LINK, including co-trees. And, unlike LINK, the Task Builder has options for linking to resident libraries.

• Librarians. RSTS/E provides LBR for RSX-based programs and LIBR for RT11-based programs. You can create object and macro libraries with either utility. LBR also lets you create universal libraries, which can contain any type of file, including text files.

• Object module patch utilities. RSTS/E provides a PAT utility for each environment. Both let you update code in a relocatable binary object mod​ule.

For details on these program development tools, see:

• RSTSIE Task Builder Reference Manual - Describes the Task Builder.

• RSTSIE Programmer's Utilities Manual - Describes the RSX-based MACRO assembler, librarian, and object module patch utilities.

• RSTSIE RT11 Utilities Manual - Describes the RT11-based MACRO assembler, librarian, linker, and object module patch utilities.

Resident Libraries

When you program under RSX, you can easily use DIGITAL-supplied resi​dent libraries (such as RMS-11 and FMS-11) as well as create your own resident libraries. In addition, the Task Builder's cluster library feature lets up to five resident libraries share the same virtual address space in your program.

You can also use resident libraries under the RT11 emulator, but the cod​ing is much more difficult. Unlike RSX, you must use PLAS directives to map and create address windows inside your task. Coding these directives can be quite complex. The Task Builder, on the other hand, has options that build tables describing your task and the window to map, and automati​cally includes the code to perform the necessary PLAS directives for you. Thus, RSX is a more practical choice than RT11 if you plan to use resident libraries.

Introduction 1-3

Directives for Each Programming Environment

RSTS/E has three types of directives: monitor directives, RSX emulator directives, and RT11 emulator directives. Monitor directives, described in Chapter 3, are processed directly by the RSTS/E monitor. You can assemble monitor directives using either the RSX-based or the RT11-based MACRO assembler, and you can use these directives in both user programs and run​time systems. (When you write a program to run under the RT11 run-time system, you must precede all monitor directives with a special "prefix EMT"; see Chapter 6 for details.)

RSX emulator directives are processed by the RSX emulator, which is part of the RSX run-time system. These directives, which have basically the same form and function as a subset of the RSX-11M operating system monitor directives, perform non-file-structured 1/0 and trap handling. You must use the RSX-based MAC assembler to assemble the RSX emulator directives, and you can use them only in a user program that will run under the RSX run-time system. Chapters 4 and 5 of this manual describe the RSX run-time system environment and emulator directives in detail.

RT11 emulator directives are processed by the RT11 emulator, which is part of the RT11 run-time system. These directives provide most of the "single job" programmed requests available to MACRO programmers using the RT-11 operating system. In addition, the RT11 run-time system also provides directives for the RSTS/E environment not available under the RT-11 operating system. You must use the RT11-based MACRO assembler to assemble RT11 emulator directives, and you can use them only in a user program that will run under the RT11 run-time system. Chapters 6 and 7 of this manual describe the RT11 run-time system environment and emula​tor directives in detail.

Writing or Modifying a Run-Time System

If you want to modify an existing run-time system or code your own run​time system, you can use either MACRO assembler. You may find the RT11-based programming tools easier to use for this purpose than the RSX-based programming tools, mainly because it is easier to link run-time systems with the LINK program than with the Task Builder. Run-time systems always have a specific address for their top (highest) address. When you use LINK, you can specify the top address the first time you link the run-time system. But when you use the Task Builder, you have to link your run-time system twice - once to find its size, and again to adjust its top address to the value you want.

Unlike a program, a run-time system can contain monitor directives only, not RSX or RT11 emulator directives. In addition, you must store the run​time system file (the product of assembling and linking) on the system disk in "save image library" format. To create a save image library file, use MAKSIL for run-time systems assembled with MAC and linked with the Task Builder; use SILUS for run-time systems assembled with MACRO and linked with LINK.

1-4 Introduction

Like run-time systems, "jobs" can be viewed from several angles. To the RSTS/E monitor, a job is a unit of work generally associated with activity at a terminal on the system. Suppose, for example, that a user types a line at a logged-out terminal. The monitor creates a job, assigning a job number and allocating internal tables for bookkeeping. The monitor then passes control to a "new-user" entry point in the primary run-time system. The primary run-time system has code at this entry point that causes the LOGIN program to be loaded from the system disk and executed. LOGIN analyzes what was typed and performs the normal login dialogue. When LOGIN exits for a valid login, control passes to what the system manager has defined as the default keyboard monitor, which waits for further input from the terminal. The monitor regards the execution of the primary run​time system, LOGIN, the default keyboard monitor, and whatever else occurs at the terminal until it is logged out as the same "job." (If the login sequence was not valid, LOGIN exits with the job still logged out. The monitor destroys "the job" and releases the job number.)

As a MACRO programmer, your awareness of the concept of "job" will probably center around the amount of memory RSTS/E provides for work space for a job, and the fact that the run-time system can take part of this work space. The allocation of work space is described in Chapter 2.

Introduction 1-5

Chapter 2

General RSTS / E Environment

To understand how and why one copy of a run-time system, shared by many users, can still take up space in each user's work area, we must go into some background on memory accessing in the PDP-11 (Section 2.1) and how RSTS/E uses it to define a job space, or work area in memory, for each user to run programs (Section 2.2). Section 2.3 briefly describes resident libraries and the special-case "disappearing" RSX run-time system. Sections 2.4 and 2.5 give specifics on certain areas in the job space that are used by the monitor, the run-time system, and the user program.

2.1 How RSTS / E Allocates Memory - Physical and Virtual Addressing

All RSTS/E systems use the memory management feature available on PDP-11 / 23-PLUS, 24, 34, 35, 40, 44, 45, 50, 55, 60, and 70 computers. This feature extends the addressable memory range of the PDP-11 processor by using hardware registers called Active Page Registers (APRs).

The PDP-11 processor handles 16-bit operand addresses, allowing refer​ence to 32K words. (Remember that the PDP-11 is byte-addressable, so the address range is from 0 through 216-1, which equals 64K bytes or 32K words.) With the memory management unit, a 16-bit address is treated as a relocatable (virtual) address that is combined with information in an APR to form an 18-bit (22-bit, for the PDP-11 / 23-PLUS, 24, 44, and 70) physi​cal address.

The Processor Handbook for the PDP-11 processors explains in detail how the APRs function. Briefly, an APR consists of two 16-bit registers. These registers define a "page" of contiguous memory. The Page Address Register (PAR) defines the physical memory location where the page begins. The Page Descriptor Register (PDR) defines, among other things, the maximum length of the page and how it can be accessed (for example, read /write, read-only).

Figure 2-1 shows how a virtual address and a Page Address Register are combined to form a physical address in physical memory. The 16-bit

virtual address defines which one of eight Active Page Registers is to be used and a byte offset within the page. The Page Address Register of the indicated APR is handled as though it contains bits 6-17 (6-21 for the PDP-11/23-PLUS, 24, 44, and 70) of an 18-bit (or 22-bit) physical ad​dress, defining the start of the page.

In Figure 2-1, the virtual address of 0723228 identifies APR 3 and byte 12322 of the page defined by APR 3. The PAR of APR 3 indicates a starting address of 146000 for the page. The physical address obtained is 146000 + 012322, or 160322.

Figure 2-1: How a Physical Address Is Formed

Virtual Address

15 13 12
0

PR
byte offset within page

[image: image1.png]
[image: image2.png]
(points to specific APR, 0-7)

Page Address Register

(15) (12) (11)
(0)

21
18 I 17
6

n

starting address of page 1

[image: image3.png]

12322

-1460

160322

The byte offset field in the virtual address is 13 bits long. The maximum size of a page, then, is 213 bytes, or 4096 words. In other words, one APR can "map" a virtual address range of up to 4K words into an equal extent of physical memory.

The memory management unit on the PDP-11 consists of two sets of APRs,* eight in each set. Since each APR can map a 4K segment of virtual memory to physical memory, each set of APRs can provide access to 32K words of physical memory.

* The PDP-11 /44, 45, 50, 55, and 70 have three sets of APRs; the additional set is for "supervisor mode" mapping, which RSTS/E does not use.

2-2
General RSTS / E Environment

The monitor uses one set, called the "kernel mode" APRs, to map itself in physical memory. It uses the other set, called the "user mode" APRs, to map the job that is active during the current time slice of time-shared processing. Figure 2-2 illustrates the concept of mapping through the APRs.

Figure 2-2: Memory Mapping with the APRs

[image: image4.png]

[image: image5.png]
[image: image6.png]
[image: image7.png]AKW -

BKW -

12KW -

16KW -

20K W -

24KW -

28KW -

TIK W

MONITOR'S VIRTUAL ADDRESS RANGE

0

-EMT

0 0 0 0 0 0 0 0

0 XBUF

iii 0

iiu~~

ACTUAL ADDRESSES (PHYSICAL MEMORY)

0

Z/ PERMANENTLY MAPPED PART OF RSTS/E MONITOR EMT

0 0 0 0 0 0 0 XBUF

0 00 0 0 0 0 0-2​USER OGRAM~

'(jobx) RSX RUwTIME S1VSTfim RESIDENT LIBRARY (NON-EXISTENT MEMORY)

128KW

USER'S VIRTUAL ADDRESS RANGE

USER

\\~ PROGRAM

(LOW SEGME

(INACCESSIBLE

MEMORY -​

NOT MAPPED T

ACTUAL MEMORY)

RSX RUN-TIME

SYSTEM

_ .

[image: image8.bmp]
[image: image9.bmp]
[image: image10.png]
General RSTS / E Environment
2-3
On the PDP-11 / 44, 45, 50, 55, and 70, the RSTS / E monitor can take ad​vantage of what is called "I and D space." On these processors, there are actually two sets of eight APRs for each mode. One set can be used to map instructions, and the other set maps data. The monitor may use this type of mapping, depending on the number of "small buffers" the system manager selects with INIT (see the RSTS lE System Generation Manual). For exam​ple, the monitor may, if the number of requested small buffers is large enough, use data-space APR 1 to map small buffers and instruction-space APR 1 to map common routines.

2.2 Job Space - High Segment and Low Segment

The RSTS/E monitor is designed to handle work requested by a user through an interface: the run-time system. For example, the BASIC-PLUS, DCL, RSX, and RT11 run-time systems (available as part of a RSTS/E system) each provide their own keyboard monitor to accept and process user commands. These run-time systems also contain code to handle their own sets of directives, accepting and expanding user program calls to the moni​tor. For example, the RSX run-time system provides 1/0 calls to the moni​tor (phrased in terms of logical units and records), which the run-time system itself translates and executes as the more device-oriented calls han​dled directly by the monitor.

Thus, the run-time system communicates with both the user program and the monitor. Execution control passes back and forth between these three entities; data is passed between them using established ranges of virtual addresses. The monitor, then, needs to be able to access both the run-time system and the user job image during any given time slice. It does this by setting up the run-time system as part of the 32K words accessible through the eight user APRs.

The monitor assigns an area for the run-time system in the high portion of virtual address space, called the "high segment." The low portion of virtual address space, or "low segment," belongs to the "user job image"; that is, to the utility program, compiler, assembler, or executable user program that is currently being executed for the job. (As part of its housekeeping for each job, the monitor keeps track of where the currently appropriate run-time system is, where the user job image is, and what the values were in the program counter register (PC), program status word (PSW), and other job​context information at the end of the last time slice. Before the next time slice for the job, the monitor simply loads the APRs with the correct values for the job and loads the PC, PSW, and so forth, so that execution continues where it left off.)

In any case, the high segment, or run-time system, takes up some multiple of 4K words of virtual address space, due to the APR mapping as discussed in Section 2.1. The BASIC-PLUS run-time system, for example, may take from 13 to 16K words of physical memory, depending on options selected when the system is installed. Even though the physical memory required may be only 13K words, it still requires four APRs to map this range, leaving four APRs, or a maximum of 16K words, for a user program run​ning under the BASIC-PLUS run-time system.

2-4
General RSTS / E Environment

The monitor uses certain areas within the high segment and the low seg​ment to get information from the job defining what work the monitor is to do for it and to pass information back to the job. Figure 2-3 illustrates the job area in virtual addresses. The first 10008 bytes are used to pass informa​tion between the monitor, the run-time system, and the user job image for certain types of monitor directives. The "pseudo-vector" region in high vir​tual memory is used by the monitor to determine, for example, where con​trol is to be passed when a job is initially entered. The run-time system sets this area with entry points and values to define itself to the monitor.

Figure 2-3: Job Area in Virtual Memory

0

777

Used by monitor, run-time

system, and user job image

to exchange information
User

Job Image

(Low

Segment)

A

"job"

to

(Unused Space)
RSTS/E

Run-Time

System

(High

Segment)

Pseudo-vector region used

by the monitor and the run-time system

177777

The following subsections give more detail on these areas. Read Section 2.4 if you are interested in using the general monitor directives described in Chapter 3. The RSX and RT11 run-time system directives set up the first 1000 bytes of memory for you if you are using only the directives described in Chapters 5 or 7. Similarly, Section 2.5 will be of interest mainly if you wish to code your own run-time system or modify one of the existing ones and need to know about the pseudo-vector region.

General RSTS/E Environment
2-5

2.3 Important Installation Options

At system generation, the system manager can install options that affect the operation of the run-time system. The next two sections describe these options and their effect on the system.

2.3.1 The "Disappearing" RSX Run-Time System

When a RSTS/E system is generated, the system manager has the option of installing the "emulation" code of the RSX run-time system as a part of the monitor. When this is done, the emulation code-the part that handles traps and processes the RSX directives explained in Chapter 5-is perma​nently resident in memory. It is not permanently mapped; the monitor maps this section of code using kernel mode APR 5 when requested to do so by the "user command processing" code in the RSX run-time system.

The whole RSX run-time system still exists as a file that is loaded from disk when necessary, remains as long as anyone is using it, and is removed when it is no longer needed. When someone at a terminal types a command to run a program that was, for example, assembled with MAC and linked with TKB, the monitor passes control to the RSX run-time system to load the program. Once the program is loaded and ready for execution, however, the whole RSX run-time system is no longer needed. The emulation portion of the code, which must be present to process the execution of RSX direc​tives and traps that might occur during execution of the program, is in the RSTS / E monitor. The RSX run-time system passes control to the monitor, with a request to "disappear" from the high segment of the user job space. When it gives control to the monitor, the RSX run-time system passes on any requests from the user or from the program itself to make use of the high-segment space that is freed when the run-time system disappears.

The monitor decreases the count of current users of the RSX run-time sys​tem and frees the physical memory taken by the full RSX run-time system if no one else is using it and it was not installed as permanently resident. The monitor then maps the RSX emulation code (using kernel mode APR 5), sets up the user APRs and other registers according to the information passed to it by the RSX run-time system, and passes control to the program.

Up to this point, the program itself is still limited to 28K words; user APR 7 was needed for the RSX run-time system to process the command and load the program. Now, however, the program can execute directives to expand itself-up to (32K-32)words. Or, it can access resident libraries of routines or data with user APR 7.

2.3.2 Resident Libraries

The system manager can also install the capability to handle resident libraries in the RSTS /E system.

2-6
General RSTS / E Environment

A resident library, like a run-time system, can be shared by many user programs. In fact, resident libraries in RSTS / E have many parallels with run-time systems, both in concept and implementation.

The underlying concept of both run-time systems and resident libraries is that both are "shareable." The difference lies in their purpose. Run-time systems allow user programs to share code that extends the capabilities of the monitor. A user program runs under the control of a run-time system. A resident library, on the other hand, extends the capabilities of the user program. A user program can pass control to a routine within a resident library or access data in a resident library.

As with run-time systems, the system manager defines a file as a resident library with UTILTY (RSTSlE System Manager's Guide). A resident library can be defined as permanently resident; that is, it will always be in physical memory. Or, a resident library can be defined such that the moni​tor loads it from disk when necessary (when a job requests its use, or "attaches" to, the resident library). The resident library then remains in memory as long as at least one job is attached to it. It is removed when no jobs are using it and the space is needed for something else.

You can access a resident library of shareable routines or data most easily by using the Task Builder (TKB).* The Task Builder options allow you to link the resident library to your executable program in such a way that your program can reference mnemonic entry points and locations in the resident library.

However, system directives also exist (used by the Task Builder itself) by which a user program (user job image) can attach itself to a resident library, create a window of virtual addresses to refer to locations in the library, and map the virtual addresses to all or some portion of the memory occupied by the resident library.

As with run-time systems, APRs are used to create the windows of addresses that are mapped to actual memory locations. So, windows to ac​cess resident libraries take up space in the job area in 4K word units. Such windows cannot overlap the user job image (low segment) and cannot over​lap the run-time system (high segment) unless it is the RSX run-time system installed so that it can "disappear."

The illustration of memory mapping in Figure 2-2 shows a resident library mapped as part of a job running with the RSX run-time system.

2.4 Low-Segment Details - First 1000 Bytes of the Low Segment

The monitor attaches special significance to the first 10008 bytes of virtual address space in the low segment. This space is automatically allocated by the RSX task builder and RT11 linker; relocatable addresses assigned by

See the description of the COMMON, LIBR, RESCOM, and RESLIB options in the RSTSlE Task Builder Reference Manual.

General RSTS / E Environment
2-7
these programs always begin at location 10008 unless you request other​wise. If you wish to use the general monitor directives described in Chapter 3, your program must fill parts of this area with information for the moni​tor, and the monitor passes information back in this area. Rather than use octal addresses, you can use the COMMONMAC prefix file, described in Section 3.1.2, to assign mnemonic names to commonly used addresses and offsets. COMMONMAC does not allocate space, but rather assigns mne​monic names to areas within the first 1000, bytes of virtual address space. Using the mnemonics assigned with COMMONMAC makes the code more readable and easier to maintain.

The general regions in this area are shown in Figure 2-4. Note that a run​time system may use some of the areas differently when it assumes control. The RSX run-time system, for example, uses the memory labeled "default SP stack area" as a table of logical units. The Task Builder automatically generates a "user stack" after the first 1000 bytes of virtual address space. (Section 4.5 briefly describes how RSX uses the first 1000 bytes.)

If you use the general directives in Chapter 3, you should reference only the areas that are shown with mnemonics (provided by COMMONMAC). The mnemonics to the right in Figure 2-4 are assigned through COMMONMAC.

Figure 2-4:
First 1000 Bytes of Low Segment

controlled solely by job - user job

image or run-time system

used by monitor for job

context information to make job swappable

used by monitor for

hardware floating-point context information

to make job swappable

default SP stack area

keyword

file request queue block

transfer request block

core common area

controlled solely by job

0

60

170

400

402

442 XRB 460 CORCMN

660

KEY USRSP

FIRQB

(continued on next page)

2-8
General RSTS / E Environment

Figure 2r4: First 1000 Bytes of Low Segment
(Cont.)

734
USRPPN

user-assignable project-programmer number

736
USRPRT

user-assignable default protection code

740
USRLOG

user logical device name table

776

A general description of the named areas follows. The general monitor calls in Chapter 3 describe specific formats for the areas the calls use.

KEY

The keyword defines the job's status in the time-sharing environment, for example, the job's privilege. Bits in the keyword can be set and cleared by the monitor or by the job (either the run-time system or the user job image). The job can manipulate some bits in the keyword with the SET and .CLEAR directives (Sections 3.21 and 3.5).

The keyword is "refreshed" by the monitor at certain points, for example, when a run-time system is entered at P.RUN, where the intent is to load and execute a program file in the user job image (.RUN directive, Section 3.20). For a keyword refresh, the monitor clears bit 15 and bits 7-0 and sets the remaining bits to indicate the job's current status. Only seven bits are significant to the monitor. The rest can be used by the job in whatever manner it wishes.

JFSPRI JFFPP JFPRIV JFSYS

JFNOPR JFBIG JFLOCK_1
15 14 13 12 11

[image: image11.png]
JFLOCK

Set to 1 indicates that the job does not wish to be swapped. You can change this bit with SET and CLEAR. When this bit is set, the only normal condition that will cause the job to be swapped is when the job asks for a memory size expansion (see CORE, Section 3.6) and there is not enough room to do the expansion where the job now is in memory.

JFBIG

Set to 1 indicates that the job can exceed its private memory maximum (see CORE directive, Section 3.6). This bit is implic​itly set every time a privileged program is run (by either a privileged or a nonprivileged job). It can be changed with SET and.CLEAR.

JFNOPR

Set to 1 indicates that the job is not yet logged in. It is an infor​mational bit and can be altered only by the monitor when the job is logged in.

General RSTS/E Environment
2-9
JFSYS
Set to 1 indicates that the job is currently running with tempo​rary privileges. It is set by the monitor when a nonprivileged job runs a privileged program. Once the program is run, the job can regain temporary privilege by setting this bit and can drop privi​lege temporarily by clearing it. (This bit is never 1 when JFPRIV, below, is 1.)

JFPRIV
Set to 1 indicates that the job can exceed its private memory maximum (see CORE directive, Section 3.6). This bit is implic​itly set every time a privileged program is run (by either a privileged or a nonprivileged job). It can be changed with SET and.CLEAR.

JFFPP
Set to 1 indicates that the contents of the hardware floating​point unit (if any) should be part of the context of this job. That is, information in the floating-point registers should be saved and restored along with the rest of the user job image during swapping. Any program that uses the hardware floating-point unit should set this bit. It can be changed with SET and .CLEAR.

JFSPRI
Set to 1 indicates that the job is running with a special run priority-at 1/2 level higher than normal. This bit can be changed with SET and CLEAR.

USRSP

This mnemonic is assigned the value 400 (by COMMOKMAC). The moni​tor automatically loads this value into the stack pointer register (SP) when a job is created. SP is also reset to this value under certain conditions, effectively establishing a default user stack area for the job beginning at word 376. The user stack area ends at location 170 (octal). Any attempt to push the stack past location 170 results in a "stack overflow" error that is handled by the run-time system (see the description of P.BAD in Section 2.5).

You can change SP if you want. However, any attempt to reset SP to any location between 0 and 167 (octal) causes a "stack overflow" error. In addi​tion , the monitor resets SP to 400 when a run-time system is entered with a RUN, CCL, or RTS directive (Sections 3.20, 3.3, and 3.19, respectively), and when certain catastrophic errors occur, such as a fatal disk error while the user job image was being swapped (see the discussion of P.BAD in Section 2.5). You need to be aware that the monitor resets SP at these times only if you are coding or modifying a run-time system. The system does not return control to a user program under these conditions, because the pro​gram cannot recover.

* All privileged utilities that can be executed by nonprivileged users - SYSTAT for exam​ple - clear this bit before exiting, so that the temporary privilege set up for the job cannot be used further.

2-10
General RSTS /E Environment

FIRGIB

The FIRQB (file request queue block) is the main communication area between the monitor and the job for monitor directives that involve file or device operations such as open, close, and so forth. Either the run-time system or the user job image may use this area. If, for example, you use the general monitor directives described in Chapter 3, your MACRO program must store values in the FIRQB before issuing some of the directives. If you choose to use the directives in either the RSX or RT11 run-time systems, code within the run-time system will intercept the request, set up the FIRQB and other relevant areas, and then call the monitor to handle the request.

The general format of the FIRQB, with all possible mnemonics assigned by COMMOKMAC, is shown in Figure 2-5. In addition, the size of the FIRQB (408) has the mnemonic FQBSIZ.

Figure 2-5: General FIRQB Format

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN 5 FQSIZM 7

11 13 15 17 21 23 25 27 FQPROT 31

33 35 37

returned status

CALFIP/.UUO subfnc.
job number' 2

MSB of file size
channel number '2

project number
programmer number

file name (2 words in RAD50 format)

file type (1 word in RAD50 format)

least significant bits of file size

buffer length

mode

status flags

protection code
-;~0, prot. code real

device name (2 ASCII characters)

=~O,unit number real
device unit number

cluster size

number of entries in directory lookup

0 FIRQB 2 FQJOB

4 FQFIL FQERNO 6 FQPPN

10 FQNAM1 12

14 FQEXT 16 FQSIZ 20 FQBUFL FQNAM2 22 FQMODE

24 FQFLAG 26 FQPFLG 30 FQDEV 32 FQDEVN 34 FQCLUS 36 FQNENT

XRB

The XRB (transfer request block) is the main communication area between the monitor and the user for monitor directives handling file or device 1/0.

General RSTS /E Environment
2-11
It is also the area in which the monitor stores information requested by straightforward information-request calls. As with the FIRQB, the general monitor directives described in Chapter 3 require that you store and re​trieve information directly to and from the XRB. The RSX and RT11 run​time systems handle more general directives, which they translate to a call or calls using the XRB. The general format of the XRB, with all possible mnemonics assigned by COMMONMAC, is shown in Figure 2-6. In addi​tion, the size of the XRB (168) has the mnemonic XRBSIZ.

Figure 2-6:

Offset

Octal Mnemonic
General XRB Format
Offset

Octal Mnemonic

1
buffer size in bytes
0 XRLEN

3
for input, number of bytes received
2 XRBC

for output, number of bytes to write

5
buffer address
4 XRLOC

7 XRBLKM
MSB of block number channel number *

2
6 XRCI

11
least significant bits of block number
10 XRBLK

13
wait time for terminals
12 XRTIME

15
device modifier
14 XRMOD

CORCMN

The core common area (CORCMN) is used as a common data exchange area when it is necessary to exchange lengthy data (usually strings) between the monitor and the job or between programs running under the same job number.

For example, the monitor uses CORCMN to pass to the job a string that is the full name of a command that has been recognized as a valid CCL com​mand. The Concise Command Language (CCL) of RSTS/E allows users to type one-line commands to call utilities that might otherwise require sev​eral input lines from the terminal. For example:

CCL Form

PIP FILE1.=FILE2.

Regular Form

$ RUN $PIP *FILEI.=FILE2.

*

CTRL/ Z

2-12
General RSTS / E Environment

To centralize decoding, the monitor analyzes CCL commands by comparing them to those defined by the system manager when the system starts up timesharing. With the CCL directive (Section 3.3), a job can ask the moni​tor to analyze a string to see if it is an acceptable command. If it is, the monitor passes control to the run-time system associated with that CCL command and passes the command and any arguments on to the job in the CORCMN area.

The general format of the CORCMN area is:

byte 1 of string
number of bytes

in string

byte 3 of string
byte 2 of string

(up to 1271, bytes of data)

460 CORCMN

462

USRPPN, USRPRT, USRLOG

The job can set these areas (see ULOG, Section 3.31) to the assigned project-programmer number (USRPPN), default protection code (USRPRT), and assigned logical device names (USRLOG), which the monitor then uses when an .FSS directive (Section 3.10) is executed. The .FSS directive causes the monitor to convert a file name string to the standard RSTS / E file specification format, that is, to the FIRQB format.

The ULOG and .FSS directives also allow you to define and use some nonstandard area to contain these values, as described in Sections 3.10 and 3.31. However, the .ULOG directive will set up 18 words in the same basic format; the .FSS directive will expect these values in the same relative locations.

USRPPN

A nonzero value in this word is interpreted as a project-programmer number (high byte = project number, low byte = programmer number). The monitor uses this value to translate an at sign character ((-0) encoun​tered in a file specification string for .FSS. If this word is zero, an .FSS will produce an error if an @ character appears in the string to be translated.

USRPRT

A nonzero value in this word is interpreted as a protection code to be used as a default if no protection code is specified in a file specification string translated by an .FSS directive. The value of the protection code should be in the high byte; the low byte should be nonzero, to indicate an explicit protection code. (Protection code values may range from 0 through 3778; the meanings associated with various values are described in the RSTS lE System User's Guide.)

A zero in this word indicates that there is no default protection code for this user. Therefore, the system default protection code (normally 6010) is used.

General RSTS/E Environment
2-13
USRLOG

This area holds the user's private logical device name table. It consists of 1610 words, allowing either three or four logical names to be associated with devices. (If a project-programmer number is associated with a logical name, only three logical names can be assigned. If no project-programmer number is associated with any logical name, four logical names can be assigned.) The .FSS directive uses this table for logical-to-physical device translation; the user logicals here will supersede any system-wide logical names defined by the system manager.

The format of each entry in the first 12,0 words is:

Octal

Offset

Octal

Offset

1

0

logical device name, RAD50 format

3

2

5
physical device name, 2 ASCII chars.
4

7
unit number real I unit number
6

Offset
Meaning

0
This two-word area contains the logical device name in RAD50 format. If the first word is zero, then this entry is currently unused, and the remaining three words of the entry are random.

4
This word holds the physical device name as two ASCII characters. This physical device name is the one to be substituted for the given logical device name in an .FSS directive.

6
The low byte of this word contains the unit number of the physical device. The high byte is set to a nonzero value to indicate an explicit device number. The unit number defines the particular unit of the physical device substituted for the given logical device name in an .FSS directive. If the entire word is zero, then no unit number is associated with the device (for example, SY:).

If no project-programmer number is associated with a logical name, the format of the last four words of the USRLOG area is the same as described above. If a project-programmer number is associated with a logical name, the format of the last four words is:

Octal

Offset

Octal

Offset

1
-1 (flag for associated ppn's)
0

3
ppn for name at USRLOG to USRLOG+3
2

5
ppn for name at USRLOG+4 to USRLOG+7
4

7
ppn for name at USRLOG + 10 to USRLOG + 13
6

(Note: The ULOG directive automatically sets up these areas-see Section 3.31.)

2-14
General RSTS/E Environment

2.5 High-Segment Details - Pseudo Vectors

The monitor and the run-time system use the pseudo-vector area to commu​nicate with each other. The general layout of this area is shown in Figure 2-7. As with the low 1000 bytes of virtual address space, the file COMMONMAC assigns mnemonic names to locations in this area. These names are shown to the right in Figure 2-7. Each of the areas is described in detail in the text following. If you wish to modify or code your own run​time system, the format and meaning of these areas is of considerable inter​est. Otherwise, you might wish to examine them simply to get an idea of the type of communication between the run-time system and the monitor.

In general, the pseudo-vector region contains:

Values and flags that define the capabilities of the run-time system for the monitor. For example, one flag indicates whether the run-time system can handle user-typed commands-a keyboard monitor capability.

*Addresses pointing to locations within the run-time system where the monitor is to pass control when certain conditions occur. These addresses fall into three categories:

1.
Addresses for Synchronous System Traps (SSTs).* Control is passed to these locations when the job executes an instruction that causes a trap to the monitor. The monitor passes control to the run-time system along with the contents of the program counter (PC) and program status word (PSW). The term "synchronous" is used in the sense that the trap occurs at the same time as (is a direct result of) some instruction executed by the job. These traps may or may not indicate an error. For example, if the job executes an instruction with an odd address, control is passed to one of these trap addresses. If the job simply executes a BPT instruction, control is passed to another of these addresses.

2. Addresses for Asynchronous System Traps (ASTs).* Control is passed to these locations (a) as a result of some event external to the execution of the job (for example, the user types a CTRL / C at the terminal) or (b) as a result of some internal but asynchronous process (such as an error in the hardware floating-point processor, whose execution overlaps that of the PDP-11 central processor). When such conditions occur, control is passed to the monitor, which passes control on to the run-time system, along with the contents of the PC and PSW. In the case of a floating-point trap, the monitor also passes along the floating exception code (FEC) and floating exception address (FEA). For the asynchronous traps, the PC and PSW do not refer to the instruction that caused the trap, but to the instruction that was executing in the central processor when the trap occurred.

* The term "pseudo vector" arises from the relationship of some of these (one-word) trap addresses in the pseudo-vector region to the (two-word) vector addresses in kernel-mode memory set up to handle error traps and interrupts in the PDP-11. When the RSTS/E monitor receives control as a result of a trap to certain of these vector addresses, it passes control on to the run-time system at addresses specified in the pseudo-vector region.

General RSTS/E Environment
2-15
3.

Entry Point Addresses. The monitor passes control to the run-time system at entry-point addresses when some major transition point is reached for the job. For example, when the user types a RUN or CCL command at the terminal, the monitor passes control to an entry point in the appropriate run-time system, to load and execute the requested program.

Figure 2-7: Format of Pseudo-Vector Region of High Segment

flags describing the run-time system
177732
P.FLAG

normal executable file type
177734
P.DEXT

(reserved)
177736

minimum size, in K words, of user job image
177740
P.MSIZ

trap address for FIS hardware floating point option
177742
P.FIS

crash entry point (primary run-time system only)
177744
P.CRAS

start entry point (primary run-time system only)
177746
P.STRT

entry point for new user
177750
P.NEW

entry point for new user with program to run
177752
P.RUN

trap address for various "bad" errors
177754
PBAD

trap address for BPT instruction and T-bit traps
177756
P.BPT

trap address for IOT instruction
177760
P.IOT

trap address for non-monitor EMT instructions
177762
P.EMT

trap address for all TRAP instructions
177764
P.TRAP

trap address for FPP or FPU floating point unit
177766
P.FPP

trap address when user types one CTRL/C
177770
P.CC

trap address when user types two CTRL/Cs
177772
P.2CC

maximum size (in K words) of user job image
177774
P.SIZE

(reserved for future use)
177776

P.OFF

The pseudo-vector region is described in detail below.

Normally, you would code the contents of the pseudo-vector region as part of the run-time system file. Please note, however, that the UTILTY pro​gram's ADD command, used to define a file as an auxiliary run-time sys​tem, has switches that will cause the monitor to override certain portions of the pseudo-vector region and use values assigned in the ADD. For example, one bit in one word of the pseudo-vector region states whether the run-time system is read /write or read-only when it is loaded in memory. Normally, this would be read-only, but for debugging a run-time system with ODT (which allows you to change memory), the run-time system must be read/ write. The /RW switch in the ADD command of UTILTY lets you tell the

2-16
General RSTS /E Environment

monitor that until further notice, this run-time system is read/write, re​gardless of what is specified in the pseudo-vectors. The UTILTY program and its ADD command are described in the RSTS lE System Manager's Guide.

2.5.1 Run-Time System Capability and Default Definitions

These mnemonics refer to values and flags that define run-time system capabilities for the monitor.

ROFF

The ROFF mnemonic is simply used to define the first word of the pseudo​vector region. It is currently set equivalent to 177732, the same as PYLAG.

PYLAG

The monitor expects the PYLAG word to be set with flags that define the capabilities of the run-time system:

PF.KBM​PF.1 US

PF.RW
PF.NER PFREM PF.CSZ

PFEMT I

15 14 13 12 11 10

[image: image12.png]8|7

flags
(prefix EMT code if PFEMT= 1)

PREMT

This bit is set to 1 to indicate that the run-time system wishes to handle a call that would normally be handled by the monitor. To show how the bit works, we must first describe what normally happens when a monitor directive is translated and executed.

All the monitor directives described in this manual are translated to EMT (Emulator Trap) instructions. The direct monitor calls (Chapter 3) are one​for-one translations; that is, one call is translated to one EMT. The code to process the call is in the monitor itself. The RSX and RT11 emulator calls may be translated to more than one instruction, but the code always con​tains an EMT. The direct monitor calls, furthermore, are translated to an EMT with a low byte that is an even number within the range 0-1008. When such an instruction is executed, control transfers directly to the mon​itor, the call is processed, and control returns to the instruction following the EMT.

General RSTS / E Environment
2-17
An EMT instruction with an odd value in the range 1-77 in the low byte, or any value in the range 101-377, also transfers control to the monitor. The monitor examines the low byte, discovers that the EMT is not one of its "own," and transfers control to the run-time system at the entry point defined by location P.EMT in the pseudo-vector region.

Now-the PF.EMT bit is set to 1 to indicate that the run-time system wishes to process EMTs that are normally processed by the monitor, that is, with an even low byte in the range 0-100. When PKEMT is set to 1, all EMTs will cause control to pass to the run-time system at entry P.EMT except those immediately preceded by a "special prefix" EMT-an EMT whose low byte is equal to the low byte of PYLAG.

Specifically, when PFEMT equals 1, the monitor handles all EMT instructions as follows:

1.
Any EMT whose low byte is not equal to the low byte of PYLAG will cause control to pass through the monitor (unprocessed except for examination), back to the run-time system at the address contained in the P.EMT word.

2.
An EMT whose low byte is equal to the low byte of PYLAG will cause control to pass to the monitor, which looks at the word follow​ing the EMT with the special code (that is, at the word in location (PC) + 2). Action is taken according to the value of this word:

[image: image13.png]
Execute second EMT (at (PC) +2) as normal, return control to

(PC)+4

Pass control to (P.EMT)

Pass control to (P. EMT)

In other words, special processing is done by the run-time system for all EMTs except those preceded by a "special prefix" EMT. The RT11 run​time system uses this feature so that it can emulate the RT11 operating system's directives properly.

2-18
General RSTS/E Environment

NOTE

All EMT instructions are reserved for use by DIGITAL.

PF.CSZ

For a user job image executed as a result of a RUN directive, the monitor preallocates memory based on information provided by the run-time system the image is executing under. When this bit is set to 1, the monitor preallo​cates memory based on the size of the file referenced in the RUN directive:

space (in K words) = (filesize + 3) /4

Filesize is the number of 512-byte blocks required for the file on disk. (The division by 4 is performed because there are four 512-byte blocks in 1K word. The addition of 3 "rounds up" any fraction of the integer divide to the next whole integer.)

When PF.CSZ is set to 0, the monitor preallocates memory for the image according to the value specified in the P.MSIZ word of the pseudo-vector region.

PRREM

When the PKREM bit is set to 1, the monitor immediately removes the run-time system from memory when no job is using it. When this bit is 0, the monitor leaves the run-time system in memory until the space is actu​ally needed by something else.

PRNER

When this bit is set to 1, the monitor does not log errors occurring within the run-time system to the system error log.

PF.RW
When this bit is set to 1, the monitor maps the run-time system as read/write (recall the read/write feature of the Page Descriptor Register of an APR, Section 2.1). This is a useful feature when debugging a run-time system. In normal operation, this bit should be set to 0, indicating that the run-time system is to be mapped read-only.

PF.1 US

When the PF.1US bit is set to 1, the monitor allows only one job to use the run-time system. That is, it is not handled as shareable code.

PF.KBM

When this bit is set to 1, the monitor expects that the run-time system can function as a keyboard monitor. The run-time system can function as a job keyboard monitor only when this bit is set. (See the RTS directive, Section 3.19, for a discussion of job keyboard monitors.)

General RSTS /E Environment
2-19
RFLAG COMBINATIONS

The PFAUS, PF.RW, PF.NER, and PF.REM bits are useful flags when you are debugging a run-time system. PFAUS limits access to the run-time system to one user; PF.RW is necessary if you wish to use the ODT routine to change memory. PKNER keeps the run-time system from logging use​less errors while debugging, and PF.REM ensures that the run-time system will be reloaded each time it is used. (Otherwise, an old copy might still remain in memory when you really wanted to debug a new copy.)

P. DEXT

This word can be set to three Radix-50 characters that the monitor will use as a default runnable file type. If a RUN (Section 3.20) is executed with no file type given, the monitor scans its list of installed run-time systems (in the order they were installed*). For the first run-time system in the list (the primary run-time system), the monitor looks for a file with the file name given in the RUN and a type that is the default type for the run-time system. If such a file is found, it is set up for the RUN. If no such file is found, the monitor searches for a file with the given file name and the next run-time system's default runnable file type, and so forth. Note that the order in which the file types are chosen does not depend in any way on the run-time system executing the RUN.

For example, the BASIC-PLUS run-time system fills this word with BAC; RT11, with SAV; and RSX, with TSK. If the run-time system has no runnable file type, this word should be set to 0.

RMSIZ

The P.MSIZ word gives the minimum allowable size for a user job image, in K words, for this run-time system. The monitor uses this value as a check when the job issues a CORE directive (Section 3.6) to change the size of the user job image in memory. The value of P.MSIZ must be an integer between 1 and 28, inclusive.

P.SIZE

The P.SIZE word contains the maximum size (in K words) that a user job image can be for this run-time system. The monitor uses this value as a check when a job issues a CORE directive (Section 3.6) to change the size of the user job image in memory. P.SIZE must be an integer between 1 and 28, inclusive. The effective upper limit is 32 minus the size of the run-time system rounded up to a multiple of 4. (Remember that the APR mapping requires that space for the run-time system be allocated in units of 4K words.) Thus, a run-time system that required 5K words could set an upper limit here of 24 (32-8). It could set P.SIZE to some smaller value, however. The RSX run-time system, when the emulator is installed as part of the monitor, is an exception to this rule. As described in Section 2.3, an execut​ing program can expand to 32K words. So P.SIZE in this particular case is set to 32.

The system manager installs run-time systems with the ADD command of UTILTY, as described in the RSTSIE System Manager's Guide. The order of installation shows up in the display produced by the SYSTAT utility.

2-20
General RSTS / E Environment

2.5.2 Synchronous System Trap Addresses

These mnemonics refer to locations in the run-time system where control is to pass for synchronous system traps.

PYIS

The monitor interprets the PYIS word as the trap address for the hardware floating-point instruction set available on the PDP-11 / 35 and 40. When​ever an instruction from this set is executed that causes a trap to the kernel mode vector at 2448, the monitor passes control on to the run-time system at the location specified by the contents of the PYIS word.

This trap pushes two words onto the user's SP stack: the contents of the PC and PS registers at the time of the exception.

SP -i-
(PC) at the time of the trap (PS) at the time of the trap word to which SP pointed before the trap

Whatever action the run-time system wishes to take for this trap should be done at the location specified by the contents of PYIS. (A return from interrupt (RTI) instruction will return control to the point where it was when the trap occurred.)

RBAD - Synchronous Traps

The monitor passes control on to the run-time system at the location speci​fied by the contents of P.BAD when any of the following synchronous traps occur:

1.
Memory management unit exception (trapped to kernel mode vector at 2508).

2.
The job tries to execute a reserved instruction (trapped to kernel mode vector at 108)​
3.
The job issues an instruction with an odd address (trapped to kernel mode vector at 48).

This trap pushes two words onto the user's SP stack: the contents of the PC and PS registers at the time of the trap.

SP -
(PC) at the time of the trap (PS) at the time of the trap word to which SP pointed before the trap

An error code is returned in the first byte of the FIRQB so that the run​time system can determine which error occurred. The codes are:

B.4
Odd address

B.10
Reserved instruction

B.250
Memory management unit exception

The run-time system is responsible for processing these errors in whatever manner it sees fit. In general, most run-time systems provided with RSTS/E systems report the error, using the UU.ERR subfunction of the UUO call

General RSTS/E Environment
2-21
(Section 3.32.19), and perhaps print the PC (program counter) value from the top of the stack. An RTI instruction can be used to return control to the point where it left off when the trap occurred. Note that some asynchronous traps also use this address (Section 2.5.3).

P.BPT

The P.BPT word contains the trap address for a BPT instruction and for T-bit traps. When the job issues a BPT instruction or a T-bit trap occurs (to the kernel mode vector at 148), the monitor passes control on to the run​time system for the job at the address specified by the contents of this word.

The trap pushes two words onto the user's SP stack: the contents of the PC and PS registers.

SP -
(PC) at the time of the trap (PS) at the time of the trap word to which SP pointed before the trap

The run-time system would process these traps in any fashion it sees fit at the location specified by the contents of P.BPT. The RTI or RTT instruc​tions can be used to return control to the user's program at the point where it was when the trap occurred.

RIOT

The RIOT word contains the trap address for an IOT instruction. Whenever the job issues an IOT instruction (trapped to kernel mode vector at 208), the monitor passes control on to the run-time system at the address specified by the contents of this word. This trap pushes two words onto the user's SP stack: the contents of the PC and PS registers at the time of the trap.

SP -
(PC) at the time of the trap (PS) at the time of the trap word to which SP pointed before the trap

The run-time system can process the trap in any fashion it sees fit. An RTI instruction can be used to return control to the point where it was when the trap occurred.

REMT

This word contains the location to which control is transferred for non​monitor EMT instructions; that is, for EMT instructions whose low byte is odd within the range 0 - 1008 or any value in the range 101 - 377. If the PFEMT bit is set in the PYLAG word in the pseudo-vector region, control is transferred here for all EMT instructions except those preceded by the "special prefix" EMT, as described previously.

