
BASICReference Manual
Order No . AA-L334A-TKIncluding AD-L334A-T1

February 1984
This manual describes language elements, compiler commands, and com-
piler directives of VAX BASIC and PDP-11 BASIC-PLUS-2 .

OPERATING SYSTEM AND VERSION : VAX /VMS

	

V3
RSX-1 1 M-PLUS

	

V2
RSX-11M V4
RSTS/E

	

V8
SOFTWARE VERSION :

	

VAX BASIC

	

V2
PDP-11 BASIC-PLUS-2 V2

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation . Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document .
The software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license .
No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright © 1982, 1984 by Digital Equipment Corporation . All Rights Reserved .

The postage-paid READER'S COMMENTS form on the last page of this document requests your
critical evaluation to assist us in preparing future documentation .

The following are trademarks of Digital Equipment Corporation :

Commercial Engineering Publications typeset this manual using DIGITAL's TMS-11 Text
Management System .

d TM980 aa DECwriter RSTS
DIBOL RSX

DEC MASSBUS UNIBUS
DECmate PDP VAX
DECsystem-10 P/OS VMS
DECSYSTEM-20 Professional VT
DECUS Rainbow Work Processor

Contents
To the Reader
PART I - Program Elements and Structure

Page
xi

1 .0 Elements of a BASIC Program . 1
1 .1 Line Numbers . 1
1 .2 Labels . 2
1 .3 Statements . 3

1 .3 .1 Keywords . 3
1 .3 .2 Single-Statement Lines and Continued Statements 4
1 .3 .3 Multi-Statement Lines. 5

1 .4 Compiler Directives . 7
1 .5 Line Terminators . 7
1 .6 Lexical Order . 8

2.0 Program Documentation . 8
2 .1 Comment Fields . 8
2 .2 REM Statements . 9
2 .3 Empty Statements . 10

3 .0 BASIC Character Set . 10
4 .0 BASIC Data Types . 10

4.1 Implicit Data Typing . 13
4.2 Explicit Data Typing . 13

5 .0 Constants . 14
5.1 Numeric Constants . 15

5 .1 .1 Floating-Point Constants 15
5 .1 .2 Integer Constants 17
5 .1 .3 Packed Decimal Constants (VAX-11 BASIC) 17

5 .2 String Constants . 18
5 .3 Named Constants . 19

5 .3 .1 Naming Constants Within a Program Unit 19
5 .3 .2 Naming Constants External to a Program Unit 20

5 .4 Explicit Literal Notation . 21
5 .5 Predefined Constants . 23

7.0 Expressions
7.1 Numeric Expressions

7 .1 .1 Floating-Point and Integer Promotion7 .1 .2 DECIMAL Promotion Rules (VAX-11

.

.
.
.

.

.
Rules

.

.

BASIC) .

.

.

.

.

.

.

.

.

.

.

.

. .

. .

. .

. .

.

.

.

.

.

.

.

.

.

.

.

.

30
31
31
32

7.2 String Expressions . 347.3 Conditional Expressions . 34
7 .3 .1 Numeric Relational Expressions 357 .3 .2 String Relational Expressions 367 .3 .3 Logical Expressions _ 37

7.4 Evaluating Expressions . 40
PART II - Compiler Commands

1 .0 APPEND . 432 .0 ASSIGN (VAX-11 BASIC) . 453 .0 BRLRES (BASIC-PLUS-2) . 464 .0 BUILD (BASIC-PLUS-2) . 485 .0 $ Command . 496 .0 COMPILE . 517 .0 CONTINUE . 538 .0 DELETE . 549 .0 DSKLIB (BASIC-PLUS-2) . 5510.0 EDIT . 57
10 .1 DEFINE (BASIC-PLUS-2) . 6110 .2 EXECUTE (BASIC-PLUS-2) . 6210 .3 EXIT or CTRL/Z (BASIC-PLUS-2) 6310 .4 FIND (BASIC-PLUS-2) . 6410.5 INSERT (BASIC-PLUS-2) . 6510.6 SUBSTITUTE (BASIC-PLUS-2) 66

11 .0 EXIT . 6812 .0 HELP . 6913 .0 IDENTIFY . 7114 .0 INQUIRE . 7215 .0 LIBRARY (BASIC-PLUS-2) . 73
16.0 LIST and LISTNH . 75
17 .0 LOAD . 7718 .0 LOCK . 7819 .0 NEW. 7920 .0 ODLRMS (BASIC-PLUS-2) . 80
21 .0 OLD . 8222 .0 Qualifiers . 8323 .0 RENAME . 9524 .0 REPLACE . 97

6.0 Variables . 25
6.1 Variable Names . 25
6.2 Implicitly Declared Variables 26
6.3 Explicitly Declared Variables 27
6.4 Subscripted Variables and Arrays 27
6.5 Initialization of Variables . 29

PART III - Compiler Directives

PART IV - Statements

25 .0

	

RESEQUENCE (VAX-11 BASIC) . 98
26 .0

	

RMSRES (BASIC-PLUS-2) . 100
27 .0

	

RUN and RUNNH . 102
28 .0 SAVE . 104
29 .0 SCALE . 105
30.0 SCRATCH . 106
31 .0

	

SEQUENCE . 107
32 .0 SET . 108
33 .0

	

SHOW . .

	

.

	

. .

	

. .

	

.

	

.

	

. . .

	

. . . . 109
34 .0 UNSAVE . 111

1 .0

	

%ABORT .

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

. 113
2.0

	

%CROSS . 114
3 .0

	

%IDENT . 115
4 .0

	

%IF-%THEN-%ELSE-%END-%IF . 117
5 .0

	

%INCLUDE . 119
6.0

	

%LET . 121
7.0

	

%LIST . 122
8.0

	

%NOCROSS . 123
9.0

	

%NOLIST . 124
10.0 %PAGE . 125
11 .0 %SBTTL . 126
12.0 %TITLE . 127
13.0

	

%VARIANT

	

. .

	

.

	

. 128

1 .0

	

CALL . 129
2.0

	

CHAIN .

	

. .

	

.

	

. 134
3 .0

	

CHANGE .

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

. 136
4.0

	

CLOSE . 138
5 .0

	

COMMON . 139
6 .0

	

DATA
. 143

7 .0

	

DECLARE . 145
8.0 DEF .149
9.0

	

DEF* .

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

. 153
10 .0 DELETE . 157
11 .0 DIMENSION . 158
12 .0

	

END . 162
13 .0

	

EXIT . 164
14.0 EXTERNAL . 166
15 .0 FIELD . 169
16 .0 FIND . 171
17 .0 FNEND . 177
18 .0 FNEXIT . 178
19 .0

	

FOR . 179
20 .0

	

FREE (VAX-11 BASIC) . 182
21 .0

	

FUNCTION .

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

. 183
22 .0 FUNCTIONEND . 187
23 .0 FUNCTIONEXIT . 188

February 1984

24 .0 GET . 189
25 .0 GOSUB . 195
26 .0 GOTO . 196
27 .0 IF . 197
28 .0 INPUT . 199
29 .0 INPUT LINE . 202
30 .0 ITERATE . 204
31 .0 KILL . 205
32 .0 LET .206
33 .0 LINPUT .207
34 .0 LSET . 209
35 .0 MAP . 210
36.0 MAP DYNAMIC . 213
37 .0 MARGIN (VAX-11 BASIC) . 215
38.0 MAT . 216
39.0 MAT INPUT . 219
40.0 MAT LINPUT . 221
41 .0 MAT PRINT . 223
42.0 MAT READ . 225
43 .0 MOVE . 227
44.0 NAME AS . 230
45.0 NEXT .231
46.0 NOMARGIN (VAX-11 BASIC) . 232
47.0 ON ERROR GO BACK . 233
48.0 ON ERROR GOTO . 234
49.0 ON ERROR GOTO 0 . 235
50.0 ON GOSUB . 236
51 .0 ON GOTO . 237
52 .0 OPEN .238
53 .0 OPTION . 248
54 .0 PRINT . 251
55 .0 PRINT USING . 254
56 .0 PUT . 258
57 .0 RANDOMIZE . 260
58.0 READ .261
59 .0 RECORD (VAX-11 BASIC) . 263
60.0 REM . 267
61 .0 REMAP .268
62 .0 RESTORE (RESET) . 271
63 .0 RESUME . 272
64.0 RETURN . 273
65 .0 RSET . 274
66.0 SCRATCH .275
67.0 SELECT .276
68.0 SLEEP .278
69.0 STOP .279
70.0 SUB . 280
71 .0 SUBEND . 284
72.0 SUBEXIT . 285
73 .0 UNLESS .286
74 .0 UNLOCK .287
75 .0 UNTIL . 288
76 .0 UPDATE . 289
77 .0 WAIT .291
78 .0 WHILE . 292

PART V - Functions
1 .0 ABS .293
2.0 ABS% . 294
3.0 ASCII .295
4.0

	

ATN . 296
5 .0 BUFSIZ .297
6 .0

	

CCPOS .

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

. 298
7 .0 CHR$.299
8.0

	

COMP% . 300
9.0

	

COS . 301
10.0

	

CTRLC . 302
11 .0

	

CVT$$. 303
12 .0

	

CVTXX . 304
13 .0

	

DATE$. 306
14.0

	

DECIMAL (VAX-11 BASIC) . 307
15.0

	

DET . 308
16 .0

	

DIF$. 309
17 .0

	

ECHO . 310
18 .0

	

EDIT$. 311
19 .0

	

ERL . 312
20.0 ERN$.313
21 .0

	

ERR . 314
22 .0 ERT$.315
23 .0

	

EXP . 316
24.0

	

FIX . 317
25 .0

	

FORMAT$. 318
26 .0

	

FSP$.

	

. 319
27 .0

	

FSS$ (BASIC-PLUS-2) . 320
28 .0

	

GETRFA . 321
29.0

	

INSTR . 322
30.0 INT .324
31 .0

	

INTEGER . 325
32.0 LEFT$.326
33 .0

	

LEN . 327
34 .0

	

LOC (VAX-11 BASIC) . 328
35 .0

	

LOG . 329
36 .0 LOG10 .330
37 .0 MAG. .331
38.0 MAGTAPE .332
39.0

	

MAR (VAX-11 BASIC) . 334
40.0 MID$.335
41 .0 NOECHO .336
42 .0 NUM .337
43 .0

	

NUM2 . 338
44 .0

	

NUM$. 339
45 .0

	

NUM1$. 340
46.0

	

ONECHR (BASIC-PLUS-2) . 341
47.0

	

PLACE$. 342
48.0

	

POS . 345
49.0 PROD$.347
50 .0

	

QUO$. 349
51 .0 RAD$.351
52 .0

	

RCTRLC . 352
53 .0 RCTRLO .353

Appendix A Reserved BASIC Keywords

Appendix B Program and Subprogram Coding Conventions

Index

54 .0 REAL .354
55 .0 RECOUNT . 355
56.0 RIGHT$.356
57.0 RND .357
58.0 SEG$.358
59.0 SGN . 359
60.0 SIN .360
61 .0 SPACE$.361
62.0 SQR . 362
63.0 STATUS .363
64.0 STR$. 365
65.0 STRING$. 366
66.0 SUM$. 367
67.0 SWAP% .368
68 .0 SYS . 369
69 .0 TAB . 371
70 .0 TAN . 372
71 .0 TIME . 37372 .0 TIME$. 375
73 .0 TRM$.376
74 .0 VAL . 377
75 .0 VAL% . 378
76 .0 XLATE . 379

PART VI - BASIC-PLUS-2 Debugger Commands
1 .0 BREAK (BASIC-PLUS-2) . 383
2 .0 CONTINUE (BASIC-PLUS-2) . 385
3 .0 CORE (BASIC-PLUS-2) . 386
4 .0 ERL (BASIC-PLUS-2) . 387
5 .0 ERN (BASIC-PLUS-2) . 388
6 .0 ERR (BASIC-PLUS-2) . 389
7 .0 EXIT (BASIC-PLUS-2) . 390
8 .0 FREE (BASIC-PLUS-2) . 391
9 .0 1/0 BUFFER (BASIC-PLUS-2) . 392
10 .0 LET (BASIC-PLUS-2) . 393
11 .0 PRINT (BASIC-PLUS-2) . 395
12 .0 RECOUNT (BASIC-PLUS-2) . 396
13 .0 REDIRECT (BASIC-PLUS-2) . 397
14 .0 STATUS (BASIC-PLUS-2) . 398
15 .0 STEP (BASIC-PLUS-2) . 400
16 .0 STRING (BASIC-PLUS-2) . 401
17 .0 TRACE (BASIC-PLUS-2) . 402
18 .0 UNBREAK (BASIC-PLUS-2) . 403
19 .0 UNTRACE (BASIC-PLUS-2) . 405

1 Keyword Space Requirements . 4
2 BASIC Data Types .. 12
3 Numbers in E Notation .. 16
4 Predefined Constants . .. 23
5 Arithmetic Operators .. 30
6 Result Data Types in BASIC Expressions 32
7 VAX-11 BASIC Result Data Types . 32
8 Result Data Types for DECIMAL Data 33
9 Numeric Relational Operators . 35
10 String Relational Operators . 37
11 Logical Operators .. 38
12 Truth Tables 38
13 Numeric Operator Precedence . 47
14 BASIC-PLUS-2 Editing Mode Commands 60
15 ODL Files 81
16 VAX-11 BASIC COMPILE and SET Command Qualifiers 84
17 BASIC-PLUS-2 Command Qualifiers . 90
18 RMS Libraries 101
19 VAX-11 BASIC Parameter Passing Mechanisms 132
20 BASIC-PLUS--2 Parameter Passing Mechanisms 133
21 FILL Item Formats and Storage Allocations 141
22 EDIT$ Values 311
23 MAGTAPE Function Codes . 332
24 Performing MAGTAPE Functions in VAX-11 BASIC 333
25 Rounding and Truncation of 123456 .654321 344
26 VAX-11 BASIC STATUS Bits . 364
27 VAX-1 1 BASIC Subset of RSTS/E SYS Calls 369
28 TIME Function Values 374

To the Reader

This manual is part of the BASIC documentation set . This set of manuals was designed to let you learn
and use BASIC regardless of your prior experience with computers . The documentation set includes :
For the beginner :
" Introduction to BASIC
" BASIC for Beginners
" More BASIC for Beginners
For all systems :
" BASIC User's Guide
" BASIC Reference Manual
" BASIC Pocket Reference Guide
For specific systems :
" BASIC on RSTS/E Systems
" BASIC on RSX-11 M/M-PLUS Systems
" BASIC on VAX/VMS Systems
For the system manager :
" BASIC-PLUS-2 RSTS/E Installation Guide and Release Notes
" BASIC-PLUS-2 RSX-1 1 M l M-PLUS Installation Guide and Release Notes
" VAX-11 BASIC Installation Guide and Release Notes
For the beginner, Introduction to BASIC explains the fundamentals of the BASIC language and shows
how to use BASIC to solve programming problems . BASIC for Beginners and More BASIC for
Beginners lead the reader step-by-step through planning and writing several practical programs that
teach BASIC programming techniques . In addition, the first chapter of the system-specific user's guide
tells you how to log on to your computer system, create and execute programs, and do simple file
operations such as printing, typing, and deleting files .