The trap pushes two words onto the user's SP stack: the contents of the PC and PS registers at the time of the trap.

SP -
(PC) at the time of the trap (PS) at the time of the trap word to which SP pointed before the trap

2-22
General RSTS/E Environment

The run-time system is responsible for processing the EMT as it sees fit. The RTI instruction can be used to return control to the point where it was when the trap occurred.

NOTE

All EMT instructions are reserved for use by DIGITAL.

P.TRAP

This is the location to which control is transferred for all TRAP instructions (operation codes 104400 through 104777, inclusive). Whenever the job exe​cutes such an instruction (trapped to kernel mode vector 348), the monitor passes control on to the run-time system at the location specified by the contents of this word.

The trap pushes two words onto the user's SP stack: the contents of the PC and PS registers at the time of the trap.

SP-~
(PC) at the time of the trap (PS) at the time of the trap word to which SP pointed before the trap

The run-time system is responsible for processing the trap as it sees fit. An RTI instruction will return control to the point where it was when the trap occurred.

2.5.3 Asynchronous System Trap Addresses

These mnemonics refer to locations within the run-time system where con​trol is to pass for asynchronous traps.

P.FPP

This location is the trap address for the FPP (or FPU) hardware floating​point processor (the PDP-11 / 34A, 44, 45, 50, 55, 60, and 70 asynchronous unit or the KEF11-AA for the PDP-11/23-PLUS and 24). Whenever the unit takes an exception trap (to kernel mode vector at 2448), the monitor passes control to the run-time system at the location specified by the con​tents of this word. Since the Floating Exception Code (FEC) and Floating Error Address (FEA) of this unit are not otherwise accessible, the monitor pushes these two values onto the user's SP stack, in addition to the contents of the PC and PS registers at the time of the interrupt.

SP -~
Floating-Point Exception Code (FEC) Floating-Error Address (FEA)

(PC) at the time of the trap (PS) at the time of the trap word to which SP pointed before the trap

The run-time system can process the trap as appropriate, clean the stack (pop the FEC and FEA), and issue an RTI instruction to return control to the user's program at the point where it was when the trap occurred.

General RSTS / E Environment
2-23
P.CC

This is the location to which control passes when the user types a CTRL/C. ("The user" in this case is any terminal input being accepted by this job, on any channel.)

The monitor inhibits further programmed output for the job (CTRL/O effect) and cancels any pending character output. The user's SP stack is modified at entry as follows:

SP -o-
(PC) at the time of the trap (PS) at the time of the trap word to which SP pointed before the trap

The run-time system can process the CTRL/C as desired. All run-time sys​tems supplied with a RSTS/E system abort the job, unless the user job image has indicated that it wishes to handle CTRL/C traps itself (see the SCCA$ directive, Section 5.19, and the SETCC directive, Section 7.39).

P.2CC

This is the trap address taken when the user types a second CTRL/C before the run-time system has been able to respond to the first CTRL/C typed. (That is, the monitor has received two CTRL/Cs before it has been able to pass control on to the run-time system at the location specified by the contents of P.CC in the time-sharing environment.)

As with one CTRL/C, when the P.2CC point is entered, further pro​grammed output has been canceled (CTRL/O effect), and any pending char​acter output has been canceled. Two words are pushed onto the user's SP stack:

SP -
(PC) at the time of the trap (PS) at the time of the trap word to which SP pointed before the trap

The run-time system can process the condition as desired (BASIC-PLUS exits immediately, returning control to the KNEW entry point in the default keyboard monitor). An RTI instruction would return control to the point where the program left off, but this will annoy the user who typed the two CTRL / Cs expecting to get out.

RBAD - Asynchronous Traps

The monitor passes control to the location specified by P.BAD whenever any of the following asynchronous errors occur:

1.
The user's SP stack overflows.

2.
A fatal disk error occurs when the job is swapped. The original con​tents of the user job image are lost.

3.
A memory parity fault occurs in the user job image. The original contents of the user job image are lost.

2-24
General RSTS / E Environment

4.
A fatal disk error occurs when a run-time system or resident library is loaded. Control passes to P.BAD in the default keyboard monitor when the load error occurs for a run-time system.

None of these errors are really recoverable; an error is returned in the first byte of the FIRQB to indicate which error occurred, the keyword (KEY) is refreshed, and the contents of the general registers (RO through R5) are random. The SP (stack pointer) is reset to the value USRSP.

In general, most run-time systems provided with RSTS/E systems report the error, using the UU.ERR subfunction of the UUO call (Section 3.32.19), and also the "?Program lost-sorry" message (UU.ERR call with FUCORE value). Then, the run-time systems exit to the job keyboard moni​tor, using RTS (Section 3.19). The reason for printing the "?Program lost​sorry" message is that it warns the user that user logical values have been destroyed.

The error codes returned in the first byte of the FIRQB are:

B.STAK
The user's SP stack overflowed.

B.SWAP
Fatal disk error on swap.

B.PRTY
Memory parity fault.

NRRTS
Fatal disk error on run-time system or resident library load.

Control is also transferred to P.BAD for some synchronous traps, as described in Section 2.5.2.

2.5.4 Entry Points

These mnemonics refer to locations within the run-time system where con​trol is to pass at certain transition points for the job.

RCRAS

This word is a special entry point used only by the primary run-time system. Control passes to this location in the primary run-time system only when the whole system is restarted after a crash.

RSTRT

This word is a special entry point used only by the primary run-time system. Control passes to this location only when the system starts up from a normal startup procedure.

KNEW

The monitor passes control to this entry point under the assumption that "new user" or "next request" processing is to be done, as opposed to the RRUN entry point, where a specific program is to be run under this run​time system. This entry point is commonly used as the entry point to switch back to a job's keyboard monitor. For example, the EXIT directive (Section 3.9) passes control to this entry point in the default keyboard monitor. (The system manager defines a keyboard monitor as the default for all jobs.) The .RTS directive (Section 3.19) can be used to pass control to this entry point

General RSTS/E Environment
2-25
in a job's keyboard monitor or a specifically named run-time system. (As described in Section 3.19, a job can establish its own job keyboard monitor, different from the default keyboard monitor.)

By examining the keyword (KEY) and the XRB, the run-time system can determine how and by whom it was entered at P.NEW, if this is significant. (Run-time systems that do not have keyboard monitors would probably wish to simply exit (using EXIT) to the default keyboard monitor here.) The three conditions under which control is passed to the P.NEW entry are:

1.
Brand New Job on the System. In this case, JFNOPR (bit 1210 in KEY) is set to 1 (the job is not yet logged in), and the words at location XRB + 2 and XRB + 4 are 0 (the monitor requested the entry, not a run​time system). This indicates that the monitor has passed control to this location having received terminal input over channel 0 in a "logged out" state (occurs only for the primary run-time system).

The run-time system should run some predetermined program to read (.READ directive, Section 3.17) the fully assembled line that the moni​tor has buffered. The BASIC-PLUS run-time system loads and executes the file SY:[1,2]LOGIN.BAC (the LOGIN utility) in this case.

2.
Switch to This Run-Time System when Job Logged Out. In this case, JFNOPR (bit 1210 in KEY) is set, and the name of the calling run-time system* is given as two RAD50 words in locations XRB + 2 and XRB + 4.

For this case, the run-time system should issue a "logged out" prompt message. For example, the BASIC-PLUS run-time system prints "Bye" and returns control to the monitor. (Normally, control does not pass to the run-time system in this case. If LOGIN does not recognize the line that it read (in case 1, above), it "kills itself," destroying the job and returning control to the monitor.)

3.
Switch to This Run-Time System when Job Logged In. In this case, JFNOPR (bit 1210 in KEY) will be clear (0). The name of the calling run-time system* is given as two words of RAD50 in locations XRB + 2 and XRB + 4 or is 0 if this job was just created by UU.JOB (see Section 3.32.23).

For this situation, the run-time system should issue its "logged in" prompt and attempt to read the next command from the terminal open on channel 0. BASIC-PLUS prints "Ready", DCL prints "$", RSX prints ">", and RT11 prints ".". At this point, all then wait for further input.

Keyboard monitors should read channel 0 (the job's terminal) using the "keyboard monitor wait" feature of READ. The monitor will kill jobs that execute this read in a logged-out state; otherwise, it is an "infinite-wait" read.

* The calling run-time system is the run-time system under whose control the directive was issued that caused the switch.

2-26
General RSTS / E Environment

The monitor usually* does some housekeeping for the job at the time the KNEW entry point is entered. Specifically, the word at location FIRQB + FQJOB is always set to two times the job number assigned by the monitor when the job was created, and the keyword (KEY) is refreshed with current information about the job, as described in Section 2.4. Furthermore, the stack pointer, hardware register SP, is reset to 400 (see USRSP description in Section 2.4), and all the general registers (RO through R5) contain random values. Note, however, that 1/0 channels are left open. Therefore, the run-time system should reset all 1/0 channels.

The following information exists in the XRB at the time the KNEW entry point is entered:

XRB on KNEW Entry

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1
1 for switch without housekeeping; else 0
0

3

2

name of run-time system that called

5
this one (RAD50)
4

7
-1 if calling RTS = new RTS; else 0
6

11

10

whatever was here when switch was made

13

12

15

14

XRB+O

This word contains a value of 1 if control was transferred by an .RTS directive using the "switch without changing job context" option (Section 3.19).

XRB+2

The two words beginning here contain the name of the calling run-time system, in RAD50 format. If control has been trans​ferred here directly by the monitor, these two words contain 0.

XRB+6

This word contains -1 if the calling run-time system is the same run-time system that now has control. This word is 0 otherwise; that is, if the calling run-time system is not the same as the called run-time system.

XRB + 10

The contents of the next three words will be the same as they were when the switch occurred. That is, data can be passed from run-time system to run-time system here. If control has been transferred to KNEW directly by the monitor, these three words are 0.

"` This housekeeping is not done if a specific request is made to pass control to a run-time system without changing the job-context information. (See RTS, Section 3.19.)

General RSTS /E Environment
2-27
PAUN

The monitor passes control to the P.RUN entry point when an executable program is to be run for a job under control of this run-time system. This can occur as the result of either a RUN directive (in which a job has directly asked for a file to be run) or a CCL directive (in which a job has asked the monitor to check a string to see if it is a valid Concise Command Language (CCL) command, and if so, execute the appropriate file).

The file to be run has been opened by the monitor on channel 1510 and is a disk file. The file has not been read; it is up to the run-time system to load and execute the file. The run-time system should also reset all 1/0 chan​nels except 1510, as they may be open.

As with P.NEW, the monitor has "refreshed" the keyword (KEY), set SP to 400, and left RO-R5 containing random values. In addition, the monitor sets the JFBIG bit in KEY if the program to be run is a privileged program. If the program to be run is privileged and the caller is normally nonprivi​leged, the monitor sets the JFSYS bit in KEY.

Data is passed to the run-time system in the XRB, FIRQB, and KEY areas of the user job image (low segment).

XRB on P.RUN Entry

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1
flag bits describing entry conditions
0

3

2

name of run-time system which issued

5
the call to this one
4

7
random value
6

11

10

13
same value as when the caller
12

issued the RUN or CCL

15

14

XRB + 0
This word contains flag bits that describe the entry conditions. (The STATUS variable in BASIC-PLUS returns these values.)

Bit

Meaning

15

Set to 1 indicates the entry was made as the result of a CCL directive. A value of 0 indicates the entry was made as the result of a RUN directive.

14

Set to 1 indicates the caller issued a CCL directive with a /DETACH switch, with the intent that this run-time system run the file in de​tached mode. It is up to the run-time system to take action on this flag. (Detaching a job can be done with the UU.DET subfunction of the .UUO directive, as described in Section 3.32.)

General RSTS / E Environment

Bit
Meaning

13
Set to 1 indicates that the caller issued a directive with a /SIZE switch; that is, that the file is to be run at a specific size. When this bit is set, bits 0-7 of this word indicate the desired size (see below). It is up to the run-time system to set the size as indicated (see CORE, Section 3.6.)

12-8
Reserved for future use.

7-0
If this byte is 0, then no special size for this program run is desired. If greater than zero, this byte indicates the size (in K words) that the program should be run at. If less than zero, the absolute value of this byte indicates an increment (in K words) to the size that the program would normally run at.

XRB + 2
These two words contain the name of the run-time system under which the RUN or CCL directive to this run-time system was issued, in RAD50 format.

XRB + 6
The contents of this word are random.

XRB + 10
The three words beginning here contain the same information that they held when the job issued the RUN or CCL directive.

FIRQB on P.RUN Entry

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1

0

3
job number '

2
2 FQJOB

5
(always 0)
4

7
project number I programmer number
6 FQPPN

11

10 FONAM1

name of file to be executed (in

13
RAD50 format)
12

15
file type of file to be executed (RAD50)
14 FQEXT

17
size of the file, in 512-byte blocks
16 FQSIZ

21
default buffer size for disk
20 FQBUFL

23

22

25
device description
24 FQFLAG

27 FQPROT
protection code cluster size
26 FQPFLG

31
device name (2 ASCII characters)
30 FQDEV

33
flag byte I device unit number
32 FQDEVN

35
file identification index
34 FQCLUS

37
entry parameter
36 FQNENT

General RSTS /E Environment
2-29
FIRQB+FQJOB
The job number, times two, assigned by the monitor when this job was created.

FIRQB+FQPPN
The project-programmer number for the file that is to be run.

FIRQB+FQNAM1
The file name of the file that is to be run, as two words in RAD50 format.

FIRQB+FQEXT
The file type of the file that is to be run, as one word in RAD50 format.

FIRQB+FQSIZ
The size of the file, in 512-byte blocks.

FIRQB+FQBUFL
The recommended size, in bytes, for the buffer size in a READ for this (disk) file.

FIRQB+FQFLAG
Flag bits defining the device. They are set to indicate that this is a disk file. (See the FQFLAG description in the "open" function of the CALFIP directive, Section 3.2.12.)

FIRQB+FQPROT-1
The file cluster size, modulo 25610. (That is, a file cluster size of 2561, is indicated by a zero byte here.) This byte is the same as the FQCLUS value supplied in the "open" functions of the CALFIP directive, Section 3.2, except that it is returned in a byte instead of a word.

FIRQB+FQPROT
The protection code of the file.

FIRQB+FQDEV
The device name of the disk device, as two ASCII characters.

FIRQB+FQDEVN
The unit number of the disk device.

FIRQB +FQDEVN + 1
The low-order two bits of this byte are set to indicate whether or not the device is part of the public structure:

Bit 0 =
0
The device is in the public structure.

Bit 0 =
1
The device is a private disk.

Bit 1 =
0
A specific device was not specified in the

open.

Bit 1 =
1
A specific device was specified in the

open.

FIRQB+FQCLUS
The file identification index of this file. This word is significant mainly in that it can be used in place of the file name in subsequent opens of the file on disk. You can open the file with the OPNFQ subfunction of CALFIP (Section 3.2.12) using an explicit project​programmer number in FIRQB + FQPPN, a zero word in FIRQB + FQNAM1, an explicit device name in FQDEV and FQDEVN, and the file identification index in FIRQB + FQNAM1 + 2.

2-30
General RSTS / E Environment

FIRQB+FQNENT
Parameter word from the caller. The RUN directive, which causes entry at P.RUN in a run-time system, allows the caller to specify a parameter word to be passed to the run-time system. Bit 15 of this word may or may not be the same as the caller passed, however. If the caller was privileged, whatever the caller specified for bit 15 is passed. If the caller was nonprivileged, the monitor automatically sets this bit to 0. The intent of this bit is to "pass on" temporary privilege. If this bit is set, the run-time system should retain temporary privilege (the JFSYS bit in KEY is now set and should remain set). If this bit is off, the run-time system should consider whether or not to retain temporary privilege (if the JFSYS bit is on, perhaps it should be turned off).

For example, the BASIC-PLUS run-time system uses the FIRQB + FQNENT word as follows.

Temporary privilege is kept (JFSYS, if set, is left set) if either:

1.
Bit 15 of FIRQB + FQNENT is set

2.
Bit 15 of FIRQB + FQNENT is clear, but the remaining bits are also 0

If bit 15 of FIRQB + FQNENT is clear and the remaining bits are nonzero, temporary privilege is permanently dropped (by issuing CLEAR for both JFSYS and JFPRIV).

In either case, the contents of bits 14-0 of FIRQB +FQNENT are used as the line number where execution is to be started for the program. A value of 0 in bits 14-0 means to start at the first executable line. Thus, clearing JFSYS (dropping tem​porary privilege) when execution is to start at other than the first line protects privileged programs from being started at odd locations to bypass their normal privilege checking.

Finally, if JFSYS was set upon entry (whether or not it gets immediately cleared), then the program will be destroyed upon completion (normal or abnormal). This protects a privileged program from being examined when it is not running.

General RSTS / E Environment
2-31
Chapter 3

General Monitor Directives

3.1 Introduction

This chapter describes the general directives to the RSTS/E monitor. These directives are available to the MACRO programmer under both the RSX and RT11 run-time systems. They are EMT instructions that are processed directly by the monitor. They are not examined or processed by a run-time system.

3.1.1 Summary of General Monitor Directives

Table 3-1 summarizes the general monitor directives. Detailed descriptions are given in Sections 3.2 - 3.33. These sections are arranged alphabetically by mnemonic name.

Some directives, which cause a change in run-time system or change in job size, should not be executed by a program (user job image) running under the RT11 run-time system, or unpredictable results may occur. These direc​tives are marked with an asterisk (*) in Table 3-1. (Note, however, that these are not restrictions for assembling using MACRO - the assembler for the RT11 run-time system. If you are coding a run-time system, you can use these directives and assemble under either MACRO or MAC.)

Table 3-1:
Summary of General Monitor Calls

Name
EMT

Code

(Octal)
Description

CALFIP
0
Call the File Processor portion of the RSTS/E monitor. Includes

"housekeeping" functions for file/ device I/O such as open, close,

and so forth.

.READ
2
Read from a previously opened file or device.

WRITE
4
Write to a previously opened file or device.

.CORE*
6
Change memory size allocated for user job image.

.SLEEP
10
Sleep job for n seconds.

.PEEK
12
Peek at the monitor's memory (privileged).

.SPEC
14
Special function.

.TTAPE
16
Enter tape mode.

.TTECH
20
Enable echo on a channel.

.TTNCH
22
Disable echo on a channel.

.TTDDT
24
Enter ODT submode on a channel.

.TTRST
26
Cancel CTRL/O effect.

.TIME
30
Get timing information.

.POSTN
32
Get device's horizontal position.

.DATE
34
Get current date.

.SET
36
Set keyword bits.

.STAT
40
Get statistics for job.

.RUN*
42
Run new program (user job image).

.NAME
44
Install a new program name.

.EXIT*
46
Exit to default keyboard monitor.

.RTS*
50
Switch to new run-time system.

.ERLOG
52
Log an error from run-time system.

.LOGS
54
Check for logical devices.

.CLEAR
56
Clear keyword bits.

.MESAG
60
Message send/receive.

.CCL*
62
Check string to see if Concise Command Language.

.FSS*
64
Scan a string for valid RSTS/E file specification.

.UUO
66
Execute monitor FIP call (access to BASIC-PLUS SYS calls to

FIP).

.CHAIN*
70
Execute user job image under same run-time system.

.PLAS
72
Access a shared library.

.RSX*
74
Used only by RSX run-time system to "disappear", if possible.

.ULOG
76
Assign/ reassign/ deassign device or user logical.

*

These directives should not be used by a program running under control of the RT11

run-time system.

3-2
General Monitor Directives

3.1.2 Prefix File COMMONAAC

The monitor directives described in this chapter require that you pass parameters to the monitor in the FIRQB and XRB; values are also returned to your program in these areas. The file COMMON.MAC, provided with all RSTS/E kits, relates mnemonics to often-used addresses, offset values, and function codes, eliminating the need for octal coding and addressing. These mnemonics are used in the directive descriptions that follow, and their use is recommended for readable, maintainable code.

3.1.2.1 How to Assemble with COMMOKMAC - COMMON.MAC is a prefix file; it is assembled with your other MACRO source files under either the RSX or RT11 run-time systems. For example, under the RT11 run-time system, the following sequence would assemble the files COMMON.MAC, SRCLMAC and SRC2.MAC into the object module file OBJ.OBJ with an assembly listing file OBJ.LST:

RUN $MACRO *OBJtOBJ=COMMON,SRCItSRC2

Similarly, under the RSX run-time system, this sequence would assemble the files COMMON.MAC, SRC1.MAC, and SRC2.MAC into the object mod​ule file OBJ.OBJ with an assembly listing file OBJ.LST:

RUN $MAC

MAC OBJ,OBJ=COMMON,SRCItSRC2

3.1.2.2 Macros Provided in COMMOKMAC -
In addition to providing mnemonics, the COMMOKMAC file contains macros that can be used in programs assembled under either the RSX or RT11 run-time systems, as long as COMMOKMAC is assembled with the source, as described previously.

TITLE name,desc,nn,date,editors

The TITLE macro sets a title (.TITLE) from the name and description (desc) parameters and builds an identification (.IDENT) from the specified number nn. The IDENT has the form xx.x.nn, where xx.x is the current RSTS /E version num​ber (08.0 for V8.0), and nn is the edit level you specify. Descriptive information is placed in the table of contents as follows:

EDIT: DATE: BY: nn
date editors

General Monitor Directives
3-3

ORG section[,offset]

ORG defines the origin address of a program section. The first occurrence of an ORG with a given section name causes all instructions requiring memory space following the ORG to be assigned consecutive relocatable addresses starting with 0 or, if an offset is given, with the octal address given. Follow​ing occurrences of an ORG with the same section name causes resumption of addressing wherever it left off before, because of an intervening ORG.

The ORG macro also defines a symbol with the same name as the section at the first relative location within the section. Every invocation of ORG also defines (or redefines) the sec​tion to be returned to by the macro UNORG (see below).

DEFORG section

The DEFORG macro is the same as the ORG macro except that the symbol at relative 0 (the section name) is declared as a global symbol. By convention, the module that defines the section (rather than just uses it) issues the DEFORG macro.

TMPORG section[,offset]

TMPORG is the same as ORG except that it does not define (or redefine) the section to be reentered by the UNORG macro. In this way, the module can temporarily enter a new section and then return to the main section using UNORG without having to know the main section name.

UNORG
The UNORG macro will reenter the section most recently declared in an ORG or DEFORG macro.

INCLUDE
namel[,name2.... I

The INCLUDE macro indicates that the module issuing the INCLUDE requires the named modules (namel, and so forth). The name(s) should be declared with DEFORG(s) in the required modules.

INCLUDE declares the listed section names as global sym​bols and issues the macro directive SBTTL with the heading "INCLUDE FROM LIBRARY `name' " to be inserted in the assembly listing table of contents. INCLUDE documents the named sections as required by this section.

.DSECT [start][,cref]

The DSECT macro starts a dummy program section (with the MACRO directive ASECT) at relocatable address 0 or at the address given by the optional argument start. If the cross​reference (cref) parameter is given (nonblank), the program section is included in the cross-reference listing, if you re​quest one for the assembly.

3-4
General Monitor Directives

The DSECT macro is used in the file COMMON.MAC to

.DSECT

(continued)
define the system parameters and offsets.

For example, coding of this form is used in COMMON-MAC to assign the proper values to the mnemonics in the pseudo​vector region:

.DSECT 177776#NOCREF .BLKW -1 P.SIZE: BLKW -1 P.2CC: BLKW -1 P.CC: BLKW -1

.BSECT [HIGH][,crel

The BSECT macro is like the DSECT macro except that the default starting address is 1 instead of 0. If the argument HIGH is used, the starting address is 4008. This starting ad​dress lets you use BSECT to generate bit values. The .BSECT macro is used in COMMON.MAC to define mnemon​ics for bit locations. For example, the following coding assigns the mnemonics to the bit locations in the keyword (KEY; see Section 2.4). Note that the period (.) after BLKB is required.

.BSECT HIGHtNOCREF JFSPRI: BLKB JFPP: BLKB

NOTE

A BSECT is used at the end of the file COMMON.MAC. This means that you must explicitly start your MACRO program with an ORG macro or PSECT directive to begin your program at relocatable address 0. Otherwise, your code will be regarded as a continuation of the BSECT, and the program will not assem​ble properly.

.EQUATE symbol,value

.EQUATE defines the given symbol to have the supplied value (which may be an expression) by using the equivalent of:

.DSECT value .symbol:

UNORG

General Monitor Directives
3-5
.BLKWO
[amount] [,value]

The BLKWO macro is similar to the MACRO directive .BLKW, which reserves a specified number of words of stor​age space. The default for amount is 1, but amount can be any expression. While BLKW just reserves space, BLKWO fills the space with zeros (by default) or the value you specify.

.BLKBO
[amount] [,value]

The BLKBO macro is similar to the MACRO directive .BLKB, which reserves a specified number of bytes of storage space. As with BLKWO, the default for amount is 1, but amount can be any expression. BLKBO fills the space you reserve with zeros (by default) or the value you specify.

GLOBAL
<namel[,name2....]>

GLOBAL declares the name symbols as external global symbols.

RETURN [register]

The RETURN macro generates an RTS PC by default but can generate any other RTS instruction by specifying an explicit register.

JMPX label

JMPX is just like the JMP instruction but will also declare the label to be an external global (that is, jump external).

CALL
subroutine [,register[,argument list]]

You can use CALL instead of JSR PC to call subroutines. If an explicit register is specified, then the call is JSR on that register. If an argument list is specified, it generates a list of .WORD arguments inline with the subroutine call.

CALLR subroutine

CALLR is equivalent to a CALL to a subroutine immediately followed by a RETURN. CALLR generates a JMP instruc​tion.

CALLX subroutine

CALLX is just like CALL, but it also declares the subroutine name as an external global symbol.

CALLRX

CALLRX is just like CALLR except that the subroutine name is declared as an external global symbol.

3-6
General Monitor Directives

3.1.3 Error Mnemonics: Link-File ERR.STB

When the monitor processes the directives described in this chapter, any errors that it detects are passed back to the job in the first byte of the FIRQB as a binary value. The ERR.STB file, provided with all RSTS/E kits, relates mnemonic values to these binary codes, so that you do not have to analyze and process errors in octal. The descriptions in this chapter all refer to the mnemonics provided by ERR.STB. (Appendix A lists all possible errors, the ERR.STB mnemonics, and the error text produced by the BASIC-PLUS run-time system when these errors occur.)

The symbols are automatically resolved at link time if you include ERR.STB with the files you link with either TKB (the Task Builder for the RSX run-time system) or LINK (the linker for the RT11 run-time system). For example, under the RSX run-time system, the following code would link ERR.STB and MAIN.OBJ to produce the executable file IMGI.TSK, a memory allocation file MPLMAP, and a symbol definition file SFI.STB:

RUN $TKB

TKB>IMG1 tMP1 +SF1=ERR.STB tMAIN

Similarly, under the RT11 run-time system, the following sequence would link ERR.STB and MAIN.OBJ to produce the executable file IMG1.SAV, a memory allocation file MPLMAP, and a symbol definition file SF1.STB:

RUN $LINK

*IMG1 #MP1 tSF1=ERR.STB tMAIN

3.1.4 Programming Hints

Preset the FIRQB and XRB to 0

The monitor directives in this chapter pass information to the monitor in the FIRQB and XRB areas of the low 1000 bytes of memory. It is usually a good idea to clear the entire FIRQB and XRB before issuing a call, to ensure that no extraneous information has been left in the areas (from data returned on a call, for example) that could affect how the call executes. In some cases, however, you may want to leave the FIRQB and XRB alone. The FSS call, for example, scans a string and, if it is a valid file specifica​tion, returns to the FIRQB the information needed to open the file with the CALFIP call. You would not want to clear the FIRQB before opening the file with CALFIP.

Note that to ensure compatibility with future versions of RSTS / E, you should always set to zero any fields in the FIRQB and XRB diagrams that are shaded or are documented as reserved or not used.

General Monitor Directives
3-7
The following example contains three routines that clear the FIRQB and XRB:

CLRFQX
Clears both the FIRQB and XRB.

CLRFQB
Clears the FIRQB.

CLRXRB
Clears the XRB.

The values FQBSIZ and XRBSIZ used in these routines are defined in COMMON.MAC.

.ENABL LSB

CLRFQX::PUSH
;Save RO,R1

MOV
#FIRQBtRO
;Point to FIRQB.

MOV
#\,:<:FQBSIZ+\RBSIZ::-,/2 tR1 ;Compute how many words to clear. BR 10$

CLRFQB::PUSH

MOV

MOV

BR
<R0 >R1;-

#FIRQB#RO

#<FQBSIZ/2%tR1

1••$
;Save R0 tR1

;Point to FIRQB.

;Compute how many words to clear.

CLRXRB::PUSH
CROtR1?
;Save RO,R1

MOV
#?(RB tRO
;Point to Y,RB

MOV
#<)QRBSIZ/^''.>>R1
;Compute how many words to clear.

10$: CLR
(RO)+
;Zero it out ...

SOB
Rl tlO$
;'til all done

POP
<R1 tR0`
;Restore RO,R1.

RETURN

.DSABL
LSB

Data Returned to FIRQB and XRB

If a call completes without error, the monitor sets byte 0 of the FIRQB to zero. If an error occurs on a call, the monitor sets byte 0 of the FIRQB to an error code. Likewise, the monitor always sets the byte at FIRQB + 2 to the current job number times two when a call completes.

In some circumstances, it may be useful to know what happens to the "data passed" when a call completes. (Is the file name still there? and so forth.) Bytes not specified as containing "Data Returned" are undefined. You should not rely on these values when coding your programs because DIGITAL reserves the right to change the values returned in these bytes at any time. In addition, if an error occurs, the data returned may or may not have replaced the data passed. It depends on how far processing for the call got before the error occurred.

Channel Numbers for I/O

Directives that handle input/output use a "channel number" to refer to a device. In device or file opens, a channel number is related to a specific device defined in the call. Directives that transfer data (.READ, .WRITE, .MESAG) can then refer to a channel number rather than define a device or file.

3-8
General Monitor Directives

Valid channel numbers range from 0 through 1510. Channel 0 is the job's terminal; for example, a WRITE to channel 0 will write to the terminal which is running the job. Channel 0 is always open. Similarly, the monitor opens a file to be run on channel 1510 when control transfers to the P.RUN entry point in a run-time system. Thus, user jobs may define and use chan​nels 1 - 1410.

Directives That Do I/O

The CALFIP subfunctions OPNFQ, CREFQ, CRBFQ, and CRTFQ open a file or device and relate the specified channel number to that file or device. OPNFQ opens a file or device for input; CREFQ "creates" a file, that is, opens a file or device for output. CRBFQ creates a binary (executable) output file on disk, and CRTFQ creates a temporary file on disk.

The directives READ and WRITE transfer data between memory and a device or file specified by channel number.

The CLSFQ (close) and RSTFQ (reset) subfunctions of CALFIP close a de​vice or file and free the associated channel number so it can be used with another device or file.

Directives That Support I/O

The "file string scan" (.FSS) directive is useful for programs that process files specified by a terminal user. The FSS directive examines a string of characters and, if it is a valid RSTS/E file specification, converts it to the FIRQB format used to open a file. Thus, your program can accept a typed string from the job's terminal and use FSS to convert the string to the FIRQB format to do I / O on the file.

The LOGS directive examines a string and, if it is a system logical device name defined by the system manager, returns the actual device name and unit number that corresponds to the logical name.

You can use the LOKFQ subfunction of CALFIP to search for disk files that meet "wildcard" file specifications. For example, you could search an ac​count on disk for all files with names beginning with the characters DD.

General Monitor Directives
3-9
CALFIP

3.2 CALFIP - Call the File Processor

Form

CALFIP

Function

The CALFIP directive to the RSTS/E monitor handles "housekeeping" nec​essary for input/output on RSTS/E. For example, CALFIP allows you to open a channel for file or device I/O.

You select the particular function desired by setting a function field in the FIRQB (at offset FQFUN). Other parameters are also passed to the monitor in the FIRQB, depending on the function requested. The functions are described in the following subsections; a summary is given below:

FQFUN

Value

(Octal)
Mnemonic
Action Performed (BASIC-PLUS Equivalent)

0
CLSFQ
Close an open channel (CLOSE)

2
OPNFQ
Open a channel (OPEN FOR INPUT)

4
CREFQ
Create/extend/open a channel (file-structured OPEN FOR

OUTPUT)

6
DLNFQ
Delete a file by name (KILL)

10
RENFQ
Rename a file (NAME ... AS)

12
DIRFQ
Get directory information

14
UUOFQ
Process UUO

16
ERRFQ
Get error message text

20
RSTFQ
Reset (close) all channels (except channel 0)

22
LOKFQ
Look up a file

24
ASSFQ
Assign a device

26
DEAFQ
Deassign a device

30
DALFQ
Deassign all devices

32
CRTFQ
Create/extend/open a temporary file on disk (file-structured

OPEN FOR OUTPUT, space deallocated on close)

34
CRBFQ
Create/extend/open a compiled image file on disk (file​

structured OPEN FOR OUTPUT, protection code bit 6 always

set)

3-10
General Monitor Directives

CALFIP ASSFQ

3.2.1 ASSFQ (Assign a Device) - Privileged and Not Privileged Form

MOYB #ASSFQtFIPQB+FQFUN

(Set up FIRQB to define device)

CALFIP

Function

The ASSFQ subfunction reserves a physical device for a job or transfers assignment of a currently owned device to another job.

Data Passed

FIROB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN 5

7

11 13 15 17 21 23 25 27 31 33 35 37

ASSFQ (= octal 24)

(must = 0)
--O,assign;40,job no.

DOS or ANS (1 word RAD50) or 0 (magtape)

100001 for snagging assign/ reassign; else 0

[image: image14.png]
device name (2 ASCII characters)

=k0, unit number real I
device unit number

[image: image15.png]
[image: image16.png]
0 2 4 6 10 FQNAM1 12

14 FQEXT 16

20

22 FQMODE 24

26

30 FQDEV 32 FQDEVN 34

36

General Monitor Directives
3-11
CALFIP ASSFQ

FIRQB+FQFUN
The function code ASSFQ (octal value = 24).

FIRQB+FQNAM1
This byte is set to 0 to indicate an assign; if nonzero, it is used as the job number to which the device is to be reassigned. The high byte of this word (FIRQB + 11) must be set to 0.

If you are nonprivileged, you can reassign a device only to a job that is logged in to the same account as your current account.

F1 ROB + FQEXT
When the device is magnetic tape, this word can con​tain either DOS or ANS in RAD50 format, to indicate DOS or ANSI label format for the tape drive. Or it can be set to 0 to indicate the system default for the drive.

FIRQB+FQMODE
This word is set to 100001 to assign a device that is currently assigned to another user. This is a "snagging" assign and is available only to privileged users. If you do not want a snagging assign, this word must be zero.

FIRQB + FQDEV
Device name, as two ASCII characters.

FIRQB + FQDEVN
The device unit number is passed here in binary. A nonzero value in FIRQB + FQDEVN + 1 indicates an explicit device unit number. A zero value in FIRQB + FQDEVN + 1 indicates no unit number.

Data Returned

Other than a possible error in byte 0 of the FIRQB, no data is returned by the ASSFQ subfunction.

Errors

For Assign (byte at FIRQB + FQNAM1 = 0):

NODEVC
The device name specified at FIRQB + FQDEV is not a valid device name.

NOTAVL
The device and unit specified exists on the system, but the attempt to reserve it is prohibited because:

l.
The device is currently reserved by another job.

2.
Ownership of the device requires privilege that the user does not have. For example, a nonprivi​leged user tried to assign a device that is cur​rently assigned to another user.

3-12
General Monitor Directives

CALFIP ASSFQ

NOTAVL
3.

(cont.)

4.

PRVIOL
The

The device or its controller has been disabled by the system manager.

The device is a keyboard line for a pseudo key​board only.

device requires privilege for an assign.

For Reassign (byte at FIRQB + 10 =k 0):

INUSE

The device specified is currently open or has an open file.

NODEVC

The device name is a logical device name for which a physical device is not currently assigned.

NOTAVL BDNERR PRVIOL

(See description for Assign, above.)

The job number specified does not exist.

You are not privileged and tried to reassign a device to a job that is logged in to an account other than your current account.

Example

The following code reassigns magnetic tape unit 0 (MTO:) to job 12,0. Section 3.1.4 for information on the CLRFQB routine.

See

MAGT:

ASCII
/MT/

CALL
CLRFQB
;CALL ROUTINE TO CLEAR FIRQB

MOVB
#ASSFQtFIRQB+FQFUN
;SET FUNCTION CODE

MOVB
#12.tFIRQB+FQNAMI
;ASSIGN TO JOB 12

MOY
#"RANS#FIRQB+1U
;ANSI-LABEL TAPE

MOV
MAGT,FIRQB+FQDEV
;MAGTAPE DEVICE

CLRB
FIRQB+FQDEVN
;UNIT N0. o

MOVB
#377tFIRQB+FQDEVN+1
;UNIT NO. REAL

CALFIP

TSTB
FIRQB
;ANY ERRORS?

BNE
ERRTN
;BRANCH TO PROCESS ERROR

General Monitor Directives

3-13
CALFIP CLSFQ

3.2.2 CLSFQ (Close a Channel) - Not Privileged Form / Example

CHANO=8.
;SET VALUE FOR CHANNEL

MOVB #CLSFQtFIRQB+FQFUN
;SET FUNCTION CODE IN FIRQB

MOVE #CHANO*2tFIRQB+FQFIL
;SET CHANNEL 8 FOR CLOSE

CALFIP
;EXECUTE MONITOR DIRECTIVE

Function

The CLSFQ function closes a channel. The specific action taken depends on the device or file that was previously opened on the channel, whether it was opened for input or output, and the mode with which it was opened. For example, closing a channel on which a magnetic tape was opened for input in file-structured mode will cause the monitor to position the tape at the end-of-file. (Actions taken on closing various devices/files are described in the RSTS lE Programming Manual.)

Requesting CLSFQ for a channel that is not currently open will simply return with no error indicated.

3-14
General Monitor Directives

CALFIP CLSFQ

Data Passed

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN 5

7

11 13 15 17 21 23 25 27 31 33 35 37

CLSFQ (= octal 0)

[image: image17.png]
[image: image18.png]
[image: image19.png]
channel no. ' 2

0 2

4 FQFIL 6

10 12 14 16 20 22 24 26 30 32 34 36

FIRQB+FQFUN
The function code CLSFQ (octal value = 0).

FIRQB+FQFIL
Channel number times 2; defines the channel to be closed.

Data Returned

Except for a possible error in byte 0 of the FIRQB, no data is returned by the CLSFQ function of CALFIP.

Errors

All possible errors with the CLSFQ function of CALFIP are device​dependent; see Appendix A for a full list of errors.

General Monitor Directives
3-15
CALFIP CLSFQ

Example

The following MACRO code closes the file or device on channel 1210. See Section 3.1.4 for information on the CLRFQB routine.

CALL
CLRFQB
;CLEAR FIRQB

MOVB
#CLSFQtFIRQB+FQFUN
;SET FUNCTION CODE IN FIRQB

MOVB
#12.*2tFIRQB+FQFIL
;SET CHANNEL 12 FOR CLOSE

CALFIP

;EXECUTE MONITOR DIRECTIVE

TSTB
FIRQB
;TEST BYTE 0 FOR ERROR

BNE
ERRTN
;BRANCH TO PROCESS ERROR

3-16
General Monitor Directives

CALFIP CRBFQ

3.2.3 CRBFQ (Create a Binary [Executable] File and Open It on a Channel) - Not Privileged

Form

MOVE #CRBFQtFIRQB+FQFUN
;SET FUNCTION CODE

(Set parameters in FIRQB appropriate to device)

CALFIP

Function

The CRBFQ function creates and opens a binary (executable) file. It is identical to the CRBFQ function (Section 3.2.4), except that (1) the protec​tion code is automatically set to indicate an executable file, and (2) the file must be opened on a disk device.

General Monitor Directives
3-17
CALFIP CRBFQ

Data Passed

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN 5 FQSIZM 7

11 13 15 17 21 23 25 27 FQPROT 31

33 35 37

CRBFQ (= octal 34)

(must = 0)
channel number '

2

project number
programmer number

file name (2 words in RAD50 format)

file type (1 word in RAD50 format)

file size (in 512,6 byte blocks)

mode

file protection
0,prot. code real

device name (2 ASCII characters)

=~0, unit number real
device unit number

file cluster size

device cluster number for first block

0 2 4 FQFIL 6 FQPPN 10 FQNAM1 12

14 FQEXT 16 FQSIZ 20

22 FQMODE 24

26 FQPFLG 20 FQDEV 32 FQDEVN 34 FQCLUS 36 FQNENT

FIRQB+FQFUN
The function code CRBFQ (octal value = 34).

FIRQB+FQFIL
Channel number times 2; defines the channel upon which the file is to be opened.

FIRQB+FQSIZM
On other types of "create" opens, this byte contains the most significant bits of the file size. Executable (binary) files cannot be greater than 65,5351,, blocks, however, so this byte must always be passed as zero.

FIRQB+FQPPN
The project-programmer number (ppn) with which the file is to be created. The project number is in the high byte (FQPPN+ 1) and the programmer number in the low byte (FQPPN). A value of 0 in both bytes defaults to the ppn under which the calling program is running.

3-18
General Monitor Directives

CALFIP CRBFQ

FIRQB+FQNAM1
The file name created, as two words of RAD50 data.

FIRQB+FQEXT
The file type, as one word of RAD50 data.

FIRQB+FQSIZ
The desired file size, in 51210-byte blocks. The file is preextended to the specified size; that is, the space for the file is allocated when the file is opened, rather than as it is written.

FIRQB+FQMODE The mode with which the file is to be opened; values and actions taken are as described for the MODE modifier in file-structured OPEN FOR OUTPUT statements for disk, as described in the RSTS lE Programming Manual. If a mode value is used, bit 1510 of this word must be set to l.

FIRQB+FQPROT File protection code; values for this field define read/write and execute access to the created file (see RSTS lE System User's Guide). If you want a default pro​tection code, then set a full word of zeros at FIRQB + FQPFLG. In this case, either the system default for protection code will be used, or, if the CRBFQ will be deleting a previously existing file with the same file name, type, ppn, and device, the file protection code of the previously existing file will be used.

To assign a specific file protection code, a nonzero value is passed in byte FIRQB + FQPFLG (by convention, 3778) and the specific file protection code in byte FIRQB + FQPROT. Bit 6 is automatically set, indicating that the file is executable. Meanings for protection codes for executable files are described in the RSTS lE System User's Guide.

FIRQB+FQDEV
The device name is passed here as two ASCII characters; it must be a disk device. If this word is 0, the public disk structure is assumed.

FIRQB+FQDEVN
The device unit number is passed herein binary. A non​zero value in FQDEVN+ 1 indicates an explicit device unit number. A zero value in FQDEVN+1 indicates no unit number.

FIRQB+FQCLUS
This parameter has the same function as the CLUSTER​SIZE option in BASIC-PLUS. A description of the CLUSTERSIZE option for disk is given in the BASIC PLUS Language Manual.

General Monitor Directives
3-19
CALFIP CRBFQ

FIRQB+FQNENT
Device cluster number for placement of block 1 of the file. When you are creating a new file, you can place block 1 of the file on a particular block by specifying the disk device cluster number in this word. If this word is zero, no placement is done. If it is nonzero, the monitor will try to place the file at the specified device cluster or as near after it as possible. If the first block of the file can be placed at or after the specified device cluster number, the monitor sets a bit in the file's entry in the User File Directory (an internal monitor directory). If the first block of the file cannot be placed at or after the specified device cluster number, the file is placed at the lowest free block on the disk, the bit in the file's entry in the User File Directory is not set, and no error is returned.