For programmers who are more familiar with BASIC, the BASIC User's Guide and the system-specificuser's guides include a complete explanation of BASIC and how to use it on your system . If you needinformation on a particular feature or statement, the BASIC Reference Manual describes the format ofeach BASIC command or keyword individually .
The BASIC documentation set has several new features that let you find information quickly andeasily . Each manual has its own index (with instructions on its use) and the BASIC Reference Manualhas a master index to the entire documentation set . For quick reference the BASIC Pocket ReferenceGuide provides a brief explanation of all BASIC commands and functions . Similar information is alsoavailable at the computer terminal from the BASIC HELP facility .
The following pages describe the function of this particular manual . We welcome your commentsand encourage you to use the Reader's Comments Form provided at the back of this book .
Document Objectives
This manual describes the language elements and syntax of Version 2 of VAX-11 BASIC andBASIC-PLUS-2 . The term BASIC is used generically in this manual to refer to both VAX-11 BASICand BASIC-PLUS-2 . The term VAX-11 BASIC refers specifically to VAX-11 BASIC as implemented onVAX/VMS systems. BASIC-PLUS-2 refers specifically to BASIC-PLUS-2 as implemented on RSTS/E,RSX-11 M, and RSX-11 M-PLUS systems.

For your convenience, examples, formats, or rules specific to VAX-11 BASIC,BASIC-PLUS-2, or BASIC-PLUS-2 on RSTSIE or RSX-11 MIM-PLUS are identified bya marginal symbol :
indicates VAX-11 BASIC only .
indicates BASIC-PLUS-2 only .

RSTS

	

indicates BASIC-PLUS-2 on RSTS/E systems .
RSX

Intended Audience
This manual should be used by programmers familiar with computer concepts and the BASIC lan-guage . It is a reference manual to be used in conjunction with the BASIC user's guides .
Document Structure
This manual consists of six parts, two appendixes, and a master index to the BASIC documentation
set . With the exception of Part I, BASIC language elements are arranged in alphabetical order within
each part ; each language element begins on a separate page . A sample format page is included on
page xiv .
Part I

	

Describes BASIC program elements and structure .
Part II

	

Describes BASIC compiler commands .

Note

indicates BASIC-PLUS-2 on RSX-11MIM-PLUS systems .

Part III
Part IV
Part V
Part VI
Appendix A
Appendix B
This manual also includes three tabbed dividers for convenient reference :
" The first divider summarizes the conventions used in this manual .
" The second divider lists most BASIC keywords by function .
" The third divider precedes the Master Index and describes its use.

Describes BASIC compiler directives .
Describes BASIC statements .
Describes BASIC functions .
Describes BASIC-PLUS-2 debugger commands.
Lists reserved keywords .
Summarizes program and subprogram coding conventions .

ENTRY NAME

1 .0 ENTRY NAME
Function
Describes the entry's function or effect .
Format

Syntax Rules
Syntax rules tell you how to order format elements to form clauses or statements . They also
impose restrictions or relax restrictions implied by the format .

General Rules
General rules define the semantics of the entry and the entry's effect on program execution orcompilation .

Examples

Sample Format Page

A format shows the syntax of a language element . When you have a choice of formats, the
formats are named for clarity . When a format is named General, it applies to both VAX-11
BASIC and BASIC-PLUS-2 . Format components are explained in syntax and general rules .When a language element has more than one format, formats are referred to by name .Some formats are divided into two parts . The first part, in the top portion of the box, showsthe general elements and order of the format .

The second part of the format, in the lower portion of the box, shows the components
and order of the individual elements in the general format .

This section presents one or more sample program lines . All examples work for both VAX-1 1 BASICand BASIC-PLUS-2 unless otherwise noted .

Conventions
Formats present the correct syntax for writing BASIC source code . You must order syntax elements as
shown in the format unless the syntax rules indicate otherwise.
Syntax formats consist of BASIC keywords, metalanguage mnemonics, and punctuation symbols .
Metalanguage mnemonics are symbolic derivations of BASIC objects or structures . The tabbed
divider that follows this section lists the most frequently used mnemonics and their meanings, as well
as the most frequently used punctuation symbols.

Note
BASIC keywords are always capitalized in this manual and must be spelled exactly as
shown. Mnemonics are in lowercase letters in formats and are italicized in the syntax
and general rules .

Some metalanguage mnemonics are derived directly from BASIC keywords . For example :
" Map

	

From MAP
" Com

	

From COMMON
" Func

	

From FUNCTION
" Def

	

From DEF
" Sub

	

From SUB
Others are abbreviated forms of words . For example:
" Vbl

	

For variable
" Unsubs

	

For unsubscripted
" Subs

	

For subscripted
" Str

	

For string
" Const

	

For constant
" Exp

	

For expression
" Nam

	

For name
" Cond

	

For conditional
" Int

	

For integer
" File-spec

	

For file-specification
" Data-type

	

For data-type
Most mnemonics used in formats are combinations of mnemonics . For example:
" Const-nam

	

Is a constant name .
" Sub-nam

	

Is the name of a SUB subprogram .
" Unsubs-vbl

	

Is an unsubscripted variable.

	

(continued on next page)

xv

" Int-exp

	

Is an integer expression .
" Cond-exp

	

Is a conditional expression .
" Str-unsubs-vbl

	

Is a string unsubscripted variable .
Mnemonics are combined in this way to indicate exactly what type of object or structure BASICexpects . Some BASIC statements, for example, allow you to specify any type of variable (string ornumeric) in the format, while others allow only a numeric variable (integer or floating-point), a stringvariable, an integer variable, or a floating-point variable .
Thus, the uncombined form of the variable mnemonic (vbl) in a format means that you can use anytype of variable (string or numeric) . A combined variable mnemonic (such as str-vbl, num-vbl, or
int-vbl) in a format means that you can specify only a particular type of variable .
Within formats, mnemonics are either simple or complex. Simple mnemonics identify a formatelement (such as an expression, a variable, or a name) that needs no further definition . For example :

EXTERNAL data-type CONSTANT const-nam, . . .

The mnemonics in this format need no further definition . The EXTERNAL keyword must be followedby a data-type, the CONSTANT keyword, and then a const-nam . The comma and ellipsis (. . .), asdefined in the Punctuation Symbols Table, indicate that you can specify more than one const-nam .The data-type mnemonic is defined in the Mnemonics Table as a BASIC data-type keyword, and
const-nam is defined as a constant name . Restrictions to the use of data-type keywords in theEXTERNAL statement are specified in the syntax rules .
Complex mnemonics identify a format element (such as a parameter passing mechanism or a state-ment clause) that has more than one component . Complex mnemonics are further defined in thelower portion of the format box by simple mnemonics. For example:
Format

Variables
DECLARE data-type decl-item [, [data-type] decl-item] . . .

DEF Functions
DECLARE data-type FUNCTION { def-nam [([def-param], . . .)] }, . . .

Named Constants
DECLARE data-type CONSTANT { const-nam = const }, . . .

decl-item : unsubs-vbl-nam
~ array-nam (int-const, . . .)

def-param :

	

[data-type]

When you look at the upper portion of this format, you can see that a data-type keyword must follow
the DECLARE statement and that a decl-item must follow the data-type keyword . Decl-item is a
complex mnemonic that is then further defined in the lower portion of the box . There you can see
that a decl-item can be a simple variable name or an array name followed by parentheses and integer
constants separated by parentheses . The portion of the upper format in brackets indicates that you can
specify another data-type keyword and another array name or simple variable name . The comma and
ellipsis (. . .), as defined on the tabbed divider in this section, indicate that you can continue adding
data-type keywords and array names or simple variable names.
This type of format unfolds the syntax of BASIC language elements and indicates the type of element
BASIC expects to receive .

Note
In most cases, BASIC signals an error if the syntax element does not exactly match the
indicated format . In other instances, particularly with numeric elements, BASIC con-
verts the numeric element you specify to the type of numeric element it expects to
receive . These instances are noted in the syntax rules .

Multiple occurrences of mnemonics in a format are numbered to prevent confusion . Vbl3, for exam-
ple, is the third unique variable in a general format and is referred to as vbl3 in the syntax and general
rules .
The most frequently used punctuation symbols and metalanguage mnemonics are listed and
described on the first tabbed divider in this manual . Less frequently used mnemonics and most
complex mnemonics are defined as they occur in syntax formats .
Please use the Reader's Comments Form in the back of this book to report errors or to make sugges-
tions for future documentation releases .