Data Returned

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1 3

5 FQSIZM 7

11 13 15 17 21 23 25 27 FQPROT 31

33 35 37

current job number '

2

(always 0)
channel number '

2

project number
programmer number

file name (2 words in RAD50 format)

file type (1 word in RAD50 format)

size of the file, in 512,0 byte blocks

reasonable buffer size for device

(as passed)

device description

protection code
clustersize, mod256

device name (2 ASCII characters)

flag byte
device unit number

file identification index

(as passed)

0

2 FQJOB 4 FQFIL 6 FQPPN 10 FQNAM1 12

14 FQEXT 16 FQSIZ 20 FQBUFL 22 FQMODE 24 FQFLAG 26 FQPFLG 30 FQDEV 32 FQDEVN 34 FQCLUS 36 FQNENT

3-20
General Monitor Directives

CALFIP CRBFQ

FIRQB+FQJOB
Current job number times two.

FIRQB+FQFIL
Channel number times two; defines the channel on which the file is open.

FIRQB+FQPPN
The project-programmer number under which the file is open. An actual project-programmer number is returned here even if this word was passed as 0.

FIRQB+FQNAM1
The file name created, as two words of RAD50 data.

FIRQB+FQEXT
The file type created, as one word of RAD50 data.

FIRQB+FQSIZ
The size to which the file was preextended, in 51210-byte blocks.

FIRQB+FQBUFL
Reasonable buffer size for disk reads and writes, in bytes. (Always 51210 for disk.)

FIRQB+FQFLAG
Description of the device just opened (the same infor​mation as the BASIC-PLUS STATUS variable). The low byte contains the device's handler index, always 0 (DSKHND) for disk. The high byte contains a set of status flags, irrelevant here since the device is always disk. (See the OPNFQ subfunction if you are inter​ested in these settings.)

FIRQB+FQPFLG
The file cluster size, modulo 256. That is, a file cluster size of 25610 is indicated by a zero byte here. This is the same as the value passed at FIRQB +FQCLUS, except that it is returned in a byte instead of a word.

FIRQB+FQPROT
The protection code of the file. Bit 7 is 0, bit 6 is 1, and bits 5 - 0 are as passed.

FIRQB+FQDEV
The device name of the disk device, as two ASCII characters. The actual device name is returned here, even if this word was passed as 0.

FIRQB+FQDEVN
The device unit number. The actual unit number is returned here, even if FIRQB + FQDEVN + 1 was passed as 0.

FIRQB+FQCLUS
The file identification index of this file. This word is significant mainly in that it can be used in place of the file name in subsequent opens of the file on disk. You can open the file with the OPNFQ subfunction of CALFIP using an explicit project-programmer number
in
FIRQB + FQPPN,
a
zero
word
in FIRQB + FQNAM1,
an
explicit
device
name
in FQDEV and FQDEVN, and the file identification in​dex in FIRQB + FQNAM1 + 2.

General Monitor Directives
3-21
CALFIP CRBFQ

FIRQB+FQCLUS
Note that there is no performance gain for using the (cont.)
file identification index rather than the file name. The file identification index is provided for compatibility with RSX. Furthermore, the file identification index is changed when the REORDR utility is run (see the RSTS l E System Manager's Guide).

Errors

NOTCLS
The specified channel is already open. It must be closed before it can be opened again.

PRVIOL
The specified device is not a disk device. The CRBFQ function can be executed only for a disk device.

Other errors are device-dependent. See Appendix A for a full list of possible error codes.

Example

The following MACRO code sets up the FIRQB for the CRBFQ function of CALFIP. The ppn is set to 2,210; the file name and type are set to FILNAM.TYP. The protection code is set such that the file is read/write​protected against everyone but the caller (user with ppn 2,210), and execute-protected against all but the caller and those in the caller's project (users with project number= 2). The file is opened on disk unit 2 (DK2:). File size and cluster size are not specified. The cluster size defaults to the pack cluster size and the file size is not preallocated.

See Section 3.1.4 for information on the CLRFQB routine used in this example.

DK:

ASCII
/ DK /

CALL
CLRFQB
;CLEAR FIRQB

MOVE
#CRBFQ#FIRQB+FQFUN
;SET FUNCTION CODE

MOVB
#4*2tFIRQB+FQFIL
;SET CHANNEL = 4

MOVE
#2tFIRQB+FQPPN+1
;SET PROJECT NUMBER =2

MOVB
#210.tFIRQB+FQPPN
;SET PROG. NO.=210.

MOV
#''RFIL#FIRQB+FQNAMI
;SET FILE NAME AND

MOV
#"RNAMtFIRQB+FQNAM1+2
;TYPE TO

MOV
#"RTYPtFIRQB+FQEXT
;"FILNAM.TYP"

MOVE
B.+1S,+32.>tFIRQB+FQPROT
;SET PROTECTION CODE

MOVB
#377tFIRQB+FQPFLG
;SET PROTECTION CODE REAL

MOV
DK tF I RQB+FQDEV
;SET DEVICE TO DISKt

MOVE
#2#FIRQB+FQDEVN
;UNIT 2

MOVE
#377tFIRQB+FQDEVN+1
;(EXPLICIT DEVICE NO.)

CALFIP

3-22
General Monitor Directives

CALFIP CREFQ

3.2.4 CREFQ (Create a File and Open It on a Channel) - Not Privileged

Form

MOVB
#CREFQ,FIRQB+FQFUN
;SET FUNCTION CODE

(set parameters appropriate to device)

CALFIP

Function

The CREFQ function performs the same action as a file-structured OPEN FOR OUTPUT statement in BASIC-PLUS. Parameters defining the de​vice, file name and type, protection code, mode, file size, and cluster size can be used by setting values in the FIRQB. The choice depends upon the device.

For example, CREFQ with a file name and type on a magtape device with mode = 128,0 would cause an "open for append" operation. A search for an existing file with the specified name and on the specified device would be made; the file would have to be the last file on the tape. When found, the tape would be positioned after the last record in the file, ready for data to be written and appended. The RSTS l E Programming Manual describes the file-structured OPEN FOR OUTPUT operation for the various devices.

General Monitor Directives
3-23
CALFIP CREFQ

Data Passed

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN 5 FQSIZM 7

11 13 15 17 21 23 25 27 FQPROT 31

33 35 37

CREFQ (= octal 4)

MSB of file size
channel number '

2

project number
programmer number

file name (2 words in RAD50 format)

file type (1 word in RAD50 format)

LSB (least significant bits of) file size

mode

file protection
0, prot. code real

device name (2 ASCII characters)

=~0, unit number real
device unit number

file cluster size

device cluster number for first block

0 2 4 FQFIL 6 FQPPN 10 FQNAM1 12

14 FQEXT 16 FQSIZ 20

22 FQMODE 24

26 FQPFLG 20 FQDEV 32 FQDEVN 34 FQCLUS 36 FQNENT

FIRQB+FQFUN
The function code CREFQ (octal value = 4).

FIRQB+FQFIL
Channel number times 2; defines the channel upon which the file is to be opened.

FIRQB+ FQSIZM
For large disk files (greater than 65,535 blocks), this byte contains the most significant bits of the file size. See FIRQB + FQSIZ, below, for a discussion of the entire 24-bit field used for large files on disk.

FIRQB+FQPPN
The project-programmer number (ppn) with which the file is to be created. The project number is in the high byte (FIRQB + FQPPN + 1), and the programmer number in the low byte (FIRQB + FQPPN). A value of 0 defaults to the ppn under which the calling program is running.

3-24
General Monitor Directives

CALFIP CREFQ

FIRQB+FQNAM1
The file name to create, as two words of RAD50 data.

FIRQB+FQEXT
The file type, as one word of RAD50 data.

FIRQB+FQSIZ
The desired file size, in 51210-byte blocks. This parame​ter is relevant only for disk and ANSI magtape files. For disk files, this word forms the least significant bits of the file size. It is combined with the byte at FIRQB + FQSIZM to indicate the file size. The disk file is automatically preextended to the indicated size. (That is, the space for the file is allocated when the file is opened, not as it is written.)

For ANSI magtape, this word has the same function as the FILESIZE option in BASIC-PLUS, as described in the RSTS lE Programming Manual.

FIRQB+FQMODE The mode with which the file is to be opened; values and actions taken for specific devices are as described for the MODE modifier for file-structured OPEN FOR OUTPUT statements in the RSTS l E Programming Manual. If a mode value is used, bit 15 of this word must be set to 1.

FIRQB+FQPROT File protection code; values for this field define subse​quent read and write access to the opened file (see the RSTS lE System User's Guide). If you want a default pro​tection code, then set a full word of zeros at FIRQB + FQPFLG. In this case, either the system default for protection code will be used, or, if the CREFQ will be deleting a previously existing file with the same file name, type, ppn, and device, the file protection code of the previously existing file will be used.

To assign a specific file protection code, put a nonzero value in byte FIRQB + FQPFLG (by convention, 3778) and the specific file protection code in byte FIRQB + FQPROT. This allows an explicit file protection code of 0. Bit 6 is always cleared by the CREFQ func​tion, regardless of whether or not it is set in FIRQB + FQPROT. Bit 6 is the "compiled file" bit; com​piled files should be opened with the CREFQ function (Section 3.2.3).

FIRQB+FQDEV
The device name is passed here as two ASCII characters. A zero word indicates the public disk structure.

FIRQB+FQDEVN The device unit number is passed here in binary. A nonzero value in FIRQB +FQDEVN + 1 indicates an explicit device unit number. A zero value in FIRQB + FQDEVN + 1 indicates no unit number.

General Monitor Directives
3-25
CALFIP CREFQ

FIRQB+FQCLUS This parameter has the same function as the CLUSTERSIZE option in BASIC-PLUS. It is relevant only for disk files and ANSI magtape files. A description of the CLUSTERSIZE option for disk is given in the BASIC PLUS Language Manual; for ANSI magtape, in the RSTS l E Programming Manual.

FIRQB+FQNENT
For disk files, the device cluster number for placement of block 1 of the file. When creating a new file, you can place block 1 of the file on a particular block by specify​ing the disk device cluster number in this word. If this word is zero, no placement is done. If it is nonzero, the monitor will try to place the file at the specified device cluster or as near after it as possible. If the first block of the file can be placed at or after the specified device clus​ter number, the monitor sets a bit in the file's entry in the User File Directory (an internal monitor directory). If the first block of the file cannot be placed at or after the specified device cluster number, the file is placed at the lowest free block on the disk, the bit in the file's entry in the User File Directory is not set, and no error is returned.

3-26
General Monitor Directives

CALFIP CREFQ

Data Returned

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1 3

5 FQSIZM 7

11 13 15 17 21 23 25 27 FQPROT 31

33 35 37

current job number '

2

MSB of file size
channel number '

2

project number
programmer number

file name (2 words in RAD50 format)

file type (1 word in RAD50 format)

LSB (least significant bits) of file size

reasonable buffer size for device

(as passed)

device description

protection code _T
clustersize, mod256

device name (2 ASCII characters)

flag byte
device unit number

file identification index

(as passed)

0

2 FQJOB

4 FQFIL

6 FQPPN

10 FQNAM1

12

14 FQEXT

16 FQSIZ

20 FQBUFL

22 FQMODE

24 FQFLAG

26 FQPFLG

30 FQDEV

32 FQDEVN

34 FQCLUS

36 FQNENT

NOTE

For non-disk devices, the relevant information returned with the CREFQ subfunction is in the two words at FIRQB +FQBUFL and FIRQB + FQFLAG. All other words are simply returned as passed.

FIRQB+FQJOB
Current job number times two.

FIRQB+FQFIL
Channel number times two; defines the channel on which the file is open.

General Monitor Directives
3-27
CALFIP CREFQ

FIRQB+FQSIZM
For large files, this byte contains the most signficant bits of the size to which the file was preextended, in 51210-byte blocks. This byte is combined with the word at FIRQB + FQSIZ to form a 24-bit field giving the file size.

FIRQB+FQPPN
The project-programmer number under which the file is open. An actual project-programmer number is returned here even if this word was passed as 0.

FIRQB+FQNAM1
The file name created, as two words of RAD50 data.

FIRQB+FQEXT
The file type created, as one word of RAD50 data.

FIRQB+FQSIZ
The size to which the file was preextended, in 51210-byte blocks.

FIRQB+FQBUFL
Reasonable buffer size for this device, in bytes. If you are doing device-independent 1/0 (that is, if you do not wish to keep track of which device is being opened and per​form specific opens, reads, and writes, depending on the device), this value is the monitor's "best guess" for a buffer size to use in subsequent reads and writes on the opened channel. (See Sections 3.17 and 3.33 on READ and.WRITE.)

FIRQB + FQFLAG
Description of the device just opened (same information as the BASIC-PLUS STATUS variable). The low byte contains the device's handler index. There is one unique handler index for all device types. The high byte con​tains a set of status flags to allow for device-independent 1/0 routines.

DDNFS DDRLO DDWLO

FLGPOS FLGMOD FLGFRC FLGKB

FLGRND I

15 14 13 12 11 10 9 8 7
0

device-type flags
I
device handler index

3-28
General Monitor Directives

CALFIP CREFQ

High Byte - Device-Type Flags

The bits in the high byte of the flags word are set to indicate the type of file or device just opened:

FLGRND = 1
The device or file is random-access.

= 0
The device or file is sequential.

FLGKB
= 1 The file or device is a terminal-type file or device (or is generically a terminal). = 0 The file or device is not a terminal-type file or device.

FLGFRC = 1 The file or device is byte-oriented. That is, the READ and WRITE directives handle data in byte units.

= 0 The file or device is block-oriented. The .READ and WRITE directives handle data in block units.

FLGMOD = 1 The file or device accepts modifiers in .READ and WRITE directives (Sections 3.17 and 3.33, XRB + XRMOD).

= 0 The file or device does not accept modi​fiers in READ and WRITE directives.

FLGPOS = 1
The file or device keeps track of its hori​zontal position and expands characters such as TAB into whatever is appropriate for the file or device. You can determine the current horizontal position with the .POSTN directive.

= 0 The file or device does not keep track of its horizontal position.

DDWLO = 1 The file or device has been write-locked (with the protection code or mode value in the open) or is generically a write-only device.

= 0
The file or device is not write-locked. DDRLO = 1 The file or device has been read-locked (with the protection code in the open) or is generically a read-only device.

= 0
The file or device is not read-locked.

DDNFS = 1 The file or device is non-file-structured (or is generically not a file-structured device).

= 0
The file or device is file-structured.

General Monitor Directives
3-29
CALFIP CREFQ

Low Byte - Device Handler Index

Bits 0-7 of the flags word contain a handler index that indicates the generic kind of device. Currently defined values are:

Octal

Value
Symbol
Meaning

0
DSKHND
All disks

2
TTYHND
All terminals

4
DTAHND
DECtape

6
LPTHND
All line printers

10
PTRHND
Paper tape reader

12
PTPHND
Paper tape punch

14
CDRHND
Card reader

16
MTAHND
Magtape

20
PKBHND
Pseudo keyboards

22
RXDHND
Flexible diskettes

24
RJEHND
2780 remote job entry

26
NULHND
The null device

30
DMCHND
The DMC11 /DMR11 DDCMP

interface

36
DT2HND
DECtape 11

40
KMCHND
KMC11

42
IBMHND
IBM interconnect

46
DMPHND
DMP11/DMV11 device

FIRQB+FQPFLG
The file cluster size, modulo 256. That is, a file cluster size of 25610 is indicated by a zero byte here. This is the same as the value passed at FIRQB + FQCLUS, except that it is returned in a byte instead of a word.

FIRQB+FQPROT
The protection code of the file. Bits 6 and 7 are 0; bits 5 - 0 are as passed.

FIRQB+FQDEV
The device name of the disk device, as two ASCII charac​ters. The actual device name is returned here, even if this word was passed as 0.

3-30
General Monitor Directives

CALFIP CREFQ

FIRQB+FQDEVN
The device unit number. The actual unit number is re​turned here, even if FIRQB + FQDEVN + 1 was passed as 0.

FIRQB+FQCLUS
The file identification index of this file. This word is sig​nificant mainly in that it can be used in place of the file name in subsequent opens of the file on disk. You can open the file with the OPNFQ subfunction of CALFIP using an explicit project-programmer number in FIRQB + FQPPN, a zero word in FIRQB + FQNAM 1, and the file identification index in FIRQB + FQNAM 1 + 2.

Note that there is no performance gain for using the file identification index rather than the file name. The file identification index is provided for compatibility with RSX. Furthermore, the file identification index is changed when the REORDR utility is run (see the RSTS lE System Manager's Guide).

Errors

NOTCLS
The specified channel is already open. It must be closed before it can be opened again.

Other errors are device-dependent. See Appendix A for a full list of errors.

Example

The following MACRO code sets up the FIRQB for a CREFQ that opens a file called FILEOLLST on the public disk structure. (We assume here that previous code has filled the FIRQB with zeros, so that the words at FIRQB + FQDEV and FIRQB + FQDEVN are zero, indicating the public disk. Similarly, the mode (FIRQB + FQMODE) and cluster size (FIRQB + FQCLUS) are zero, indicating normal read/ write and the default cluster size.) A protection code of 56 is assigned (write-protected against all but the owner, read-protected against all but those in the owner's project).

MOVB
#CREFQtFIRQB+FQFUN
;SET FUNCTION CODE IN FIRQB

MOYB
#5*2tFIRQB+FQFIL
;SET CHANNEL = 5

MOY
#"RFIL#FIRQB+FQNAMI
;SET FILE NAME

MOIL
#"REOItFIRQB+FQNAM1+2
;AND TYPE TO

MOY
#"RLSTtFIRQB+FQEXT
;FILEO1.LST

MOYB
#56.#FIRQB+FQPROT
;SET PROTECTION CODE

MOYB
#377tFIRQB+FQPFLG
;EXPLICIT PROT. CODE

CALFIP

General Monitor Directives

3-31
CALFIP CRTFQ

3.2.5 CRTFQ (Create and Open a Temporary File) - Not Privileged Form

MOVB
#CRTFQ tFIRQB+FQFUN

(set appropriate parameters)

CALFIP

Function

The CRTFQ function can be used to create and open a temporary file on disk. The file is "temporary" only in that the monitor generates a file name and type for the file, which is recognized by the LOGOUT utility. LOGOUT destroys such files when the user logs out; the monitor does not inherently destroy temporary files created with CRTFQ.

Most parameters relevant on an open are defaulted. You do not define or refer to the file by name; subsequent read and write operations refer to the channel on which the temporary file is open.

In addition to the function code, you specify a channel and, if desired, a file size and/or file cluster size. If an explicit cluster size is specified, it will be used. A specified file size may or may not be used. The monitor will attempt to reuse an existing temporary file for the same job by simply reopening that file. In this case, the file's size will be the size of the previous file. If no previous temporary file for the job exists, or if one does exist but is already in use by somebody else, then a new file will be created, with the specified file size. A new file will also be created if an explicit device name or cluster size is given.

3-32
General Monitor Directives

CALFIP CRTFQ

Data Passed

FIRQB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1

0

3 FQFUN
CRTFQ (= octal 32)

2

5 FQSIZM
MSB of file size
channel number '2
4 FQFIL

7 11 13 15 17 21 23 25 27 31 33 35 37

[image: image20.png]
LSB of file size (number of 512-byte blocks)

mode

device name (2 ASCII characters)

-3~0, unit number real
I
device unit number

file cluster size

device cluster number for first block

6

10 12 14 16 FQSIZ 20

22 FQMODE 24

26

30 FQDEV 32 FQDEVN 34 FQCLUS 36 FQNENT

FIRQB+FQFUN
The function code CRTFQ (octal value = 32).

FIRQB+FQFIL
Channel number times 2; defines the channel on which the file is to be opened.

FIRQB+FQSIZM
For large disk files (greater than 65,5351, blocks), this byte contains the most significant bits of the file size. See FIRQB + FQSIZ, below, for a description of how the en​tire 241,-bit field is used.

General Monitor Directives
3-33
CALFIP CRTFQ

FIRQB+FQSIZ
This word contains the least significant bits of the file's size in 51210-byte blocks. (It is combined with the byte at FIRQB + FQSIZM.) The file size may or may not be used. If a temporary file already exists that is not in use, the monitor will use the space allocated to the previous tem​porary file. However, if cluster size is specified, a new file will be created, and the file size indicated by the 24-bit file size will be used.

FIRQB+FQMODE The mode with which the file is to be opened. Values are as described for the MODE modifier in OPEN FOR OUTPUT statements for disk, as described in the RSTS l E Programming Manual. The only relevant modes are for creating a tentative file, creating a contiguous file, creat​ing a conditionally contiguous file, and for data caching. All other mode bits are ignored, except bit 15. If a mode value is used, bit 15 of this word must be set to 1.

FIRQB+FQDEV
The device name is passed here as two ASCII characters; it must be a disk device. A value of 0 in this word indi​cates "SY", the public disk.

FIRQB+FQDEVN
The device unit number is passed herein binary. A non​zero value in the high byte (FIRQB + FQDEVN + 1) indi​cates an explicit device unit number. A zero value in FIRQB + FQDEVN + 1 indicates no unit number.

FIRQB+FQCLUS File cluster size. Performs the same function as the CLUSTERSIZE option in BASIC-PLUS.

FIRQB+FQNENT
The device cluster number for placement of block 1 of the file on disk. When creating a new file, you can place block 1 of the file on a particular block by specifying the disk device cluster number in this word. If this word is zero, no placement is done. If it is nonzero, the monitor will try to place the file at the specified device cluster or as near after it as possible. If the first block of the file can be placed at or after the specified device cluster number, the monitor sets a bit in the file's entry in the User File Directory (an internal monitor directory). If the first block of the file cannot be placed at or after the specified device cluster number, the file is placed at the lowest free block on the disk, the bit in the file's entry in the User File Directory is not set, and no error is returned.

3-34
General Monitor Directives

CALFIP CRTFQ

Data Returned

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1 3

5 FQSIZM 7

11 13 15 17 21 23 25 27 FQPROT 31

33 35 37

current job number '

2

MSB of file size
channel number '

2

project number
programmer number

file name (2 words in RAD50 format)

file type (1 word in RAD50 format)

LSB (least significant bits) of file size

reasonable buffer size for device

(as passed)

device description

protection code
clustersize, mod256

device name (2 ASCII characters)

flag byte
device unit number

file identification index

(as passed)

0

2 FQJOB

4 FQFIL

6 FQPPN

10 FQNAM1

12

14 FQEXT

16 FQSIZ

20 FQBUFL

22 FQMODE

24 FQFLAG

26 FQPFLG

30 FQDEV

32 FQDEVN

34 FQCLUS

36 FQNENT

FIRQB+FQJOB
Current job number times two.

FIRQB+FQFIL
Channel number times two; defines the channel on which the file is open.

FIRQB+FQSIZM
For large disk files (greater than 65,535,0 blocks), this byte contains the most significant bits of the file size in 51210-byte blocks. It is combined with the word at FIRQB + FQSIZ to form a 24-bit field giving the file size.

FIRQB+FQPPN
The project-programmer number under which the file is open. An actual project-programmer number is re​turned here even if this word was passed as 0.

General Monitor Directives
3-35
CALFIP CRTFQ

FIRQB+FQNAMl
The file name created, as two words of RAD50 data.

FIRQB+FQEXT
The file type created, as one word of RAD50 data.

FIRQB+FQSIZ
The size to which the file was preextended, in 5121,,-byte blocks.

FIRQB+FQBUFL
Reasonable buffer size for disk reads and writes, in bytes. (Always 51210 for disk.)

FIRQB+FQFLAG
Description of the device just opened (the same infor​mation as the BASIC-PLUS STATUS variable). The low byte contains the device's handler index, always 0 (DSKHND) for disk. The high byte contains a set of status flags, irrelevant here since the device is always disk. (See the OPNFQ subfunction if you are inter​ested in these settings.)

FIRQB+FQPFLG
The file cluster size, modulo 256. That is, a file cluster size of 2561,, is indicated by a zero byte here. This is the same as the value passed at FIRQB +FQCLUS, except that it is returned in a byte instead of a word.

FIRQB+FQPROT
The protection code of the file.

FIRQB+FQDEV
The device name of the disk device, as two ASCII characters. The actual device name is returned here, even if this word was passed as 0.

FIRQB+FQDEVN
The device unit number. The actual unit number is returned here, even if FIRQB + FQDEVN + 1 was passed as 0.

FIRQB+FQCLUS
The file identification index of this file. This word is significant mainly in that it can be used in place of the file name in subsequent opens of the file on disk. You can open the file with the OPNFQ subfunction of CALFIP using an explicit project-programmer number in FIRQB + FQPPN, a zero word in FIRQB + FQNAMl, and the file identification index in FIRQB + FQNAMl + 2.

Note that there is no performance gain for using the file identification index rather than the file name. The file identification index is provided for compatibility with RSX. Furthermore, the file identification index is changed when the REORDR utility is run on the directory (see the RSTS lE System Manager's Guide).

3-36
General Monitor Directives

CALFIP CRTFQ

Errors

All errors for this directive are device-dependent. See Appendix A for a full list of errors.

Example

The following MACRO code opens a temporary file on channel 13. (We assume that the FIRQB has been initialized to all zeros. Hence, the tempo​rary file is created on the public disk structure.)

MOVE
#CRTFQtFIRQB+FQFUN
;SET FUNCTION CODE MOVE
#13.*2tFIRQB+FQFIL
;SET CHANNEL TO 13 CALFIP

General Monitor Directives
3-37
CALFIP DALFQ

3.2.6 DALFQ (Deassign All Devices) - Not Privileged Form

MOYB
#DALFQ tFIRQB+FQFUN CALFIP

Function

The DALFQ subfunction deassigns all devices currently assigned to the job.

Data Passed

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN 5

7

11 13 15 17 21 23 25 27 31 33 35 37

DALFQ (= octal 30

[image: image21.bmp]
0 2 4 6 10 12 14 16 20 22 24 26 30 32 34 36

3-38
General Monitor Directives

CALFIP DALFQ

FIRQB+FQFUN
The function code DALFQ (octal value = 30).

Data Returned

No data is returned by the DALFQ subfunction of CALFIP. Errors

No errors are possible with DALFQ.

General Monitor Directives
3-39
CALFIP DEAFQ

3.2.7 DEAFQ (Deassign a Device) - Not Privileged Form

MOVB #DEAFQtFIl1QB+FQFUN

(Define device to be deassigned in FIRQB)

CALFIP

Function

The DEAFQ subfunction deassigns a device from the current job (releases it for use by other jobs).

Data Passed

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN
DEAFQ (=octal 26)
0

2

5

4

7

6

11
(must = 0)
10 FQNAM1

13

12

15

14

17

16

21

20

23

22

25

24

27

26

31
device name (2 ASCII characters)
30 FQDEV

33
-;~0, unit number real device unit number
32 FQDEVN

35
I
34

37

36

3-40
General Monitor Directives

CALFIP DEAFQ

FIRQB+FQFUN
The DEAFQ function code (octal value = 26).

FIRQB+FQNAM1
The word at this location must be set to 0.

FIRQB+FQDEV
The name of the device to be deassigned, as two ASCII characters.

FIRQB+FQDEVN
The device unit number is passed herein binary. A non​zero value in FIRQB + FQDEVN + 1 indicates an explicit device unit number, while a zero value indicates no de​vice unit number.

Data Returned

Except for a possible error in byte 0 of the FIRQB, no data is returned by the DEAFQ subfunction of CALFIP.

Errors

NODEVC
The device or its type specified at FIRQB+FQDEV and FIRQB + FQDEVN is not part of your system configuration.

Example

The following code deassigns LP: from the current job. See Section 3.1.4 for information on the CLRFQB routine.

CALL
CLRFQB
;CLEAR FIRQB

MOVE
#DEAFQtFIRQB+FQFUN
;SET FUNCTION CODE

MOV
#"LPtFIRQB+FQDEV
;DEVICE=LINE PRINTER

CALFIP

General Monitor Directives
3-41
CALFIP DIRFQ

3.2.8 DIRFQ (Get Directory Information) - Privileged and Not Privileged

Form

MOYB #DIRFQ,FIRQB+FQFUN

(Define device for the directory wanted)

CALFIP

Function

The DIRFQ subfunction of CALFIP returns directory information about a disk, DECtape, or magtape file. Two forms of the call are available. One leaves a magtape file positioned at the end-of-file and returns the size of the file as part of the directory information. The second form, for magtape only, leaves a magtape file positioned at the beginning of the file, and does not return the size of the file.

Note that for disk, DIRFQ works differently for privileged and nonprivi​leged users. Privileged users always receive directory information. Nonpri​vileged users receive directory information only if they have read access to the file. The system manager can install an optional patch to give nonprivi​leged users unrestricted access to directory information.

3-42
General Monitor Directives

CALFIP DIRFQ

Data Passed - Directory Lookup on Index

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN 5

7

11 13 15 17 21 23 25 27 31 33 35 37

DIRFQ (= octal 12) 1

index of file to read

project number J programmer number

device name (2 ASCII characters)

:310, unit number real
device unit number

0 2 4 FQFIL 6 FQPPN 10

12 14 16 20 22 24 26 30 FQDEV 32 FQDEVN 34

36

FIRQB+FQFUN
The function code DIRFQ (octal value = 12).

FIRQB+FQFIL
The index of the file to read. If this word is zero, the monitor returns data for the first file in the directory. For some positive value n, the monitor returns data for the n + 1 file in the directory. For magtape, a value of 0 causes the monitor to rewind the tape before it gets the information for the first file (by reading the label record of the file). The monitor then spaces the tape forward to the next end-of-file record and calculates the number of records in the file. The tape is left in that position. A nonzero value performs the same action, except that the tape is not rewound.

General Monitor Directives
3-43
CALFIP DIRFQ

FIRQB+FQFIL
For DECtape, the first call issued must have a value of (continued)
zero in this word to read the directory blocks from the tape before reading the first file. Subsequent calls with this word nonzero read the directory from the BUFF.SYS file. (Directory information for DECtape is kept in this system file on disk to speed up DECtape file processing, as described in the RSTS lE Programming Manual.)

FIRQB+FQPPN
The project-programmer number of the directory to look up, for disk or magtape. (The monitor does not use these bytes if the device is DECtape but simply returns infor​mation for each file read on the device.)

If this word is zero and the device is disk, this directive returns information for the project-programmer number under which this job is being executed.

If this word is zero and the device is magtape, this direc​tive returns information for each file read, regardless of the project-programmer number under which it was written.

FIRQB+FQDEV
The device name, as two ASCII characters. Must be disk, magtape, or DECtape. If this word is zero, the pub​lic disk structure (SY:) is used.

FIRQB+FQDEVN
The device unit number is passed herein binary. A non​zero value in FQDEVN+ 1 indicates an explicit device unit number. A zero value in FQDEVN+ 1 indicates no unit number.

3-44
General Monitor Directives

CALFIP DIRFQ

Data Passed - Special Magtape Lookup

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN
DIRFQ (= octal 12)
0

2

5
index of file to read
4 FQFIL

7
must = 177777 octal for magtape lookup
6 FQPPN

11

10

13

12

15

14

17

16

21

20

23

22

25

24

27

26

31
MT, MM, or MS (2 ASCII characters)
30 FQDEV

33
=~O,unit number real device unit number
32 FQDEVN

35

34

37

36

Fl RQB+FQFUN
The function code DIRFQ (octal value = 12).

FIRQB+FQFIL
Index number of the file to be read. If this word is zero, information is returned for the first file in the directory. If this word is some positive value n, information is re​turned for the n+ 1 file in the directory. A value of 0 causes the monitor to rewind the tape before getting in​formation from the first file (by reading the label record). It then backspaces the tape one record, leaving it posi​tioned at the beginning of file. (This action leaves the tape positioned such that an open on this file will succeed on a single read from tape.) A nonzero value does not

General Monitor Directives
3-45
CALFIP DIRFQ

FIRQB+FQFIL
cause the tape to be rewound; the next record is read (it (continued)
must be a label), and the tape is backspaced one record. When you are searching a tape for specific files to read, the normal action is to execute this directive with a value of 0 first. If the file is one to be read, open the file request​ing no rewind, process the file, and close it to position the tape at the end-of-file. If the file is not one to be read, space the tape forward to the next end-of-file. (You can do this in MACRO with the SPEC directive, Section 3.23.) Then issue the DIRFQ call with a nonzero value in the word beginning at FIRQB +FQFIL, and continue the process.

FIRQB+FQPPN
This word must be set to 1777778 for the special magtape lookup operation.

FIRQB+FQDEV
The device name (MT, MM, or MS) as two ASCII charac​ters.

FIRQB+FQDEVN The device unit number, in binary. A nonzero value in FIRQB + FQDEVN + 1 indicates an explicit device unit number. A zero value in FIRQB + FQDEVN + 1 indicates no unit number.

3-46
General Monitor Directives

CALFIP DIRFQ

Data Returned (Both)

Offset

Octal Mnemonic
FIRQB
Offset

Octal Mnemonic

1

0

3
current job number '

2
2 FQJOB

5
(same as data passed)
4 FQFIL

7
project number programmer number
6 FQPPN

11

10 FQNAM1

file name (2 words in RAD50 format)

13

12

15
file type (1 word in RAD50 format)
14 FQEXT

17
LSB of file length in blocks (not magtape)
16 FQSIZ

21
MSB of file length protection code
20 FQNAM2

23
date of last access
22 FQMODE

25
date of creation
24 FQFLAG

27
time of creation
26 FQPFLG

31

30 FQDEV

(same as data passed)

33

32 FQDEVN

35
file cluster size (disk only)
34 FQCLUS

37
USTAT byte number entries returned
36 FQNENT

FIRQB+FQJOB
The current job number times two.

FIRQB+FQPPN
The project-programmer number of the file. The pro​ject number is in the high byte (FIRQB + FQPPN + 1) and the programmer number is in the low byte (FIRQB + FQPPN).

FIRQB+FQNAM
The file name, as two words in RAD50 format.

FIRQB+FQEXT
The file type, as one word in RAD50 format.

FIRQB+FQSIZ
The least significant bits of the file size, in 51210-byte blocks. This word is combined with the byte at FIRQB + 21 to form a 24-bit value giving the file's size. (This word is not returned with the special magtape directory lookup.)

General Monitor Directives
3-47
CALFIP DIRFQ

FIRQB + FQNAM2
This byte contains the protection code of the file.

FIRQB+21
This byte contains the most significant bits of the file's size in 51210-byte blocks (see FIRQB + FQSIZ). (This byte is not returned with the special magtape directory lookup.)

FIRQB+FQMODE The date the file was last accessed, in system internal format:

[(year -1970) * 1000.] + day-within-year

(See the .DATE directive, Section 3.7, for a discussion of the system internal format for dates, if necessary.)

FIRQB + FQFLAG
The date the file was created, in system internal format.

FIRQB+FQPFLG The time that the file was created, in system internal format: minutes before midnight, where midnight = 1440. (See the DATE directive for a discussion of the system internal format for time, if necessary.)

FIRQB + FQCLUS
For disk devices, this word contains the file cluster size. For tape, not used.

Fl RQB+FQNENT
Number of entries returned: for disk, 8; for tape, 6.

FIRQB+37
Internal flag information (disk only):

Bit
Meaning

002
Placed file.

004
Some job has write access now.

010
File is open in update mode.

020
File is contiguous; no extend available.

040
No delete or rename allowed.

200
File is marked for deletion.

3-48
General Monitor Directives

CALFIP DIRFQ

Errors

NOSUCH
Either account (project-programmer number) does not exist on the device specified, or no more files exist on the account (the index number is greater than the number of files on the account). Or, for the special magtape lookup, no more files exist on the tape.

DEVNFS
The device specified is not a file-structured device.

xxxxx
Other errors are device-dependent. See Appendix A for a full list of errors.

Example

The following code searches the disk directory to examine files for user [2,101]:

LOOP:
MOVE
#DIRFQtFIRQB+FQFUN
;SET FUNCTION CODE CLR FIRQB+FQFIL

MOV
#,::C.*400+1()1.:: tFIRQB+FQPPN ;SET PROJ. tPROG.NO. CLR
FIRQB+FQDEV
;SEARCH SYSTEM DISK CLR FIRQB+FQDEVN

CALFIP

(Error processing, examine file name, process file)

INCB
FIRQB+FQFIL
;INCREMENT INDEX

imp
LOOP
;GO BACK FOR NEXT ROUND

General Monitor Directives
3-49
CALFIP DLNFQ

3.2.9 DLNFQ (Delete a File) - Not Privileged Form

MDVB

#DLNFQtFIRQB+FQFUN

(Define file to be deleted in FIRQB)

CALFIP

Function

The DLNFQ function of CALFIP deletes a file from disk or DECtape. The monitor's internal data on the location of the file are destroyed, and the file's space on the device is made available for general use.

3-50
General Monitor Directives

CALFIP DLNFQ

Data Passed

Offset

Octal Mnemonic
FIRQB
Offset

Octal Mnemonic

1

0

3 FQFUN
DLNFQ (=octal 6)
2

5

4

7
project number programmer number
6 FQPPN

11

10 FQNAM1

file name (2 words in RAD50 format)

13

12

15
file type (1 word in RAD50 format)
14 FQEXT

17

16

21

20

23

22

25

24

27

26

31
device name (2 ASCII characters)
30 FQDEV

33
:3~0, unit number real device unit number
32 FQDEVN

35

34

37

36

FIRQB+FQFUN
The function code DLNFQ (octal value = 6).

FIRQB+FQPPN
The project-programmer number (ppn) of the file to be deleted. The project number is in the high byte (FIRQB + FQPPN + 1), and the programmer number is in the low byte (FIRQB + FQPPN). A value of 0 defaults to the ppn under which the calling program is running.

FIRQB+FQNAM1
The name of the file to be deleted, as two words of RAD50 data.

FIRQB+FQEXT
The file type, as one word of RAD50 data.

General Monitor Directives
3-51
CALFIP DLNFQ

FIRQB+FQDEV
The name of the device containing the file to be deleted, as two ASCII characters; it must be a disk or DECtape device. A value of 0 in this word indicates the public disk structure.

FIRQB+FQDEVN
The device unit number is passed herein binary. A non​zero value in FQDEVN+1 indicates an explicit device unit number. A zero value in FQDEVN + 1 indicates no unit number.

Data Returned

Except for a possible error in byte 0 of the FIRQB, no data is returned by the DLNFQ function of CALFIP.

Errors

NOSUCH
The file specified in the data passed cannot be found.

PRVIOL
Protection violation. An attempt was made to delete a file that is either write-protected against the caller or marked for no delete.

Example

The following code deletes the file MYFIL.LST from the user's account on the public structure. (Assume that the FIRQB has been filled with zeros previously.)

MOVE
#DLNFQ#FIRQB+FQFUN

MOV
#"RMYF#FIRQB+FQNAM1
;SET

MOV
#"RILE#FIRQB+FQNAM1+7-
;AND

MOY
#"RLST#FIRQB+FQE3<T
;TO

CALFIP

FILE NAME TYPE "MYFILE.LST"

3-52
General Monitor Directives

CALFIP ERRFQ

3.2.10 ERRFQ (Return Error Message Text) - Not Privileged Form /Example

mot !B
#ERRFQtFIRQB+FQFUN MOVB #ERRtFIRQB+FQERNO

Function

The ERRFQ subfunction of CALFIP returns error message text from the system error message file or from the default error message file if an error message file is not currently installed. The text is associated with the value of the error code passed as byte 4 of the FIRQB. This call returns the full RSTS / E error message text associated with errors returned in byte 0 of the FIRQB on all the monitor directives.

Data Passed

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN ERRFQ (-octal 16)
0

2

5
error code 4 FQERNO

7
6

11
10

13
12

15
14

17
16

21
20

23
22

25
24

27
26

31
30

33
32

35
34

37
36

General Monitor Directives
3-53
CALFIP ERRFQ

FIRQB+FQFUN
The function code ERRFQ (octal value = 16).

FIRQB + FQERNO
The error code value (in binary) for which the corre​sponding error message text is to be returned.

Data Returned

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1 3 5

KB'2(-KB'2 + 1, detach) ~-
job number ' 2

0

2 FQJOB 4 FQFIL

error message - padded with NULs to 28 characters (ASCII format)

37

36

FIRQB+FQJOB
The current job number times two.

FIRQB+3
If the job is attached, two times the currently attached keyboard number. If the job is detached, the one's com​plement of two times the currently detached keyboard number.

FIRQB+FQFIL
The error message text begins in this byte. The text is padded with octal 000 bytes to 28 characters, if necessary.

Errors

No errors are returned with the ERRFQ subfunction of CALFIP.

3-54
General Monitor Directives

CALFIP LOKFQ

3.2.11 LOKFQ (Disk File/Wildcard Lookup) - Privileged and Not Privileged

Form

MOVB #LOKFQ,FIRQB+FQFUN

(Set up FIRQB to define file/wildcard)

CALFIP

Function

The LOKFQ subfunction of CALFIP will do one of two things. It will look for a file on disk by name, returning directory information (date of creation, and so forth). Or it will perform a "wildcard" file search. For example, with a file name and type in the FIRQB of *.TXT it will search an account for a file with any file name and a type of TXT. By incrementing an index and reexecuting LOKFQ, you can search through an entire directory for all such files.

LOKFQ works differently for privileged and nonprivileged users. Privi​leged users always receive directory information. Nonprivileged users receive directory information only if they have read access to the file. Note that the system manager can install an optional patch to give nonprivi​leged users unrestricted access to directory information.

General Monitor Directives
3-55
CALFIP LOKFQ

Data Passed - Disk Directory Lookup

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN 5

7

11 13 15 17 21 23 25 27 31 33 35 37

LOKFQ (=octal 22)

(must equal 177777 octal)

project number __1: Wrogrammer number

file name (2 words in RAD50 format)

file type (1 word in RAD50 format)

[image: image22.png]

device name (disk) (2 ASCII characters)

-;10, unit number real
i
device unit number

[image: image23.png]

0 2 4 FQFIL 6 FQPPN 10 FQNAM1 12

14 FQEXT 16

20 22 24 26 30 FQDEV 32 FQDEVN 34

36

FIRQB+FQFUN
The function code LOKFQ (octal value = 22).

FIRQB+FQFIL
The word beginning at this location must be set to 177777 (octal) to indicate the "disk directory lookup by file name" option of LOKFQ.

FIRQB+FQPPN
The project-programmer number (ppn) for the file to be looked up. A value of 0 for this word defaults to the ppn under which the calling program is running.

FIRQB+FQNAM1
The file name to be looked up; two words in RAD50 format.

FIRQB+FQEXT
The file type of the file to be looked up; one word in RAD50 format.

3-56
General Monitor Directives

CALFIP LOKFQ

FIRQB+FQDEV
The device name (must be disk), as two ASCII char​acters. If both bytes are 0, the public disk structure (SY:) is used.

FIRQB+FQDEVN
The disk device unit number is passed here in binary. A nonzero value in FQDEVN+ 1 indicates an explicit device unit number. A zero value in FQDEVN + 1 indicates the system default.

Data Returned - Disk Directory Lookup by File Name

Offset

Octal Mnemonic
FIRQB
Offset

Octal Mnemonic

1

0

3
job number *

2
2 FQJOB

5
same as data passed (177777 octal)
4 FQFIL

7
project number I programmer number
6 FQPPN

11

10 FQNAM1

file name (2 words in RAD50 format)

13

12

15
file type (1 word in RAD50 format)
14 FQEXT

17
LSB of file length in 512-byte blocks
16 FQSIZ

21
MSB of file length I protection code
20 FQNAM2

23
date of last access
22 FQMODE

25
date of creation
24 FQFLAG

27
time of creation
26 FQPFLG

31
device name (2 ASCII characters)
30 FQDEV

33
7~0, unit number real j device unit number
32 FQDEVN

35
file cluster size
34 FQCLUS

37
file identification index
36 FQNENT

General Monitor Directives
3-57
CALFIP LOKFQ

FIRQB + FQJOB
The current job number times two.