Conventions
Syntax Mnemonics

Mnemonic Definition

exp An expression
vbl A variable
unsubs Unsubscripted ; used with the variable mnemonic to indicate a simple variable, as opposed to an array

element
subs Subscripted ; used with the variable mnemonic to indicate an array element ; the element's position in the array

is specified by subscripts enclosed in parentheses and separated by commas
array An array ; syntax formats indicate whether you can specify bounds and dimensions, or just dimensions
const A constant value
lit A literal value, in quotation marks; a literal is always a constant, but a constant may be named, so constants

are not always literals
num A numeric value
real A floating-point value
int An integer value
str A character string
cond Conditional ; used with the expression mnemonic to indicate that an expression can be either logical or

relational
log Logical ; used with the expression mnemonic to indicate a logical expression
rel Relational ; used with the expression mnemonic to indicate a relational expression
lex Lexical ; used to indicate a component of a compiler directive
target The target point of a branch statement ; used to indicate that the target point can be either a program line

number or a statement label
lin-num A program line number
label An alphanumeric statement label
item Allowable BASIC objects, such as variables, data types, and parameters ; allowable objects are defined in

formats as they occur
nam Name ; indicates the declaration of a name or the name of a BASIC structure, such as a SUB subprogram
com Specific to a COMMON
def Specific to a DEF
func Specific to a FUNCTION subprogram
map Specific to a MAP
sub Specific to a SUB subprogram
chnl An I/O channel associated with a file
data-type A data-type keyword
file-spec A file-specification
file-nam A file name

Punctuation Symbols

Symbols

	

Definition

[]

	

Brackets enclose an optional portion of a format . Brackets around vertically stacked entries indicate that you
can select one of the enclosed elements . You must include all punctuation as it appears in the brackets .

{ }

	

Braces enclose a mandatory portion of a general format . Braces around vertically stacked entries indicate
that you must choose one of the enclosed elements . Braces also group portions of a format as a unit . You
must include all punctuation as it appears in the braces .

Definitions

An ellipsis indicates that the immediately preceding language element can be repeated . An ellipsis following
a format unit enclosed in brackets or braces means that you can repeat the entire unit . If repeated elements
or format units must be separated by commas, the ellipsis is preceded by a comma (. . . .) .

In this manual, the following definitions apply :
BASIC

	

The term BASIC refers to Version 2 of both VAX-11 BASIC and PDP-11
BASIC-PLUS-2 .

BASIC-PLUS-2 The term BASIC-PLUS-2 refers specifically to Version 2 of PDP-11
BASIC-PLUS-2 as implemented on RSTS/E, RSX-11M, and RSX-11M-PLUS
systems .

Cannot

	

Cannot indicates than an operation cannot be performed and that an attempt to
perform the operation causes BASIC to signal an error .

Cursor

	

Cursor or cursor position refers to a terminal's print mechanism . It can be the
or

	

flashing cursor on a video display terminal or the print head on a hard-copy
cursor position

	

terminal .
Must

	

Must indicates that an operation must be performed and that failure to perform the
specified operation causes BASIC to signal an error .

Program module A program module is a BASIC main program, a SUB subprogram, or a FUNCTION
subprogram .

. Subprogram

	

A separately compiled program module that must be linked or task-built with the
main program .

Subroutine

	

A subroutine is a block of code accessed by a GOSUB or ON GOSUB statement . It
is always in the same program module as the statement that accesses it .

VAX-11 BASIC The term VAX-11 BASIC refers specifically to Version 2 of VAX-11 BASIC as
implemented on VAX/VMS systems .

Functional List of BASIC Keywords
Arrays Error Handling NOECHO END SUB

DET ERL PRINT USING EXIT FUNCTION
DIMENSION ERN$ RCTRLC EXIT SUB
MAT ERR RCTRLO EXTERNAL
MAT INPUT ERT$ RECOUNT FUNCTION
MAT LINPUT ON ERROR GO BACK TAB LOC
MAT PRINT ON ERROR GOTO Numbers SUB
MAT READ ON ERROR GOTO 0 StringsNUM RESUME ABS
NUM2 ATN EDIT$

Function Definition COMP% FORMAT$
Data Conversion DEF COs INSTR

ASCII END DEF DECIMAL LEFT$
CHANGE END FUNCTION EXP LEN
CHR$ EXIT DEF FIX LSET
NUM$ EXIT FUNCTION INT MID$
NUM1$ EXTERNAL INTEGER POS
STR$ FUNCTION LOG RIGHT$
VAL LOG10 RSET
VAL% I/O to Files MAG SEG$

CLOSE RANDOMIZE SPACE$
Data Definition DELETE REAL STRING$

COMMON FIND RND TRM$
DECLARE FREE SGN XLATE
DIMENSION GET SIN String ArithmeticMAP INPUT # SQR
MAP DYNAMIC INPUT LINE # SWAP% DIF$
MOVE KILL TAN PLACE$
RECORD LINPUT # Program Control PROD$

QUO$REMAP MAR
MARGIN END SUM$

Data Formatting MOVE EXIT LOOP
FOR Value AssignmentFORMAT$ NAME AS

PRINT USING OPEN GOSUB DATA
PRINT # GOTO LET

Data Typing PUT # IF LSET
COMMON RECOUNT ITERATE READ
DECLARE RESTORE # ON GOTO RESTORE
DEF SCRATCH RETURN RSET
DIMENSION UNLOCK SELECT
EXTERNAL UPDATE SLEEP
FUNCTION STOP
MAP I/O to Terminals UNLESS
OPTION CCPOS UNTIL
SUB CTRLC WAIT

ECHO WHILE
Date and Time Conversion INPUT Program Segmentation

DATE$ INPUT LINE CALL
TIME LINPUT CHAIN
TIME$ MAR END FUNCTION

1 .0 Elements of a BASIC Program
A BASIC program is a series of program lines that contain instructions for the BASIC compiler . These
instructions are in the form of BASIC statements . Program lines contain the BASIC keywords, opera-
tors, and operands that make up a BASIC program.
The first line of a BASIC program must begin with a line number . The program lines that follow may
contain :
" Line numbers or labels
" Statements
" Optional compiler directives
" Optional comment fields
" Line terminator (carriage return)

1 .1 Line Numbers

PART I
Program Elements

and Structure

Every BASIC statement must be associated with a line number . Thus, the first element in a BASIC
program must be a line number . A line number must be an integer between 1 and 32767, inclusive .
A space or tab terminates the line number . Embedded spaces, tabs, and commas within line numbers
are invalid .
A line number followed by a carriage return does not constitute a BASIC program line . A program line
must contain a statement or a comment field . Comment fields are discussed in Section 2 .1 . A new
line number or a carriage return terminates a BASIC program line .
A program line can contain any number of text lines ; however, a text line cannot exceed 255
characters in VAX-11 BASIC and BASIC-PLUS-2 on RSTSIE systems, and 132 characters in
BASIC-PLUS-2 on RSX-I IM/M-PLUS systems .

February 1984

	

BASIC Reference Manual

	

1

The BASIC language uses line numbers to :
" Indicate the order of statement execution
" Provide control points for branching
" Help in debugging and updating programs
" Find the location of run-time errors
" Resume processing after an error has been handled
Therefore, each line number must be unique . BASIC ignores leading spaces, tabs, and zeros in linenumbers .
1 .2 Labels
A label is a 1- to 31-character name that immediately precedes a statement . It may immediatelyfollow a line number . The label logically identifies a statement or block of statements . The label namemust conform to the rules for naming variables, described in Section 6.1 . The label name must beseparated from the statement it labels with a colon (:) . For example :
100

	

Yes-routine : PRINT "Your answer is YES ."
The colon is not part of the label name. It tells BASIC that the label is being defined rather thanreferenced . Consequently, the colon is not allowed when you use a label to reference a statement .For example :
200

	

GOTO Yes-routine
The BASIC language uses labels to :
" Provide control points for branching
" Help in debugging programs
" Help in maintaining and updating programs
You can reference a label anywhere you can reference a line number, with three exceptions :
" You cannot compare the value returned by the ERL function (the line number associated with theprogram line where the last error occurred) with a label .
" You cannot use the RESUME statement to reference a label .
" You cannot reference a label in an IF-THEN-ELSE statement without using the keyword GOTO orGO TO . You can use the implied GOTO form only to reference a line number . For example :

YesNo

2

	

BASIC Reference Manual

100 IF A% = B%THEN 1000ELSE 1050
200 IF A$ = "YES"THEN GOTOELSE GOTO

Because the first statement references a line number, the GOTO keyword is not required ; the second
statement references a label, so the GOTO keyword is required .