FIRQB+FQFIL
The word at this location is the same as the data passed, in this case, 177777 (octal).

FIRQB+FQPPN
The project-programmer number of the file (same as data passed).

FIRQB+FQNAM1
The file name, two words in RAD50 format (same as data passed).

FIRQB+FQEXT
The file type, one word in RAD50 format (same as data passed).

FIRQB+FQSIZ
This word contains the least significant bits of the file's size in 5121,,-byte blocks. This word is combined with the byte at FIRQB + 21 to form a 24-bit field giving the file size.

FIRQB + FQNAM2
The file's protection code, in binary, is returned in this byte.

FIRQB+21
This byte contains the most significant bits of the file size in 5121,,-byte blocks. It is combined with the word at FIRQB + FQSIZ to form a 24-bit field giving the file size.

FIRQB+FQMODE
This word contains the date the file was last accessed, in system internal format:

[(year - 1970) * 1000,01 + day-within-year

FIRQB + FQFLAG
This word contains the date the file was created, in system internal format (see FIRQB + FQMODE).

FIRQB+FQPFLG
This word contains the time the file was created, in system internal format: minutes until midnight, with 1440 equal to midnight.

FIRQB+FQDEV
The device name, as two ASCII characters. Always a specific name, even if 0 was passed here.

FIRQB+FQDEVN
The device unit number, in binary. A specific number is always returned here; FIRQB + FQDEVN + 1 is always nonzero.

FIRQB+FQCLUS
The file cluster size is returned in this word.

3-58
General Monitor Directives

CALFIP LOKFQ

FIRQB + FQNENT

The file identification index is returned in this word. You can use the file identification index instead of the file name to open a file on disk with the OPNFQ subfunction of CALFIP. To do so, specify an explicit device name at FIRQB +FQDEV, a device unit number at FIRQB +FQDEVN, an explicit project​programmer number at FIRQB + FQPPN, a zero word at FIRQB + FQNAM1, and the file identification index at FIRQB + FQNAM1 + 2. (The file identifica​tion index is used by utilities that access software subroutines in the RMS libraries, for example.)

Note that there is no performance gain in using the file identification index rather than the file name. The file identification index is provided for compati​bility with RSX. Furthermore, the file identification index is changed when the REORDR utility is run on the directory (see the RSTS lE System Manager's Guide).

Errors BADNAM

The file name in bytes FIRQB + FQNAM1 through FIRQB + 13 is missing.

NOSUCH

The device specified at FIRQB + FQDEV is not disk, or the file specified does not exist on the specified disk. This error also occurs when a nonprivileged user does not have read access to the specified file.

Example

The following code looks for the file MATRIX.DAT on the system disk. See Section 3.1.4 for information on the CLRFQB routine.

CALL
CLRFQB
;CLEAR FIRQB

Mot!
#LOKFQ tFIRQB+FQFUN
;SET FUNCTION CODE

MOV
#177777,FIRQB+FQFIL
;FILENAME LOOKUP

CLR
FIRQB+FQPPN
;CALLER'S ACCOUNT

MOV
#"RMAT,FIRQB+FQNAM1
;SET FILENAME

MOV
RRI>(tFIRQB+FQNAMI+2
;AND TYPE

MOV
#"RDAT tFIRQB+FQE)(T
;TO "MATRIX.DAT"

CLR
FIRQB+FQDEV
;SYSTEM DISK

CLR
FIRQB+FQDEVN
;DEVICE

CALFIP

General Monitor Directives
3-59
CALFIP LOKFQ

Data Passed - Disk Wild Card Directory Lookup

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN 5

7

11 13 15 17 21 23 25 27 31 33 35 37

LOKFQ (= octal 22)

index: n means search for n+1 occurrence

project number
programmer number

wild card file name specification (2 words in RAD50 format)

wild card file type (1 word RAD50)

[image: image24.png]
device name (disk) (2 ASCII characters)

-~O,device number real j
device unit number

[image: image25.png]
0 2 4 FQFIL 6 FQPPN 10 FQNAM1 12

14 FQEXT 16

20 22 24 26 30 FQDEV 32 FQDEVN 34

36

FIRQB+FQFUN
The function code LOKFQ (octal value = 22).

FIRQB+FQFIL
An index number specifying the occurrence of the file name meeting the wildcard specifications. A value of 0 in this word causes the monitor to search for the first file name in the directory that meets the specification. A value of 1 causes the monitor to search for the second file name, and so forth.

FIRQB+FQPPN
The project-programmer number of the account whose directory of disk files is to be searched.

3-60
General Monitor Directives

CALFIP LOKFQ

FIRQB+ FQNAM1
The wildcard file name, as two words in RAD50 for​mat. An * character can replace the entire file name, or a ? character can replace any character in the file name. For example, a file name of FILE?? would cause the monitor to search the directory for any file name beginning with the characters FILE. An * character indicates that the file name does not matter in the search.

FIRQB+FQEXT
The wildcard file type, as one word in RAD50 for​mat. An * character can replace the entire file type, or a ? character can replace any character in the type. For example, a file type of BA? causes the monitor to search the directory for any file type beginning with the characters BA. An * character indicates that the file type does not matter in the search.

FIRQB+FQDEV
The name of the device to be searched (must be disk). A value of 0 in this word indicates the public disk structure (SY:).

FIRQB+FQDEVN
This byte contains the device unit number in binary. A nonzero value in FIRQB + FQDEVN + 1 indicates an explicit device unit number. A zero value in FIRQB + FQDEVN + 1 indicates the system default.

General Monitor Directives
3-61
CALFIP LOKFQ

Data Returned - Disk Wildcard Directory Lookup

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1 3 5 7

11 13 15 17 21 23 25 27 31 33 35 37

(same as data passed)

project number-
programmer number

file name (2 words in RAD50 format)

file type (1 word in RAD50 format)

LSB of file length in 512-byte blocks

MSB of file length
protection code

date of last access (disk only)

date of creation

time of creation

(same as data passed)

file cluster size (disk only)

USTAT byte

job number ` 2

0

2 FQJOB 4 FQFIL 6 FQPPN 10 FQNAM1 12

14 FQEXT 16 FQSIZ 20 FQNAM2 22 FQMODE 24 FQFLAG 26 FQPFLG 30 FODEV 32 FQDEVN 34 FQCLUS 36 FQNENT

FIRQB + FQJOB
The current job number times two.

FIRQB+FQPPN
The project-programmer number of the file (same as data passed).

FIRQB + FQNAM 1
The actual file name of a file meeting the wildcard speci​fication in the data passed. Two words in RAD50 format.

FIRQB+FQEXT
The actual file type of a file meeting the wildcard specifi​cation in the data passed. One word in RAD50 format.

3-62
General Monitor Directives

CALFIP LOKFQ

FIRQB+FQSIZ
This word contains the least significant bits of the file's size in 51210-byte blocks. This word is combined with the byte at FIRQB + 21 to form a 24-bit field giving the file's size.

FIRQB+FQNAM2
The file's protection code, in binary, is returned in this byte.

FIRQB+21
This byte contains the most significant bits of the file's size in 51210-byte blocks. The byte is combined with the word at FIRQB + FQSIZ to give the file's size.

FIRQB+FQMODE
This word contains the date the file was last accessed, in system internal format:

[(year - 1970) * 100010] + day-within-year

FIRQB+FQFLAG
This word contains the date the file was created, in sys​tem internal format (see FIRQB + FQMODE).

FIRQB+FQPFLG
This word contains the time the file was created, in sys​tem internal format: minutes until midnight, with 1440 equal to midnight.

FIRQB+FQDEV
The device name, as two ASCII characters. Always a specific name, even if 0 was passed here.

FIRQB+FQDEVN
The device unit number, in binary. A specific number is always returned here; FIRQB + FQDEVN + 1 is always nonzero.

FIRQB+FQCLUS
The file cluster size is returned in this word. FIRQB+37
Internal flag information: Bit Meaning

002
Placed file.

004
Some job has write access now.

010
File is open in update mode.

020
File is contiguous; no extend available.

040
No delete or rename allowed.

200
File is marked for deletion.

Errors

BADNAM
No file specification appears at FIRQB + FQNAMI.

NOSUCH
Either the device specified at FIRQB + FQDEV and FIRQB + FQDEVN is not a disk, or no match exists for the occurrence specified in the word at FIRQB + FQFIL.

PAKLCK
The disk is locked and the caller is nonprivileged.

General Monitor Directives
3-63
CALFIP LOKFQ

Example

The following code asks the monitor to search the directory for account [2,130] for the first occurrence of a file specification beginning with the letter X. See Section 3.1.4 for information about the CLRFQB and CLRXRB routines.

CALL
CLRFQB

;MAKE SURE FIRQB

CALL
CLRXRB

;AND XRB ARE CLEAR

MOV
#FILNAMtXRB+XRLOC

;POINT TO FILE NAME

MDV
#NAMSIZ ti(RB+),RLEN

;SET ITS LENGTH

MOV
#NAMSIZ t),RB+;<RBC

;AND AGAIN

.FSS

;CONVERT TO FIRQB FORMAT

MOYB
#LOKFQ:FIRQB+FQFUN

;SET FUNCTION CODE

CALFIP

FILNAM:
ASCII "C~~13~~];(^^^^?.
"
;STRING FOR.FSS TO CONVERT

NAMSIZ =
._FILNAM

;AND ITS LENGTH

3-64
General Monitor Directives

CALFIP OPNFQ

3.2.12 OPNFQ (Open a File/ Device on a Channel) - Privileged and Not Privileged

Form

MOYB
#OPNFQ tFIRQB+FQFUN

(Set parameters appropriate to file or device)

CALFIP

Function

The OPNFQ function has the same effect as an OPEN FOR INPUT state​ment in BASIC-PLUS; it opens a device or already-existing file on a chan​nel. Parameters defining the device, file name and type, protection code, and mode are passed to the monitor in the FIRQB. If a file name is given in the FIRQB, a file-structured open for input is performed. If no file name is given, a non-file-structured open for input is performed. The RSTS l E Programming Manual describes file- and non-file-structured open for input and the actions taken for the mode parameter (MODE modifier in BASIC-PLUS) for each device.

NOTE

Only privileged users can open a disk for non-file-structured processing. An optional patch is available to extend this capability to nonprivileged users; refer to the RSTS lE Maintenance Notebook for more information.

Whenever you use a disk as a non-file structured device, be aware that all RSTS/E data structures you access are subject to change at any time.

General Monitor Directives
3-65
CALFIP OPNFQ

Data Passed

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN 5

7

11 13 15 17 21 23 25 27 31 33 35 37

OPNFQ (=octal 2)

[image: image26.png]
[image: image27.bmp]
project number
I
programmer number

file name (2 words in RAD50 format)

file type (1 word in RAD50 format)

receive buffer size for DMC11 /DMR11

device name
(2 ASCII characters)

+0, unit no. real

receive buffers to allocate for DMC11 /DMR11

mode

0 2 4 FQFIL 6 FQPPN 10 FQNAM1 12

14 FQEXT, 16 FQSIZ 20

22 FQMODE 24

26

30 FQDEV 32 FQDEVN 34 FQCLUS 36

FIRQB+FQFUN
The function code OPNFQ (octal value = 2).

FIRQB+FQFIL
Channel number times 2; defines the channel on which the file is to be opened.

FIRQB+FQPPN
The project-programmer number (ppn) of the file to be opened. The project number is in the high byte (FQPPN + 1), and the programmer number in the low byte (FQPPN). A value of 0 defaults to the ppn under which the calling program is running. (Not used for non-file-structured open.)

channel no. ' 2

device unit number

3-66
General Monitor Directives

CALFIP OPNFQ

FIRQB+FQNAM1
The file name to be opened, as two words of RAD50 data. May also be specified as a word of 0 followed by the file identification index (see LOKFQ, Section 3.2.11).

(Must be two words of zero for a non-file-structured open.)

FIRQB + FQEXT
The file type, as one word of RAD50 data. (Must be zero for a non-file-structured open.)

FIRQB+FQSIZ
This parameter is useful for the DMC11 /DMR11 only, where it specifies the receive buffer size. You can specify a value between 1 and 63210 (11708). (See the RSTSIE Programming Manual for more information.)

FIRQB+FQMODE
The mode with which the file is to be opened; values and actions taken are as described for the MODE modifier in OPEN FOR INPUT and non-file​

structured OPEN statements for various devices, as '
described in the RSTS /E Programming Manual. If you use a mode value at all, you must set bit 15 of this word to 1.

FIRQB+FQDEV
The device name is passed here as two ASCII charac​ters. A value of zero indicates "SY", public disk.

FIRQB+FQDEVN
The device unit number is passed here in binary. A nonzero value in the high byte of this word (FIRQB +FQDEVN + 1) indicates an explicit device unit number. A zero value in FIRQB +FQDEVN + 1 indicates no unit number.

FIRQB+FQCLUS
This parameter has the same function as the CLUSTERSIZE option in BASIC-PLUS. For OPNFQ, it is useful only for the DMC11 /DMR11, where it specifies the number of receive buffers to allocate. You can specify a value between 1 and 1778, but values above 4 are not recommended. (See the RSTSIE Programming Manual for more information.)

General Monitor Directives
3-67
CALFIP OPNFQ

Data Returned

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1 3

5 FQSIZM 7

11 13 15 17 21 23 25 27 FQPROT 31

33 35 37

MSB of file size

project number

file name (2 words of RAD50)

file type (1 word of RAD50)

LSB (least significant bits of) file size

reasonable buffer size for device

(as passed)

device description

protection code
clustersize, mod 256

device name (2 ASCII characters)

flag byte
device unit number

file identification index

0

2 FQJOB

4 FQFIL

6 FQPPN

10 FQNAM1

12

14 FQEXT

16 FQSIZ

20 FQBUFL

22 FQMODE

24 FQFLAG

26 FQPFLG

30 FQDEV

32 FQDEVN

34 FQCLUS

36

NOTE

For nondisk devices, the relevant information returned with the OPNFQ subfunction is in the two words at FIRQB +FQBUFL and FIRQB +FQFLAG. All other words are simply returned as passed.

FIRQB+FQJOB
The current job number times two.

FIRQB+FQFIL
Channel number times two; defines the channel on which the file is open.

current job number ' 2

channel number ' 2

programmer number

3-68
General Monitor Directives

CALFIP OPNFQ

FIRQB+FQSIZM
For large disk files (greater than 65,5351, blocks), this byte contains the most significant bits of the file's size in 512„-byte blocks. This byte is combined with the word at FIRQB + FQSIZ to form a 241,-bit field giving the file size.

FIRQB+FQPPN
The project-programmer number under which the file is open. An actual project-programmer number is returned here even if this word was passed as zero.

FIRQB+FQNAM1
The file name, as two words of RAD50 data.

FIRQB + FQEXT
The file type, as one word of RAD50 data.

FIRQB+FQBUFL
Reasonable buffer size for this device, in bytes. If you are doing device-independent I / O (that is, if you do not wish to keep track of which device is being opened and perform specific opens, reads, and writes, depend​ing on the device), this value is the monitor's "best guess" for a buffer size to use in subsequent reads and writes on the opened channel. (See READ and .WRITE, Sections 3.17 and 3.33.)

Fl ROB + FQFLAG
Description of the device just opened. The low byte contains the device's handler index. There is one unique handler index for all device types. The high byte contains a set of status flags to allow for device​independent 1/0 routines.

DDNFS DDRLO​DDWLO

FLGPOS FLGMOD FLGFRC FLGKB

FLGRND I

15 14 13 12 11 10 9 8 7
0

device-type flags
device handler index

General Monitor Directives
3-69
CALFIP OPNFQ

High Byte - Device-Type Flags

The bits in the high byte of the flags word are set to indicate the type of file or device just opened.

FLGRND = 1
The device or file is random-access.

= 0
The device or file is sequential.

FLGKB = 1 The file or device is a terminal-type file or device (or is generically a terminal).

= 0 The file or device is not a terminal​type file or device.

FLGFRC = 1
The file or device is byte-oriented. That is, reads and writes handle data in byte units.

= 0 The file or device is block-oriented. Reads and writes handle data in block units.

FLGMOD = 1
The file or device accepts modifiers in reads and writes (Sections 3.17 and 3.33, XRB + XRMOD).

= 0
The file or device does not accept modi​fiers in reads and writes.

FLGPOS = 1 The file or device keeps track of its horizontal position and expands such characters as TAB into whatever is appropriate for the file or device. You can determine the current horizontal position with the POSTN directive.

= 0 The file or device does not keep track of its horizontal position.

DDWLO = 1 The file or device has been write​locked (with the protection code in the open) or is generically a write-only device.

= 0
The file or device is not write-locked.

DDRLO
= 1
The file or device has been read-locked (with the protection code in the open) or is generically a read-only device.

= 0
The file or device is not read-locked.

DDNFS
= 1
The file or device is non-file-structured (or is generically not a file-structured device).

= 0 The file or device is file-structured.

3-70
General Monitor Directives

CALFIP OPNFQ

Low Byte - Device Handler Index

Bits 0-7 of the flags word contain a handler index that indicates the generic kind of device.

Octal

Value
Symbol
Meaning

0
DSKHND
All disks

2
TTYHND
All terminals

4
DTAHND
DECtape

6
LPTHND
All line printers

10
PTRHND
Paper tape reader

12
PTPHND
Paper tape punch

14
CDRHND
Card reader

16
MTAHND
Magtape

20
PKBHND
Pseudo keyboards

22
RXDHND
Flexible diskette

24
RJEHND
2780 remote job entry

26
NULHND
The null device

30
DMCHND
The DMC11 /DMRll

DDCMP interface

36
DT2HND
DECtape 11

40
KMCHND
KMC11

42
IBMHND
IBM interconnect

46
DMPHND
DMPll/DMV11 device

FIRQB+FQPFLG
The file cluster size, modulo 256. That is, a file cluster size of 256,0 is indicated by a zero byte here.

F1 ROB + FQPROT
The protection code of the file.

FIRQB + FQDEV
The device name, as two ASCII characters. (For disk, the actual device name is returned, even if a zero word was passed in this word.)

FIRQB+FQDEVN
The device unit number. (For disk devices, the actual unit number is returned here, even if FIRQB+FQDEVN+1 was passed as 0.)

General Monitor Directives
3-71
CALFIP OPNFQ

FIRQB + 33
For a file-structured open, this byte contains two rele​vant bits:

Bit 0 =
0
The device is in the public structure.

Bit 0 =
1
The device is a private disk.

Bit 1 =
0
A specific device was not specified.

Bit 1 =
1
A specific device was specified.

These bits are meaningless for a non-file-structured open.

FIRQB+FQCLUS
The file identification index of this file. This word is significant mainly in that it can be used in place of the file name in subsequent opens of the file on disk. You can open the file with the OPNFQ subfunction by using an explicit project-programmer number in FIRQB + FQPPN, a zero word in FIRQB + FQNAM1, and the file identification index in FIRQB + FQNAMI + 2.

Note that there is no performance gain in using the file identification index rather than the file name. The file identification index is provided for compatibility with RSX. Furthermore, the file identification index is changed when the REORDR utility is run on the directory (see the RSTS lE System Manager's Guide).

Errors

NOTCLS
The specified channel is already open. It must be closed before it can be opened again.

PRVIOL
You are not privileged and tried to:

1.
Open a disk for non-file-structured access.

2. Open a device that the system manager has restricted to privileged users.

All other possible errors are device-dependent. See Appendix A for a full list of errors.

3-72
General Monitor Directives

CALFIP OPNFQ

Example

The following MACRO code sets up the FIRQB for the OPNFQ function. A non-file-structured open of magtape unit 2 is done on channel 3. See Section 3.1.4 for information on the CLRFQB routine.

MAG:

ASCII
/MT /

CALL
CLRFQB
;CLEAR FIRQB

MOVB
#OPNFQtFIRQB+FQFUN
;SET
FUNCTION CODE

MOYB
#3*2#FIRQB+FQFIL
;SET
CHANNEL = 3

MOV
MAG tFIRQB+FQDEV
;SET
DEVICE = MT

MOYB
#377,FIRQB+FQDEYN+t
;SET
FLAG DEVICE NO

MOYB
#2.FIRQB+FQDEYN
;SET
DEVICE NO. =

CALFIP

EXPLICIT

General Monitor Directives

3-73
CALFIP RENFQ

3.2.13 RENFQ (Rename a File) - Not Privileged Form

MOVB
#RENFQ tFIRQB+FQFUN

(Define file to be renamed and new name in FIRQB)

CALFIP

Function

The RENFQ function renames an existing file on disk or DECtape and, if requested, deletes any existing file with the new name.

Data Passed

FIRQB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1

0

3 FQFUN
RENFQ (=octal 10)
2

5

4

7
project number programmer number
6 FQPPN

11

10 FQNAM1

file name (2 words in RAD50 format)

13

12

15
file type (1 word in RAD50 format)
14 FQEXT

17
-1 to delete existing file (disk only)
16 FQSIZ

21

20 FQNAM2

new file name (2 words in RAD50 format)

23

22

25
new file type (1 word in RAD50 fmt.)
24 FQFLAG

27 FQPROT
file protection I word= 0 if no change
26 FQPFLG

31
device name (2 ASCII characters)
30 FQDEV

33
40, unit number real device unit number
32 FQDEVN

35

34

37

36

3-74
General Monitor Directives

CALFIP RENFQ

FIRQB+FQFUN
The function code RENFQ (octal value = 10).

FIRQB+FQPPN
The project-programmer number (ppn) of the existing file to be renamed. The project number is in the high byte (FIRQB + FQPPN + 1), and the programmer num​ber is in the low byte (FIRQB + FQPPN). A value of 0 defaults to the ppn under which the calling program is running.

FIRQB+FQNAM1
The old (existing) name for the file, as two words of RAD50 data.

FIRQB + FQEXT
The old type, as one word of RAD50 data.

FIRQB+FQSIZ
This word is set to -1 to indicate that any existing file on the specified device with the new name is to be deleted. If any other value is given here and a file already exists with the new name, the RENFQ func​tion will return an error.

FIRQB+FQNAM2
The new file name and type are given here, as three words of RAD50 data. You can use RENFQ to change the protection code on a file by setting FQPROT and making these three words the same as the three words beginning at FIRQB + FQNAM1.

FIRQB + FQPROT
The new protection code for the file, if any, is specified in this byte. To retain the old protection code, this
entire
word
(FIRQB + FQPFLG
and FIRQB + FQPROT) must be zero. If the word is non​zero, the high byte will be used as the new protection code.

FIRQB+FQDEV
The device name is passed here as two ASCII charac​ters; it must be a disk or DECtape device. A value of 0 in this word indicates the public disk structure.

FIRQB+FQDEVN
The device unit number is passed here in binary. A nonzero value in FIRQB + FQDEVN + 1 indicates an explicit device unit number. A zero value in FIRQB + FQDEVN + 1 indicates the system default.

Data Returned

Other than a possible error in byte 0 of the FIRQB, no data is returned by the RENFQ function.

Errors

FIEXST
The new file name specified already exists.

NOSUCH
The old file specified cannot be found.

General Monitor Directives
3-75
CALFIP RENFQ

Example

The following code renames the file OLDNAM.TXT to NEWNAM.TXT on the public disk structure under the caller's account. FQSIZ is set to -1, so any existing file named NEWNAM.TXT will be deleted. See Section 3.1.4 for information about the CLRFQB routine.

CALL
CLRFQB
;CLEAR FIRQB

MOVE
#RENFQ,FIRQB+FQFUN
;SET FUNCTION CODE

MOV
#"ROLDtFIRQB+FQNAMI
;SET OLD FILE NAME

MOV
#"RNAM,FIRQB+FQNAM1+-?
;AND TYPE

Mot)
#"RTXTtFIRQB+FQEXT
;TO "OLDNAM.TXT"

MOV
#-1,FIRQB+FQSI7,
;DELETE EXISTING FILE

MOV
#`RNEWtFIRQB+FQNAM7-
;SET NEW FILE NAME

MOV
#"RNAMtFIRQB+FQNAM2+2
;AND TYPE

MOY
RTXT tFIRQB+FQNAM2+U
;TO "NEWNAM.T>(T"

CALFIP

3-76
General Monitor Directives

CALFIP RSTFQ

3.2.14 RSTFQ (Reset a Channel) - Not Privileged Form

MQVB
#RSTFQ tFIRQB+FQFUN

(Define channel to be reset)

CALFIP

Function

The RSTFQ function closes a channel (or all channels, or all channels ex​cept one) without performing any of the normal "cleanup" operations. For example, no trailer tape is written to paper tape punch, no form feed is given on the line printer, no trailer labels are written to magtape. This function is useful as a backup to a normal close operation. If a normal close fails, RSTFQ will close the channel regardless. You can also use RSTFQ to close a channel on which a tentative file is open if you do not want to make the file permanent. (Tentative files are described in the RSTS lE Programming Manual.) The RSTFQ directive functions the same as a CLOSE statement with a negative channel number in BASIC-PLUS.

General Monitor Directives
3-77
CALFIP RSTFQ

Data Passed

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN RSTFQ (= octal 20)
0

2

5
channel number *2 4 FQFIL

7
6

11
10

13
12

15
14

17
16

21
20

23
22

25
24

27
26

31
30

33
32

35
34

37
36

FIRQB+FQFUN
The

FIRQB+FQFIL
Thr1.

2.

3.

Data Returned

function code RSTFQ (octal value = 20).

ee possibilities:

Reset one channel. Set FIRQB + FQFIL to the channel number to reset times two.

Reset all channels. Set FIRQB + FQFIL to zero.

Reset all but one channel. Set FIRQB + FQFUN to -(channel number times two); that is, the negative of two times the channel number to remain open.

No data is returned with the RSTFQ function.

3-78
General Monitor Directives

CALFIP RSTFQ

Errors

No errors are possible with the RSTFQ function. If the channel or channels specified are not open, the call simply returns without error.

Example

The following code resets all channels currently open for the job, except channel 2. See Section 3.1.4 for information about the CLRFQB routine.

CALL
CLRFQB
;CLEAR FIRQB

MOVB
#RSTFQtFIRQB+FQFUN
;SET FUNCTION CODE

MOVE
#-4tFIRQB+FQFIL
;SET ALL CHANNELS BUT

CALFIP

General Monitor Directives
3-79
CALFIP UUOFQ

3.2.15 UUOFQ (Hook to File Processor) - Privileged and Not Privileged

Form

MOVB #UUOFQtFIRQB+FQFUN

(Set up FIRQB for UUOFQ subfunction)

CALFIP

Function

The UUOFQ subfunction of CALFIP performs the same operations as the .UUO directive (Section 3.32). The same subfunctions are available, and a similar format is used for the data passed. The data returned is in the same format as for the UUO directive.

In general, the data passed for the UUOFQ subfunction of CALFIP is moved down one byte from the UUO subfunction format. The value UUOFQ is stored in byte 3 in the FIRQB, the UU.xxx code is stored in byte 4 in the FIRQB, whatever is shown in byte 4 for.UUO is stored in byte 5 for UUOFQ, and so forth.

The UUOFQ subfunction of CALFIP is not recommended (although it does work), because values that are normally set up as whole words must be stored as a high-byte in location n and a low-byte in location n + 1.

For example:

.UUO form:

UUOFQ form:

y
x
n

D

n

hill
y
n+1

3-80
General Monitor Directives

.CCL

3.3 .CCL - Check String for CCL Command - Not Privileged

Form

.CCL

Function

The CCL directive asks the monitor to check a string (defined in the XRB) to see if it is a valid Concise Command Language (CCL) command. If the string is a valid CCL command, the monitor passes control to the appropri​ate run-time system for that CCL (as defined by the system manager), using the equivalent of a RUN directive (Section 3.20). If the directive is successful, control does not return in-line.

Control will pass to the run-time system at the location specified in the P.RUN word in the pseudo-vector region (Section 2.5). Data will be passed to the run-time system in the job's CORCMN, XRB, FIRQB, and KEY areas in the low segment. The file containing the program to be run as a result of the CCL command will be open on channel 15. (The contents of these areas are described under the P.RUN description (see Section 2.5.4), because they are of interest to the run-time system being entered as a result of a CCL, not to the caller.)

If the string is not a valid CCL command, the monitor returns control to the caller (the run-time system or user job image that issued the CCL direc​tive) with no error. Control resumes with the instruction following the .CCL. Since control would not be returned here otherwise, the program does whatever processing it deems necessary here for an unsuccessful CCL.

As mentioned, the system manager defines the CCL command, an abbrevi​ation point, the name of the file that is to be executed when the command is given, and an entry point for the program (see the RSTSIE System Manager's Guide).

The command can be a string from one to nine characters long. The allowed single-character commands are A through Z, ~a, $, and #. Commands that are longer than one character must begin with a letter; the remaining characters can be letters or digits.

The abbreviation point defines how many characters must be specified before the command is accepted as valid. For example, if "DIRECTORY" were defined as a CCL command, the system manager could indicate three characters as the abbreviation point for the command. Then DIR, DIRE, DIREC and so forth, up to the full DIRECTORY, would all be interpreted by the monitor as correct CCL commands. (The monitor always fills in the full CCL command in CORCMN when it passes control to the appropriate run-time system.)

General Monitor Directives
3-81
.CCL

When a CCL directive is issued, then, the monitor compares the indicated string with the commands defined by the system manager:

1.
All characters are trimmed to 7-bit ASCII; that is, each byte will lose its high-order bit. (Note that this may change in future releases.)

2.
All null (ASCII code 000 octal) and delete (ASCII code 177 octal) characters are ignored and are never passed on to the run-time system in CORCMN.

3.
Leading spaces (ASCII code 040 octal) and tabs (ASCII code 011 octal) are ignored and are never passed on to the run-time system in CORCMN.

4.
When not enclosed by the quote characters " (ASCII code 042 octal) and' (ASCII code 047 octal):

• All tabs (ASCII code 011 octal) are changed to spaces (ASCII code 040 octal).

• All control characters (ASCII codes 001 through 037, octal, inclu​sive) are ignored and never passed in CORCMN.

• Adjacent spaces (ASCII code 040 octal) are merged into a single space.

• All lowercase alphabetics (ASCII codes 141 through 172, octal, in​clusive) are changed into their uppercase equivalents (ASCII codes 101 through 132, octal, inclusive).

5.
When enclosed by the quote characters " (ASCII code 042 octal) and ' (ASCII code 047 octal), all characters are kept as is and passed on to the run-time system in CORCMN.

The monitor will also analyze two switches itself, immediately following the CCL command text (for example, DIR/Sl:n/DET). These switches will be passed on to the run-time system as status flags set in the XRB, as described in the RRUN description in Section 2.5. The two switches may appear in either order but must immediately follow the command. Both are optional switches. The /SIZE switch has the format:

[space] / SI[Z[Ell:[+][#]n[.]

where n indicates the size, in K words, of the user job image that the program, when executed, will require. If the + sign is given, n indicates the additional amount of space, in K words, that the file will require over that indicated by the computed size or minimum size (see description of PF.CSZ bit in PYLAGS word, Section 2.5). If the + sign is omitted, then n simply indicates the size, in K words, at which the invoked file should run. If the # sign is given, n is assumed to be octal. If the period is given, n is assumed

3-82
General Monitor Directives

.CCL

to be decimal. If both are given, an error is returned, and if neither is given, n is assumed to be decimal. The value of n must be between 1 and the system-wide maximum for a user job image (see SWAP MAX, RSTS lE System Generation Manual).

The /DETACH switch has the format:

[space] /DET[A[C[H]]]

This switch indicates that the invoked program should be run "detached." In this state, channel 0 (the terminal associated with the job) is marked as detached while the program is running. This can be useful for noninter​active programs; it frees the terminal for other use and prevents the user from interrupting the job by typing a CTRL/C.

Remember that the monitor simply examines these switches and passes the information on to the run-time system. The run-time system is responsible for doing the appropriate processing. For more information on the CCL facility, see the RSTSIE Programming Manual.

NOTE

This directive should not be used from a user job image run​ning with the RT11 run-time system, since the lowest 1000 (octal) bytes are used by RT11 differently from other run​time systems.

Data Passed

XRB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1
length of proposed command string, bytes
0 XRLEN

3
length of proposed command string, bytes
2 XRBC

5
starting address of command string
4 XRLOC

7

6

11

10 XRBLK

13
(passed to new run-time system
12

unaltered)

15

14

XRB+XRLEN
The length of the proposed CCL command string, in bytes.

XRB + XRBC
The length of the proposed CCL command, string, in bytes, is also passed in this word.

General Monitor Directives
3-83
XRB+XRLOC
The starting address of the proposed CCL command string.

XRB+XRBLK
The remaining three words will be unaltered here if the string is indeed a CCL command and the monitor takes over and does the equivalent of a RUN directive. That is, the run-time system that is given control as a result of this command will find the same three words here that the caller left. These three words will also be unchanged if con​trol returns back to the caller for any reason. See the RUN monitor call and the P.RUN entry point for details.

Data Returned

No real arguments are returned to the calling program. (Data passed on to the run-time system if the call is successful is described in the P.RUN description in Section 2.5.) If the call is unsuccessful, the last three words of the XRB are unaltered, but the first four words will be random. In addition, an error code will be returned in the first byte of the FIRQB.

Errors

(none)
No error is returned if the command part of the string passed was not a valid CCL command. The contents of CORCMN have not been altered; the XRB (except for the last three words) has been altered.

BADCNT
The first three words of the XRB, which describe the CCL command string, are illegal.

LINERR
The indicated string is too long to be passed in CORCMN.

BADSWT
An illegal switch was given in the CCL command string.

BDNERR
An illegal number was the argument to one of the switches found in the CCL command string. For example, the "n" value in the /SIZE switch was greater than the system​wide maximum for a user job image (see SWAP MAX, RSTS lE System Generation Manual).

xxxxxx
Any other error returned results from the monitor's execu​tion of a RUN directive for the program. (See the RUN directive, Section 3.20.)

General Monitor Directives

.CCL

Example

The following example asks the monitor to check a 72-byte string begin​ning at location BUFFER to see if it is a CCL command. See Section 3.1.4 for information on the CLRXRB routine.

BUFFER:

BLKB
72.

CALL
CLRXRB
;CLEAR XRB

MOV
#72.tXRB+XRLEN
;SET LENGTH

MOV
#72.tXRB+XRBC
;SET LENGTH AGAIN

MOV
#BUFFERtXRB+XRLOC
;SET STARTING ADDRESS

.CCL

General Monitor Directives
3-85
.CHAIN

3.4 CHAIN - Execute Under Same RTS - Not Privileged

Form

,CHAIN

Function

The CHAIN directive is the same as the RUN directive, except that it returns an error* if the program to be run would cause a new run-time system to be entered. That is, if the call succeeds, the current run-time system is entered at the P.RUN entry point. In addition, there is no change in the user job image size.

This call can be used to bypass the special protection afforded by the "compiled file" bit in the protection code. That is, this protection can be supplied by the run-time system without this bit being set in the protection code of the file. The CHAIN reenters the run-time system so that a user cannot take control of the file once it is open on channel 15.

Please see the RUN directive, Section 3.20, for Data Passed, Data Returned, and Errors. For the example, substitute CHAIN for RUN.

NOTE

This directive should not be used from a user job image run​ning under the RT11 run-time system. Use the RT11 .CHAIN directive (Section 7.2) to transfer control to another program running under RT11.

* The error returned is NORTS (in byte 0 of the FIRQB).

3-86
General Monitor Directives

.CLEAR

3.5 .CLEAR - Clear Keyword Bits - Privileged and Not Privileged

Form

.CLEAR

Function

The CLEAR directive can be used to clear certain bits in the keyword (KEY) location in the user job image (Section 2.4). The bits to be cleared are passed to the monitor in the XRB.

Data Passed

XRB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1
bits to be cleared are set to 1 here
0 XRLEN

3

2

5

4

7

6

11

10

13

12

15

14

XRB+XRLEN
The bits to be cleared are set to 1 here.

JFSPRI JFFPP JFPRIV

JFSYS

JFNOPR JFBIG JFLOCK~

15 14 13 12 11 10 9 8 7

0

General Monitor Directives
3-87
.CLEAR

JFLOCK
Clearable by any caller. Clearing JFLOCK indicates that the job wishes to be swapped. When JFLOCK is clear, the monitor will swap the job (that is, the user job image) to and from disk as necessary.

JFBIG
Clearable by any caller. Clearing JFBIG drops the job's right to exceed its private memory maximum.

JFNOPR
Not clearable by any caller; masked off.

JFSYS
Clearable by any caller. If the job has temporary privileges and this bit is cleared in a CLEAR call, the temporary privileges are temporarily lost.

JFPRIV
This bit, when set, indicates permanent privilege. It cannot actu​ally be cleared with the CLEAR call. However, if a CLEAR call is issued with this bit indicated for clearing, any temporary priv​ilege that the job has or had is permanently lost.

JFFPP
Clearable by any caller. Clearing JFFPP indicates that this job no longer wishes the hardware floating-point unit (if any) to be swapped along with the job's normal context information.

JFSPRI
Clearable by any caller. Clearing JFSPRI lowers the job's run priority by one-half step. (That is, it clears bit 2 of the system​controlled low-order three bits of the run priority. See UTILTY, RSTSIE System Manager's Guide.)

All other bits in the XRB are masked off; that is, the corresponding bits in KEY cannot be cleared by the job with the CLEAR directive.

Data Returned

No data is returned with the CLEAR directive.

Errors

No errors are possible with the CLEAR directive.

Example

The following code clears the JFLOCK bit. See Section 3.1.4 for information on the CLRXRB routine.

CALL
CLRXRB
;CLEAR XRB MOY
#JFLOCKtXRB+XRLEN ;SET JFLOCK FOR CLEAR .CLEAR

3-88
General Monitor Directives

.CORE

3.6 CORE - Change Memory Size - Not Privileged

Form

.CORE

Function

The CORE directive asks the monitor to change the amount of memory currently allocated for the user job image (low segment) for this job. The monitor preallocates space for a user job image at the time a RUN direc​tive is issued. The space is based on the file's size (PF.CSZ = 1 in the P.FLAG word of the pseudo-vector region) or is equal to the P.MSIZ word in the pseudo-vector region. This initial size can be changed with the CORE directive as many times as desired, as long as the requested size (1) falls within a maximum and minimum value and (2) does not overlap any ad​dress windows created by the job for use with resident libraries (see PLAS, Section 3.15). The monitor first checks the size requested against maximum and minimum values:

1 Kword f~- PMSIZ <_

size requested with CORE

<_ private - P.SIZE <_ system maximum maximum for job

The monitor determines the maximum allowable amount of space for a user job image as follows:

Set <max> (the maximum size that a job image can be) to the system-wide maximum. This maximum is set by the system manager at startup time (see SWAP MAX, RSTS lE System Generation Manual).

2.

If the maximum user job image size imposed by the run-time system (P.SIZE in the pseudo vectors) is less than the current <max>, set <max> to P.SIZE.

3.

If the job's private memory maximum is less than <max> and if JFBIG in the job's keyword (KEY) is 0, then set <max> to the job's private memory maximum. The system manager can set a particular job's private memory maximum with the UTILTY system program. You can also set a private memory maximum with the UU.PRI sub​function of the UUO directive, Section 3.32. A job's private memory maximum is initially defaulted to the system maximum.

General Monitor Directives
3-89
.CORE

Thus, the size requested with CORE is checked against <max>, as deter​mined by the three steps above. The size requested with CORE is also checked against a minimum (the P.MSIZ word in the pseudo vectors, which must be greater than or equal to 1K words). Any size between P.MSIZ and <max>, inclusive, is legal.

There are two special cases:

1.
If the size requested with CORE is exactly equal to the run-time system's minimum size (P.MSIZ), that request is considered legal even if the requested size is greater than the job's private maximum.

2.
If the size requested with CORE is less than the job image's current size and within the allowable bounds for the run-time system, but it is still larger than the private maximum, that request is considered legal. This could happen if JFBIG was equal to l, allowing the cur​rent size to be greater than the private maximum, and then JFBIG was cleared to 0. The monitor would still allow the size greater than the private maximum.

If CORE requests a decrease in job image size, no further checks are made. If CORE requests an expansion and the size is legal according to the tests described above, the monitor then checks the base APRs of any address windows created by the job (see the CRAFQ subfunction of PLAS, Section 3.15.2). If the size requested in the CORE overlaps a created address win​dow, the CORE fails and returns an error.

If CORE requests a legal expansion that cannot be made "in place," that is, if there is not enough free memory available for the expansion, the job will be swapped out and swapped back in at the larger size. (This swap will occur even when JFLOCK = 1 in the keyword (KEY).)

When a user job image expands, the content of the newly added memory is zeroed as protection against a malicious user reading memory to look for passwords.

NOTE

This directive should not be used from a user job image run​ning under the RT11 run-time system. Expanding memory size should be done through the RT11 emulator, using the appropriate RT11 directive.

When the image runs under the RSX run-time system or its derivatives, use the EXTK$ directive to extend the task size, so that subsequent GTSK$ directives can return the task size correctly.

3--90
General Monitor Directives

.CORE

Data Passed

XRB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

[image: image28.png]-

[t I (9 B A

11

[image: image29.png]
[image: image30.png]
desired size, K words

0 XRLEN

2

4

6

10

12

14

XRB + XRLEN
This byte contains the desired size for the user job image, in K words.

Data Returned

Other than a possible error in the first byte of the FIRQB, no data is returned with the CORE directive.

Errors

EDBMCE
The requested user job image size is illegal. It is either too large or too small according to the rules described above, or it overlaps a mapped window.

Example

The following code requests a user job image of 24K words. See Section 3.1.4 for information on the CLRXRB routine.

CALL
CLRXRB
;CLEAR THE '(R15

MOYB
#2U. t)(RB+>(RLEN ;SET YR{B TO INDICATE 24K WORDS .CORE

General Monitor Directives
3-91
MATE

3.7 DATE - Return Current Date and Time - Not Privileged

Form

.DATE

Function

The DATE directive returns the current date and time, the current pro​gram name (as installed by NAME, Section 3.13), and the current run-time system name in the XRB.

Data Passed

No data is passed with the DATE directive.

Data Returned

XRB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

[image: image31.png]
current date, in system internal format

minutes until midnight

ticks until second
seconds until minute

program name

(as installed with .NAME), RAD50 format

run-time system name,

RAD50 format

0 XRLEN 2 XRBC 4 XRLOC 6 XRCI 10

12 XRTIME 14

XRB+XRLEN

The current date, in system internal format. The monitor calculates the date as:

[(year - 1970) * 10001x] + (day-within-year)

where day-within-year is 1 for January 1, 2 for January 2, and so forth. (Every leap year, the day-within-year value for March 1 and following is one higher than in other years.)

XRB+XRBC

The number of minutes until midnight. A value of 1440 (decimal) is midnight; 720 is noon; 0 is never returned.

XRB+XRLOC

This byte contains the number of seconds until the next minute. A value of 60 is xx:xx:00; 1 is xx:xx:59; 0 is never returned.

3-92
General Monitor Directives

.DATE

XRB + 5
This byte contains the number of "ticks" until the next sec​ond. A tick is either 1 / 60th or 1 / 50th of a second, depend​ing on the clock in use and/or the line frequency. (Systems running with the KW11P clock at crystal speeds, rather than at line frequency, have a "tick" of 1/50th of a second. If the system is operating off a 60 Hz power line, a "tick" is 1 /60th of a second.)

XRB+XRCI
The current program name (as installed by the most recent .NAME monitor call) is returned here as two words in RAD50 format.

XRB+XRTIME
The current run-time system name is returned here as two words in RAD50 format.

Errors

No errors are possible with the DATE monitor call. Example

Since no data is passed to the monitor, the call is simply: .DATE

General Monitor Directives
3-93
.ERLOG

3.8 ERLOG - Log an Error from RTS - Not Privileged

Form

.ERLOG

Function

The ERLOG directive can be issued from the high segment (run-time sys​tem) only. It allows the run-time system to log an error into the RSTS / E error log file, which can then be printed by the system manager (see the RSTS lE System Manager's Guide). For example, you might wish to place an entry into the RSTS/E error logging scheme on a hardware floating​point unit exception that has an illegal error code - the monitor makes no such checks.

This directive can be issued only from the job's current run-time system (high segment). Since this call is not privileged, it is deemed wise not to allow users to fill up the system error log with unimportant errors. If .ERLOG is issued from the user job image (low segment), it is ignored.

Data Passed

The ERLOG directive records in the system error log file the contents of the program counter (PC) and program status word (PS) at the time of the call, as well as the contents of the general registers (RO through R5). These registers will then be displayed at the system manager's request. Hence, the registers should contain whatever information you wish to record when the ERLOG is executed.

Data Returned

No data is returned by ERLOG.

Errors

No error is possible with ERLOG.

Example

Assuming the general registers contain relevant information, the call is simply:

.ERLOG

3-94
General Monitor Directives

.EXIT

3.9 EXIT - Exit to Default Keyboard Monitor - Not Privileged

Form

.EXIT

Function

The EXIT directive returns control to the default keyboard monitor at the KNEW entry point (Section 2.5)*. When a program exits, it would normally pass control to the job's keyboard monitor with the RTS directive (Section 3.19). You can use the EXIT call as a backup to return control to the default keyboard monitor should the RTS fail, or for any other reason when it is desirable to enter the default keyboard monitor at the entry point specified by KNEW. The EXIT directive needs no arguments and never returns in-line to the caller.

Data Passed

The EXIT directive needs no arguments; however, the three words begin​ning at XRB + 10 are passed unaltered to the default keyboard monitor. The monitor also passes information to the default keyboard monitor when .EXIT is executed; for details, see the discussion of the P.NEW entry point in Section 2.5.

Data Returned

No data is returned with EXIT; control never returns in-line. Errors

No errors are possible with EXIT. Example

Since no data is passed or returned with EXIT, the call is simply: .EXIT

NOTE

This (RSTS/E) directive should not be used from a user job image running under the RT11 run-time system. The proper way to terminate such a program is to exit to the RT11 emu​lator, which will return control to the job's keyboard monitor.

* The default keyboard monitor is defined by the system manager. It displays the prompt you see immediately after login.

General Monitor Directives
3-95
.FSS

3.10 .FSS - Check File Specification String - Not Privileged

Form

.FSS

Function

The .FSS directive examines a string of characters presumed to be a file specification and, if possible, converts it to the internal RSTS/E file specifi​cation format; that is, the FIRQB format. The monitor returns information to the XRB describing what it found in the string and returns the converted file specification to the FIRQB. Thus, programs that manipulate files can use .FSS to translate a user-typed string to the FIRQB format.

The monitor examines the string from left to right and stops without error when it encounters:

1.
The end of the string.

2.
An equal sign (= ASCII code 075 octal).

3.
A semicolon (; ASCII code 073 octal).

4.
A slash (/ ASCII code 057 octal) that is followed by anything other than the switches described below, which the monitor translates to the FIRQB format:

• /CL[USTERSIZE]:[-][#]n[.]

where n is the cluster size used in opening files and devices. The variable n may specify a value ranging from -3276810 through 3276710, inclusive.

• /MO[DE]:[#]n[.]

where n is the mode used in opening files and devices. The variable n may specify a value between 0 and 3276710, inclusive.

• /FI[LESIZE]:[#]n[.] or /SI[ZE]:[#]n[.]

where n is the filesize used in opening files and devices. The value of n defines the file's size in 512-byte blocks and, with the large file capability for disk, can range from 0 through 223-1, or greater than 8 million blocks.

• /PO[SITION]:n

where n is the position used in creating files (to position block 1 of the file at a device cluster). The variable n may specify a value between 0 and 65,53510, inclusive.

3-96
General Monitor Directives

.FSS

Function
• /PR[OTECTION]:[#]n[.]

(Cont.)

where n is the protection code used in opening or creating files. The variable n may specify a value between 1 and 25510, inclusive. The value of n determines the file's protection from users, as described in the RSTS lE System User's Guide.

The brackets [] in the switches above enclose optional characters. Where more than one character is enclosed in brackets, any or all of the enclosed characters can be omitted. For example, MO, MOD, and MODE would all be accepted and the following quantity translated to the mode location in the FIRQB. The value n is assumed to be deci​mal, unless the optional pound sign [#] appears, indicating that n is octal. The optional decimal point also indicates a decimal value.

5. A comma (, ASCII code 054 octal). An exception is the comma separating the project-programmer numbers in a ppn.

The monitor will translate the following components in a file specification string:

device name
A device name can be either a logical device name or a physical device name:

logical
A logical device name is a string of alpha​numeric characters terminated with a colon Only the first six characters are examined; the remainder are ignored. The monitor first checks a logical device name against the user's own logical device name assignments in USRLOG (or its equivalent, as defined in the XRB). If the monitor finds a definition, it re​turns the physical device name associated with that logical device name to the FIRQB. If the logical name is not found in the user-logical area, the monitor then makes a similar search against its own internal table of system-wide user logicals. If the logical name is not there either, the monitor simply returns the logical device name and sets a flag in the XRB to indi​cate that it could make no association. For a logical device name beginning with an under​score, the monitor does not attempt any trans​lation to a physical device name.

physical A physical device name consists of two alpha​betic characters optionally followed by digits and ended with a colon (:). The digits are trans​lated as decimal and must have a value be​tween 0 and 127 (decimal). Leading zeros are allowed.

General Monitor Directives
3-97
T SS

account or ppn
A project-programmer number can be expressed either as a single special character or as two separate numbers enclosed in square brackets [] or parentheses () and sep​arated by a comma.

The following special characters are translated as

described:

$
The $ is translated to the account assigned by the system manager to the system library. It is usually assigned as [1,2].

!
The ! is translated to an account assigned by the system manager. It is usually assigned as [1,3].

The % is translated to an account assigned by the system manager. It is usually assigned as [1,4].

&
The & is translated to an account assigned by the system manager. It is usually assigned as [1,5].

#
The # is translated to the caller's "group library." It is always equivalent to [proj,0] where proj is the project number of the user issuing the .FSS directive.

~u
The (a is translated to the caller's "assignable ppn," the USRPPN value described in Section 2.4. If USRPPN is set, its value is placed in the FIRQB at offset FQPPN. If USRPPN is 0, a string with an (a causes an error.

[n,m]
This is the explicit construct for a project​programmer number. The value n specifies the project number, and m specifies the program​mer number. The variables n and m may spec​ify any value from 0 through 254 (decimal) inclusive, except for [0,0]. If a pound sign (#) precedes either n or m, the string is assumed to specify an octal value. Either n or m, or both, can also be the asterisk (*). The * is converted to 255 (decimal) and placed in its corresponding FIRQB location. The asterisk character indi​cates a "wildcard" specification.

(n,m)
This is an alternate way to specify an explicit project-programmer number. The same rules for n and m apply as when they are enclosed by brackets.

3-98
General Monitor Directives

Y SS

file name
A file name may consist of alphanumeric characters and the question mark (?). It is the only field in the file speci​fication with no explicit delimiter. Only the first six char​acters are examined; the rest are ignored. The asterisk character (*) is also an acceptable file name. It is parsed to two words of RAD50, where each RAD50 character is the "unused" code (35,). Each question mark is also con​verted to this "unused" code. This indicates that the file name field is "wild." (The LOKFQ subfunction of CALFIP (Section 3.2.11) and UU.LOK subfunction of .UUO (Section 3.32.26) can be used to look up wildcard files.)

type
A file type may consist of alphanumeric characters and the question mark (?), preceded by a period (.). The aster​isk (*) is also an acceptable file type. It is translated to one word of RAD50, where each RAD50 code is the "unused" code (035 octal). Each question mark in the file type is also converted to this "unused" code. This indi​cates that the file type field, or character in the file type field, is "wild."

If given, the file type must always follow the file name.

protection
A file protection code can consist of numeric digits code
enclosed by angle brackets. The general form of a protec​tion code is <nnn>, where n may be numeric characters indicating a value from 0 through 255,0. If the numeric characters are preceded by a pound sign (#), they are converted as specifying an octal value. If no file protec​tion code is specified in the string and a default value has been assigned in USRPRT (see Section 2.4), the default value will be placed in the FIRQB.

The components described above can appear in the string in any order, with the exception of the file type and ppn. The file type must follow the file name, if specified. In addition, if the device name is a system or user logical device name that has an account (ppn) associated with it, the position of an explicit ppn in the file specification string is significant. If the order is device:ppn, then the explicit ppn overrides the ppn associated with the logical device name.

If the order is Lppnldevice:, then an illegal device name error is reported. (This error occurs only when a ppn is associated with the logical name.)

NOTE

Do not use this directive from a user job image running under the RT11 run-time system, since the user logical area is not in the standard location.

General Monitor Directives
3-99
.FSS

Data Passed

XRB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1
length of the string, bytes
0 XRLEN

3
length of the string, bytes
2 XRBC

5
starting address of the string
4 XRLOC

7

6

11
length of nonstandard user defaults
10 XRBLK

13
starting address of nonstandard defaults
12 XRTIME

15

14

XRB+XRLEN
This word contains the length of the character string to be translated, in bytes.

XRB+XRBC
This word also contains the length of the character string to be translated, in bytes.

XRB + XRLOC
This word contains the starting address of the string to be translated.

XRB+XRBLK
If the user logical information (USRPPN, USRPRT, and USRLOG) is in its standard location, this word is passed as 0. If some nonstandard set of locations is being used, then the length of that information, in bytes, is specified here.

XRB+XRTIME
If the word at XRB+XRBLK is nonzero, then this word defines the starting location for the user logical informa​tion. (The order of the information is assumed to be the same as in its standard location; that is, the user logical ppn, user logical protection code, user logical device name table. The format is also expected to be the same - see USRPPN, USRPRT, and USRLOG descriptions in Section 2.4 for details.)

3-100
General Monitor Directives

.FSS

Data Returned

Offset

Octal Mnemonic
XRB
Offset

Octal Mnemonic

1

0

3
number of untranslated characters in string
2 XRBC

5
address of first untranslated character
4 XRLOC

7

6

11
flag word 2
10 XRBLK

13
flag word 1
12 XRTIME

15
device description
14 XRMOD

XRB+XRBC
This word contains a count of the untranslated characters in the string. If all characters were translated, the value of this word is 0.

XRB+XRLOC
This word contains the address of the first untranslated byte of the string. (If XRB + XRBC is 0, this word identifies the end of the string.)

XRB+XRBLK
Bit flags describing the translated string. (Note: This word is the same as "flag word 2" for the BASIC-PLUS file name string
scan
SYS
call,
as
described
in
the RSTS lE Programming Manual.)

Octal

Bit Value

Meaning

0
1
A file name was found in the source string and is returned as two

words in RAD50 format at FIRQB + FQNAMI.

0
No file name was found (and bits 1 and 2 of this word are also 0).

1
2
The translated file name consisted of a single * character and has

been translated to two words at FIRQB + FQNAM1 consisting of the

RAD50 representation of the string "??????".

0
The translated file name was not an * character.

2
4
The file name contained at least one ? character.

0
The file name did not contain any ? characters.

(continued on next page)

General Monitor Directives
3-101
.FSS

Octal

Bit Value
Meaning

3
10
A period (.) was found in the source string.

0
No period was found, implying that no file type was specified (and

bits 4, 5, and 6 of this word are also 0).

4
20
A file type was found (that is, the field after the period was not null).

0
No file type was found (the field after the period was null), and bits

5 and 6 of this word are also 0.

5
40
The file type was an * character and is returned in the word at

FIRQB + FQEXT as the RAD50 representation of the string "???".

0
The file type was not an * character.

6
100
The file type contained at least one ? character.

0
The file type did not contain any ? characters.

7
200
A project-programmer number was found in the source string.

0
No project-programmer number was found (and bits 8 and 9 of this

word are also 0).

8
400
The project number was an * character. (That is, the project​

programmer number was of the form [*,n].) The byte at

FIRQB + FQPPN + 1 is returned as 255,0 (3778).

0
The project number was not an * character.

9
1000
The programmer number was an * character. (That is, the project​

programmer number was of the form [n,*].) The byte at

FIRQB+FQPPN is returned as 255,0 (3778).

10
2000
A valid protection code was found.

0
No protection code was found.

11
4000
No file protection code was found in the string, but there was a

default output file protection code in location USRPRT. The default

has been returned in the FIRQB.

0
The user-assignable default protection code (at location USRPRT)

was not used. Either zero or the code given in the string is

. protection

returned to the FIRQB.

12
10000
A colon (:), but not necessarily a device name, was found in the

source string.

0
No colon was found (no device was specified); bits 13, 14, and 15 of

this word are also 0.

13
20000
A device name was found in the source string.

0
No device name was found; bits 14 and 15 of this word are also 0.

14
40000
The device name in the string was a logical device name.

0
The device name in the string was an actual device name; bit 15 of

this word is also 0.

(continued on next page)

3-102
General Monitor Directives

XSS

Octal

Bit Value
Meaning

15
100000
This bit set indicates an invalid device name. (The characters that were specified are simply returned at FIRQB + FQDEV as two words in RAD50 format.) This bit can be set in one of two ways:

1.
If the device name contained an underscore but was not a recognizable device name for any device on the system, this bit is set.

2.
If the device name did not contain an underscore but the name could not be translated to a physical device name, this bit is set.

0

The device name specified, if any, was either an actual device name or a logical device name to which a physical device has been as​signed. The physical device name has been returned to the word at FIRQB+FQDEV as two ASCII characters, and the unit information has been returned appropriately at FIRQB+FQDEVN.

XRB+XRTIME

Remaining bit flags describing what was translated. Some of these bits duplicate information returned at XRB + XRBLK. DIGITAL recommends that you use the bits at XRB + XRBLK to allow for enhancements in future releases. (Note: This word is the same as "flag word 1" for the BASIC-PLUS file name string scan SYS call, described in the RSTS lE Programming Manual.)

Octal

Bit Value

Meaning

0
1
The /CLUSTERSIZE:n switch was specified.

0
The /CLUSTERSIZE:n switch was not specified.

1
2
Either the /MODE:n or /RONLY switch was specified.

0
Neither the /MODE:n nor the /RONLY switch was specified.

2
4
The /FILESIZE:n or /SIZE:n switch was specified.

0
Neither the /FILESIZE:n nor the /SIZE:n switch was specified.

3
10
The /POSITION:n switch was specified.

0
No /POSITION:n switch was specified.

4-7

(Not currently used.)

(continued on next page)

General Monitor Directives

3-103
.FSS

Octal

Bit Value
Meaning

8
400
A file name was found in the source string (and is returned as two words in RAD50 format at FIRQB+FQNAMI). Note that this is the same meaning as for bit 0 at XRB + XRBLK.

0
No file name was found in the source string.

9
1000
A period (.) was found in the source string. Note that this is the same meaning as for bit 3 at XRB + XRBLK.

0
No period was found in the source string, implying that no file type was specified either.

10
2000
A project-programmer number was found in the source string. Note that this is the same meaning as for bit 7 at XRB+XRBLK.

0
No project-programmer number was found.

11
4000
A valid protection code was found. Note that this is the same mean​ing as for bit 10 at XRB + XRBLK.

0
No protection code was found.

12
10000
A colon (but not necessarily a device name) was found in the source string. Note that this is the same meaning as for bit 12 at XRB + XRBLK.

0 No colon was found, implying that no device could have been specified.

13
20000
Device name was specified and was a logical device name. Note that this is the same meaning as for bit 14 at XRB + XRBLK.

0
Device name (if specified) was an actual device name. (If device name was not specified, this bit will also be 0.)

14
(Not currently used.)

15
100000
Source string contained wildcard characters (either ? or * or both) in file name, type, or project-programmer number fields. In addition, the device name specified, although a valid logical device name, does not correspond to any of the logical device assignments cur​rently in effect or contains an underscore as the first character. Flag word 2 contains more specific information.

0
None of the above.

XRB+XRMOD This word contains the device description (the same information returned by the BASIC-PLUS STATUS varia​ble and returned at FIRQB + FQFLAG when a file or device is opened with the OPNFQ or CREFQ subfunctions of CALFIP). The device handler index is in the low byte and descriptive flags are in the high byte.

3-104
General Monitor Directives

.FSS

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

0

3

5 FQSIZM

7
current job number '

2

MSB of file size

project number I programmer number
2 FQJOB

4

6 FQPPN

11

10 FQNAM1

file name (two words

13
in RAD50 format)
12

15
file type (in RAD50 format)
14 FQEXT

17
LSB (least significant bits) of file size
16 FQSIZ

21

20

23
mode parameter
22 FQMODE

25

24

27 FQPROT
protection code = 377, explicit prot. cod
26 FQPFLG

31
device name
30 FQDEV

33
-~O,unit number real I device unit number
32 FQDEVN

35
cluster size parameter
34 FQCLUS

37
position parameter (dcn for first block)
36 FQNENT

NOTE

For each of the following field definitions that begin with the word "If," a corresponding statement applies: "If not, the field is left alone." That is, you can insert values in the FIRQB before executing the .FSS to serve as default values for fields when the .FSS returns no result.

FIRQB+FQJOB
The current job number times two.

FIRQB+FQSIZM
If a /FILESIZE:n or /SIZE:n switch was specified with n greater than 65,535, the most significant bits of the file size are contained in this byte.

General Monitor Directives
3-105
Y SS

FIRQB+ FQPPN
If a project-programmer number was part of the trans​lated string or if a logical name was found to be the same as a system or user logical name with an associ​ated project-programmer number, this word contains the binary value of that ppn. The project number is in the high byte; the programmer number in the low byte. Any value returned here by .FSS has been veri​fied by the monitor as syntactically correct; that is, within the range for ppns on a RSTS / E system.

FIRQB+FQNAM1
If a file name was encountered, it is translated to two words of RAD50, beginning at this location. If less than 6 characters, the file name is left justified and padded with blanks (0 RAD50 characters).

FIRQB + FQEXT
If a file type was encountered, it is translated to 1 word of RAD50, beginning at this location. If less than 3 characters, the file type is left justified and padded with blanks (0 RAD50 characters).

FIRQB+FQSIZ
If a /FILESIZE:n or /SIZE:n switch was encountered, the value of n is translated to binary and the least significant bits of the value are placed in this word. (If the file size indicated was greater than 65,535, the most significant bits are placed in the byte at FIRQB + FQSIZM.)

FIRQB+FQMODE
If a /MODE:n switch was encountered, the value spec​ified is translated to binary and returned in this word. Bit 15 is set to indicate that a mode switch was trans​lated and to differentiate between a mode of 0 and no mode at all. (Note that bit 15 must be set for a mode value to work on opens.)

FIRQB+FQPFLG
If a file protection code was encountered, a word is returned here. The high byte (FIRQB + FQPROT) is the binary value of the protection code, and the low byte (FIRQB + FQPFLG) is 377. Setting the low byte indicates that a protection code was specified and dif​ferentiates a protection code of 0 from no protection code at all.

FIRQB+FQDEV
If a device name was specified, it is returned here as two ASCII characters. If less than two characters were specified, the device name is left justified and padded with blanks.

3-106
General Monitor Directives

.FSS

FIRQB+FQDEVN
If a device name but no explicit unit number was spec​ified, this word is 0. If an explicit unit number was specified, then that unit number is in the low byte and 377, is in the high byte. Setting the high byte indi​cates an explicit device number and differentiates a device number of 0 from no device number at all.

NOTE

If a syntactically correct logical device name was encountered that could not be translated to a physical device name, then the logical device name is returned as two words of RAD50 starting at off​set FQDEV. A status bit in the XRB is set to indicate that this was done.

FIRQB+FQCLUS
If a /CLUSTERSIZE:n switch was encountered, the value of n is returned here, in binary.

FIRQB+FQNENT
If a /POSITION:n switch was encountered, the value of n is returned here, in binary. (The value n is the device cluster number for the first block of the file.)

Errors

BADCNT
The first three words of the XRB are illegal or odd address for nonstandard user logical table.

BADNAM
Some illegal specification occurred in the string.

BADSWT
Some .FSS switch was encountered, but it was in an illegal format.

BDNERR
The numeric argument to one of the .FSS switches was illegal.

General Monitor Directives
3-107
YSS

Example

The following code causes the monitor to scan a string beginning at location BUFFER as a possible file name. BUFFER is defined as an 80-byte area and is filled with zeros to terminate the string scan if what the user typed did not fill the buffer.

BUFFER: BLKWO #q0,,

(read string into BUFFER from terminal)

MOV
#80. .MRB+XRLEN
;DEFINE LENGTH

MOY
#80. ,XRB+itRBC
;DEFINE LENGTH AGAIN

MO!)
#BUFFER >>(RB+)(RLOC
;START OF BUFFER

,FSS

(test for error; if none, try open)

3-108
General Monitor Directives

.LOGS

3.11 .LOGS - Check for Logical Devices - Not Privileged

Form

.LOGS

Function

The LOGS directive (1) translates a system logical device name to a physi​cal device name, (2) verifies that a physical device name is valid, or (3) obtains generic information about a particular device.

You specify either a logical device name, a physical device designation (name and, if relevant, unit number), or both, in the XRB and the FIRQB. The monitor compares the logical device name specified, if any, against its internal table of system-wide logical device names defined by the system manager. (This directive does not check user-specified logical names.) If it finds a match, the monitor returns the device designation associated with the logical device name to the FIRQB. This physical device designation consists of a name, unit number, and in some cases, a project-programmer number (ppn).

Next, the monitor checks the physical device designation (either the one passed or the one returned by the monitor in the logical-name translation) to be sure it is valid. If so, information describing the device is returned in the FIRQB.

Data Passed

XRB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1

0 XRLEN

logical device name (two words

3
in RAD50 format)
2

5

4

7

6

11

10

13

12

15

14

XRB+XRLEN

The logical device name to be checked is passed as two words in RAD50 format beginning at this location. If only a physical device name check or description is needed, then the first word of the XRB should be passed as 0. The physi​cal device name is passed in the FIRQB.

General Monitor Directives
3-109
.LOGS

FIROB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1

0

3

2

5

4

7

6

11

10

13

12

15

14

17

16

21

20

23

22

25

24

27

26

31
physical device name (ASCII format)
30 FQDEV

33
4 0, real device number I device unit number
32 FQDEVN

35

34

37

36

FIRQB+FQDEV
The physical device name, as two ASCII characters. A value of 0 (and at offset FIRQB + FQDEVN) indicates the public disk structure (SY:). If only a translation from a logical device name to a physical device name is desired, a value of -1 can be passed here. (-1 is guaran​teed not to be a valid physical device name.)

FIRQB+FQDEVN
The unit number of the physical device name is passed in this byte, in binary. To indicate an explicit device number, set the high byte (at FIRQB + FQDEVN + 1) to some nonzero value. If the physical device name is of the form "XY:" (that is, no unit number is specified), then set the entire word at this offset to 0 to indicate no explicit unit number.

3-110
General Monitor Directives

.LOGS

Data Returned

Offset

Octal Mnemonic
XRB
Offset

Octal Mnemonic

1

0

3

2

5
logical device flag:-1 = no,-2 = yes,0 = N.A.
4 XRLOC

7
device description
6 XRCI

11
reasonable buffer size for device
10 XRBLK

13

12

15

14

XRB+XRLOC
If the passed logical device name was translated success​fully to a physical device name, this word is returned as -2; if not, as -1. If there was no logical device name specified, this word is returned as 0.

XRB+XRCI
Description of the device. The low byte contains the device's handler index. The high byte contains a set of status flags.

DDNFS DDRLO - DDWLO

FLGPOS FLGMOD FLGFRC FLGKB

FLGRND

15 14 13 12 11 10

8

[image: image32.png]

device-type flags

device handler index

High Byte - Device-Type Flags

The bits in the high byte of the flag word are set to indicate the type of file or device just opened:

FLGRND = 1
The device or file is random-access.

= 0
The device or file is sequential.

(continued on next page)

General Monitor Directives
3-111
.LOGS

High Byte - Device-Type Flags (Cont.)

FLGKB
= 1
The file or device is a terminal-type file or de​vice (or is generically a terminal).

= 0 The file or device is not a terminal-type file or device.

FLGFRC = 1 The file or device is byte-oriented. That is, reads and writes handle data in byte units.

= 0 The file or device is block-oriented. Reads and writes handle data in block units.

FLGMOD = 1
The file or device accepts modifiers in reads and writes (Sections 3.17 and 3.33, XRB + XRMOD). = 0 The file or device does not accept modifiers in reads and writes.

FLGPOS = 1
The file or device keeps track of its horizontal position and translates characters such as TAB to whatever is appropriate for the file or device. (You can determine the current horizontal posi​tion of such a device with the POSTN directive.)

= 0
The file or device does not keep track of its hori​zontal position.

DDWLO = 1 The file or device has been write-locked (with the protection code in the open) or is generically a write-only device.

= 0
The file or device is not write-locked.

DDRLO = 1 The file or device has been read-locked (with the protection code in the open) or is generically a read-only device.

= 0
The file or device is not read-locked.

DDNFS = 1 The file or device is non-file-structured (or is generically not a file-structured device).

= 0 The file or device is file-structured.

3-112
General Monitor Directives

.LOGS

Low Byte - Device Handler Index

Bits 0-7 of the flag word contain a handler index that indicates the generic kind of device. Current values for this byte are:

Octal

Value
Symbol
Meaning

0
DSKHND
All disks

2
TTYHND
All terminals

4
DTAHND
DECtape

6
LPTHND
All line printers

10
PTRHND
Paper tape reader

12
PTPHND
Paper tape punch

14
CDRHND
Card reader

16
MTAHND
Magnetic tape

20
PKBHND
Pseudo keyboards

22
RXDHND
Flexible diskettes

24
RJEHND
2780 remote job entry

26
NULHND
The null device

30
DMCHND
The DMC11 /DMR11 DDCMP interface

36
DT2HND
DECtape II

40
KMCHND
KMC11

42
IBMHND
IBM interconnect

46
DMPHND
DMP11 /DMV11 device

XRB+XRBLK
If the physical device name is valid (either the one returned by the monitor's translation of logical device name or the one passed), this word contains the monitor's "best guess" as a reasonable buffer size for this device. (See READ and .WRITE, Sections 3.17 and 3.33.)

General Monitor Directives
3-113
.LOGS

FIRQB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1

0

3

2

5

4

7
project number I programmer number
6 FQPPN

11

10

13

12

15

14

17

16

21

20

23

22

25

24

27

26

31
device name (2 ASCII characters)
30 FQDEV

33
=~0, unit number real II device unit number
32 FQDEVN

35

34

37

36

FIRQB+FQPPN
If a logical device name was passed and it was trans​lated to a device designation with an associated project​programmer number, the project-programmer number is returned in this word. Otherwise, this word is the same as before the LOGS call was executed.

FIRQB + FQDEV
The physical device name, either the one returned when a successful translation of logical device name is made or the one passed, if no logical device name was passed. The physical device name is returned as two ASCII characters.

3-114
General Monitor Directives

.LOGS

FIRQB + FQDEVN
The physical device unit number, either the one re​turned when a successful translation of logical device name is made or the one passed, if no logical device name was passed. The low byte contains the unit num​ber, in binary. The high byte (at FIRQB+FQDEVN+1) is either 0, to indicate no explicit device number, or non​zero, to indicate an explicit device number.

Errors

NODEVC
The physical device name (either the one passed or the one corresponding to the logical device name) is invalid.

Example

The following code asks the monitor to check the name "SYSDEV" to see if it is a defined system logical device name and, if so, to return the physical device name and characteristics to the XRB and FIRQB:

MOY
#"RSYS t?<RB+XRLEN
;SET Y,RB TO TRANSLATE LOGICAL MOY
#"RDEY>;(RB+XRBC
;DEVICE NAME "SYSDEY" .LOGS

General Monitor Directives
3-115
.MESAG

3.12 .MESAG -Message Send/ Receive

Form

(Load FIRQB and/or XRB for appropriate subfunction)

MESAG

Function

The MESAG directive provides access from a MACRO program to the RSTS / E local message send /receive services and, if your system is a DECnet/E system, to DECnet/E network message send/receive services.

This section contains FIRQB and XRB formats and error descriptions for local message send/ receive. (Unless data passed and returned show specific values for the XRB, it should be all zeros.) For detailed information about each call, see the RSTS lE Programming Manual. For information about network message send /receive, see the manual RSTS l E DECnet l E Network Programming in MACRO-11.

3-116
General Monitor Directives

.MESAG

3.12.1 Declare Receiver Subfunction - Privileged and Not Privileged

Data Passed

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1 3 5 7 11 13 15 17 21 23 25 27 31 33 35 37

[image: image33.bmp]
rcid

(receiver name in ASCII space fill to six bytes).*

accs (access)
obj (object type)

bmax (buffer maximum)

Imax (inbound link max) I
mmax (message max.)

packet maximum**

pqta (pkts/msg)***
omax (outbound link max.)

srbn (RIB number)

function code = 1

0

2

4 FQFIL 6 FQPPN 10

12

14 FQEXT 16 FQSIZ 20 FQBUFL 22 FQMODE 24 FQFLAG 26

30

32 FQDEVN 34

36

Data Returned

Except for a possible error code in byte 0 of the FIRQB, no data is returned by the Declare Receiver subfunction of MESAG.

* A nonprivileged caller must pass the job number in bytes 5 and 6 of the receiver name.

** Used only in an EMT logging program; specifies the maximum number of packets that can be queued at any one time. See the RSTS lE Programming Manual for more infor​mation.

Used only in an EMT logging program; specifies the number of packets that make up a complete message. See the RSTS lE Programming Manual for more information.

General Monitor Directives
3-117
AESAG

Errors

INUSE
The calling job already exists in the system's list of declared receivers. This error may indicate a logic error in the program or that a previous program running under the same job number failed to remove itself from the receiver list before terminating. In the latter case, issue a remove receiver call, and then reissue the declare receiver. (It is common practice to code a remove receiver immediately before the declare receiver call.)

NOBUFS
There were no small buffers available to hold the arguments passed in the declaration. Since the system's use of small buff​ers is dynamic, a retry may succeed.

PRVIOL
1.
The specified RIB number is out of range.

2.
A nonprivileged program tried to perform a function avail​able
to privileged programs
only.
(See the RSTS lE Programming Manual for details on privileged and nonpri​vileged use of declare receiver.)

FIEXST
The receiver name passed is being used by another receiver, or the local object type you specified is "single instance" and is already in use.

BADFUO
The receiver name, object type, and access parameters passed are inconsistent.

BADCNT
The specified packet quota is out of range.

BADNAM
1.
The receiver name passed contains nonprintable characters or leading or embedded spaces.

2.
A nonprivileged job passed a nonblank receiver name whose fifth and sixth characters are not its job number.

3.
The specified local object type is invalid.

ERRERR
The call you attempted requires an optional feature (such as EMT logging) that is not available on your system.

3-118
General Monitor Directives

.MESAG

3.12.2 Remove Receiver Subfunction - Privileged and Not Privileged

Data Passed

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1 3

5 FQSIZM 7

11 13 15 17 21 23 25 27 31 33 35 37

(0 or job number

0, remove all RIBs
RIB number

[image: image34.bmp]
function code

0 2

4 FQFIL 6

10 12 14 16 20 22 24 26 30 32 FQDEVN 34

36

Data Returned

Except for a possible error code in byte 0 of the FIRQB, no data is returned by the Remove Receiver subfunction of MESAG.

Errors

PRVIOL
The caller is nonprivileged and has attempted to remove another job (that is, FIRQB + FQSIZM is nonzero).

BADFUO
The argument at FIRQB + FQSIZM was odd. It must be zero to remove the calling program or job number times two to remove another job.

General Monitor Directives
3-119
AESAG

3.12.3 Send Local Data Message Subfunction - Privileged and Not Privileged

Data Passed

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1 3

5 FQSIZM 7

11 13 15 17 21 23 25 27 31 33 35 37

destination'
function code = -1

name**

(receiver name in ASCII,

space fill to six bytes)

param

optional user parameter string -

up to 20 bytes of additional

user data can be specified here.

zero fill to 20 bytes

0 2 4 FQFIL 6 FQPPN 10

12

14 FQEXT 16

20 22 24 26 30 32 34 36

You can specify the destination in one of two ways:

0
Indicates that the destination is the receiver name that starts at FIRQB + FQPPN.

job number *2
Indicates that the destination is this job number. A send by job number works only when the receiving job is receiving messages on RIB 0.

** The system uses the receiver name only if the byte at FIRQB + FQSIZM is 0.

3-120
General Monitor Directives

AESAG

XRB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1
length of output buffer, in bytes, 0-512
0 XRLEN

3
number of bytes to send, 0 to buffer length
2 XRBC

5
starting address of buffer
4 XRLOC

7

6

11

10

13

12

15

14

XRB+XRLEN
Length of the output buffer, in bytes. This value may range from zero through 51210.

XRB +XRBC
The number of bytes to be sent. This value may range from zero through the size of the buffer, as specified at XRB + XRLEN.

XRB + XRLOC
Starting address of the buffer.

General Monitor Directives
3-121
A ESAG

Data Returned

FIROB

Offset

Octal Mnemonic
Offset

Octal Mnemonic

1
0

3
2

5 FQSIZM job no. •2 of receiving jo
4

7
6

11
10

13
12

15
14

17
16

21
20

23
22

25
24

27
26

31
30

33
32

35
34

37
36

Errors

NOROOM
The number of pending messages for the intended local receiver is at its declared maximum. This program should try again later. If this error occurs repeatedly, the receiver is not processing messages often enough.

NOSUCH
The intended local receiver could not be located in the sys​tem's list of declared receivers. The receiver must be de​clared (with a declare receiver) before any data can be transmitted to it.

PRVIOL
Some access violation has occurred. Either the receiver does not allow any local senders, or the sender is nonprivileged and the receiver allows only privileged senders.

3-122
General Monitor Directives

AESAG

BADFUO
The value at FIRQB + FQSIZM is odd. It must be 0 or the receiver's job number times two.

BADCNT
The XRB + XRLEN value is illegal. It may range from 0 through 51210.

NOBUFS
System buffers are currently not available to store this mes​sage for the intended local receiver. A later retry may pro​ceed without error.

3.12.4 Receive Subfunction - Privileged and Not Privileged

Data Passed

FIRQB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1

0

3

2

5 FQSIZM
receive modifier I function code -- 2
4 FQFIL

7
qualifier (normally 0) I sender select
6 FQPPN

11

10

13

12

15

14

17

16

21

20

23
sleep time, in seconds
22 FQMODE

25

24

27

26

31

30

33
RIB number
32 FQDEVN

35

34

37

36

General Monitor Directives
3-123
AESAG

XRB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1
0 or size of buffer, in bytes
0 XRLEN

3

2

5
starting address of buffer
4 XRLOC

7

6

11

10

13

12

15

14

XRB+XRLEN
The size of the receive buffer, in bytes. This word may be zero if no user data is desired on the receive. The amount of data transferred from a pending message will never be greater than the buffer size.

XRB + XRBC
This word must be passed as zero. The monitor returns the actual number of bytes of user data transferred in this word location, as shown in the Data Returned sections.

XRB + XRLOC
The starting address of the buffer. The buffer, as defined by XRLOC for its start and XRLOC + XRLEN-1 for its last byte, must lie wholly within either the job image (low seg​ment) or the run-time system (high segment).

If the buffer is in the low segment, the address defined by the contents of XRB + XRLOC must be greater than 1708 to avoid destroying the job-context information used in swap​ping the job (Section 2.4).

If the buffer is in the high segment, it must not fall within the pseudo-vector region. That is, it must not fall above the location P.OFF (Section 2.5). In addition, the run-time sys​tem must currently be mapped read/write (see PF.RW bit description in PYLAG word, Section 2.5). The run-time sys​tem must be read/ write in this case, as the monitor will be writing data to the buffer for the receive.

Data Returned

The Receive call returns data to the FIRQB and XRB, identifying the type of message received and user data, if any, to the buffer defined in the data passed.

3-124
General Monitor Directives

AESAG

The FIRQB and XRB formats for the local data message follow. Data Returned (Local Data Message)

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1 3

5 FQSIZM 7

11 13 15 17 21 23 25 27 31 33 35 37

job number *

2

-1

project number

programmer number

KB no. sender or 377*

remainder (number of bytes not transferred)

Data passed

sender of this

zeros
as parameters by the

message. Padded with

to 20 bytes**

0 2 4 FQFIL 6 FQPPN 10 FQNAM1 12

14 FQEXT 16

20 22 24 26 30 32 34 36

377 means sender is detached.

** For an EMT logger message, the monitor returns three values:

Bytes 14-15
Contain the number of data packets not transferred.

Bytes 16-17
Contain the number of EMTs your program "missed," either because it is not processing data packets quickly enough, or because not enough XBUF is available to store all the data packets that the monitor is creating.

Bytes 20-21
Contain the number of data packets transferred.

See the RSTS lE Programming Manual for more information.

General Monitor Directives
3-125
AESAG

Offset

Octal Mnemonic
XRB
Offset

Octal Mnemonic

1

0

3
length (actual number of bytes transferred)
2 XRBC

5

4

7

6

11

10

13

12

15

14

Errors

NOSUCH
For a receive without sleep (bit 0 in receive modifier = 0), this error indicates that no appropriate messages are pending. For a receive with sleep (bit 0 in receive modifier = 1), this error is returned when the program is awakened from the sleep. The program must execute another receive call to retrieve any pending messages.

BADFUO
No receiver ID block. Before any receive can succeed, you must execute a declare receiver call to define the RIB number you want to use.

3-126
General Monitor Directives

.NAME

3.13 NAME - Install Program Name with Monitor - Not Privileged

Form

.NAME

Function

The NAME directive installs a program "name" with the monitor. The monitor enters the name in an internal table; otherwise, it makes no use of the program name. However, the RSTS / E SYSTAT program uses the names in listing current information for jobs (under the "What" column) on the system. The BASIC-PLUS run-time system uses this directive when the user issues an OLD, NEW, or RENAME command, for example.

The program name is passed as two words of RAD50 data in the FIRQB. Note that the data is passed in the same location in the FIRQB where the file name exists at the P.RUN entry point into a run-time system. If you are coding or modifying a run-time system, one of the first things to do on entry at P.RUN is to install the program's name. Thus, the file name's position in the FIRQB at this point is handy.

General Monitor Directives
3-127
.NAME

Data Passed

Offset

Octal Mnemonic
FIRQB
Offset

Octal Mnemonic

1

0

3

2

5

4

7

6

11

10 FQNAM1

program name, in RAD50 format

13

12

15

14

17

16

21

20

23

22

25

24

27

26

31

30

33

32

35

34

37

36

FIRQB+FQNAM1 The program name to be installed, as two words in RAD50 format.

Data Returned

No data is returned with the NAME directive.

Errors

No errors are possible with the NAME directive.

Example

The following code installs the name "PROGRM" with the monitor.

mot)
#"RPROtFIRQB+FQNAMI
;SET FIRQB TO DECLARE MOV
#"RGRMtFIRQB+FQNAMI+2
;NAME OF "PROGRM" .NAME

3-128
General Monitor Directives

.PEEK

3.14 PEEK - Look at Monitor Memory - Privileged

Form

.PEEK

Function

The PEEK directive returns the contents of one word of the monitor's memory (that is, the memory mapped by the kernel mode APRs, as dis​cussed in Section 2.1). PEEK can be executed only by a privileged job. (Be very careful, however, at basing any of your coding on the contents of monitor memory. DIGITAL reserves the right to change the monitor struc​ture and internal addresses at any time.)

Data Passed

Offset

Octal Mnemonic
XRB
Offset

Octal Mnemonic

1
virtual address of desired monitor word
0 XRLEN

3

2

5

4

7

6

11

10

13

12

15

14

XRB+XRLEN

This word contains the (virtual) address of the data word in monitor memory whose contents are to be returned. The value must be even, since word addresses on the PDP-11 are always even. Peeking at data in the 1/0 page (kernel APR 7, or 111 (binary) in bits 15, 14, and 13) can cause unpredictable system results and is not recommended. Fur​thermore, using PEEK to obtain data in APRs 5 or 6 re​turns random data.

You generally use PEEK to examine addresses returned by get monitor tables calls or addresses of fixed monitor loca​tions.

General Monitor Directives
3-129
.PEEK

Table 3-2 shows fixed monitor locations and their addresses. Table 3-2:
Fixed Monitor Locations

Address

(decimal)
Name
Meaning

36(word)
DDATE
The date when the system was last started by START.

38(word)
ITIME
The time of day when the system was last started by START.

512(word)
DATE
Current system date.

514(word)
TIME
Current time of day.

518(byte)
JOB
Job number times 2 of the job currently running (always the

user's own job number.)

520(word)
JOBDA
Address of the job data block (JDB) of the currently running job

(always the user's own job data block).

522(word)
JOBF
Address of the JDFLG word in the job data block of the currently

running job (always the user's own job data block).

524(word)
IOSTS
Address of the JDIOST (low) byte and JDPOST (high) byte in the

job data block of the currently running job (always the user's

own job data block).

Data Returned

Offset

Octal Mnemonic
XRB
Offset

Octal Mnemonic

1
contents of the monitor memory word
0 XRLEN

3

2

5

4

7

6

11

10

13

12

15

14

3-130
General Monitor Directives

.PEEK

XRB + XRLEN
This word contains the contents of the requested monitor memory location.

Errors

B.4
The address specified caused a trap to the kernel mode vector at 4 (UNIBUS timeout, odd address, and so forth).

B.250
The address specified caused a memory management unit viola​tion (trap to the kernel mode vector at 250).

PRVIOL
The job is not privileged; .PEEK can be issued only from a privileged job.

Example

The following code obtains the contents of monitor memory location 51810 (the low byte of which is, incidentally, the current job number times 2).

MOV
#518. ,?<RB+;;RLEN
;SET ADDRESS TO 518 .PEEK

General Monitor Directives
3-131
.PLAS

3.15 PLAS - Access Resident Library

The PLAS (Program Logical Address Space) directive has six subfunctions that allow a MACRO program to access a resident library. Resident librar​ies must be so defined by the system manager with the ADD LIBRARY command (see RSTS lE System Manager's Guide). As noted in Section 2.3, the easiest way to do this is to link the resident library to your program using TKB - the Task Builder that links modules assembled or compiled under the RSX run-time system or its derivatives. However, you can use .PLAS subfunctions to access resident libraries using octal addresses.

A summary of the PLAS subfunctions is given below; they are described in alphabetical order in following subsections.

FQFUN Value (Octal) Mnemonic

Action Performed

0 ATRFQ

Attach resident library. Attaches the job to a resident library; necessary before the job can map a window to the library.

2 DTRFQ 4 CRAFQ

Detach resident library. Detach the job from a resident library.

Create address window. Defines a range of virtual addresses to be a "window" for looking at all or some portion of a resident library. Optionally, CRAFQ maps the window to all or some portion of a resident library. (The mapping can be done separately with MAPFQ.) The CRAFQ subfunction reserves one or more APRs, so CRAFQ "takes space" in the job area even though the window may not actually be mapped.

6 ELAFQ

Eliminate address window. Releases the APRs used by a particu​lar window.

10 MAPFQ

Map window. Map an already created address window of virtual addresses to actual memory locations in an attached resident library. The monitor will load the library from disk if necessary.

12 UMPFQ

Unmap address window. Releases a window of virtual addresses from a mapping to actual memory locations.

When a job exits or a user logs out, the monitor automatically detaches all libraries and unmaps and eliminates all windows for the job.