1 .3 Statements
A BASIC statement consists of a statement keyword and optional operators and operands . For
example :
400

	

LET

	

AX

	

=

	

534%

	

+

	

(SUM%

	

-

	

D I F%)
PRINT A%

The first statement assigns a value to the integer variable A% . The PRINT statement causes BASIC to
display the value of A% on your terminal .
A statement is either executable or nonexecutable :

" Executable statements perform operations (for example, PRINT, GOTO, and READ) .
" Nonexecutable statements describe the characteristics and arrangement of data, specify usage infor-
mation, and serve as comments in the source program (for example, DATA, DECLARE, and REM) .

BASIC can accept and process one statement on a line of text, several statements on a line of text,
multiple statements on multiple lines of text, and single statements continued over several lines of
text . Each line of program text is associated with the last specified line number .
Multi-statement and continuation lines are discussed in Sections 1 .3 .2 and 1 .3 .3 .
1 .3.1 Keywords
A keyword is a reserved element of the BASIC language . Every statement except LET and empty
statements must begin with a keyword . BASIC uses keywords to :
" Define data and user identifiers
" Perform operations
" Invoke built-in functions

Note
Keywords are reserved words and cannot be used as variable names or as names for
MAP or COMMON areas .

Keywords cannot be used in any context other than as BASIC keywords . STRING$ = "YES", for
example, is invalid because STRING$ is a reserved BASIC keyword . Appendix A in this manual
contains a list of BASIC reserved keywords .
A BASIC keyword cannot have embedded spaces and cannot be split across lines of text . There must
be a space, tab, or special character such as a comma between the keyword and any other variable or
operator .

BASIC Reference Manual

	

3

Some keywords use two words. In this case, their spacing requirements vary, as shown in Table 1 .
Table 1 : Keyword Space Requirements

1 .3.2 Single-Statement Lines and Continued Statements
A single-statement line consists of one statement cn one numbered line or one statement continuedover two or more text lines . For example :
100

	

PRINT B * C / 12
This single-statement line has a line number, keyword (PRINT), operators

	

and operands (B, C,and 12) .
You can have a single statement span several text lines by typing an ampersand (&) and a carriagereturn . For example :
100

	

OPEN "SAMPLE .DAT" AS FILE 2%t &EDSEQUENTIAL UARIABLEt &WMAP ABC
The ampersand must come immediately before the carriage return in VAX-11 BASIC. BASIC-PLUS-2ignores spaces or tabs that follow the ampersand and precede the carriage return . For compatibility,DIGITAL recommends that you type the carriage return immediately after the ampersand .
The ampersand continuation character may be used but is not required for continued REM state-ments . The following example is valid :
100

	

REM This is a remarkAnd this is also a remark

4

	

BASIC Reference Manual

Optional Space Mandatory Space No Space
GO SUB BY DESC FNENDGO TO BY REF FNEXITON ERROR BY VALUE FUNCTIONENDEND DEF FUNCTIONEXITEND FUNCTION NOECHOEND GROUP NOMARGINEND IF SUBENDEND RECORD SUBEXITEND SELECTEND SUBEXIT DEFEXIT FUNCTIONEXIT SUBINPUT LINEMAP DYNAMICMAT INPUTMAT LINPUTMAT PRINTMAT READ

You can continue any BASIC statement, but you cannot continue a string literal or BASIC keyword .
For example, BASIC returns the error message "Unterminated string literal" if you try to print the
following :

A more efficient way to continue string literals is to use the string concatenation operator :

100

BASIC concatenates the four string literals at compile time and stores them as one string . When the
PRINT statement executes, BASIC displays the one concatenated string literal rather than four sepa-
rate string literals, thereby causing your program to execute faster and more efficiently .
Continued statements do not have line numbers, although the compiler counts and numbers them as
sublines .
1 .3 .3 Multi-Statement Lines
Multi-statement lines contain several statements on one line of text or multiple statements on separate
lines of text . All the statements on a multi-statement line are associated with a single line number .
Multiple statements on one line of text must be separated by backslashes (\) . For example :

400

	

PRINT A \ PRINT V \ PRINT G

Because all statements are on the same program line, any reference to line number 400 refers to all
three statements and execution begins with the first statement on the line . That is, BASIC cannot
execute the second statement without executing the first statement .
A statement that unconditionally transfers control to another program line should always be the last
statement on a multi-statement line . Otherwise, the statements that follow the statement transferring
control will never execute . The following program line, for example, will execute, but it is not
recommended :
200

	

PRINT A \ GOTO 410 \ PRINT B

BASIC prints the value of A and then branches to line 410 . The statement PRINT B will never execute .

BASIC Reference Manual

	

5

100 PRINT "FEE-FIE- &
FOE-FUM"

This example is valid :

200 PRINT "FEE-" ; &"FIE-" ; &"FOE-" ; &"FUM"

PRINT "FEE-"+ "FIE-" &+ "FOE-" &+ "FUM"

You can also write a multi-statement program line that associates all statements with a single line
number by ending each statement with an ampersand (&) and a carriage return and preceding the
next statement with a backslash . For example :
400

	

PRINT A

	

&\ PRINT V &\ PRINT G

Because programs written in this format tend to be cluttered and hard to read, BASIC allows you to
associate multiple statements with a line number by placing each statement on a separate line without
using the ampersand or backslash . This format requires only a space or tab at the beginning of each
new line of text . BASIC assumes that such an unnumbered line of text is either a new statement or an
IF statement clause . For example :
400

	

PRINT APRINT B
PRINT "FINISHED"

In this example, each line of text begins with a BASIC statement and each statement is associated with
line number 400 .
BASIC also recognizes IF statement keywords on a new line of text and associates such keywords with
the preceding IF statement . For example :
100

	

IF (A$ = "YES") OR (A$ = "Y")THEN PRINT "You typed YES"ELSE PRINT "You typed NO"STOPEND IF

The BASIC compiler listing file numbers the lines associated with line number 100 as they occur . The
VAX-I 1 BASIC listing file looks like this :

OR (A$ = "Y")typed YES"typed NO"

The BASIC-PLUS-2 listing file looks like this :
OR (A$ = "Y")
typed YES"typed NO"

Each statement has a number that indicates its position in the line . The BASIC compiler counts the
statements in a multi-statement line to locate compile-time errors . You cannot use statement numbers
as targets of branch statements . Targets of branch statements such as GOTO must be a line number or
a label .

6

	

BASIC Reference Manual

1 100 IF (A$ = "YES")THEN PRINT "You3 ELSE PRINT "You4 STOP5 END IF

00001 100 IF (A$ = "YES")00002 THEN PRINT "You00003 ELSE PRINT "You00004 STOP00005 END IF

You can use any BASIC statement in a multi-statement line . However, a REM or DATA statement
must be the last statement on a multi-statement line . This is because the compiler :
" Ignores all text following a REM keyword until it reaches a new line number .
" Treats all text following a DATA keyword as data until it reaches a new line number ; thus, every
DATA statement in your program has to have its own line number .