3-132
General Monitor Directives

.PLAS ATRFQ

3.15.1 ATRFQ (Attach Resident Library) - Not Privileged Form

MOVB #ATRFQtFIRQB+FQFIL

(set appropriate parameters)

.PLAS

Function

The ATRFQ (attach resident library) subfunction of .PLAS declares your intent to access a resident library. The type of access is specified in the call. If the calling job can access the library in that fashion,* the monitor loads the library from disk (if necessary) and sets up its own internal tables, which lay the groundwork for the job to map windows to the library. Note, however, that the resident library does not take up space in the job area (virtual memory) with an attach. APRs are assigned (virtual memory in the job area is taken) when a window is created (CRAFQ).

Up to five resident libraries can be attached to a job at any given time.

" The job's ability to access the resident library depends upon the protection assigned to the library by the system manager when the library was installed. The default protection grants read access to all users and denies write access to all users.

General Monitor Directives
3-133
.PLAS ATRFQ

Data Passed

FIRQB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1

0

3

2

5
ATRFQ (= 0)
4 FQFIL

7

6

11

10

13
resident library name
12

15
(2 words in RAD50 format)
14

17

16

21

20

23
access mode
22 FQMODE

25

24

27

26

31

30

33

32

35

34

37

36

FIRQB+FQFIL
The function code ATRFQ (octal value = 0).

FIRQB+ 12
The name of the resident library to which the job is to be attached, as two words of RAD50 data. (Resident librar​ies are made known to the monitor by the system mana​ger with the ADD LIBRARY command of UTILTY (RSTS lE System Manager's Guide). With this com​mand, the system manager defines a file (filename.LIB) as a resident library. The monitor regards "filename" as the resident library's name.)

FIRQB+FQMODE
The low-order two bits of this word define the way the job wishes to access the library:

Bit 0 = 1
Read-only access is desired.

Bit 1 = 1
Read/write access is desired.

3-134
General Monitor Directives

.PLAS ATRFQ

Data Returned

Offset

Octal Mnemonic
FIRQB

Offset

Octal Mnemonic

1
0

3
current job number '

2 2 FQJOB

5
4

7
resident library identification 6 FQPPN

11
size, in 32-word blocks, of the library 10 FQNAM1

13
12

15
14

17
16

21
20

23
22

25
24

27
26

31
30

33
32

35
34

37
36

FIRQB+FQJOB
The current job number times two.

FIRQB+FQPPN
This word is an identifier that must be used, rather than the resident library name, in subsequent calls to iden​tify a resident library. Thus, you will use this identifier to detach the job from the library (DTRFQ) and map and unmap windows to the library (MAPFQ and UMPFQ). (Keep it around!)

FIRQB+FQNAM1
The size of the resident library, in 32-word blocks.

Errors

NOROOM
The job has tried to attach to more than five resident libraries. At least one must be detached from the job (DTRFQ) before another can be attached.

General Monitor Directives
3-135
.PLAS ATRFQ

NOSUCH
The resident library specified in the data passed is not known to the monitor. The system manager must install a resident library before it can be used.

PRVIOL
The attach did not succeed because the caller's privilege did not allow the access specified in the data passed. This could happen either (1) because the access code specified in the data passed is not compatible with the possible ac​cess defined when the library was installed by the system manager or (2) because the protection code associated with the resident library file excludes access by the user.

Example

The following code attaches the job to a resident library called DATBAS. The access desired is defined as read/write.

MOVE
#ATRFQtFIRQB+FQFIL
;DEFINE FUNCTION CODE

MOy
#"RDATtFIRQB+12
;LIBRARY NAME IS

MOV
#"RBAStFIRQB+FQE•(T
;DEFINED AS "DATBAS"

MOV
#2,FIRQB+FQMODE
;ACCESS=READ/ WRITE

.PLAS

3-136
General Monitor Directives

.PLAS CRAFQ

3.15.2 CRAFQ (Create Address Window) - Not Privileged Form

MOVB #CRAFQtFIRQB+FQFIL

(set up parameters)

PLAS

Function

The CRAFQ subfunction of PLAS can be used either to create a window (a range of virtual addresses) or to create a window of virtual addresses and map it to a range of actual addresses in an attached library. You define the range of addresses by (1) naming a base APR (which defines the starting address of the window) and (2) specifying the size of the window in 32-word blocks. Thus, a window always begins on a 4K-word boundary in virtual memory and always takes at least 4K words. It may take more than 4K words, depending on the size of the window.

If the address range overlaps the user job image, the call fails with an error. The address range cannot overlap the run-time system (high segment). However, if the RSX run-time system has been installed as "disappearing" (see RSX, Section 3.18), this is not a consideration. APR 7, normally used to map the RSX run-time system, can be used instead to map a window to a resident library. If the address range overlaps an existing window, the previously created window is eliminated.

The difference between (1) creating a window and (2) creating and mapping a window is best illustrated by example. By using create without map, you can define one window, which can be mapped to a library or portion of a library and then remapped to another portion of the same library or another library, as many times as desired, using the MAPFQ subfunction of .PLAS. For example, suppose your program takes up 24K words and you want to access a 24K-word resident library of data values. You can use create without map to set up a 4K-word window in APR 6. You can then map the window (using MAPFQ) to the first 4K words of the library, pro​cess the data, map to the next 4K words of the library, and so forth.

If, on the other hand, you had a 4K program and still wished to access a 24K-word library, you could use CRAFQ to create a 24K-word window and map it to the entire library in APRs 1 - 6.

General Monitor Directives
3-137
YLAS CRAFQ

A job can create a maximum of seven windows. A window takes at least one APR (it may take more, depending on the size you specify for the window). Thus, the maximum of seven assumes seven windows in APRs 1 through 7. APR 0 can never be used to create a window, since the user program takes at least this much space. As mentioned above, a window cannot overlap the user job image; thus, the size of the user job image determines the lowest base APR that can be used. If the program (user job image) is less than 4K words, APRs 1 and up (to the limit imposed by the run-time system bound​ary) can be used to create windows. If the user job image is between 4K words and 8K words, APRs 2 and up can be used to create windows, and so forth.

If a window is created that overlaps an already-existing window, the old window is eliminated. For example, if you create a 6K-word window using a base APR of 5, the window uses APRs 5 and 6. If you then create a 4K-word window using a base APR of 6, the entire old window is elimi​nated. APR 5 is then free for other use; APR 6 is used for the new window.

Data Passed

Offset

Octal Mnemonic
FIROB
Offset

Octal Mnemonic

1

0

3

2

5
CRAFQ (--octal 4)
4 FQFIL

7
base APR (1-7)
6

11

10

13
size of window, in 32-word blocks
12

15
library identification (for map only)
14 FOEXT

17
offset, in 32-word blocks (for map only)
16 FQSIZ

21
length, in 32-word blocks (for map only)
20 FQBUFL

23
access flags
22 FQMODE

25

24

27

26

31

30

33

32

35

34

37

36

3-138
General Monitor Directives

.PLAS CRAFQ

FIRQB+FQFIL
The function code CRAFQ (octal value = 4).

FIRQB+7
The base APR of the window, 1 - 7. Implicitly defines the starting virtual address of the window. This byte cannot be zero, nor can it name an APR already being used to map the user job image.

FIRQB + 12
The desired size of the window, in 32-word blocks. For example, a value of 12810 = 4K words.

FIRQB+FQEXT
The identifier of the resident library to which the win​dow is to be mapped. (This is the value returned by the ATRFQ function of .PLAS at FIRQB + FQPPN.) This word is ignored for calls requesting a create without mapping (bit 7 at FIRQB+FQMODE equals 0).

FIRQB+FQSIZ
The offset, in 32-word blocks, from the start of the li​brary where the mapping is to begin. This word is ig​nored if no mapping is requested (bit 7 at FIRQB + FQMODE equals 0). A value of zero for this word indicates the window is to be mapped beginning at the first byte of the library. A value of 1 indicates the window is to be mapped beginning at the 33rd word of the library (starting address + 64), and so forth.

FIRQB+FQBUFL
The length, in 32-word blocks, of the area to be mapped (ignored if bit 7 at FIRQB + FQMODE equals 0). This value cannot be greater than the size of the window specified at FIRQB + 12. Furthermore, this value, com​bined with the offset value at FIRQB + FQSIZ, cannot indicate an address beyond the end of the library or into the high segment (run-time system).

A value of 0 for this word defaults to either the size of the window (specified at FIRQB + FQEXT) or the space remaining in the library, whichever is smaller.

FIRQB+FQMODE
Two bits in this word define whether the window is to be mapped and whether write access to the window is desired.

bit 1 =
1
Write access to the window is desired.

=
0
No write access to the window is desired.

bit 7 =
1
The window is to be mapped.

=
0
The window is not to be mapped.

The octal value to set bit 7 is 2008; the value to set bit 1 is 2. Thus, a value of 202, for this word requests map​ping and write access. A separate setting for write access in CRAFQ and in ATRFQ allows you to attach to a library read/write and map a portion of the library read-only.

General Monitor Directives
3-139
.PLAS CRAFQ

Data Returned

Offset

Octal Mnemonic
FIRQB
Offset

Octal Mnemonic

1

0

3
current job number '

2 2 FQJOB

5

4

7
window ID
6 FQPPN

11
starting virtual address of new window
10 FQNAM1

13

12

15

14

17

16

21
mapped length, in 32-word blocks
20 FQBUFL

23
status flags
22 FQMODE

25

24

27

26

31

30

33

32

35

34

37

36

FIRQB+FQJOB
The current job number times two.

FIRQB+FQPPN
This byte contains the window ID; it can be used in later MAPFQ calls to map the newly created window and must be used in any ELAFQ calls to eliminate the newly created windows. (Save it if you will need to use it.) The value returned may range from 1 through 7.

FIRQB+FQNAM1
The starting virtual address of the new window.

FIRQB+FQBUFL
Length, in 32-word blocks, actually mapped by the window.

3-140
General Monitor Directives

.PLAS CRAFQ

FIRQB+FQMODE
Status flags.

bit 15 = 1
(Octal value equals 100000.) Window was created successfully.

= 0
Window was not created successfully.

bit 14 = 1
(Octal value equals 40000.) An existing window was unmapped because it over​lapped the newly created mapping.

= 0 No existing windows were unmapped by this mapping.

bit 13 = 1
(Octal value equals 20000.) An existing window was eliminated because it over​lapped the newly created window.

= 0 No existing windows were eliminated by this create.

Errors

BADFUO
Either the base APR and window length specified were invalid, or the offset and mapping length values specified were invalid. (For example, an offset indicating a starting address for the mapping that is beyond the end of the library or into the run-time system is invalid.)

NOBUFS
Creating a window requires a small buffer; a small buffer is not currently available.

NOROOM
You attempted to create more than seven address windows.

NOSUCH
The library ID specified for mapping is not a library cur​rently attached to the job.

PRVIOL
The create was unsuccessful because the user privileges do not allow the access desired. At this point, since the library has been attached successfully with some access defined, this error means that the access requested in the CRAFQ is not allowed by the access requested in the ATRFQ.

General Monitor Directives
3-141
.PLAS CRAFQ

Example

The following code creates a 4K-word address window and maps it to the beginning of a library whose ID (returned from a previous ATRFQ) has been stored at location LIBID:

MOYB
#CRAFQ#FIRQB+FQFIL
;DEFINE FUNCTION CODE

MOY
#BtFIRQB+7
;BASE APR = G

MOY
#128.tFIRQB+12
;WINDOW = 4K WORDS

MOY
LIBIDtFIRQB+FQEMT
;SET LIBRARY ID

CLR
FIRQB+FQSIZ
;OFFSET =

CLR
FIRQB+FQBUFL
;MAP 4K WORDS OR TO

;END OF LIBRARY

MOY
#128.,FIRQB+FQMODE
;MAP WINDOW, READ-ONLY

.PLAS

3-142
General Monitor Directives

.PLAS DTRFQ

3.15.3 DTRFQ (Detach Resident Library) - Not Privileged Form

MOVB #DTRFQtFIRQB+FQFIL

(define library to be detached)

.PLAS

Function

The DTRFQ function of .PLAS detaches a previously attached resident li​brary. Any windows mapped to the library by the calling job are unmapped. If no other jobs are currently attached to the library and it was installed with the /REMOVE option, the monitor will remove the library from mem​ory.

Data Passed

FIROB

Offset

Octal Mnemonic
Offset

Octal Mnemonic

1
0

3
2

5
DTRFQ (= octal 2) 4 FQFIL

7
library identification (returned by ATRFQ) 6 FQPPN

11
10

13
12

15
14

17
16

21
20

23
22

25
24

27
26

31
30

33
32

35
34

37
36

General Monitor Directives
3-143
PLAS DTRFQ

FIRQB+FQFIL
The function code DTRFQ (octal value = 2).

FIRQB+FQPPN This word is the library identification returned at FIRQB + FQPPN by the ATRFQ that attached the job to the library.

Data Returned

Offset

Octal Mnemonic
FIRQB

Offset

Octal Mnemonic

1
0

3
current job number '

2 2 FQJOB

5
4

7
6

11
10

13
12

15
14

17
16

21
20

23
status flag 22 FQMODE

25
24

27
26

31
30

33
32

35
34

37
36

FIRQB+FQJOB
The current job number times two.

FIRQB + FQMODE

Bit 14 of this word is set to 1 (octal value equals 40000) if any windows were unmapped as a result of this de​tach.

3-144
General Monitor Directives

.PLAS DTRFQ

Errors

NOSUCH
The library ID specified at FIRQB + FQPPN in the data passed does not identify any library currently attached to the job.

Example

The following code detaches the library whose ID is stored at LIBID:

MOVB
#DTRFQtFIRQB+FQFIL
;SET FUNCTION CODE MOV
LIBIDtFIRQB+FQPPN
;SET LIBRARY ID .PLAS

General Monitor Directives
3-145
.PLAS ELAFQ

3.15.4 ELAFQ (Eliminate Address Window) - Not Privileged Form

MOVB #ELAFQtFIRQB+FQFIL

(set up parameters in FIRQB)

PLAS

Function

The ELAFQ subfunction of .PLAS eliminates an address window that was created by the job, unmapping the window if necessary. ELAFQ frees the APRs used by the window and makes them available for creating another window or for expanding the user job image size.

Data Passed

Offset

Octal Mnemonic
FIRQB

Offset

Octal Mnemonic

1
0

3
2

5
ELAFQ (-- octal 6) 4 FQFIL

7
window ID 6 FQPPN

11
10

13
12

15
14

17
16

21
20

23
22

25
24

27
26

31
30

33
32

35
34

37
36

3-146
General Monitor Directives

.PLAS ELAFQ

FIRQB+FQFIL
The function code ELAFQ (octal value equals 6).

FIRQB+FQPPN The ID of the window to be eliminated (returned at FIRQB +FQPPN by the CRAFQ that created the win​dow).

Data Returned

Offset

Octal Mnemonic
FIRQB

Offset

Octal Mnemonic

1
0

3
current job number *

2 2 FQJOB

5
4

7
6

11
10

13
12

15
14

17
16

21
20

23
status flags 22 FQMODE

25
24

27
26

31
30

33
32

35
34

37
36

FIRQB+FQJOB
The current job number times two.

FIRQB+FQMODE
Two bits in this word indicate the status of the window.

Bit 13 = 1
(Octal value equals 20000.) The window was successfully eliminated.

= 0
The window was not eliminated.

General Monitor Directives
3-147
.PLAS ELAFQ

FIRQB+FQMODE
Bit 14 = 1
(Octal value equals 40000.) The address (cont.)
window was mapped to a resident library and has been unmapped.

= 0 The address window was not mapped; no unmapping was done.

Errors

BADFUO
An invalid window ID was given in the data passed at FIRQB + FQPPN (outside the range 1 through 7).

NOSUCH
The window ID specified at FIRQB +FQPPN is in the range 1 through 7 but matches no currently created window for this job.

Example

The following code eliminates an address window whose ID is stored in location WINID:

MOVE
#ELAFQtFIRQB+FQFIL
;SET FUNCTION CODE MOVE
WINID#FIRQB+FQPPN
;SET WINDOW ID .PLAS

3-148
General Monitor Directives

.PLAS MAPFQ

3.15.5 MAPFQ (Map Address Window) - Not Privileged Form

MOVE #MAPFQtFIRQB+FQFIL

(set up parameters)

.PLAS

Function

The MAPFQ subfunction of .PLAS maps a previously created address win​dow to an attached resident library. In other words, the MAPFQ relates the virtual address range defined by a CRAFQ to actual locations in memory within a resident library that has been attached to the job by an ATRFQ.

If the window specified is already mapped, it is unmapped from its previous actual memory locations and remapped to the new area. A job may map a maximum of seven address windows at any given time.

If the resident library being mapped is not in memory when the MAPFQ is executed, the system makes the library memory resident at that time.

General Monitor Directives
3-149
PLAS MAPFQ

Data Passed

FIRQB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1

0

3

2

5
MAPFQ (-- octal 10)
4 FQFIL

7
window ID
6 FQPPN

11

10

13

12

15
resident library ID
14 FQEXT

17
offset, in 32-word blocks
16 FQSIZ

21
length, in 32-word blocks, to be mapped
20 FQBUFL

23
desired access mode
22 FQMODE

25

24

27

26

31

30

33

32

35

34

37

36

FIRQB+FQFIL
The function code MAPFQ (octal value equals 10).

FIRQB+FQPPN
The ID of the window to be mapped (returned at FIRQB +FQPPN by the CRAFQ subfunction call that created the window).

FIRQB+FQEXT
The ID of the resident library to which the window is to be mapped (returned as a full word at FIRQB + FQPPN by the ATRFQ subfunction call that attached the job to the resident library).

3-150
General Monitor Directives

.PLAS MAPFQ

FIRQB+FQSIZ
The offset, in 32-word blocks, from the start of the li​brary where the mapping is to begin. A value of zero for this word indicates the window is to be mapped begin​ning at the first byte of the library. A value of 1 indi​cates that the window is to be mapped beginning at the 33rd word of the library (starting address + 64), and so forth.

FIRQB+FQBUFL
The length, in 32-word blocks, of the area to be mapped. This value cannot be greater than the size of the window (specified at FIRQB + 12 in the CRAFQ which created the window). Furthermore, this value, combined with the offset value at FIRQB + FQSIZ, can​not indicate an address beyond the end of the library.

A value of 0 for this word defaults to either the size of the window or the space remaining in the library, whichever is smaller.

FIRQB+FQMODE
Bit 1 of this word specifies whether the window is to be mapped read/ write or read-only.

bit l = 1
(Value equals 2.) Read /write access.

= 0
Read-only access.

A separate setting for access in MAPFQ and in ATRFQ allows you to attach to a library read/ write and map a portion of the library read-only. You cannot, however, attach to a library read-only and then map to the li​brary read/ write.

General Monitor Directives
3-151
.PLAS MAPFQ

Data Returned

Offset

Octal Mnemonic
FIRQB
Offset

Octal Mnemonic

1

0

3
current job no. '

2
2 FQJOB

5

4

7

6

11

10

13

12

15

14

17

16

21
length, in 32-word blocks, actually mapped
20 FQBUFL

23
status flag
22 FQMODE

25

24

27

26

31

30

33

32

35

34

37

36

FIRQB+FQJOB
The current job number times two.

FIRQB+FQBUFL
Length, in 32-word blocks, actually mapped by the call.

FIRQB+FQMODE
One bit of this word is set as a status flag.

Bit 14 = 1 (Octal value equals 40000.) The window specified was already mapped; the window was unmapped before this mapping was done.

= 0 The window specified had no previous mapping; no unmapping was done for this call.

3-152
General Monitor Directives

.PLAS MAPFQ

Errors

BADFUO
The offset and length specified are inconsistent; either the mapping attempted to go beyond the end of the library or the length is greater than the created window.

NOSUCH
Either the resident library ID or the address window ID is incorrect. (The job is not currently attached to the speci​fied resident library or no address window has been cre​ated with the specified window ID.)

PRVIOL
The mapping was unsuccessful because user privileges did not allow the access desired.

Example

The following code maps a window whose ID is stored at WINID to the attached library whose ID is stored at LIBID. The offset of 256,0 indicates that the mapping is to begin 8K words from the start of the library. Access to the library is read-only.

MOYB
#MAPFQtFIRQB+FQFIL
;SET FUNCTION CODE

MOYB
WINIDtFIRQB+FQPPN
;SET WINDOW ID

MOY
LIBID#FIRQB+FQE2dT
;SET LIBRARY ID

MOY
#25G.tFIRQB+FQSIZ
;OFFSET 8K WORDS

CLR
FIRQB+FQBUFL
;MAP WINDOW SIZE OR

;TO END OF LIBRARY

CLR
FIRQB+FQMODE
;READ-ONLY ACCESS

.PLAS

General Monitor Directives

3-153
.PLAS UMPFQ

3.15.6 UMPFQ (Unmap Address Window) - Not Privileged Form

MOVB #UMPFQtFIRQB+FQFIL

(set up parameters)

.PLAS

Function

The UMPFQ subfunction of .PLAS unmaps a specified address window from a resident library. (Note that a MAPFQ on an already-mapped win​dow will unmap the existing windows.)

Data Passed

Offset

Octal Mnemonic
FIROB

Offset

Octal Mnemonic

1
0

3
2

5
UMPFQ (= octal 12) 4 FQFIL

7
window ID 6 FQPPN

11
10

13
12

15
14

17
16

21
20

23
22

25
24

27
26

31
30

33
32

35
34

37
36

3-154
General Monitor Directives

.PLAS UMPFQ

FIRQB+FQFIL
The function code UMPFQ (octal value equals 12).

FIRQB+FQPPN
The ID of the window to be unmapped (returned at FIRQB + FQPPN by the CRAFQ that created the win​dow).

Data Returned

FIR013

Offset
Offset

Octal Mnemonic
Octal Mnemonic

0

3

5

7

[image: image35.png]

[image: image36.png]
current job number ' 2

2 FQJOB

4

6

10

13

12

15

14

17

16

21

20

23

status flag

22 FQMODE

25

24

27

26

31

30

33

35

37

[image: image37.png]
32

34

36

FIRQB+FQJOB
The current job number times two.

FIRQB+FQMODE
Bit 13 of this word is set (octal value equals 20000) if the unmapping was successful.

Errors

BADFUO
The window ID specified is invalid (not in the range 1 through 7).

NOSUCH
The window ID specified is in the range 1 through 7, but no such window is currently created for the job.

General Monitor Directives
3-155
.POSTN

3.16 POSTN - Return Current Horizontal Position - Not Privileged

Form

.POSTN

Function

The YOSTN directive returns the maximum line width and the current horizontal position of devices for which this information is relevant (line printers and terminals). Data is passed in the XRB defining the channel where the device is currently opened. The information is returned in the XRB.

Data Passed

XRB

Offset

Octal Mnemonic
Offset

Octal Mnemonic

1
0

3
2

5
4

7
channel number '

2 6 XRCI

11
10

13
12

15
14

XRB + XRCI
Channel number times two; defines the channel on which the file or device is open.

3-156
General Monitor Directives

.POSTN

Data Returned

XRB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

[image: image38.png]

maximum line length

current position

[image: image39.png]
0 XRLEN

2 XRBC

4

6

10

12

14

XRB + XRLEN
The file /device's maximum line length plus one. A value of 8110 would indicate a maximum line length of 80 bytes (characters), for example.

XRB +XRBC
The file/ device's current horizontal position is returned here. The value may range from 0 (leftmost character) to the value returned at XRB +XRLEN minus one (rightmost character). If the device does not keep track of its own horizontal position, then this value will be 0. The FLGPOS status bit returned in the FIRQB when the file/device was opened indicates whether the value returned here is meaningful.

Errors

NOTOPN
No file or device is open on the specified channel.

DETKEY
The device is a terminal that is detached. Example

The following code requests the current horizontal position of the device

open on channel 4.

MOVB
#4*2+XRB+XRCI
;SET CHANNEL TO 4 .POSTN

General Monitor Directives
3-157
.READ

3.17 READ - Read Data from File or Device - Not Privileged

Form

.READ

Function

The READ directive reads data from a file or device previously opened on a channel. The amount of data read depends on the device and the size of the buffer area, as defined in the XRB. The number of bytes transferred is always less than or equal to the buffer size. The actual number of bytes read is returned in the XRB when the directive is complete. Specific details for each device are given in Table 3-3. The "best guess" buffer sizes (re​turned by the monitor at FIRQB + FQBUFL when the device was opened) are also shown in Table 3-3, for comparison.

Table 3-3: Data Input with READ

What Happens When

Block
"Best

Size,
Guess,"*
READ's
Buffer
Buffer

Bytes
Bytes
Intent to
Size
Size

Device
(Decimal)
(Decimal)
Deliver
>Intent
<Intent

Byte-Oriented Devices (FLGFRC =1, FLGRND = 0)

Keyboard
N/A
128
1 line**
1 line**
Fill buffer; next READ

(Terminal)

reads next part of line.

Pseudo
N/A
128
Full
N/A
N/A

Keyboard

buffer

Paper Tape
N/A
128
Full
N/A
N/A

Reader

buffer

Card
N/A
160
1 card
1 card
Fill buffer; next READ

Reader

reads next part of card.

Block-Sequential Devices (FLGFRC =0, FLGRND =1)

Magnetic
18 to
512
1 block
1 block
Fill buffer; next READ

Tape
30,000

starts with new block.

(Error returned.)

DECtape
510
510
1 block
1 block
Fill buffer; next READ

(file-

starts with new block.

structured)

(No error returned.)

DMC/DMR
1 to 632
512
1 message
1 message
Delivers partial mes​

sage. Next READ de​

livers next message.

*Returned at FIRQB + FQBUFL when file or device was opened.

**A line is any number of characters terminated by RETURN, LINE FEED, ESCAPE, FORM FEED,

CTRL/Z, CTRL/D, CTRL/C, or a user-set private delimiter.

(continued on next page)

3-158
General Monitor Directives

.READ

Table 3-3:
Data Input with READ (Cont.)

What Happens When

Block
"Best

Size,
Guess,"*
READ's
Buffer
Buffer

Bytes
Bytes
Intent to
Size
Size

Device
(Decimal)
(Decimal)
Deliver
>_Intent
<Intent

Block-Random Devices (FLGFRC=0, FLGRND=0)

Disk
512
512
Full
Fills buffer; next READ starts with

buffer
new block.***

Flexible
512 (block mode)
512
Full
Fills buffer; next READ starts with

Diskette
or 128 (RX01 or

buffer
new block or sector.***

RX02 single​

density sector

mode) or 256

(RX02 double​

density sector

mode)

DECtape
512
512
1 block
1 block
Fill buffer; next READ

(non-file-

starts with new block.

structured)

(No error returned.)

*Returned at FIRQB + FQBUFL when file or device was opened.

***If the buffer size is not a multiple of 5121, bytes, the remainder of the last block in will not be input.

The next READ will start with a new block: either the next sequential block (XRB + XRBLK = 0) or

the nth block (XRB + XRBLK = n). No error is returned.

Data Passed

XRB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1 3 5 7 XRBLKM 11

13 15

size of the buffer in bytes (must not =0)

(must -- 0)

starting address of buffer

MSB of block number
channel number '

2

LSB of block number to begin (0 = next)

wait time for terminal input

device-dependent modifier

0 XRLEN 2 XRBC 4 XRLOC 6 XRCI 10 XRBLK 12 XRTIME 14 XRMOD

General Monitor Directives
3-159
.READ

XRB + XRLEN
The length of the input buffer, in bytes. This word must be nonzero. The amount of data read depends on both the device and the buffer size. The amount of data will never be more than the buffer size, however. Details on reads for specific devices are given in Table 3-3.

XRB + XRBC
This word must be passed as zero. The monitor returns the actual number of bytes transferred in this word loca​tion, as described in the "Data Returned" section.

XRB + XRLOC
The starting address of the buffer. For disk, flexible disk​ette, and magtape devices, this address must be on a word boundary. For all other devices, the buffer can begin on an odd address.

The buffer, as defined by XRLOC for its start and XRLOC +XRLEN-1 for its last byte, must lie wholly within either the job image (low segment) or the.run-time system's address space (high segment).

If the buffer is in the low segment, the address defined by the contents of XRB + XRLOC must be greater than 170 (octal) to avoid destroying job-context information used in swapping the job (Section 2.4).

If the buffer is in the high segment, it must not fall within the pseudo-vector region. That is, it must not fall above the location P.OFF (Section 2.5). In addition, the run-time system must currently be mapped read/ write (see PF.RW bit description in PYLAG word, Section 2.5). The run​time system must be read/ write in this case, as the moni​tor will be writing data to the buffer for the READ.

XRB + XRCI
Channel number times two; defines the channel for the read, as previously defined in an open (OPNFQ, CRTFQ, CREFQ, or CRBFQ functions of CALFIP, Section 3.2).

XRB + XRBLKM
For large files on disk (greater than 65,535 blocks), this byte contains the most significant bits of the block num​ber to begin the read. This byte is combined with the word at XRBLK to form a 24-bit field defining the block num​ber. This byte is ignored for nondisk devices.

3-160
General Monitor Directives

.READ

XRB + XRBLK
For channels opened as file-structured, this word defines the starting block number for this read. (For large files, this word forms the least significant bits of the block number to start the read.) The value performs the same action as the BLOCK option for disk and the RECORD option for flexible diskette and non-file-structured DECtape, as described in the RSTS lE Programming Manual. This word is ignored if the device is not a random-access device. If the device is random-access and this field is nonzero, it is interpreted as the block number where the read is to start (1 to n, where n is the length of the file, in 51210-byte blocks). If the field is zero, the next sequential block is read. For example, if a disk file is being read with a 102410-byte buffer size, a READ with this parameter equal to 4 would cause the fourth and fifth blocks of the file (51210 bytes each) to be read into the buffer.

For channels opened on disk as non-file-structured MODE 0, this word defines the device cluster number where the read is to begin. In this case, each READ begins with a new device cluster, so the buffer size at XRB + XRLEN should be a multiple of the device cluster size.

XRB+XRTIME
If positive, the maximum time to wait for terminal input data, in seconds. Zero indicates an infinite wait. A nega​tive value (bit 15 equals 1) indicates an infinite "keyboard monitor wait." This wait is used by run-time systems that act as keyboard monitors for their command input. This type of wait time acts as a flag to the monitor and to the batch subsystem that the job is in a command input wait state.

XRB + XRMOD
Input operation modifier; significant only for card reader, terminal, DMC /DMR, or paper tape devices. (The monitor informs you with the FLGMOD bit of the flag word re​turned at FIRQB + FQFLAG on the open whether or not the device accepts modifiers.) This parameter performs the same action as the RECORD modifier in BASIC-PLUS for these devices, as described in the RSTS l E Programming Manual.

General Monitor Directives
3-161
.READ

Data Returned

XRB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

[image: image40.png]3

5

7 XRBLKM

actual number of bytes read

MSB of block number

[image: image41.png]
0

2 XRBC

4

6

11
LSB of block number where READ began
10 XRBLK

13

12

15

14

XRB+XRBC
Actual number of bytes just read. The value is between 0 and the value of XRB + XRLEN passed in the XRB. If an error is returned on the read (as indicated by byte 0 of the FIRQB), this word may or may not be zero. That is, data may be input even if an error occurs. For example, if the card reader detects an illegal card column punch combi​nation, it places the decoded card data in the input buffer, substituting a special character for the bad column. The XRB + XRBC field is correctly set for the number of char​acters input, and an error is returned.

XRB+XRBLKM
For large disk files (greater than 65,535,0 blocks), this byte contains the most significant bits of the block num​ber just read. (See XRB + XRBLK.)

XRB+XRBLK
For random-access devices (see Table 3-3), this word con​tains the block number of the block just input with this .READ. Block numbers range from 1 to n (where n is the length of the file, in 51210-byte blocks); they define the order in which the file was written. (For disks opened non-file-structured MODE 0, this is the device cluster number.)

3-162
General Monitor Directives

.READ

Errors

BADCNT
The first three words describing the input buffer are ille​gal. (Illegal byte count for 1/0.)

BSERR
The specified channel number is illegal.

NOTOPN
No file or device is open on the specified channel number.

PRVIOL
The file/device open on the specified channel is write​only, or the caller did not obtain read access to the file/ device when it was opened.

All other errors are device-dependent. Some common errors are:

DATERR
Some data error occurred. There may or may not be any valid data in the input buffer. This error is issued for parity errors, bad card columns, and so on.

HNGDEV
Some hard device 1/0 error occurred. There is usually no data in the input buffer when this error occurs. (A READ for an off-line device would cause this error.)

Example

In this example, we assume that a disk file has been opened on channel 2 and that the XRB has already been cleared to zero. Space for the buffer is allocated with the BLKB directive, and the buffer size and location are defined. The next sequential block in the file is to be read. (Remember that the XRB has been filled with zeros, so XRB + XRBLK is already 0.)

BUFFER:

BLKB
512.
;ALLOCATE SPACE FOR BUFFER

MOV•
#512.tXRB+XRLEN
;SET BUFFER SIZE TO 512. BYTES

MOV
#BUFFER #XRB+:;BLOC
;STARTING ADDRESS OF BUFFER

MOVB
#2*2tXRB+XRCI
;CHANNEL 2 FOR INPUT

.READ

General Monitor Directives
3-163
.RSX

3.18 RSX - Execute Job and Disappear (RSX only) - Not Privileged

Form

. RSX

Function

The RSX directive is used only by the RSX run-time system to transfer control to the monitor to start a user job image that has been loaded by the RSX run-time system.

If RSX directive emulation has been installed as part of the monitor, the monitor passes control to the user job image, and the RSX run-time system will "disappear" from the high segment of the job space. If RSX directive emulation has not been installed as part of the monitor, processing contin​ues as "normal," that is, with the run-time system as the high segment.

The RSX call can be issued only from the high segment. The monitor checks the PC register, to ensure that the call originated in the high seg​ment, and the SP register, to make sure that the stack is less than or equal to 1000. Further, this call is relevant only to the RSX run-time system. It is documented here for completeness and to provide an understanding of how the RSX run-time system "disappears."

The RSX run-time system passes relevant parameters to the monitor on the stack, including any requests from the program or from the user to make use of the extra space in APR 7. (Such information is built into the task header of the executable file by the Task Builder or can be requested by the user with the /SIZE switch in the CCL execute line.) There are three possi​bilities for requests: (1) no request to use the extra space, (2) a request to map a window with the extra space, or (3) a request to extend the user job image into the extra space.

3.18.1 No Requests for Extra Space

If there are no requests for extra space, the RSX run-time system places on the stack only the information needed to start the user job image:

SP -
New SP for program New PC for program New PSW for program

3-164
General Monitor Directives

.RSX

The RSX run-time system then issues the RSX directive to pass control to the monitor. The monitor checks the value of the first word on the stack to see if it is even or odd. In this case, it is an address (of the program's stack), and so an even value. If RSX directive emulation has been installed as part of the monitor, the monitor releases APR 7 from mapping to the RSX run​time system and passes control to the user job image, loading the appropri​ate registers from the information provided in the stack. If RSX directive emulation has not been installed as part of the monitor, the monitor does not release APR 7 from mapping to the RSX run-time system. It simply passes control to the user program according to the information provided on the stack.

3.18.2 Request for Mapping a Window in APR 7

When there is a request for mapping a window in APR 7, the RSX run-time system places on the stack the information needed to create and map the window and to run the user job image. The first two words in the stack are in the same format as a "Create Address Window" request (see CRAW$, Section 5.6).

SP-
High byte = 2, low byte = 11710

Address of 8-word Window Definition Block New SP for program

New PC for program New PSW for program

The RSX run-time system then passes control to the monitor with the RSX directive. The monitor checks the first word in the stack to see if it is even or odd. In this case, it is odd. If RSX directive emulation has been installed as a part of the monitor, the monitor releases APR 7 from its mapping to the RSX run-time system and loads it to map the requested window. Then it passes control to the user job image according to the information on the stack. If RSX directive emulation has not been installed as a part of the monitor, the monitor returns control to the run-time system with an error. (The requested mapping cannot be done.)

General Monitor Directives
3-165
.RSX

3.18.3 Request to Extend the User Job Image

When there is a request to extend the user job image, the RSX run-time system places on the stack the information needed for the extension as well as to start the user job image. The first three words in the stack are in the same format as an "Extend Task" directive to the RSX emulator (see EXTK$, Section 5.11).

SP-
High byte = 3, low byte = 8910 Number of 32-word blocks to extend Reserved word

New SP for program New PC for program New PSW for program

The RSX run-time system then passes control to the monitor with the RSX directive. The monitor checks the first word in the stack to see if it is even or odd. In this case, it is odd. If the RSX emulator has been installed as a part of the monitor, the monitor releases APR 7 from its mapping to the RSX run-time system, remaps part of the APR to the user, and passes control to the user job image according to the information passed in the stack. If RSX directive emulation has not been installed as a part of the monitor, the monitor returns control to the RSX run-time system with an error.

3-166
General Monitor Directives

.RTS

3.19 RTS - Pass Control to Run-Time System - Not Privileged

Form

.RTS

Function

The RTS directive passes control to a run-time system at the KNEW entry point, where the intent is not to run an executable file (see KNEW, Section 2.5.4). RTS performs one of four functions:

1.
Passes control to the job's keyboard monitor

2.
Passes control to a named run-time system

3.
Passes control to a named run-time system and establishes it as the job's keyboard monitor

4.
Passes control to a named run-time system without changing job context information

The first function is generally part of a run-time system's exit processing; you do not normally use .RTS for this purpose in a user program. The following code shows how RTS is used in exit processing (for example, in the RSX run-time system's EXIT$ directive):

EXIT:
CALL
CLRKRB
;Clear XRB

.RTS
;Exit to default KBM

imp
PROMPT
;If that's this KBMt then ;Prompt for another command

The other three functions of RTS apply to both user programs and run-time systems.

Note that once established, a job's keyboard monitor replaces the default keyboard monitor as the one to which control passes in default situations. This concept is best explained by example.

The SWITCH program (see the RSTS lE System User's Guide) uses the .RTS directive to establish the run-time system to which it passes control as the job's keyboard monitor. Consider the following sequence:

Ready

SWITCH RT11 .MAC

MAC
CTRLI C

TRLI C

.SWITCH Ready

General Monitor Directives
3-167
A TS

The first line shows the BASIC-PLUS "Ready" prompt, indicating that the user is in the BASIC-PLUS keyboard monitor. The user then runs SWITCH to pass control to the RT11 run-time system. SWITCH establishes RT11 as the job's keyboard monitor. The RT11 run-time system displays the period prompt, and the user runs "MAC," the RSX run-time system's assembler. Control passes to the RSX run-time system, which loads the assembler and runs it. MAC displays the MAC> prompt. The user, realiz​ing the mistake in typing MAC instead of MACRO, types CTRL / C to exit. Since RT11 has been established as the job's keyboard monitor, control passes back to RT11, and it displays the period prompt. The user, wanting to get back to BASIC-PLUS, types another CTRL/C. Since RT11 is the job's keyboard monitor, however, another period prompt appears. The user finally runs SWITCH from the RT11 run-time system, leaving out the run​time system name. SWITCH transfers control back to the default keyboard monitor, establishing it once again as the job's keyboard monitor.

In any case, the four ways that the RTS directive can be used are:

1.
The RTS directive is used to switch control back to the run-time system already established as the job's keyboard monitor. In this case, the name of the run-time system is not known. The word in the FIRQB that would contain the first part of the run-time system name is 0. If the run-time system that issues the RTS is not itself the job's keyboard monitor, control is passed to the job keyboard monitor at entry point P.NEW. If the run-time system that issues the RTS is the job's keyboard monitor, control returns inline (to the instruction following the RTS) with no error indicated.

2.
The RTS directive is used to switch control to the run-time system named in the FIRQB. (Run-time systems are made known to the monitor by the system manager with the ADD command of the UTILTY program. With this command, the system manager defines a file (filename.RTS) as an auxiliary run-time system. The monitor regards "filename" as the run-time system's name.) If the run-time system that issues the RTS directive is not itself the named run-time system, control passes to the named run-time system at the P.NEW entry point. If the run-time system that issues the RTS directive is the named run-time system, control returns to the instruction follow​ing the RTS with no error indication. If the named run-time system does not exist or is not available for some reason, control returns to the instruction following the RTS with an error in byte 0 of the FIRQB.

3-168
General Monitor Directives

.RTS

3.
The RTS directive is used to switch control to a named run-time system and establish the named run-time system as the job's key​board monitor. If the run-time system that issues the RTS is not itself the named run-time system, control passes to the named run​time system at the KNEW entry point, and the named run-time system is established as the job's keyboard monitor. If the run-time system that issues the RTS names itself as the run-time system, control returns to the instruction following the RTS with no error, and the run-time system is established as the job's keyboard monitor. If the named run-time system does not exist or is unavailable, control returns to the instruction following the RTS with an error in byte 0 of the FIRQB.

4.
The RTS directive is used to switch control to a named run-time system preserving the job's current job-context information. Control passes to the named run-time system at the KNEW entry point, but the monitor does not refresh the keyword, reset the stack pointer, or perform any of the initialization operations described in the discus​sion of KNEW in Section 2.5.

NOTE

This directive should not be used from programs running under the RT11 run-time system, because the lowest 10008 bytes are used by RT11 differently from other run-time sys​tems. The proper way to terminate a program running under RT11 is to exit through the RT11 emulator.

Although you can use this directive to terminate a program running under the RSX run-time system, DIGITAL recom​mends that you use the RSX EXIT$ or EXST$ directive in​stead (see Sections 5.9 and 5.10). Using RTS may cause un​expected results. For example, if you use RTS to exit from a program running under the RSX run-time system, and RSX is also your job keyboard monitor, control returns inline.

General Monitor Directives
3-169
.RTS

Data Passed

FIRQB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1

0

3

2

5

4

7

6

11

10 FQNAM1

run-time system name

13
(2 words in RAD50 format)
12

15
-1, Switch keyb. mon.; 2, don't change context
14 FQEXT

17

16

21

20

23

22

25

24

27

26

31

30

33

32

35

34

37

36

FIRQB+FQNAM1
If control is being passed to a named run-time system (cases 2, 3, and 4 described previously), the name of the run-time system is stored as two words in RAD50 for​mat beginning here. If control is being passed to the job's keyboard monitor (case 1 described previously), the word beginning here must contain a value of 0.

FIRQB+FQEXT
To establish a named run-time system as the job's key​board monitor (case 3), set this word to -1. To switch control to a named run-time system without altering job-context information (case 4), set this word to -2. When the word at FIRQB + FQNAM1 is 0, this word is ignored.

3-170
General Monitor Directives

A TS

XRB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1

0

3

2

5

4

7

6

11

10 XRBLK

13
unaltered whether or not
12

control passes to new run-time system

15

14

XRB +XRBLK
The three words starting at this location pass unaltered to the new run-time system. They are also unaltered if control returns inline.

Data Returned

Since control usually passes to some other run-time system at its KNEW entry point, no arguments as such are returned by RTS. The three words starting at XRB + 10 remain unaltered if control returns inline.

Errors

NORTS
No run-time system exists with the specified name.

PRVIOL
The named run-time system does exist but cannot be switched to for some reason. (For example, if the switch is made to a named run-time system with the intent of establishing it as the job's keyboard monitor and its PF.KBM bit in the PYLAG word is not set to 1.)

Example

The following example establishes "NEWRTS" (which the system manager must have added with UTILTY) as the job's keyboard monitor:

MOV
#"RNEWtFIRQB+FQNAMI
;SET RUN-TIME SYSTEM

MOY
#"RRTStFIRQB+FQNAMI+l
;NAME TO "NEWRTS"

MOV
#-ltFIRQB+FQEXT
;ESTABLISH AS JOB KBM

.RTS

General Monitor Directives
3-171
.RUN

3.20 RUN - New Program to Run - Not Privileged

Form

.RUN

Function

The RUN directive searches for a binary (executable) file (defined in the FIRQB), opens it on channel 1510, and passes control to the P.RUN entry point of the run time system associated with the file. The associated run​time system is identified in the file's directory information. This directory information is initially set to indicate the run-time system under which the file was created. The system manager can change the run-time system associated with the file with the NAME command of UTILTY (see the RSTS l E System Manager's Guide).