Because a leading space or tab not followed by a line number implies a new statement in a multi-
statement line, compiler commands and immediate mode statements cannot be preceded by a space
or tab . If you enter a compiler command or immediate mode statement, you cannot add more
continuation lines to the last program line . If you attempt to do so, BASIC signals the error "unknown
command input" .
1 .4 Compiler Directives
Compiler directives are instructions in a program that tell BASIC to perform certain operations as it
compiles the program . With compiler directives, you can :
" Place program titles and subtitles in the header that appears on each page of the listing file
" Place a program version identification string in both the listing file and object module
" Start or stop the accumulation of listing information for selected parts of a program
" Start or stop the accumulation of cross-reference information for selected parts of a program
" Include BASIC code from another source file
" Conditionally compile parts of a program
" Terminate compilation
" Include CDD record definitions in a BASIC program (VAX-I I BASIC only)
All compiler directives :
" Must begin with a percent sign
" Can be preceded by an optional line number
" Must be the only text on the line (except for %IF-%THEN-%ELSE-%END-%IF)
" Must be preceded by a space, tab, or line number
" Cannot appear within a quoted string
See the BASIC User's Guide and Part III in this manual for more information on compiler directives .
1 .5 Line Terminators
In the BASIC environment, a carriage return/line feed combination (Rr) followed by an optional
space or tab and a new line number ends a BASIC program line . An ampersand followed by a
carriage return ends a line of text but not the program line . All statements between the first line
number and the next line number are associated with the first line number .

BASIC Reference Manual

	

7

1 .6 Lexical Order
Lexical order refers to the order in which BASIC compiles statements in a program . In general terms,
BASIC compiles program lines in sequential order from the lowest to the highest line number . Thus,
statement A precedes statement B if the line number with which statement A is associated is lower
than the line number with which statement B is associated . If both statements are associated with the
same line number, statement A precedes statement B only if it physically precedes statement B or
appears to the left of statement B . BASIC processes statements on a line of text from left to right and
lines of text from top to bottom.
Some BASIC statements, such as comments and MAP declarations, are nonexecutable . If program
control passes to a nonexecutable statement, BASIC executes the first statement that lexically follows
the nonexecutable statement .
2.0 Program Documentation
Documentation clarifies and explains source program structure . You can provide such explanations
with :
" Comment fields
" REM statements

2.1 Comment Fields
A comment field begins with an exclamation point (!) and ends with a carriage return . You supply text
after the exclamation point to document your program . BASIC does not execute text in a comment
field . For example :
100

	

! FOR loop to initialize list QFOR I = 1 TO 10Q(I) = 0 ! This is a commentNEXT I! List now initialized
BASIC executes only the FOR loop . The comment fields, preceded by exclamation points, do not
execute .
Comment fields help make your program more readable and allow you to format your program into
readily visible logical blocks . They can also serve as target lines for GOTO and GOSUB statements :
10 !! Square root Program!

INPUT 'Enter a number' ;APRINT 'SQR of ' ;A ;'is ' ;SQR(A)!
! More square root--,?
INPUT 'Type "`(" to continues a carriage return to quit' ;ANS$GOTO 10 IF ANSI = 'f'!

99 END

8

	

BASIC Reference Manual

You can also use an exclamation point to terminate a comment field, but this practice is not recom-
mended . Therefore, you should make sure that there are no exclamation points in the comment field
itself; otherwise, BASIC treats the text remaining on the line as source code .

2.2 REM Statements
A REM statement begins with the REM keyword and ends when BASIC encounters a new line
number . The text you supply between the REM keyword and the next line number documents your
program. Like comment fields, REM statements do not affect program execution . BASIC ignores all
characters between the keyword REM and the next line number . Therefore, the REM statement can be
continued without the ampersand continuation character and should be the only statement on the
line or the last of several statements in a multi-statement line :

10

	

REM This is an example20 A=5B=10REM A equals 5B equals 1030

	

PRINT At B

Note
Comment fields in DATA statements are invalid ; the compiler treats the comments as
additional data .

The REM statement is nonexecutable. When you transfer control to the line number of a REM
statement, BASIC executes the next executable statement that lexically follows the referenced line .
For example :

quit I ;ANS$

When the conditional GOTO statement in line 20 transfers program control to line 10, BASIC ignores
the REM comment on line 10 and continues program execution at line 20.

Note
Because BASIC treats all text between the REM statement and the next line number as
commentary, REM should be used very carefully in programs that follow the implied
continuation rules . Program statements intended for execution will not execute when
they are inside a REM statement . DIGITAL recommends the use of comment fields (!)
for program documentation in programs formatted with implied continuation lines .

BASIC Reference Manual

	

9

10 REM ** Square root program20 INPUT 'Enter a number' ;APRINT 'SQR of ' ;A ;'is ' ;SQR(A)INPUT 'Type "Y" to continues a carriage return toGOTO 10 IF ANSI = 'Y'40 END

2.3 Empty Statements
Empty statements consist of a line number and an exclamation mark followed by optional text, a line
terminator and a new line number . For example :
100 ! FOR loop to initialize list Q!
200

	

FOR I = 1 TO 10Q(I) = 0 ! This is a commentNEXT I300 !! List is now initialized
Lines 100 and 300 are empty statements .
3.0 BASIC Character Set
BASIC uses the full ASCII character set . This includes :
" The letters A through Z, both upper- and lowercase
" The digits 0 through 9
" Special characters
Appendix C in BASIC on VAX/VMS Systems, BASIC on RSX-11MIM-PLUS Systems, and BASIC on
RSTS/E Systems contains the full ASCII character set and character values .
The compiler :
" Does not distinguish between upper- and lowercase letters except in string literals or within a DATA
statement

" Does not process nonprinting characters unless they are part of a string literal
" Does not process characters in REM statements or comment fields
In string literals, BASIC processes :
" Lowercase letters as lowercase
" Nonprinting characters
The ASCII character NUL (ASCII code 0) and line terminators cannot appear in a string literal . Use the
CHR$ function or explicit literal notation to use this character and terminators .
You can use nonprinting characters in your program, for example, in string constants, but to do so
you must use : 1) a predefined constant such as ESC and DEL, 2) the CHR$ function to specify an
ASCII value, or 3) explicit literal notation for character constants . See Section 5 .4 in this manual for
more information on explicit literal notation . See the BASIC User's Guide for more information on
predefined constants and the CHR$ function .
4.0 BASIC Data Types
All data in a BASIC program has a specific data type that determines how many bits of storage should
be considered as a unit and how the unit is to be interpreted and manipulated .

1 0

	

BASIC Reference Manual

VAX-11 BASIC recognizes five primary data types: integer, floating-point, character string, packed
decimal, and RFA. These types correspond to the BASIC generic data-type keywords :
" INTEGER
" REAL
" STRING
" DECIMAL
" RFA
BASIC-PLUS-2 recognizes four primary data types: integer, floating-point, character string, and RFA .These types correspond to the BASIC generic data-type keywords :
*INTEGER
" REAL
" STRING
" RFA
Integer data are stored as binary values in a byte, a word, or a longword . These values correspond tothe BASIC data-type keywords :
" BYTE
" WORD
" LONG
Floating-point values are stored using a signed exponent and a binary fraction . VAX-1 1 BASIC allowsfour floating-point formats: single, double, gfloat, and hfloat . These formats correspond to the BASICdata-type keywords :
" SINGLE
" DOUBLE
" GFLOAT
" HFLOAT
BASIC-PLUS-2 allows only single and double floating-point formats . These formats correspond to theBASIC data-type keywords :
" SINGLE
" DOUBLE
VAX-11 BASIC packed decimal data is stored in a string of bytes . Refer to Appendix C in BASIC on
VAX/VMS Systems for more information on the storage of packed decimal data .
Character data are strings of bytes containing ASCII codes as binary data . The first character in the
string is stored in the first byte, the second character is stored in the second byte, and so on . VAX-1 1
BASIC allows up to 65535 characters for a STRING data element . BASIC-PLUS-2 allows up to 32767
characters .

BASIC Reference Manual

	

1 1

In addition to these data types, BASIC also recognizes a special RFA data type to provide informationabout a Record File Address (RFA) . A Record File Address consists of a block number within a file andan offset into that block. An RFA uniquely identifies a record in a file . You can access RMS files of anyorganization by Record File Address (RFA) . This means that you specify the disk address of a record,and RMS retrieves the record at that address . Accessing records by RFA is more efficient and fasterthan other forms of random record access .
The RFA data type is unique and can be used only for :
" RFA operations (with the GETRFA function and GET and FIND statements)
" Assignments to other variables of the RFA data type
" Comparisons with other variables of the RFA data type using the equal to (=) or not equal to (<>)relational operators
" Formal and actual parameters
" DEF and function results
You cannot use variables or constants of the RFA data type for any arithmetic operations . You cannotdeclare a constant of the RFA data type .
The RFA data type requires six bytes of information : four bytes for the address of a disk block, andtwo bytes for the offset into the disk block . See Chapter 9 in the BASIC User's Guide for moreinformation on Record File Addresses and the RFA data type .
Table 2 lists BASIC data-type keywords and summarizes BASIC data types .
Table 2 : BASIC Data Types

VAX-11 BASIC only data types are italicized.
Approximate for REAL and DECIMAL data types .

1 2

	

BASIC Reference Manual

	

February 1984

PrecisionData Type (decimalKeyword* Size Range** digits)

INTEGER - specifies integer data
BYTE 8 bits -128 to + 127 NA
WORD 16 bits -32768 to +32767 NA
LONG 32 bits -2147483648 to NA

+2147483647
REAL - specifies floating-point data

SINGLE 32 bits .29 * 10-" to 1 .7 * 10" 6
DOUBLE 64 bits .29 * 10-" to 1 .7 * 10W` 16
GFLOAT 64 bits 56 * 10 to .9 * 10 15
HFLOAT 128 bits .84 4912* 10 to .59 * 10'1"- 33

DECIMAL(d,s) 0 to 16 bytes 1 "* 10 to 1 * 10" 31
STRING One character NA NA

per byte
RFA 6 bytes NA NA

For the VAX-11 BASIC only DECIMAL data type, you can specify the total number of digits (d) in the
data type and the number of digits to the right of the decimal point (s) . For instance, DECIMAL(10,3)
specifies decimal data with a total of 10 digits, 3 of which are to the right of the decimal point .
In Table 2, REAL and INTEGER are generic data-type keywords that specify floating-point and integer
storage, respectively . If you use the REAL or INTEGER keywords to type data, the actual data type
(SINGLE, DOUBLE, GFLOAT or HFLOAT in VAX-11 BASIC, BYTE, WORD, or LONG) depends
on the current default. That is, if you do not explicitly type REAL and INTEGER data as SINGLE,
DOUBLE, BYTE, WORD, and so on, BASIC uses the current defaults for REAL and INTEGER .
You can specify data-type defaults in the BASIC environment with the SET and COMPILE commands
or in a program module with the OPTION statement . On VAX/VMS systems, you can also specify
data-type defaults from DCL level with the DCL BASIC command . You can also specify whether
program values are to be typed implicitly or explicitly . The following sections discuss data-type
defaults and implicit and explicit data typing .

4.1

	

Implicit Data Typing
You implicitly assign a data format to program values by adding a suffix to the variable name or
constant value or by specifying no suffix with the variable name or constant value:
" A dollar sign suffix ($) specifies STRING storage.
" A percent sign suffix (%) specifies INTEGER storage .
" No suffix character specifies storage of the default type, which may be INTEGER, REAL, or
DECIMAL (VAX-1 1 BASIC only) .

Suffixes on variable names and program constants specify string, integer, or floating-point storage of
the default size . No suffix character implies that the value is of the default type (integer, floating-
point, or packed decimal in VAX-11 BASIC) . With implicit data typing, the range and precision for
integer, floating-point, and packed decimal values (VAX-1 1 BASIC only) is determined by the current
default data type . The default data type is determined by the system default (REAL) or the data type set
for the BASIC environment with the SET or COMPILE commands . VAX-11 BASIC qualifiers are
described in Table 16 . BASIC-PLUS-2 qualifiers are described in Table 17 .
Note that if you compile your program with the /TYPE : EXPLICIT qualifier, you cannot type program
values implicitly . All program values must be explicitly assigned a data type in your program or
BASIC signals an error .
Good programming practice dictates that you do not mix implicit and explicit data typing in expres-
sions or in program units and that you do not rely extensively on implicit data typing . Explicit data
typing makes programs easier to understand and maintain because the data type of all program values
is explicitly spelled out in the program and is not as dependent upon compilation defaults that may
change .

4.2 Explicit Data Typing
Explicit data typing means that you use a declarative statement to specify the type, range and preci-
sion of your program values . Declarative statements associate attributes such as data type and value
with user identifiers . For example:

BASIC Reference Manual

	

13

100

	

DECLARE STRING CONSTANT ZIP-CODE = 03060DECLARE STRING EMP_NAMEt DOUBLE WITH-TAXI SINGLE INT-RATE
The first DECLARE statement associates the constant value 03060 and the STRING data type with aconstant named ZIP-CODE . The second DECLARE statement associates the STRING data type withEMP-NAME, the DOUBLE data type with WITH-TAX, and the SINGLE data type with INT-RATE .No constant values are associated with user identifiers in the second DECLARE statement becausethey are variable names .
With explicit data typing, each program variable within a program can have a different range andprecision . This gives you more control over your program . Because you can explicitly assign datatypes to variables, constants, arrays, parameters, and functions, all integer data, for instance, does nothave to take the compilation defaults . Likewise, all floating-point data does not have to take thecompilation default because you can declare floating-point values as SINGLE or DOUBLE inBASIC-PLUS-2 and as SINGLE, DOUBLE, GFLOAT, or HFLOAT in VAX-11 BASIC. See the BASICUser's Guide and the sections on these statements in this manual for more information on explicitlytyping data .
Using the REAL and INTEGER keywords to explicitly type program values allows you to write pro-
grams that are transportable across systems, since these data-type keywords specify that all floating-
point and integer data take the current default for REAL and INTEGER . The data type INTEGER, for
example, specifies only that the constant or variable is an integer . The actual subtype (BYTE, WORD,
or LONG) depends on the default set with the COMPILE or SET command, the VAX-11 BASIC DCL
BASIC command, or the OPTION statement .
You can also specify a particular data type size for values declared INTEGER or REAL with compila-
tion qualifiers . The qualifier /DOUBLE, for instance, specifies that all data typed REAL is to be treated
as double-precision data .
The /TYPE : EXPLICIT qualifier or OPTION TYPE= EXPLICIT statement allows you to specify that allprogram data must be explicitly typed . Compiling a program with /TYPE: EXPLICIT or specifyingOPTION TYPE= EXPLICIT means that any program value not explicitly declared causes BASIC to
signal an error .
For new applications, DIGITAL recommends using BASIC's explicit data typing features . See Chapter
5 of the BASIC User's Guide for more information .
5.0 . Constants
A constant is a numeric or character literal that does not change during program execution. Aconstant can also be named and associated with a data type . BASIC allows the following types ofconstants :
" Numeric

Floating-point
Integer
Packed decimal (VAX-11 BASIC only)

" String (ASCII characters enclosed in quotation marks)
A constant of any of the above data types can be named with the DECLARE CONSTANT statement .You can then refer to the constant by name in your program . Refer to Section 5 .3 for information onnaming constants .