The run-time system is responsible for loading and executing the file (see the P.RUN description in Section 2.5). Control is not returned inline unless an error occurs.

3-172
General Monitor Directives

.RUN

Data Passed

Offset

Octal Mnemonic
FIRQB
Offset

Octal Mnemonic

1

0

3

2

5

4

7
project number t programmer number
6 FQPPN

11

10 FQNAM1

name of binary file (two words

13
in RAD50 format)
12

15
file type (one word in RAD50 format)
14 FQEXT

17

16

21

20

23

22

25

24

27

26

31
device name (two ASCII characters)
30 FQDEV

33
:~O,unit number real device unit number
32 FQDEVN

35

34

37
entry parameter
36 FQNENT

FIRQB+FQPPN
The project-programmer number of the file to be opened. The project number is specified in the high byte, the programmer number in the low byte. If this word is passed as 0, the ppn defaults to the project-programmer number of the job that issues the RUN directive.

FIRQB + FQNAM 1
The file name of the file to be opened, as two words in RAD50 format, begins at this location.

FIRQB+FQEXT
The file type for the file to be opened, as one word in RAD50 format. If you set this word to -1, the monitor will search for the file name supplied, substituting the default file type for the currently installed set of run​time systems until a file with the given name and one of the default file types is found.

General Monitor Directives
3-173
.RUN

FIRQB+FQDEV
The device name of the file to be opened, as two ASCII characters. If the device name is not a disk, the RUN directive returns inline with one of the "soft" errors described in the "Errors" section. If you pass a full word of 0 here and in FIRQB + FQDEVN, the public disk structure (SY:) is searched for the named file.

FIRQB+FQNENT
A 16-bit parameter word can be passed to the run-time system here. If the job issuing the RUN is privileged, the word will be passed unaltered. If the job is nonprivi​leged, bit 1510 (the sign bit) will be cleared uncondition​ally. The monitor takes no other action as a result of the contents of this word; any processing is up to the run​time system. (See the P.RUN entry point, Section 2.5.)

Errors

When an error occurs in a RUN, FIRQB + FQFLAG is set to 0 to indicate a "hard" error or -1 to indicate a "soft" error.

A hard error means the RUN failed. A soft error also means the RUN failed, but the run-time system may be able to recover. For example, when you use the BASIC-PLUS RUN command, BASIC-PLUS first executes a .RUN. If the RUN returns a soft error, BASIC-PLUS performs an OLD (which compiles the program) and then executes RUN again.

Hard Errors

BADNAM
The specified file name was 0. This is an illegal file name for disk files.

DEVNFS
The specified disk device is currently being used non​file-structured.

NOTCLS
Channel 15,0 is currently open. It must be closed before any RUN call.

NODEVC
The specified device does not exist or is in an illegal format.

NORTS
The run-time system named in the file's directory infor​mation has not been installed.

NOTMNT
The specified disk device is not now mounted.

PAKLCK
The disk pack on which the file exists is locked against further file opens.

PRVIOL
Some protection violation occurred, such as attempting to run a file that is protected against the caller.

3-174
General Monitor Directives

.RUN

Soft Errors

PRVIOL
The device is not disk but is still a legal device on the system. Or the file was found and is on disk but does not have the "compiled program" bit set in its file protection code (bit 6).

NOSUCH
The file was not found. Note that if FIRQB + FQEXT was -1 in the data passed, the monitor has looked for the given file name with all default runnable file types for the currently installed run-time systems. In this case, a source version of the file may yet exist.

Example

The following example uses the .FSS directive to translate a user-typed string to the FIRQB format. If no errors in the .FSS occur, a test is made to see if a file type was specified. If not, a -1 is supplied in FIRQB + FQEXT so that the monitor searches for the given file name with all possible default runnable file types.

(read user-typed line, set up FIRQB for .FSS)

FSS•
TSTB FIRQB BNE ERRTN

B I T
1 OOOOO , XRB+XRBLK BNE BADDEV

BIT
#1O tXRB+XRBLK BNE SKIP1

MOV #-1tFIRQB+FQEXT SKIP1: RUN

;ERROR ON FSS^

;BRANCH TO PROCESS ERROR ;INVALID DEVICE NAME? ;BRANCH TO PROCESS ERROR ;FILE TYPE GIVEN?

;YES* SKIP NEXT ;NOt SEARCH ALL

General Monitor Directives

3-175
.SET

3.21
SET - Set Keyword Bits - Privileged and Not Privileged

Form

.SET

Function

The SET directive sets certain bits in the keyword (KEY) location in the user job image (Section 2.4). The bits to be set are passed to the monitor in the XRB.

Data Passed

XRB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1
bits to be set are set to 1 here
0 XRLEN

3

2

5

4

7

6

11

10

13

12

15

14

JFSPRI JFFPP JFPRIV

JFSYS

JFNOPR JFBIG JFLOCKi

10 ft 9 8 7

15 14 13 12 11

[image: image42.bmp]
0

JFLOCK

Can be set only by privileged jobs. When this bit is set, the monitor will swap the user job image out of memory only when:

The job issues a CORE directive to expand the memory allocated for the user job image, and there is not suffi​cient room in physical memory to do the expansion. In this case, the job is swapped out to disk and back in at the indicated size.

3-176
General Monitor Directives

.SET

JFLOCK
2.
A fatal error, such as a memory parity failure, occurs. (cont.)

JFBIG
Can be set only by privileged jobs. When this bit is set, the job is allowed to exceed its private memory maximum (see CORE, Section 3.6).

JFNOPR
Cannot be set by any job; masked off.

JFSYS
Can be set by a nonprivileged job only if JFSYS was set at one time and the temporary privileges gained were only temporar​ily dropped. (See description of KEY, Section 2.4.)

JFPRIV
Cannot be set by any job; masked off.

JFFPP
Can be set by any caller if the PDP-11 /45 compatible hardware floating-point unit exists; masked off if it does not exist. When this bit is set, the monitor will save information in the floating​point unit as part of the job-context information kept when jobs are swapped in and out of memory.

JFSPRI
Can be set only by a privileged caller. Setting JFSPRI raises the job's run priority by one-half step. (That is, it sets bit 2 of the system-controlled low-order three bits of the run priority. Priorities are normally set by the system manager with UTILTY.)

All other bits in the XRB word are masked off; that is, the corresponding bits in KEY cannot be set by the job with the SET directive.

Data Returned

No data is returned with the SET directive. Errors

No errors are possible with the SET directive. Example

The following code sets JFBIG, allowing the job to exceed its private mem​

ory maximum:

MOV
#JFBIG,XRB+XRLEN
;SET JFBIG .SET

General Monitor Directives
3-177
.SLEEP

3.22 SLEEP - Suspend Job - Not Privileged

Form

.SLEEP

Function

The SLEEP directive causes the monitor to suspend the job for some speci​fied time interval or until an event occurs that the job should be aware of. Optionally, the monitor checks, before the job is suspended, to see if some event has already occurred which would cause it to awaken. If so, the job is not suspended. Control returns inline in either case.

When a SLEEP is executed, execution of the job is suspended until one of the following happens:

1.
The sleep time (specified in the XRB) expires.

2.
A local or network message is queued for the job (assuming that the job is using local or network send/receive services. See MESAG, Section 3.12).

3.
A delimiter is typed on a terminal that this job has opened or as​signed.

4.
The system manager disables logins. (This could occur if the system is being shut down.)

5.
A state change occurs on a pseudo keyboard assigned to the job. (The job has printed output for the controlling job to read or has entered an input wait state.)

6.
The DMC11 /DMR11 driver (XM:) is open and a message is pending for the job.

If you request it, the monitor will check before suspending the job for the following conditions:

1.
A delimiter has been typed on any terminal opened by the job or any terminal assigned to the job if the job also has a keyboard open on a nonzero channel.

2.
A message has been queued for the job.

3.
A state change has occurred on a pseudo keyboard opened by the job.

4.
The job has a DMC11 /DMR11 device driver open and a message has been received by that device driver.

If the monitor determines that any of these conditions are true, it does not execute the SLEEP.

3-178
General Monitor Directives

.SLEEP

Data Passed

XRB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

[image: image43.png]
sleep time, in seconds

[image: image44.png]

0 XRLEN

2

4

6

10

12

14

XRB+XRLEN
This word defines the sleep interval, in seconds. If the value is 0, then SLEEP returns immediately. If the sign bit (bit 1510) is set, the monitor checks to see if any condition that would cause the sleep to terminate has already occurred. If so, the SLEEP is not executed.

Data Returned

No data is returned with the SLEEP directive. Errors

No errors are possible with the SLEEP directive. Example

mot.)
#5tXRB+XRLEN
;SET TIMER TO 5 SECONDS .SLEEP

General Monitor Directives
3-179
.SPEC

3.23 SPEC - Special Functions for 1/0

Form

(set XRB for special function)

.SPEC

Function

The SPEC directive performs special functions for disk, terminal, magnetic tape, and RX01 and RX02 flexible diskettes.

3.23.1
SPEC for Disk - Not Privileged

For disk, the SPEC directive lets you explicitly lock up to seven disk blocks on a file open for update (mode parameter). A locked block cannot be ac​cessed by another user (or from another channel). This extends the "implicit lock" feature, by which the last block or blocks read on a file open for update cannot be accessed by anyone else. The disk special functions also let you release explicit and implicit locks. (All locks, both explicit and implicit, are released when the file is closed.)

Data Passed (Disk)

Offset

Octal Mnemonic
XRB
Offset

Octal Mnemonic

1
special function code
0 XRLEN

3
least signif. bits of block number (release)
2 XRBC

5
MSB of block no. (rl)
4 XRLOC

7 XRBLKM
DSKHND (=octal 0) 1 channel number' 2
6 XRCI

11
10

13
12

15
14

3-180
General Monitor Directives

.SPEC

XRB+XRLEN
Defines function to be performed.

0 Release any implicit lock and all explicit locks. The monitor deallocates the extended internal table space it needed to do the explicit locks. (See code 3.)

1
Release implicit lock.

2
Make implicit lock into explicit lock.

3 Release the explicit lock on the block specified by the word at XRB + XRBC (least significant bits) and the byte at XRB + XRLOC (most significant bits). If all three bytes are zero, all explicit locks are released, but the monitor does not deallocate the extra space needed to do explicit locks. (This may be useful if you intend to use the explicit lock feature again during this run. An error occurs if no space is available for this purpose.)

4 Make implicit lock into explicit lock and release the implicit lock.

XRB + XRBC,
Both these bytes specify the starting block number for XRB + XRLOC
releasing an explicit lock. If these bytes are zero, all explicit locks are released, but the monitor retains the extended table area it needs to maintain these locks. (This may be useful if you wish to use this capability again dur​ing a run.)

XRB+XRCI
Channel number times two; defines the channel for the lock/ unlock operation.

XRB+XRBLKM
Handler index for disk: DSKHND (octal value = 0).

Data Returned

Except for a possible error code in byte 0 of the FIRQB, no data is returned by the disk subfunctions of SPEC.

Errors

For code 2:

INTLCK
Occurs if the implicit lock overlaps any current explicit lock. For example, if you read blocks 1 and 2 into a 1024-byte buffer in update mode, an implicit lock exists on blocks 1 and 2. If you explicitly locked these blocks, and then read blocks 2 and 3 and tried to explicitly lock blocks 2 and 3, you would get this error. An exact match is legal (for example, if the second read also read blocks 1 and 2) and results in a no-op.

General Monitor Directives
3-181
.SPEC

NOBUFS
Occurs if the monitor needs to expand its internal table space but memory is not available.

NOROOM
There are already seven explicit locks on this channel.

PRVIOL
There is no current implicit lock; that is, no blocks have been read.

For code 3:

NOSUCH
The block number specified does not correspond to the first block number of an explicit lock.

3-182
General Monitor Directives

.SPEC (Terminal)

3.23.2 SPEC for Terminal - Privileged and Not Privileged

The SPEC directive for terminals has two forms. The first form lets you perform several different functions, such as cancel CTRL/0, set modes for tape, echo, and ODT, and cancel type ahead. The second form lets you set, read, and clear private delimiters.

The next two sections show the data passed and returned for each form of .SPEC for terminals.

3.23.2.1 All but Private Delimiters -

Data Passed

XRB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1 3 5 7 XRBLKM 11

13 15

special function code

KB number or number of bytes to send or force

starting address of bytes to send/force

TTYHND (=octal 2)
channel no. `

2

KB no. (XRB+XRLEN = 5 or 6)

0 XRLEN

2 XRBC

4 XRLOC

6 XRCI

10 XRBLK

12

14

XRB+XRLEN

Defines a special function:

0 =
Cancel CTRL / O (see.TTRST)

1 =
Set tape mode (see TTAPE)

2 =
Enable echo and clear tape mode (see TTECH)

3 =
Disable echo (see.TTNCH)

4 =
Set ODT mode (see TTDDT)

5 =
Force to keyboard (privileged)

6 =
Broadcast to keyboard (privileged)

7 =
Cancel all type-ahead

General Monitor Directives

3-183
.SPEC (Terminal)

XRB + XRBC
For XRB + XRLEN = 0, 1, 2, 3, 4, or 7:

When XRB + XRBC equals 0, these functions take place on the terminal currently open for this job. When XRB + XRBC does not equal 0, these functions take place on the keyboard number specified in XRB + XRBC. This keyboard must be assigned to but not opened by the calling job.

For XRB + XRLEN = 5 or 6:

XRB + XRBC is the number of bytes to send or force.

XRB+XRLOC
For XRB+XRLEN equal to 5 or 6, this word contains the starting address of the bytes to be sent or forced.

XRB+XRCI
Channel number times two; defines the channel for the ter​minal specified at XRB + XRBC.

XRB+XRBLKM Handler index for terminals; TTYHND (octal value = 2).

XRB + XRBLK
For XRB + XRLEN = 5 or 6, this word contains the key​board number to which the data is to be sent or forced.

Data Returned (Terminal)

Offset

Octal Mnemonic
XRB
Offset

Octal Mnemonic

1

0

3
number of bytes not sent
2 XRBC

5

4

7

6

11

10

13

12

15

14

XRB+XRBC
Number of bytes that could not be sent (returned only when XRB + XRLEN in the data passed was 6).

3-184
General Monitor Directives

.SPEC (Terminal)

Errors (Terminal - Except Private Delimiter)

PRVIOL
One of the following:

1.
The calling job does not own the specified keyboard and is not privileged.

2. The function code is not 0 - 7 or 11 (returned for all .SPEC calls for terminals).

3.
An illegal terminal number at XRB + XRBLK.

4.
The device open on the channel at XRB + XRCI is not a terminal.

BSERR
An illegal channel number is specified at XRB + XRCI.

NOTOPN
The channel specified at XRB + XRCI is not open.

3.23.2.2 Private Delimiters -

A "private delimiter" is a character used as a delimiter within a program. You can define any printing or nonprinting character to be a private delim​iter:

• A letter

• A function key such as DELETE

• A control character such as CTRL/Z

• A standard delimiter such as LINE FEED

A private delimiter is useful on a data entry terminal with a specialized keyboard. You can use a large or conveniently located key as the delimiter key. Private delimiters are also useful in keypad applications.

You can declare one character as a private delimiter on any RSTS/E sys​tem. In addition, a system generation option allows the use of multiple private delimiters. If your system has this feature, you can declare up to 256 private delimiters.

Multiple private delimiters let you do special character processing without using single character 1/0. For example, by combining escape sequences with private delimiters, you can define your own function keys in keypad applications.

The rest of this section:

• Provides general information about private delimiters

• Shows the XRB layouts for setting, reading, and clearing private delim​iters

• Lists all private delimiter masks

General Monitor Directives
3-185
.SPEC (Terminal)

Characteristics of Private Delimiters

Declaring a character as a private delimiter with the SPEC directive over​rides the existing ASCII code for the character. Thus, unlike a standard delimiter such as RETURN or LINE FEED, a private delimiter does not echo at the terminal. In addition, a special character no longer performs its normal function. For example, when the DELETE key is a private delim​iter, it does not erase the last character typed.

A private delimiter has basically the same characteristics as a standard delimiter. Like a standard delimiter, it:

• Terminates a READ on the terminal.

• Cannot be deleted. The DELETE key and CTRL /U do not affect private delimiters in the type-ahead buffer.

• Causes the system to awaken a sleeping job when typed at a terminal that the job has open or assigned. If the job cannot be awakened, the system stores the private delimiter character.

Once set, a private delimiter remains in effect for a terminal until one of the following occurs:

• The program clears it

• The job releases the terminal by deassigning it or by closing the 1/0 channel where the terminal is open

• The job terminates

In addition, the system clears private delimiters when a dial-up line gets hung up or the job controlling the terminal is killed.

Private delimiters change the way characters are processed in binary mode (MODE 1). When a terminal is open in binary mode and no private delim​iter is in use, the system terminates a read after every character. However, if one or more private delimiters are in use, the system terminates a read only when a private delimiter is typed.

The system processes private delimiters after processing CTRL/S and CTRL / Q (if the STALL characteristic is set) and escape sequences (if the terminal is in ESC SEQ mode). This feature prevents a terminal from be​coming permanently stalled, and it also lets you use private delimiters and escape sequences in the same program.

The system processes private delimiters before all other characters, includ​ing control characters such as CTRL/C. Thus, when you use a standard delimiter character as a private delimiter, it does not echo on the terminal.

8-186
General Monitor Directives

.SPEC (Terminal)

Programming Hint

By combining escape sequences with private delimiters, you can define your own function keys without using single character 1/0. First, make sure the keypad is in the right mode for your application. Define each function as the PFl key followed by a character. Then define each character as a private delimiter so it does not echo on the terminal. For example, you might define PF1 + A as one function and PF1 + M as another function.

Data Passed (Terminal - Private Delimiters)

XRB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1 3 5 7 XRBLKM 11

13 15

= octal 11 for private delimiters

0 or byte count when XRB+XRMOD = 1 or 2

0 or address when XRB + XRMOD = 1 or 2

TTYHND (=octal 2)
channel number `2

flag byte
KB number

must = 0

subfunction code -- 0, 1, or 2

0 XRLEN 2 XRBC 4 XRLOC 6 XRCI 10 XRBLK 12 XRTIME 14 XRMOD

XRB+XRLEN XRB+XRBC

Function code; set to 118 for private delimiter mask.

For XRB + XRMOD equals 0, this word must be set to 0.

For XRB + XRMOD equals 1 (set private delimiter mask), this word is the byte count for the private delimiter bit mask.

For XRB + XRMOD equals 2 (read private delimiter mask), this word is the buffer length for a buffer into which the mask is to be read.

For
XRB + XRMOD
equals
1
or
2,
the
value
of XRB + XRBC must be greater than or equal to 408.

General Monitor Directives
3-187
.SPEC (Terminal)

XRB+XRLOC
For XRB+XRMOD equals 0, this word must be set to 0.

For XRB + XRMOD equals 1, this word is the address of the private delimiter mask. The mask itself can be up to 40, bytes long (408 bytes = 25610 bits). Each bit in the mask represents an ASCII character, as indicated by Ta​ble 3-4. Setting a bit indicates that the associated ASCII character is to serve as a private delimiter.

For XRB + XRMOD equals 2, this word is the address of a buffer into which the terminal's private delimiter mask is to be read.

XRB+XRCI
Channel number times two. When this byte equals 0, it indicates the job's keyboard. When this byte does not equal 0, a keyboard must be open on the indicated chan​nel.

XRB+XRBLKM
Handler index for terminals; TTYHND (octal value is 2).

XRB+XRBLK
Specifies the keyboard number that the subfunction is to take place on. If this byte and the byte at XRB + 11 equal zero, then the subfunction is performed on the terminal open on the channel indicated by XRB + XRCI.

XRB + 11
Flag byte. If bit 7 of this byte is set (byte equals 2008), it indicates that the keyboard number at XRB + XRBLK is real. (When XRB + XRBLK is zero, this bit set indicates KBO: is the desired terminal. If this bit is cleared and XRB + XRBLK is zero, it indicates that the keyboard open on the channel indicated at XRB + XRCI is the desired ter​minal.) All other bits must equal zero.

XRB+XRTIME
This word must be set to zero.

XRB+XRMOD
Subfunction code:

0 = Clear private delimiter mask. 1 = Set private delimiter mask. 2 = Read private delimiter mask.

Once set, private delimiters remain in effect for a terminal until cleared (XRB + XRMOD = 0) or until implicitly cleared by:

1.
Deassigning or closing the terminal.

2.
Killing the job or hanging up the line.

3-188
General Monitor Directives

.SPEC (Terminal)

XRB + XRMOD
3.
Keyboard monitor read (negative wait time on (continued) .READ).

Note that clearing the delimiter mask to all zeros is not the same as issuing the clear call (XRB + XRMOD = 0). Use the clear call to free system resources used when any mask is set.

Data Returned

Except for a possible error in byte 0 of the FIRQB, no data is returned by the private delimiter subfunctions of SPEC.

Errors (Private Delimiters)

PRVIOL
One of the following:

1. Job does not own the specified keyboard and is not privileged.

2.
Subfunction code at XRB + XRMOD is not 0, 1, or 2.

3.
Function code is not 0 through 7 or 11 (returned for all .SPEC calls for terminals).

4. An illegal terminal number is specified at XRB + XRBLK.

5.
The device open on the channel specified at XRB + XRCI is not a terminal.

BSERR
An illegal channel number is specified at XRB + XRCI.

NOTOPN
The channel specified at XRB + XRCI is not open.

NOBUFS
The monitor needs to expand its internal buffer space, but memory is not available. May succeed at a later time.

BADCNT
One of the following:

1.
Byte count at XRB + XRBC does not equal zero or is less than 40,

2.
Invalid address at XRB + XRLOC.

NOSUCH
You are trying to read the private delimiter mask, but no private delimiters are set.

General Monitor Directives
3-189
.SPEC (Terminal)

Table 3-4:
Private Delimiter Masks

Byte Value

Octal ASCII Byte,

Value Character address +n Bit
Octal Decimal

0*
NUL
n = 0
0
1
1

1
SOH
0
1
2
2

2
STX
0
2
4
4

3
ETX (CTRL/C)
0
3
10
8

4
EOT
0
4
20
16

5
ENQ
0
5
40
32

6
ACK
0
6
100
64

7
BEL
0
7
200
128

10
BS (backspace)
1
0
1
1

11
HT (horizontal tab)
1
1
2
2

12
LF (line feed)
1
2
4
4

13
VT (vertical tab)
1
3
10
8

14
FF (form feed)
1
4
20
16

15
CR (carriage return)
1
5
40
32

16
SO
1
6
100
64

17
SI (CTRL / 0)
1
7
200
128

20
DLE
2
0
1
1

21
DC1 (CTRL/Q)
2
1
2
2

22
DC2
2
2
4
4

23
DC3 (CTRL/S)
2
3
10
8

24
DC4
2
4
20
16

25
NAK (CTRL /U)
2
5
40
32

26
SYN
2
6
100
64

27
ETB
2
7
200
128

30
CAN
3
0
1
1

31
EM
3
1
2
2

32
SUB (CTRL/Z)
3
2
4
4

33
ESC (ESCAPE)
3
3
10
8

34
FS
3
4
20
16

*

Octal codes 0 and 200-377 can be used only for terminals opened in binary mode

because the parity bit is stripped and nulls are ignored in normal mode.

(continued on next page)

3-190
General Monitor Directives

.SPEC (Terminal)

Table 3-4:
Private Delimiter Masks (font.)

Byte Value

Octal ASCII Byte,

Value Character address +n Bit
Octal Decimal

35
GS
3
5
40
32

36
RS
3
6
100
64

37
US
3
7
200
128

40
SP (space)
4
0
1
1

41
!
4
1
2
2

42

4
2
4
4

43
#
4
3
10
8

44
$
4
4
20
16

45
%
4
5
40
32

46
&
4
6
100
64

47
'(apostrophe)
4
7
200
128

50
(
5
0
1
1

51
)
5
1
2
2

52
*
5
2
4
4

53
+
5
3
10
8

54
, (comma)
5
4
20
16

55
(dash/ minus)
5
5
40
32

56
. (period)
5
6
100
64

57
/
5
7
200
128

60
0
6
0
1
1

61
1
6
1
2
2

62
2
6
2
4
4

63
3
6
3
10
8

64
4
6
4
20
16

65
5
6
5
40
32

66
6
6
6
100
64

67
7
6
7
200
128

70
8
7
0
1
1

71
9
7
1
2
2

(continued on next page)

General Monitor Directives
3-191
.SPEC (Terminal)

Table 3-4:
Private Delimiter Masks (font.)

Byte Value

Octal ASCII Byte,

Value Character address +n Bit
Octal Decimal

72

7
2
4
4

73

7
3
10
8

74
<
7
4
20
16

75
--
7
5
40
32

76
>
7
6
100
64

77
?
7
7
200
128

100
(a
10(8)
0
1
1

101
A
10(8)
1
2
2

102
B
10(8)
2
4
4

103
C
10(8)
3
10
8

104
D
10(8)
4
20
16

105
E
10(8)
5
40
32

106
F
10(8)
6
100
64

107
G
10(8)
7
200
128

110
H
11(9)
0
1
1

111
1
11(9)
1
2
2

112
J
11(9)
2
4
4

113
K
11(9)
3
10
8

114
L
11(9)
4
20
16

115
M
110
5
40
32

116
N
11(9)
6
100
64

117
0
110
7
200
128

120
P
12(10)
0
1
1

121
Q
12(10)
1
2
2

122
R -
12(10)
2
4
4

123
S
12(10)
3
10
8

124
T
12(10)
4
20
16

125
U
12(10)
5
40
32

126
V
12(10)
6
100
64

(continued on next page)

3-192
General Monitor Directives

.SPEC (Terminal)

Table 3-4:
Private Delimiter Masks (font.)

Byte Value

Octal ASCII Byte,

Value Character address +n Bit
Octal Decimal

127
W
12(10)
7
200
128

130
X
13(11)
0
1
1

131
Y
13(11)
1
2
2

132
Z
13(11)
2
4
4

133
I
13(11)
3
10
8

134
(backslash)
13(11)
4
20
16

135
1
13(11)
5
40
32

136
or T
13(11)
6
100
64

137
- orf-
13(11)
7
200
128

140
'(grave accent)
14(12)
0
1
1

141
a
14(12)
1
2
2

142
b
14(12)
2
4
4

143
c
14(12)
3
10
8

144
d
14(12)
4
20
16

145
e
14(12)
5
40
32

146
f
14(12)
6
100
64

147
9
14(12)
7
200
128

150
h
15(13)
0
1
1

151
i
15(13)
1
2
2

152
i
15(13)
2
4
4

153
k
15(13)
3
10
8

154
1
15(13)
4
20
16

155
m
15(13)
5
40
32

156
n
15(13)
6
100
64

157
0
10(13)
7
200
128

160
p
16(14)
0
1
1

161
q
16(14)
1
2
2

162
r
16(14)
2
4
4

163
s
16(14)
3
10
8

(continued on next page)

General Monitor Directives
3-193
.SPEC (Terminal)

Table 3-4:
Private Delimiter Masks (font.)

Byte Value

Octal ASCII Byte,

Value Character address +n Bit
Octal Decimal

164
t
16(14)
4
20
16

165
u
16(14)
5
40
32

166
v
16(14)
6
100
64

167
w
16(14)
7
200
128

170
x
17(15)
0
1
1

171
y
17(15)
1
2
2

172
z
17(15)
2
4
4

173
1
17(15)
3
10
8

174
(vertical)
17(15)
4
20
16

175
}
17(15)
5
40
32

176
-

(tilde)
17(15)
6
100
64

177
DEL (RUBOUT)
17(15)
7
200
128

200-377*

*

Octal codes 0 and 200-377 can be used only for terminals opened in binary mode because

the parity bit is stripped and nulls are ignored in normal mode.

3-194
General Monitor Directives

.SPEC

(Magnetic Tape)

3.23.3 SPEC for Magnetic Tape - Not Privileged Data Passed (Magnetic Tape)

XRB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1 3 5 7 XRBLKM 11

13 15

special function code

parameter

MTAHND (=octal 16)
channel number' 2

[image: image45.png]
0 XRLEN

2 XRBC

4

6 XRCI

10

12

14

XRB+XRLEN
This word defines the special magnetic tape function to be performed. These codes are summarized in Table 3-5. For a detailed discussion of these functions, see the discussion of the MAGTAPE function in the RSTS lE Programming Manual.

XRB + XRBC
The meaning of this word varies according to the special function code specified at XRB + XRLEN. Table 3-5 summarizes these values; for a detailed discussion, see the MAGTAPE
function
description
in
the
RSTS lE Programming Manual.

XRB + XRCI
Channel number times two; defines the channel on which the tape is currently open.

XRB+XRBLKM
Handler index for magnetic tape: MTAHND (octal value equals 16).

General Monitor Directives
3-195
.SPEC (Magnetic Tape)

Data Returned (Magnetic Tape)

Offset

Octal Mnemonic
XRB
Offset

Octal Mnemonic

1

0

3
value (see Table 3-6)
2 XRBC

5

4

7

6

11

10

13

12

15

14

XRB+XRBC
The meaning of this word varies according to the value at XRB + XRLEN in the data passed. Table 3-6 summarizes these values. For a detailed discussion, see the MAGTAPE description in the RSTS lE Programming Manual.

3-196
General Monitor Directives

.SPEC

(Magnetic Tape)

Table 3-5:
Special Functions for Magnetic Tape

Function

Code

Action
(octal)
Parameter
Value Returned

Rewind and off-line
0
unused
0

Write end-of-file
1
unused
0

Rewind
2
unused
0

Skip record
3
records to skip
records not

skipped

Backspace over record
4
records to backspace
records not

backspaced

Set density and parity
5
D + P + S
0

(see below)

Tape status function
6
unused
status (see

below)

File characteristics
7
unused
file characteristics

(see below)

Rewind on close
10
unused
0

Note: Values below are given in octal
except where noted.

Parameter word for function code 6:

D = Density

14, = 800,0
BPI

400, = 1600,0
BPI, phase-encoded

P -- Parity (0 = odd,
1 -- even)*

S = Stay

0 = Mode value
specified in open does not stay on close

20000, = Mode value
specified in open is retained after close

DIGITAL recommends that you use
odd parity. When you use
even parity, you cannot

write binary data. In addition, many
operating systems and tape drives do not support

even parity.

General Monitor Directives
3-197
.SPEC (Magnetic Tape)

Table 3-6: Value Returned by SPEC for Magnetic Tape

Value Returned at XRB+2 for Function Code 6 (Magnetic Tape Status Word)

Octal

Bit Value
Meaning

15
100000
Last command caused an error.

14-13
If bit 3 = 0, these bits indicate density:

00000

20000

40000

60000

If bit 3 =
Reserved

Reserved

8001,, BPI

Reserved

1, these bits indicate density:

00000
160010 BPI

20000
Reserved

40000
Reserved

60000
Reserved

12
00000
9-track tape

10000
Reserved

11
0000
Odd parity

4000
Even parity

10
2000
Magnetic tape is physically write-locked.

9
1000
Tape is beyond end-of-tape marker.

8
400
Tape is at beginning-of-tape (Load Point).

7
200
Last command detected an EOF.

6
100
The last command was READ and the record read was longer than

the I/O buffer size (that is, part of the record was lost).

5
40
Unit is nonselectable (off-line).

4
00
Unit does not accept 16001,, BPI.

20
Unit accepts 1600,0 BPI.

3
00
See values for bits 14-1310.

10
See values for bits 14-1310.

2-0

Indicates last command issued:

0 = Off-line 1 = Read 2 = Write

3 = Write EOF 4 = Rewind

5 = Skip record

6 = Backspace record

(continued on next page)

3-198
General Monitor Directives

.SPEC

(Magnetic Tape)

Table 3-6: Value Returned by SPEC for Magnetic Tape (Cont.)

Value Returned at XRB+2 for Function Code 7 (File Characteristics Word)

word = 0, DOS format or ANSI U (undefined) format

0, ANSI format, with bit meanings as defined below:

Octal

Bit Value
Meaning

15-14
40000
F (fixed-length)

100000
D (variable-length)

140000
S (spanned)*

13-12
00000
Carriage control embedded `M'

10000
FORTRAN carriage control `A'

20000
Implied LF/CR before record''

11-0
-
For Format F, this value is the record length, in bytes.

For Format D, this value is the maximum record length, in bytes.

* ANSI format S is not supported by RSTS/E systems.

General Monitor Directives
3-199
.SPEC

(Flexible Diskette)

3.23.4 SPEC for RX01 /RX02 Flexible Diskette - Not Privileged

For RX01 and RX02 flexible diskette devices, the SPEC directive lets you (1) obtain the density (single or double) of the current flexible diskette, (2) mount a new flexible diskette and recompute the density, and (3) reformat an RX02 flexible diskette for a desired density. Because the RX02 flexible diskette drive supports single and double density flexible diskettes, the .SPEC function is especially useful for programmed flexible diskette opera​tions. For example, SPEC allows you to mount a series of single and double density flexible diskettes without having to close and reopen the device for each mount. That is, the driver computes density once: during the initial open. If you insert a second flexible diskette that is incompatible with the initially computed density, a read or write operation will fail. SPEC per​mits you to include an instruction in your program that causes the driver to recompute the density. In addition, for RX02 flexible diskette drives, SPEC permits you to specify a density reformat operation.

.SPEC can require as much as 20 seconds to reformat the density of the RX02 flexible diskette and cannot be interrupted with CTRL/C. Note that if the operation is interrupted (by power failure or catastrophic error), the flexible diskette is rendered unusable. That is, the flexible diskette will contain both single and double density. To recover, you must reformat the flexible diskette.

Data Passed (Flexible Diskettes)

XRB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1
special function code
0 XRLEN

3
parameter word
2 XRBC

5

4

7 XRBLKM
RXDHND (=octal 22) channel number *

2
6 XRCI

11
10

13
12

15
14

3--200
General Monitor Directives

.SPEC

(Flexible Diskette)

XRB+XRLEN
Function code specifying the desired operation:

= 0

Returns density of currently mounted flexible disk​ette. (The parameter word at XRB + XRBC must be 0.)

Recomputes density and returns density. (The pa​rameter word at XRB + XRBC must also be 0.) This code must be issued prior to any 1/0 operation on the flexible diskette.

= 2

Reformats the current flexible diskette to the den​sity specified in the parameter word at XRB + XRBC. Allowed only on RX02 drives.

XRB+XRBC
Parameter word must equal 0 when function code equals 0 or 1. Otherwise, when function code equals 2:

= 1
Reformats as single-density (one sector equals 12810 bytes)

= 2
Reformats as double-density (one sector equals 25610 bytes)

XRB + XRCI
Channel number times 2; defines the channel on which the flexible diskette is currently open.

XRB+XRBLKM
Handler index for flexible diskette: RXDHND (octal value equals 22).

Data Returned

Offset

Octal Mnemonic
XRB

Offset

Octal Mnemonic

1
0

3
density 2 XRBC

5
4

7
6

11
10

13
12

15
14

XRB +XRBC
Density, returned when XRB +XRLEN in data passed is 0 or 1. Equal to 1 for single-density (sector equals 12810 bytes) or 2 for double-density (sector equals 256,0 bytes).

General Monitor Directives
3-201
.SPEC

(Pseudo Keyboard)

Errors

HNGDEV
A hardware error occurred. This can often be a transient condition. Retry the operation.

ERRERR
You tried to reformat on an RX01 flexible diskette drive. You can use SPEC to reformat flexible diskette density only on RX02 drives.

3.23.5 SPEC for Pseudo Keyboards - Not Privileged

For pseudo keyboards, the SPEC function lets you:

1.
Disable and enable echo at the controlled job's keyboard (that is, the KB side of the pseudo keyboard).

2.
Read a flag word that tells you whether echo is on or off at the controlled job's keyboard.

A pseudo keyboard receives two kinds of output from a controlled job: char​acter echo, which is done by the RSTS /E monitor, and program output, which occurs when a program writes to the controlled job's keyboard. The .SPEC function affects only character echo, not program output.

Character echo is enabled by default. However, in some pseudo keyboard applications, it is more convenient to disable character echo. For example, in a pseudo keyboard application that uses both a terminal and a pseudo keyboard, you get character echo from the terminal. You also get character echo and program output from the pseudo keyboard. You can use this func​tion to disable character echo at the pseudo keyboard.

Data Passed

Offset

Octal Mnemonic
XRB
Offset

Octal Mnemonic

1

0

3
parameter
2 XRBC

5

4

7 XRBLKM
PKHND (- 20 octal) channel no. *

2
6 XRCI

11
10

13
12

15
14

3-202
General Monitor Directives

.SPEC

(Pseudo Keyboard)

XRB+XRBC
This word defines the action to be performed.

If = 0, read the flag word

= 3778 (25510), enable echo

= 1777778 (-110), disable echo

XRB + XRCI
Channel number times two; defines the channel on which the pseudo keyboard is open.

XRB + XRBLKM
Handler index for pseudo keyboard PKHND (octal value = 20).

Data Returned

XRB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

[image: image46.png]-

m o M

11

flag word

[image: image47.png]
0

2 XRBC 4

6 10 12 14

XRB + XRBC
If bit 5 = 0
Keyboard echo is enabled.

= 1
Keyboard echo is disabled.

Errors

No errors are possible with the pseudo keyboard subfunction of SPEC.

General Monitor Directives
3-203
.STAT

3.24 STAT - Return Job Statistics - Privilege and Not Privileged

Form .STAT Function

The STAT directive returns current statistics on the job to the XRB. Data Returned

Offset

Octal Mnemonic
XRB
Offset

Octal Mnemonic

1
current job image size, in K words
0 XRLEN

3
current run-time system size, in K words
2 XRBC

5
current private memory max, in K words
4 XRLOC

7
maximum job image size, in K words
6 XRCI

11
current project-programmer number
10 XRBLK

13
current run priority
12 XRTIME

15
current run burst
14 XRMOD

XRB+XRLEN

The current size of the user job image for this job, in K words.

XRB+XRBC

The size of the current run-time system for this job, in K words.

XRB+XRLOC

The current private memory maximum for the user job image, in K words. If the job has an unlimited memory maximum or if its private memory maximum is larger than the possible maximum size allowed by its current run-time system, then the value returned here is the maxi​mum size possible for the current run-time system, in K words. If the job's private maximum is less than the run​time system minimum, then the value returned here is the run-time system's minimum size. (See CORE, Section 3.6, for a discussion of these values.)

In all cases, this value represents the maximum size of the user job image under its current run-time system.

XRB+XRCI

The maximum job image size possible (under the current run-time system), in K words.

3-204
General Monitor Directives

.STAT

XRB+XRBLK
The job's current project-programmer number is returned here. The programmer number is returned as a binary value in the low byte (XRB + XRBLK), the project number as a binary value in the high byte (XRB + 11). If the job is not logged in, a value of 0 is returned here.

XRB+XRTIME
The job's current run priority (returned to privileged users only; 0 returned to nonprivileged users). Run priority may range from -12810, indicating a suspended job, to + 12710, the highest priority. The monitor schedules jobs for time​shared execution according to this priority. When a user first logs in to RSTS/E, LOGIN is run with priority 0. LOGIN sets the user's job run priority to -8. Only in unu​sual cases should the run priority be changed. It can be changed by a privileged user for any job with the UTILTY system program. It can also be changed with the UU.PRI subfunction of the UUO directive (Section 3.32.33). It can be modified by the job by one-half step with the SET and .CLEAR directives.

The special-case value of -12810 indicates that the job is never scheduled to run; it is suspended.

XRB+XRMOD
The job's current run burst (returned to privileged users only; 0 returned to nonprivileged users). The run burst is the amount of time that the job will be allowed to execute compute-bound before the next job in the schedule is given control. The units of run burst are 1 / 60ths or 1 / 50ths of a second, depending on the clock in use and/or the line fre​quency. (Systems running with the KW11-P clock at crys​tal speeds, rather than at line frequency, have a run burst unit of 1/50th of a second. If the system is operating off a 60 Hz power line, one run burst unit equals 1 /60th of a second.) The range of values for run burst is from 1 to 12710 inclusive. When a job is created, the moni​tor sets the run burst to a value of 6. This value can be modified by the system manager for a particular job with the UTILTY system program. It can also be modified with the UU.PRI subfunction of the UUO directive (see Section 3.32.33).

Errors

No errors are possible on this directive.

Example

No data is passed to the monitor with the STAT directive. Therefore, the call is simply:

.STAT

General Monitor Directives
3-205
.TIME

3.25 .TIME - Return Timing Information - Not Privileged

Form

.TIME

Function

The TIME directive returns job timing information: elapsed CPU time, elapsed time connected to a user terminal (channel 0), elapsed device time, and memory utilization.

Data Passed

No data is passed with the TIME directive.

Data Returned

Offset

Octal Mnemonic
XRB
Offset

Octal Mnemonic

1
low 16 bits of elapsed CPU time, .1 sec.
0 XRLEN

3
elapsed connect time to channel 0, min.
2 XRBC

5
low 16 bits of memory utilization, KCTs
4 XRLOC

7
elapsed device time, min.
6 XRCI

11
high 16 bits of elapsed CPU time, .1 sec.
10 XRBLK

13

12

15
high 16 bits of memory utilization, KCTs
14 XRMOD

XRB + XRLEN

This word contains the low-order 16 bits of the job's elapsed CPU time, in tenths of a second of CPU utilization.

XRB+XRBC

This word contains the elapsed time that the job has been connected to a channel 0 terminal, in minutes.

XRB+XRLOC

This word contains the low-order 16 bits of the job's mem​ory utilization, in kilo-core-ticks (KCTs). A kilo-core-tick is the use of 1K of memory for one-tenth of a second.

XRB+XRCI

This word contains the job's elapsed device time. Device time is the use of an assignable device for one minute. If a job owns two devices for one elapsed minute, then two units of device time are accrued.

3-206
General Monitor Directives

.TIME

XRB + XRBLK
This word contains the high-order 16 bits of the job's elapsed CPU time (see XRB + XRLEN).

XRB + XRMOD
This word contains the high-order 16 bits of the job's mem​ory utilization (see XRB + XRLOC).

Errors

No errors are possible with the TIME directive. Example

Since no data is passed with this directive, the call is simply: .TIME

General Monitor Directives
3-207
.TTAPE

3.26 .TTAPE - Enter Tape Mode - Not Privileged

Form

.TTAPE

Function

The TTAPE directive enters "tape mode" on the job's terminal (channel 0). This directive is useful when it is necessary to read data from the low-speed paper tape reader available on some terminals. Make sure the terminal is open on channel 0, and give this call before the READ. Three things happen:

1.
No incoming characters are echoed, preventing needless output at the terminal while the tape is being read.

2. The DELETE character (ASCII code 177 octal) is ignored, rather than deleting the previous character.

3.
A LINE FEED character (ASCII code 012 octal) is not automatically appended to an incoming RETURN (ASCII code 015 octal).

The TTECH directive (Section 3.28) returns character processing to nor​mal on channel 0.

Data Passed

No data is passed with the TTAPE directive.

Data Returned

No data is returned with the TTAPE directive.

Errors

DETKEY
Channel 0 is not currently available for this job; it is running detached.

Example

Since no data is passed (or returned), the call is simply: .TTAPE

3-208
General Monitor Directives

.TTDDT

3.27 TTDDT - Disable Full-Line Buffering - Not Privileged

Form

.TTDDT

Function

The TTDDT directive disables the monitor's usual practice of buffering a full line of data from the user's terminal (channel 0) before passing it on to the job on a READ.

The monitor accepts data typed at a user terminal and stores it in a buffer until the job associated with the terminal reads the data. Normally, a .READ causes the monitor to pass a line to the job's buffer. (A line is any number of characters ending with a RETURN, LINE FEED, ESCAPE, FORM FEED, or CTRL / D combination.) If a full line is not in the monitor's buffer, the monitor stalls the job until it gets a delimiter and then awakens the job and passes the line on to the job's buffer.

The TTDDT directive tells the monitor that, when the next READ on channel 0 is issued, it is to pass on whatever is currently in the monitor's buffer, whether or not a delimiter has been typed. If no characters are in the monitor's buffer, the job is stalled until at least one character has been typed.

.TTDDT is a "one-shot" directive; it affects only the next READ on channel 0. If you want to do this type of input consistently, you must execute a .TTDDT before each READ.

This type of input is useful when you want to respond to each character that a user types. (Note that more than one character may be in the moni​tor's buffer. If you really want only one character, use TTDDT before each .READ, and define a 1-character input buffer for the .READ.) For example, the Octal Debugging Tool (ODT) routine (see the RSTS lE System Manager's Guide) uses this capability to accept commands without requir​ing that you type a delimiter. This type of input puts a high load on the system and is not recommended except in unusual circumstances.

Data Passed

No data is passed with the TTDDT directive. Data Returned

No data is returned with the TTDDT directive.

General Monitor Directives
3-209
.TTDDT

Errors

DETKEY
Channel 0 is not currently available for this job; the job is run​ning detached.

Example

Since no data is passed, the call is simply: .TTDDT

3-210
General Monitor Directives

.TTECH

3.28 TTECH - Undo TTAPE or TTNCH - Not Privileged

Form

.TTECH

Function

The TTECH directive causes the monitor to resume normal character input processing on channel 0 when it has been disabled with either a .TTAPE directive (see Section 3.26) or a TTNCH directive (see Section 3.29).

Data Passed

No data is passed with the TTECH directive.

Data Returned

No data is returned with the TTECH directive.

Errors

DETKEY
Channel 0 is not available for this job; the job is running detached.

Example

Since no data is passed, this call is simply: .TTECH

General Monitor Directives
3-211
.TTNCH

3.29 TTNCH - Stop Echo - Not Privileged

Form

.TTNCH

Function

The TTNCH directive disables terminal echo on the job's terminal (chan​nel 0). That is, whatever the user types is accepted, but it is not echoed back for display on the terminal. Otherwise, all normal character processing occurs. (The TTECH directive, Section 3.28, returns character processing to normal on channel 0.)

Data Passed

No data is passed with the TTNCH directive.

Data Returned

No data is returned with the TTNCH directive.

Errors

DETKEY
Channel 0 is not available for this job; the job is running detached.

Example

Since no data is passed or returned, the call is simply: .TTNCH

3--212
General Monitor Directives

.TTRST

3.30 TTRST - Restart Output - Not Privileged

Form

,TTRST

Function

The TTRST directive restarts program output to the user's terminal when such output has been stopped by the user's typing a CTRL / O or CTRL / C.

Terminal service on a RSTS / E system (a driver within the monitor itself) maintains a "discard all program output" indicator for each terminal. When this indicator is set, the driver ignores a. WRITE directive to channel 0 rather than display the data at the user's terminal. When the indicator is clear, a WRITE to channel 0 is processed normally. The TTRST directive clears this indicator.

The driver sets the indicator when the user types a CTRL / C combination. It reverses the indicator when the user types a CTRL / O combination. A .READ directive for channel 0 clears the indicator.

One use of TTRST is in run-time systems with keyboard monitors. By issuing TTRST before displaying any prompt, you can ensure that the prompt is actually displayed at the user's terminal.

Data Passed

No data is passed with the TTRST directive.

Data Returned

No data is returned with the TTRST directive.

Errors

DETKEY
Channel 0 is not currently available for this job; the job is run​ning detached.

Example

Since no data is passed, the call is simply: .TTRST

General Monitor Directives
3-213
.ULOG

3.31
ULOG - Assign / Reassign / Deassign Device or Assign/Deassign User Logical

Form

.ULOG

Function

The ULOG directive has three subfunctions. You select the particular action desired by setting a function field in the FIRQB (at offset FQFUN). The subfunctions are described in the following subsections; a summary is given below.

FQFUN

Value

(Octal)
Mnemonic
Action Performed

12
UUASS
Assign/ reassign a device or assign user logical

13
UU.DEA
Deassign a device or user logical

14
UU.DAL
Deassign all devices and user logicals

3-214
General Monitor Directives

.ULOG MASS

3.31.1 UU.ASS (Assign /Reassign a Device, or Assign User Logical) - Privileged and Not Privileged

Form

MOVB
#UU. ASS tF I RQB+FQFUN

(set up FIRQB and XRB)

.ULOG

Function

The UU.ASS subfunction of ULOG allows you to do one of three things: 1.
Assign a device to a job.

2.
Reassign a device to another job.

3.
Enter a user logical. This feature allows you to:

a. Assign a logical name to a device. The monitor will then use this assignment for logical-to-physical device translation by the .FSS directive (Section 3.10).

b. Associate a project-programmer number with a particular logical name. This "user logical ppn" will be used if the associated logical name is found in a string parsed by .FSS, but no ppn is found in the string. This feature is useful if you wish to override a system​wide logical name with an associated ppn. The logical name LB, for example, is commonly associated with a disk on the public structure and some specific project-programmer number (usually [1,1]). With this feature, you can set up a different device and ppn for the logical name LB.

c. Assign a project-programmer number to be substituted for an at sign character ((4) encountered in a file specification string parsed by an .FSS directive.

d. Assign a protection code to be used as a default if no protection code is specified in a file specification string translated by an .FSS directive.

General Monitor Directives
3-215
.ULOG MASS

NOTE

Assigning user logicals assigns values to the USRPPN, USRPRT, and USRLOG areas in the low 1000 bytes of vir​tual memory (Section 2.4). If these values are in a non​standard location, you must specify where they are by setting the XRB. For all other uses of ULOG, the XRB should be cleared to zeros.

Data Passed - Assign/ Reassign Device

FIROB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN
UU.ASS (= octal 12)
0

2

5

4

7
(must = 0)
6 FQPPN

11
(must = 0) 0=assign; 40=job
10 FQNAM1

13

12

15
DOS or ANS (1 word in RAD50 format)
14 FQEXT

17

16

21

20

23
100001 for snagging assign/ reassign; else 0
22 FQMODE

25

24

27
(must = 0)
26 FQPFLG

31
device name (2 ASCII characters)
30 FQDEV

33
=~0, unit no. real device unit number
32 FQDEVN

35

34

37

36

FIRQB+FQFUN
The function code UU.ASS (octal value = 12).

3-216
General Monitor Directives

.FLOG MASS

FIRQB+FQNAM1
For assigning a device, the two bytes beginning here must equal 0.

For reassigning a device, this byte is the job number to which the device is to be reassigned. The byte at FIRQB + FQNAM + 1 must equal 0. If you are nonprivi​leged, you can reassign a device only to a job that is logged in to the same account as your current account.

FIRQB+FQEXT
For assigning or reassigning a magtape device, this word is either DOS or ANS (in RAD50 format) to indi​cate DOS or ANSI label format for the magtape drive.

FIRQB+FQMODE
For assigning or reassigning a device, setting this field to 100001 octal indicates a "snagging" assign or reas​sign. That is, it will assign or reassign the device even if it is currently assigned to another job. This feature can be issued only from a privileged account. Furthermore, the target device must not be open, and the current owner cannot be performing a directory lookup on that device with the UU.DIR subfunction of the UUO direc​tive (see Section 3.32.) If you do not want a snagging assign or reassign, set this word to 0.

FIRQB+FQDEV
Device name to be assigned or reassigned, specified as two ASCII characters. If this word is zero, the public disk structure is assumed.

FIRQB+FQDEVN
Device unit number, passed as a binary value in byte FIRQB + FQDEVN.
A
nonzero
value
in
byte FIRQB + FQDEVN + 1 indicates an explicit device unit number. A zero value in byte FIRQB + FQDEVN + 1 indicates no device unit number.

NOTE

The XRB should be cleared to zeros for assign/reassign device.

General Monitor Directives
3-217
.ULOG MASS

Data Passed - Enter User Logical

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN 5

7

11 13 15 17 21 23 25 27 FQPROT 31

33 35 37

UU.ASS (= octal 12)

project number
programmer number

user logical device name (2 words

in RAD50 format)

protection code
377 =assign prot. code

device name (2 ASCII characters)

=~0, unit no. real
device unit number

0 2 4 6 FQPPN 10 FQNAM1 12

14 16 20 22 24 26 FQPFLG 30 FQDEV 32 FQDEVN 34

36

FIRQB+FQFUN
The function code UU.ASS (octal value = 12).

FIRQB+FQPPN
This word is the project-programmer number for those features that use a ppn (see items 3b and 3c in the function discussion at the beginning of this section). For a user-assignable ppn (case 3c), this is the project​programmer number to be used to replace an @ sign in a string parsed by an .FSS directive. In this case (3c), the two bytes at FIRQB + FQNAM1 and FIRQB + FQNAMI + 1 must be 0.

If
the
four
bytes
FIRQB + FQNAM1
through FIRQB + FQNAM1 + 3 contain a logical device name, and a ppn is to be associated with that name (case 3b), specify the ppn here. If no ppn is to be associated with the logical device name, this word should be set to 0.

3-218
General Monitor Directives

.ULOG WASS

FIRQB+FQNAM1
To assign a user logical name to a device, set the two words beginning here to the logical name, in RAD50 format. Otherwise, set these bytes to zero.

FIRQB+FQPFLG
To assign a user-assignable default protection code, set this byte nonzero. (See FIRQB + FQPROT.)

FIRQB+FQPROT
This byte is the protection code to be used as a default if no protection code is specified in a string scanned by an .FSS directive (case 3d). The byte at FIRQB + FQPFLG must be nonzero, and the two words at FIRQB + FQPPN and FIRQB + FQNAM1 must be zero.

FIRQB+FQDEV
Device name for assigning a logical name to be associ​ated with a device (case 3a and 3b). Specify the device as two ASCII characters. If this word is zero, the public disk structure is assumed.

FIRQB+FQDEVN
Device unit number for assigning a logical name to be associated with a device (case 3a and 3b). The device unit number is passed as a binary value in byte FIRQB +FQDEVN.
A
nonzero
value
in
byte FIRQB + FQDEVN + 1 indicates an explicit device unit number. A zero value in byte FIRQB + FQDEVN + 1 indicates no device unit number.

Offset

Octal Mnemonic
XRB
Offset

Octal Mnemonic

1
length of user logical information
0 XRLEN

3
length of user logical information
2 XRBC

5
starting address for user logical info.
4 XRLOC

7

6

11

10

13

12

15

14

General Monitor Directives
3-219
.ULOG MASS

XRB+XRLEN
If the user logical information is in its standard location (USRPPN, USRPRT, and USRLOG), this word is passed as 0. If some nonstandard set of locations is being used, then specify the length of that information, in bytes, here. Thus, when the user logical information is in a nonstandard loca​tion, this word must be at least 4 (for user-assignable ppn and default protection code). The space for user logical names is optional. If no space is reserved for logical names in the nonstandard location, no such assignments will be allowed.

XRB+XRBC
This word also contains the length of the information (same as the word at XRB + XRLEN).

XRB + XRLOC
If the word at XRB + XRLEN is nonzero, then this word defines the starting location for the user logical informa​tion (the default ppn). You must specify an even value. The order and format of the information created by ULOG is described in Section 2.4; see USRPPN, USRPRT, and USRLOG.

Data Returned

Except for a possible error code in byte 0 of the FIRQB, no meaningful data is returned by the UU.ASS subfunction of ULOG.

Errors

INUSE
For assigning or reassigning a device, the specified device is currently open or has an open file. For assigning a user logical, no space is currently available for storing the information.

NODEVC
The device name specified at FIRQB + FQDEVN is a logi​cal device name for which a physical device is not cur​rently assigned.

NOTAVL
The device specified exists on the system, but the opera​tion failed for one of the following reasons:

1.
The device is currently reserved by another job (see description of FIRQB + FQMODE).

2.
Ownership of the device requires privilege that the user does not have. For example, a nonprivileged user tried to assign a device that is currently assigned to another user.

3.
The device or its controller is disabled.

4.
The device is a keyboard line for a pseudo keyboard only.

3-220
General Monitor Directives

.ULOG MASS

BDNERR
An attempt was made to reassign a device to a nonexistent job. This error can occur only for a reassign call.

PRVIOL
You are not privileged and tried to either:

1.
Reassign a device that requires privilege to assign.

2.
Reassign a device to a job that is logged in to an account other than your current account.

BADCNT
This error has two possible causes:

1.
The
length
specified
at
XRB + XRLEN
and XRB + XRBC must be 4 + 8n, where n = 0, 1, 2, 3, or 4. If it is not, this error is returned. (Other lengths are not valid user logicals.)

2.
The value at XRB + XRLOC is odd.

Example

The following code assigns the user logical name "OUT" to the public disk structure. (Assume that the FIRQB and XRB have been previously cleared to zero.)

MOVB
#UU.ASS*FIRQB+FQFUN
;SET FUNCTION CODE

MOV
#"ROUTtFIRQB+FQNAMl
;SET LOGICAL NAME AS MOV
#"R
,FIRQB+FQNAMl+2
;TWO WORDS RAD50 .ULOG

General Monitor Directives
3-221
.ULOG UUMEA

3.31.2 UU.DEA - Deassign a Device or User Logical - Not Privileged

Form

MOVE #UU.DEAtFIRQB+FQFUN

(set up FIRQB)

.ULOG

Function

The UU.DEA subfunction of ULOG deassigns a device from the current job (releases it for use by other jobs) or deassigns a user-logical assignment.

Data Passed for Deassign Device

FIROB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3FQFUN
UU.DEA (=octal 13)
0

2

5

4

7
(must = 0)
6 FQPPN

11
(must = 0)
10 FQNAM1

13

12

15

14

17

16

21

20

23

22

25

24

27
(must = 0)
26 FQPFLG

31
device name (2 ASCII characters)
30 FQDEV

33
-~0, unit number real device unit number
32 FQDEVN

35

34

37

36

3-222
General Monitor Directives

.ULOG UUMEA

FIRQB+FQFUN
The UU.DEA function code (octal value equals 13).

FIRQB+FQDEV
The name of the device to be deassigned, as two ASCII characters.

FIRQB+FQDEVN
The device unit number is passed in this byte, in binary. A nonzero value in FIRQB + FQDEVN + 1 indicates an explicit device unit number. A zero value in FIRQB + FQDEVN + 1 indicates no device unit number.

NOTE

The XRB should be cleared to zeros for deassigning a device.

Data Passed for Deassign User Logical

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN
UU.DEA (=octal 13)
0

2

5

4

7
40, deassign default ppn; otherwise must be 0
6 FQPPN

11

10 FQNAM1

user logical device name

13
(2 words in RAD50 format)
12

15

14

17

16

21

20

23

22

25

24

27
*0, deassign def. prot.
26 FQPFLG

code; otherwise must be 0

31

30

33

32

35

34

37

36

General Monitor Directives
3-223
.ULOG UUMEA

FIRQB+FQFUN
The UU.DEA function code (octal value equals 13).

FIRQB+FQPPN
Any nonzero value deassigns any previously assigned default project-programmer number. (In this case, set the word at FIRQB + FQNAM1 to zero.) If deassigning default protection code, set this word to zero.

FIRQB+FQNAM1
The logical device name to be deassigned, as two words in RAD50 format. If deassigning a default ppn or protec​tion code, set the word at FIRQB + FQNAM1 to zero.

FIRQB+FQPFLG
Set this byte to nonzero if deassigning a protection code.

XRB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1
length of user logical information
0 XRLEN

3
length of user logical information
2 XRBC

5
starting address for user logical info.
4 XRLOC

7

6

11

10

13

12

15

14

XRB + XRLEN
If the user logical information is in its standard location (USRPPN, USRPRT, and USRLOG), this word is passed as 0. If some nonstandard set of locations is being used, then the length of that information, in bytes, is specified here.

XRB + XRBC
This word contains the length of the information (same as the word at XRB + XRLEN).

XRB + XRLOC
If the word at XRB + XRLEN is nonzero, then this word defines the starting location for the user logical informa​tion (the default ppn). The order and format of the informa​tion created by ULOG is described in Section 2.4; see USRPPN, USRPRT, and USRLOG.

3-224
General Monitor Directives

.ULOG UUMEA

Data Returned

Except for a possible error in byte 0 of the FIRQB, no data is returned by the UU.DEA subfunction of ULOG.

Errors

NODEVC

The device or its type specified at the locations FIRQB + FQDEV and FIRQB + FQDEVN is not part of your system configuration.

BADCNT

This error has two possible causes:

1.
The
length
specified
at
XRB + XRLEN
and XRB + XRBC must be 4 + 8n, where n = 0, 1, 2, 3, or 4. If it is not, this error is returned. (Other lengths are not valid user logicals.)

2.

The value at XRB + XRLOC is odd.

Example

The following code deassigns MTO: from the current job:

MOVB
#UU.DEAtFIRQB+FQFUN
;SET FUNCTION CODE

CLR
FIRQB+FQNAMI
;CLEAR NAME

MOV
#"MTtFIRQB+FQDEV
;SET DEVICE

MOVB
#OtFIRQB+FQDEVN
;SET UNIT NUMBER

MOVB
#377tFIRQB+FQDEVN+1
;UNIT NUMBER REAL

.ULOG

General Monitor Directives

3-225
.ULOG UUMAL

3.31.3 UU.DAL - Deassign All Devices and User Logicals - Not Privileged

Form

MOVB #UU.DAL#FIRQB+FQFUN

(set up FIRQB and XRB)

.ULOG

Function

The UU.DAL function of ULOG deassigns all devices and user logicals for the calling program.

Data Passed

FIRQB

Offset

Octal Mnemonic
Offset

Octal Mnemonic

1
0

3 FQFUN UU.DAL (=octal 14)
2

5
4

7
6

11
10

13
12

15
14

17
16

21
20

23
22

25
24

27
26

31
30

33
32

35
34

37
36

3-226
General Monitor Directives

.ULOG UUMAL

FIRQB+FQFUN
The function code UU.DAL (octal value equals 14).

Offset

Octal Mnemonic
XRB
Offset

Octal Mnemonic

1
length of user logical information
0 XRLEN

3
length of user logical information
2 XRBC

5
starting address for user logical info.
4 XRLOC

7

6

11

10

13

12

15

14

XRB + XRLEN
If the user logical information is in its standard location (USRPPN, USRPRT, and USRLOG), set this word to 0. If some nonstandard set of locations is being used, then spec​ify the length of that information, in bytes, here.

XRB + XRBC
This word contains the length of the information (same as the word at XRB + XRLEN).

XRB + XRLOC
If the word at XRB + XRLEN is nonzero, then this word defines the starting location for the user logical information (the default ppn). The order and format of the information created by ULOG is described in Section 2.4; see USRPPN, USRPRT, and USRLOG.

Data Returned

No data is returned by the UU.DAL subfunction of ULOG.

Errors

BADCNT
1.
The length specified at XRB + XRLEN and XRB + XRBC must be 4 + 8n, where n = 0, 1, 2, 3, or 4. If it is not, this error is returned. (Other lengths are not valid user logicals.)

2.
The value at XRB + XRLOC is odd.

General Monitor Directives
3-227
.ULOG UUMAL

Example

The following code deassigns all devices and user logicals for the current job. The user logical information is in its standard location.

MOVB #UU.DAL#FIRQB+FQFUN CLR XRB+;;RLEN

CLR KRB+XRBC CLR XRB+KRLOC .ULOG

3-228
General Monitor Directives

.UUO

3.32 UUO - Execute BASIC-PLUS SYS Call

Form

.uuo

Function

The UUO directive allows a MACRO program to execute the BASIC-PLUS SYS calls to the File Processor TIP). The SYS calls are described in the RSTS lE Programming Manual. For the MACRO program​mer's convenience, the FIRQB formats for the calls are shown here; for detailed descriptions, however, refer to the RSTS lE Programming Manual.

Table 3-7 summarizes the FIP SYS calls; note that some of the calls are handled by directives other than UUO. (.FSS, for example, handles the file name string scan in MACRO.) The mnemonic subfunction names are pro​vided by the COMMOMMAC prefix file; the decimal values are the BASIC-PLUS FIP call subfunction codes and the UUO subfunction codes that COMMOMMAC relates to the mnemonics listed.

The rest of this section gives the FIRQB formats for data passed and re​turned for the UUO subfunctions; the subfunctions are organized in alpha​betical order of the mnemonics provided by COMMOMMAC.

General Monitor Directives
3-229
.UUO

Table 3-7:
.UUO Subfunctions - Calls to the File Processor (FIP)

Mnemonic
BASIC-PLUS

SYS Call

Code

(Decimal)
Privileged

Status
Function
Section

UU.TB3
-29
No
Get monitor tables -
3.32.43

Part III

UU.SPL
-28
No
Spooling
3.32.37

UU.DMP
-27
Yes
Snap shot dump
3.32.18

UU.FIL
-26
Both
File placement and
3.32.21

modification

UU.ATR
-25
No
Read or write attributes
3.32.3

UU.CCL
-24
Yes
Add /delete CCL
3.32.7

command

(.FSS)
-23
No
Terminating file name
3.10

string scan

(.SET)
-22
Yes
Set special run priority
3.21

(.SET/
-21
Yes
Drop /regain temporary
3.21, 3.5

.CLEAR)

privilege

(.SET/
-20
Yes
Lock /unlock job in
3.21, 3.5

.CLEAR)

memory

UU.LOG
-19
Yes
Set number of logins
3.32.25

UU.RTS
-18
Yes
Add run-time system
3.32.35

Yes
Remove run-time system

Yes
Load run-time system

Yes
Unload run-time system

Yes
Declare default keyboard

monitor

Yes
Add resident library

Yes
Remove resident library

Yes
Load resident library

Yes
Unload resident library

UU.NAM
-17
No
Name run-time system
3.32.28

UU.DIE
-16
Yes
System shutdown
3.32.15

UU.ACT
-15
Yes
Accounting dump
3.32.1

UU.DAT
-14
Yes
Change system date /time
3.32.12

UU.PRI
-13
Yes
Change priority/ run
3.32.33

burst /job size

(continued on next page)

General Monitor Directives
3-231
.uuo

Table 3=7:
UUO Subfunctions - Calls to the File Processor (FIP) (font.)

Mnemonic
BASIC-PLUS

SYS Call

Code

(Decimal)
Privileged

Status
Function
Section

UU.TB2
-12
No
Get monitor tables -
3.32.42

Part II

UU.BCK
-11
Yes
Change file backup
3.32.5

statistics

(.FSS)
-10
No
File name string scan
3.10

UU.HNG
-9
Yes
Hangup a dataset
3.32.22

UU.FCB
-8
No
Get open channel
3.32.20

statistics

(internal to
-7
No
CTRL/C trap enable

BASIC-PLUS)

UUTOK
-6
Yes*
Poke memory
3.32.31

(.SPEC)
-5
Yes
Broadcast to terminal
3.23

(.SPEC)
-4
Yes
Force input to terminal
3.23

UU.TB1
-3
No
Get monitor tables -
3.32.41

Part I

UU.NLG
-2
Yes
Disable logins
3.32.30

UU.YLG
-1
Yes
Enable logins
3.32.45

UUTAS
0
Yes
Create user account
3.32.30

UU.DLU
1
Yes
Delete user account
3.32.17

UU.CLN
2
Yes
Obsolete. Use ONLCLN.

UU.MNT
3
Yes
Disk pack status
3.32.27

UU.LIN
4
Yes
Login
3.32.24

UU.BYE
5
Both
Logout
3.32.6

UU.ATT
6
Both
Attach
3.32.4

Both
Reattach

No
Swap console

UU.DET
7
Yes
Detach
3.32.14

UU.CHU
8
Yes
Change password/ quota
3.32.9

Yes
Kill job

Yes
Disable terminal

* Poke memory can be executed only from account [1,11.

(continued on next page)

3-232
General Monitor Directives

.uuo

Table 3-7:
UUO Subfunctions - Calls to the File Processor (FIP) (Cont.)

Mnemonic
BASIC-PLUS

SYS Call

Code

(Decimal)
Privileged

Status
Function
Section

UU.ERR
9
No
Return error message
3.32.19

UU.ASS
10
Both
Assign /reassign device**
3.32.2

UU.DEA
11
No
Deassign device**
3.32.13

UU.DAL
12
No
Deassign all devices**
3.32.11

UU.ZER
13
Both
Zero a device
3.32.46

UU.RAD
14
Both
Read or read-and-reset
3.32.34

accounting data

UU.DIR
15
Both
Directory lookup on index
3.32.16

No
Special magnetic tape

directory lookup

UU.TRM
16
Both
Set terminal
3.32.44

characteristics

UU.LOK
17
Both
Disk directory lookup on
3.32.26

file name

Both
Disk wildcard directory

lookup

18

Obsolete

UU.CHE
19
Yes
Enable/disable disk
3.32.8

caching

UU.CNV
20
No
Date and time conversion
3.32.10

UU.SLN
21
Yes
System logical names
3.32.36

(.MESAG)
22
Both
Message send/receive
3.12

UU.SWP
23
Yes
Add, remove, list system
3.32.39

files

UUJOB
24
Both
Create job
3.32.23

UU.PPN
25
No
Wild card PPN lookup
3.32.32

UU.STL
29
Yes
Stall/ unstall system
3.32.38

UU.SYS
26
Both
Return job status
3.32.40

information

""` To assign or deassign user logicals, use ULOG, described in Section 3.31.

General Monitor Directives
3-233
.UU0 UU.ACT

3.32.1 UU.ACT (Accounting Information Dump) - Privileged Data Passed

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN 5

7

11 13 15 17 21 23 25 27 31 33 35 37

UU.ACT (= -15,)

project number*
I
programmer number*

0 2 4 6 FQPPN 10

12 14 16 20 22 24 26 30 32 34 36

Data Returned

Except for a possible error in byte 0 of the FIRQB, no meaningful data is returned with the UU.ACT subfunction of UUO.

Errors

NOSUCH
The account specified does not exist.

* 0 in both bytes means the current account.

General Monitor Directives
3-235
.uuo MASS

3.32.2 MASS (Assign/ Reassign Device) - Privileged and Not Privileged

Data Passed

FIROB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN
WASS (= 10,0)
0

2

5

4

7

6

11
O,assign;
10 FQNAM1

=40, job (reassign)

13

12

15
DOS or ANS (1 word in RAD50 format)
14 FQEXT

17

16

21

20

23
100001 for snagging assign /reassign; else 0
22 FQMODE

25

24

27

26

31
device name (2 ASCII characters)
30 FQDEV

33
=~O,unit no. real :[:device unit number
32 FQDEVN

35

34

37

36

3-236
General Monitor Directives

.uuo MASS

Data Returned

Except for a possible error in byte 0 of the FIRQB, no meaningful data is returned with the UU.ASS subfunction of UUO.

Errors

INUSE
For a reassign, the specified device is open or has an open file. For an assign, more than four user logical assignments are made.

NODEVC
Device name at FIRQB + FQDEV is a logical name for which no physical device is assigned.

NOTAVL
The device specified exists on the system, but the operation failed for one of the following reasons:

1.
The device is currently reserved by another job (see description of FIRQB + FQMODE).

2.
Ownership of the device requires privilege that the user does not have. For example, a nonprivileged user tried to assign a device that is currently assigned to another user.

3.
The device or its controller is disabled.

4.
The device is a keyboard line for a pseudo keyboard only.

PRVIOL
You are nonprivileged and tried to either:

1.
Reassign a device that requires privilege to assign.

2.
Reassign a device to a job that is logged in to an account

other that you current account.

BDNERR
Your program attempted to reassign a device to a nonexistent job.

General Monitor Directives
3-237
.UU0 UU.ATR

3.32.3 UU.ATR (Read /Write File Attributes) - Not Privileged

Data Passed

FIROB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN 5 FQSIZM 7

11 13 15 17 21 23 25 27 31 33 35 37

UU.ATR (= -25,0)

=0, read; 1-11,write
channel number

attribute data (used only for write)

number of words written = 1-11, as

specified in byte 5

1 attribute per word

0

2

4 FQFIL

6 FQPPN

10 FQNAM1

12

14 FQEXT

16 FQSIZ

20 FQNAM2

22 FQMODE

24 FQFLAG

26 FQPFLG

30 FQDEV

32 FODEVN

34

36

Data Returned

Other than a possible error in byte 0 of the FIRQB, data is returned on a "read" only (byte 5 of data passed equals 0).

3-238
General Monitor Directives

.UUO UU.ATR

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1 3 5 7 11 13 15 17 21 23 25 27 31 33 35 37

[image: image48.png]
[image: image49.png]
current job number ' 2

attribute data

(If file has no attributes, FIRQB+6 and FIRQB+7 = 0)

name of run-time system

(two words in RAD50 format)

0

2 FQJOB

4

6 FQPPN

10 FQNAM1

12

14 FQEXT

16 FQSIZ

20 FQNAM2

22 FQMODE

24 FQFLAG

26 FQPFLG

30 FQDEV

32 FQDEVN

34 FQCLUS

36

Errors

NOROOM
Occurs only on a write. The User File Directory (UFD) of the account is full. Some files must be deleted to free entries for attributes.

NOTOPN
Channel specified at FIRQB + FQFIL must have file open.

PRVIOL
Job does not have read (or write) access to the file open on the channel, or a UFD is open on the channel.

DEVNFS
Device on which file is open must be disk.

BADCNT
Write only. No value greater than 11 can be specified at FIRQB + FQFIL + 1.

BSERR
Attributes can be written only on channels 1 through 15.

General Monitor Directives
3-239
.uuo MATT

3.32.4 MATT (Attach / Reattach Job / Swap Console) - Privileged and Not Privileged

Data Passed - Attach

FIROB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1

0

3 FQFUN
UU.ATT (= 6,0)
2

5 FQSIZM
must = 0 for attach job number to attach
4 FQFIL

7
project number* programmer number*
6 FQPPN

11

10 FQNAM1

password (2 words in RAD50

13
format)**
12

15

14

17

16

21

20

23

22

25

24

27

26

31

30

33

32

35

34

37

36

* 0 in both bytes means your project-programmer number. You do not need to include a password. If you are nonprivileged, you can only specify your own project-programmer number.

You must include a password if you specify a project-programmer number other than your own. Note that this use of the call requires privilege.

Data Returned

Other than a possible error in byte 0 of the FIRQB, no data is returned by the attach function.

3-240
General Monitor Directives

.uuo MATT

Errors

BADFUO
1.
Job executing the call has an open channel.

2.
Job executing the call is detached.

3.
Caller is a source (BAS) program rather than a compiled (BAC) program.

4.
Job number at FIRQB + FQFIL is not detached.

5. Project-programmer number (ppn) specified does not match ppn of job to attach.

6.
Caller is nonprivileged, and the job to attach has a ppn different from that of the caller.

7.
Password is not valid or contains nonalphanumeric char​acters.

General Monitor Directives
3-241
.uuo MATT

Data Passed - Reattach

FIROB

Offset

Octal Mnemonic

Offset

Octal Mnemonic

1

0

3 FQFUN
UU.ATT (= 6,0)

2

5 FQSIZM
KB no. to attach to
I caller's job number
4 FQFIL

7

11 13 15 17 21 23 25 27 31 33 35 37

[image: image50.png]
[image: image51.png]

6

10

12

14

16

20

22

24

26

30

32

34

36

Data Returned

Other than a possible error in byte 0 of the FIRQB, no data is returned by the reattach function.

3-242
General Monitor Directives

.UU0 UU.ATT

Errors

BADFUO
1.
Job number at FIRQB + FQFIL is less than 1 or greater than JOB MAX on system.

2.
Caller is not detached.

3.
KB number is out of range.

4. KB is currently assigned, opened, or the console key​board of some job other than the calling job.

5.
For nonprivileged users, this error also occurs if the KB to attach to is not assigned to any -job, and the KB re​quires privilege to assign.

General Monitor Directives
3-243
.uuo MATT

Data Passed - Swap Console

FIROB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN UUATT (= 6,)

5 FQSIZM 1 for swap console
0

2

job number to

swap with` 4 FQFIL

7
6

11
10

13
12

15
14

17
16

21
20

23
22

25
24

27
26

31
30

33
32

35
34

37
36

* If the calling job is attached, this job must be detached. If the calling job is detached, this job must be attached. Both the calling job and this job must be running under the same project-programmer number.

3-244
General Monitor Directives

.uuo MATT

Data Returned

Other than a possible error in byte 0 of the FIRQB, no data is returned by the swap console function.

Errors

BADFUO 1. Both the calling job and the job specified at FIRQB + FQFIL are detached, or neither job is detached.

2.
The job specified at FIRQB + FQFIL has a project​programmer number different from the caller's.

3.
The value at FIRQB + FQSIZM is neither 0 nor 1.

General Monitor Directives
3-245
.UU0 UU.BCK

3.32.5 UU.BCK (Change File Statistics) - Privileged

Data Passed

FIROB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

UU.BCK (-- -11,0)

LSB of last access*
channel no. (11,-1510)

LSB of creation date*
MSB of last access*

LSB of creation time*
MSB of creation date*

MSB of creation time*

0 2 4 FQFIL 6 FQPPN 10 FQNAM1 12

14 16 20 22 24 26 30 32 34 36

3 FQFUN 5 FQSIZM 7

11 13 15 17 21 23 25 27 31 33 35 37 Data Returned

Other than a possible error in byte 0 of the FIRQB, no data is returned by

the UU.BCK subfunction.

Errors

BADFUO
The file open on the channel specified is not a disk file or is a user file directory.

* The system internal format for dates has the form:

[(year - 1970) * 100010] + day-within-year

Time is specified in minutes until midnight, where 1440 equals midnight. See the DATE directive for a disc'.lssion of these formats.

3-246
General Monitor Directives

.UU0 UU.BYE

3.32.6 UU.BYE (Logout) - Privileged and Not Privileged Data Passed

FIROB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN 5

7

11 13 15 17 21 23 25 27 31 33 35 37

[image: image52.png]
UU.BYE (= 5,0)
1

[image: image53.png]
0 2

4 FQFIL 6

10 12 14 16 20 22 24 26 30 32 34 36

For privileged users, bits 0 and 1 specify the type of logout:

Bit 0 = 0 Close 1/0 channels, deassign devices, remove receivers, and dismount disks mounted /NOSHARE before performing logout.

= 1 Just perform logout; do not close channels, deassign devices, remove receivers, or dismount disks.

Bit 1 = 0 Check quotas on all mounted disks before performing logout.

= 1 Perform logout without checking disk quotas.

For nonprivileged users, the system forces bits 0 and 1 to 0. Bits 2 through 7 are reserved; set them to 0.

General Monitor Directives
3-247
.UU0 UU.BYE

Data Returned

FIROB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN 5

7

11 13 15 17 21 23 25 27 31 33 35 37

[image: image54.png]
logout status (0, -1, or -2)*

[image: image55.png]
number of detached*** jobs allowed

current disk quota (in blocks)t

current disk usage (in blocks)t

disk name (2 ASCII characters)t

40, unit number realt I
disk unit numbert

0

2

4 FQERNO

6

10

12

14

Errors

No errors are possible with the UU.BYE subfunction.

0 = Neither disk quota nor nonprivileged detached job quota is exceeded. If you are privileged, the system returns control to your program. If you are nonprivileged, the system kills your job after performing necessary clean-up functions.

-1
= A quota is exceeded; your job is still logged in.

-2 -- A quota is exceeded, but your job is logged out. If you are privileged, the system returns control to your program. If you are nonprivileged, the system kills your job after performing necessary clean-up functions.

*W

Indicates which quota is exceeded. (This value is valid only if FIRQB+FQFIL is -1 or -2.)

0 = Disk quota

1 = Nonprivileged detached job quota.

quota code**

number of detached jobs***

16 FQSIZ

20

22 FQMODE

24 FQFLAG

26 FQPFLG

30 FQDEV

32 FQDEVN

34

36

3-248
General Monitor Directives

.UUO UU.BYE

*** Returned if nonprivileged detached job quota is exceeded. FIRQB + FQMODE contains the number of detached jobs in the current account. FIRQB + FQMODE + 1 contains the number of detached jobs currently allowed.

t Returned if disk quota is exceeded.

General Monitor Directives
3-249
.UU0 UU.CCL

3.32.7 UU.CCL (Add/ Delete CCL Command) - Privileged Data Passed - Add

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN 5 FQSIZM 7

11 13 15 17 21 23 25 27 FQPROT 31

33 35 37

UU.CCL (= -24,0)

abbrev. point, chars
must = 0 for add

project number
programmer number

file name of program to run

(2 words in RAD50 format)

file type (1 word in RAD50 format)

CCL command - one to nine characters

padded with NULS (ASCII code 000)

to nine characters

(must = 0)

device name (2 ASCII characters)

must be disk

40, unit no. real
device unit number

*
line number to start execution

0 2 4 FQFIL 6 FQPPN 10 FQNAM1 12

14 FQEXT 16 FQSIZ 20

22 24 26 30 FQDEV 32 FQDEVN 34 FQCLUS 36

Privilege indication in bit 15.

3-250
General Monitor Directives

.UU0 UU.CCL

Data Passed - Delete

FIROB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN 5 FQSIZM 7

11 13 15 17 21 23 25 27 31 33 35 37

UU.CCL (= -24,0)

abbrev. point, chars.
-2 for delete

CCL command to be deleted

(1 to 9 ASCII characters, padded with

NULs (ASCII code 000 octal)

to 9 characters

0 2

4 FQFIL 6

10 12 14 16 FQSIZ 20

22 24 26 30 32 34 36

Data Returned

Except for a possible error in byte 0 of the FIRQB, no data is returned by UU.CCL.

Errors

BADNAM
For add only. The CCL command either begins with a number or contains an otherwise unacceptable character.

INUSE
For add only. The CCL command is already defined.

NODEVC
For delete only. The CCL command does not exist.

General Monitor Directives
3-251
.UUO UU.CHE

3.32.8 UU.CHE (Enable/Disable Disk Caching) - Privileged Data Passed

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN

5 FQSIZM
UU.CHE (= 19,)

cache clustersize subfunction code*
0

2

4 FQFIL

7
limit on total number of cache clusters
6 FQPPN

11
limit on clusters for directory caching
10 FQNAM1

13
limit on clusters for user data caching
12

15
controls small buffers- jmod. for enable /disable**
14 FQEXT

17

16

21

20

23

22

25

24

27

26

31

30

33

32

35

34

37

36

0 =
Enable directory and data caching

1 =
Disable all caching

200 =
Return current caching parameters

0 =
Use current setting

1 =
Enable caching as specified in file open mode or UFD setting

100 =
Cache all data transfers regardless of the file open mode or UFD setting

200 =
Disable all caching

0 =
Use current setting

1 =
Allow use of small buffer pool

200 =
Do not use small buffer pool

3-252
General Monitor Directives

.UU0 UU.CHE

Data Returned

FIROB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1 3

5 FQSIZM 7

11 13 15 17 21 23 25 27 31 33 35 37

[image: image56.png]
cache clustersize
I
current cache setting

limit on total number of cache clusters

limit on clusters for directory caching

limit on clusters for user data caching

controls small buffers
mod. for enable/disable

[image: image57.png]
0 2 4 FQFIL 6 FQPPN 10 FQNAM1 12

14 FQEXT 16

20 22 24 26 30 32 34 36

Errors

INUSE
All of the clusters allotted to the cache are in use.

NOROOM
Not enough XBUF space to enable data caching. System man​ager must allocate at least 2K words.

NOTAVL
Tried to change cluster size while cached file disk transfer in progress. Retry.

PRVIOL
Current user is not privileged.

ERRERR
Caching not enabled during system generation.

General Monitor Directives
3-253
.UU0 UU.CHU

3.32.9 UU.CHU (Change Password/Quota, Disable Terminal, Kill Job) - Privileged

Data Passed (Change Password /Quota)

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN

UU.CHU (= 8,0)

[image: image58.png]

0 2

5

4

7

6

11
project number I programmer number
10 FQNAM1

13

12

new password (2 words in

15
RAD50 format)
14

17
number of blocks for quota; 0 = unlimited
16 FQSIZ

21

20

23

22

25

24

27
=377 to change quota
26 FQPFLG

31
device name (2 ASCII characters)
30 FQDEV

33
40, unit number real device unit number
32 FQDEVN

35
(must = 0)
34 FQCLUS

37

36

3-254
General Monitor Directives

.UU0 UU.CHU

Data Passed (Disable Terminal)

FIROB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN 5

7

11 13 15 17 21 23 25 27 31 33 35 37

UU.CHU (= 8,0)

[image: image59.png]
[image: image60.png]
keyboard number

(must = 377)

0 2

4 FQFIL 6

10 12 14 16 20 22 24 26 30 32 34 FQCLUS 36

General Monitor Directives
3-255
.UU0 UU.CHU

Data Passed (Kill Job)

FIROB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN 5

7

11 13 15 17 21 23 25 27 31 33 35 37

UU.CHU (= 8,)

(must = 377)
1
(must = 0)

job number to kill*

0 2

4 FQFIL 6

10 12 14 16 20 22 24 26 30 32 34 FQCLUS 36

Data Returned

Except for a possible error in byte 0 of the FIRQB, no data is returned by the UU.CHU subfunction.

Errors

NOSUCH
For change password/quota. Account not present on disk specified.

NODEVC
For change password/quota. Device specified is not on the system.

* Specify 0 to kill the current job.

3-256
General Monitor Directives

.UU0 UU.CHU

BADFUO
1. For change password/ quota. Device specified is not a disk. 2. For kill job. Job number is 0 or greater than JOB MAX. 3. For disable terminal. Keyboard number:

a. Is greater than number of keyboards on system b. Is a pseudo keyboard

c. Is currently opened or assigned by a job

General Monitor Directives
3-257
.UU0 UU.CNV

3.32.10 UU.CNV (Date and Time Conversion) - Not Privileged

Data Passed

FIRQB

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1

3 FQFUN
UU.CNV (= 20,0)
0

2

5
internal form date (see .DATE); 0=current date
4 FQFIL

7
date flag'
6 FQPPN

11

10

13

12

15

14

17

16

21

20

23
internal form time (see. DATE); 0 =current time
22 FQMODE

25
time flag "
24 FQFLAG

27

26

31

30

33

32

35

34

37

36

* date flag
= 0
Use system default format

<0
Use alphabetic date format

>0
Use ISO numeric date format

time flag
= 0
Use system default format

<0
Use AM/PM time format

>0
Use 24-hour time format

3-258
General Monitor Directives

.UU0 UU.CNV

Data Returned

Offset
Offset

Octal Mnemonic
Octal Mnemonic

1 3 5 7

11 13 15 17 21 23 25 27 31 33 35 37

[image: image61.bmp]
(same as data passed)

(same as data passed)

date string (padded

at end with NULs) dd-mmm-yy or yy.mm.dd

(same as data passed)

(same as data passed)

job number '2

0

2 FQJOB 4 FQFIL 6 FQPPN 10 FQNAM1 12

14 16 20 22 FQMODE 24 FQFLAG 26 FQPFLG

time string (padded

30

at end with NULs)

32

hh:mm xm or hh:mm

34

36

Errors

No errors are possible; however, if the date or time passed is illegal, ran​dom output is generated.

General Monitor Directives
3-259
.UU0 UUMAL

3.32.11 UUMAL (Deassign All Devices) - Not Privileged Data Passed

FIROB

Offset

Octal Mnemonic
Offset

Octal Mnemonic

1
0

3 FQFUN UU.DAL (= 12,0)
2

5
4

7
6

11
10

13
12

15
14

17
16

21
20

23
22

25
24

27
26

31
30

33
32

35
34

37
36

Data Returned

No data is returned by the UU.DAL subfunction; no errors are possible.

3-260
General Monitor Directives