1 4

	

BASIC Reference Manual

You can also use a special explicit literal notation to specify the value and data type of a numeric
literal . Explicit literal notation is discussed in Section 5 .4 .
If you do not specify a data type for a numeric constant with the DECLARE CONSTANT statement or
with explicit literal notation, the type and size of the constant is determined by the default REAL,
INTEGER, or (VAX-1 1 BASIC only) DECIMAL set :
" At installation (BASIC-PLUS-2 only)
" With the DCL BASIC command (VAX-11 BASIC only)
" With the SET command
" With the COMPILE command
" With the OPTION statement
BASIC also supplies predefined constants for ease in representing some ASCII characters and mathe-
matical values .
The following sections discuss numeric and string constants, named constants, explicit literal nota-
tion, and predefined constants .
5.1 Numeric Constants
A numeric constant is a literal or named constant whose value never changes . In VAX-1 1 BASIC, a
numeric constant can be a floating-point number, an integer, or a packed decimal number. In
BASIC-PLUS-2, a numeric constant can be either a floating-point number or an integer . The type and
size of numeric constants are determined by the current default values, the data-type qualifiers
specified with the COMPILE command, the defaults set by the SET command, the data type specified
in a DECLARE CONSTANT or OPTION statement, or by explicit literal notation .
If you use a declarative statement to declare data type and name a numeric constant, the constant is
of the type and size specified in the statement . For example :
100

	

DECLARE BYTE CONSTANT AGE = 12
This example associates the numeric literal 12 and the BYTE data type with the user identifier AGE .
To specify a data type for unnamed numeric constants, you must use the explicit literal notation
format described in Section 5 .4 .
5.1 .1 Floating-Point Constants
A floating-point constant is a literal or named constant with one or more decimal digits, eitherpositive or negative, an optional decimal point and an optional exponent (E notation) . If the default
data type is INTEGER, a decimal point or an E is required or BASIC treats the literal as an INTEGER. In
VAX-11 BASIC, if the default data type is DECIMAL, an E is required or VAX-11 BASIC treats the
literal as a packed decimal value. The following, for example, are REAL literals :
Default type REAL :

-8 .738
239.21 E-6

.79
299

BASIC Reference Manual

	

1 5

Default type INTEGER:
-8 .738

239 .21E-6
.79

299E
Default type DECIMAL (VAX-11 BASIC only) :

-8.738E
239.21 E-6

.79E
299E

Very large and very small numbers can be represented in E (exponential) notation . This form ofmathematical shorthand uses the format :
± number E ± n

where :
+ or -

	

Is the number's sign . The plus sign is optional, but negative numbers require a minussign .
number

	

Is the number carried to a maximum of :
" 6 decimal places for SINGLE precision
" 16 decimal places for DOUBLE precision
" 15 decimal places for GFLOAT precision (VAX-11 BASIC only)
" 33 decimal places for HFLOAT precision (VAX-11 BASIC only)

E

	

Represents the words "times 10 to the power of."
+ or -

	

Is the exponent's sign . The plus sign is optional, but the minus sign is mandatory fornegative exponents .
n

	

Is an integer constant (the power of 10) . If an exponent sign is specified, n can be zero,but not blank . If an exponent sign is not specified, n can be blank.
Table 3 compares numbers in standard and E notation.

Table 3 : Numbers in E notation

1 6

	

BASIC Reference Manual

Standard Notation E Notation

.0000001 .1E-06
1,000,000 .1 E+07
-10,000,000 -.1 E+08
100,000,000 .1E+09
1,000,000,000,000 .1E+13

The range and precision of floating-point constants are determined by the current default data types or
the explicit data type used in the DECLARE CONSTANT statement . There are, though, limits to the
range allowed for numeric data types . Table 2 lists BASIC data types and ranges . BASIC signals the
fatal error "floating point error or overflow" when your program specifies a constant value outside of
the allowable range for a floating-point data type .

5.1 .2 Integer Constants
An integer constant is a literal or named constant, either positive or negative, with no fractional digits
and an optional trailing percent sign (%) . The percent sign is required for integer literals if the default
type is not INTEGER . For example :
Default type INTEGER :

81257
-3477

79
Default type REAL or (VAX-I I BASIC only) DECIMAL:

81257%
-3477%

79%
The range of allowable values for integer constants is determined by either the current default data
type or the explicit data type used in the DECLARE CONSTANT statement . Table 2 lists BASIC data
types and ranges . BASIC signals an error for a number outside the applicable range .
BASIC treats numeric literals as floating-point numbers unless :
" The default data type is INTEGER
" The literal has a % suffix
Thus, BASIC must convert numeric literals when assigning them to integer variables . This means that
your program runs somewhat slower than it would if integer values were explicitly declared . You can
prevent this conversion step by using percent signs for integer constants, numeric literal notation, or
named integer constants .

Note
You cannot use percent signs in integer constants that appear in DATA statements . An
attempt to do so causes BASIC to signal "Data format error" (ERR= 50) .

5.1 .3 Packed Decimal Constants (VAX-11 BASIC Only)
A packed decimal constant is a number, either positive or negative, that has a specified number of
digits and a specified decimal point position (scale) . You specify the number of digits (d) and the
position of the decimal point (s) when you declare the constant as a DECIMAL . If the constant is not
declared, the number of digits and the position of the decimal are determined by the representation of
the constant . For example, when the default data type is DECIMAL, 1 .234 is a DECIMAL(4,3) con-
stant, regardless of the default decimal size . Likewise, using explicit literal notation, "1 .234"P is a

BASIC Reference Manual

	

1 7

DECIMAL(4,3) constant, regardless of the default data type and default DECIMAL size . Explicit literalnotation is described in Section 5 .4 . See the BASIC User's Guide for more information on packeddecimal numbers.
5.2 String Constants
String constants are either string literals or named constants . A string literal is a series of charactersenclosed in string delimiters . Valid string delimiters are:
" Double quotation marks ("text")
" Single quotation marks ('text')
You can embed double quotation marks within single quotation marks ('this is a "text" string') andvice versa ("this is a 'text' string") . Note, however, that BASIC does not accept incorrectly pairedquotation marks and that only the outer quotation marks must be paired . The following characterstrings, for example, are valid :

"The record number does not exist."
"I'm here!"
"The terminating 'condition' is equal to A$."
"REPORT 543"

The following strings are not valid :
"Quotation marks do not match'
"No closing quotation mark

Characters in string constants can be letters, numbers, spaces, tabs, or any ASCII character except aline terminator or NUL (ASCII code 0) . If you need a string constant that contains a NUL, you shoulduse the NUL predefined constant in a compile-time constant expression or explicit literal notation .See Section 5 .4 in this manual for information on explicit literal notation and the BASIC User's Guidefor more information on the NUL predefined constant .
BASIC determines the value of the string constant by scanning all its characters . For example, becauseof the number of spaces between the delimiters and the characters, these two string constants are notthe same :

"

	

END-OF-FILE REACHED

	

"
"END-OF-FILE REACHED"

BASIC stores every character between delimiters exactly as you type it into the source program,including :
" Lowercase letters (a-z)
" Leading, trailing, and embedded spaces
" Tabs
" Special characters

1 8

	

BASIC Reference Manual

BASIC does not print the delimiting quotation marks when executing the program. That is, the value
of the string constant does not include the delimiting quotation marks. For example:
100

	

PRINT "END-OF-FILE REACHED"
y

200 END
RUNNH
END-OF-FILE REACHED
BASIC prints double or single quotation marks when they are enclosed in a second paired set:
100

	

PRINT 'FAILURE CONDITION : "RECORD LENGTH"'
0

200 END
RUNNH
FAILURE CONDITION : "RECORD LENGTH"

5.3 Named Constants
BASIC allows you to name constants . You can assign a mnemonic name to a constant that is internal
to your program and refer to the constant by name throughout the program. You can also name a
constant that is external to your program and refer to it by name throughout your program . This
naming feature is useful for the following reasons :
" If a commonly-used constant must be changed, you need to make only one change in your
program .

" A logically named constant makes your program easier to understand .
You can use named constants anywhere you can use a constant, for example, to specify the number
of elements in an array.
You cannot change the value of an explicitly named constant during program execution . To change
the value of a constant, you must change the program statement that names the constant and declares
its value and then recompile the program .

5.3 .1

	

Naming Constants Within a Program Unit
You name constants within a program unit with the DECLARE statement . For example:

BASIC Reference Manual

	

1 9

100 DECLARE DOUBLE CONSTANT Preferred-rate = .147DECLARE SINGLE CONSTANT Normal-rate = .162DECLARE DOUBLE CONSTANT RisKy-rate = .175

500
0aNew-bal = Old-bal * (i + Preferred-rate)"Years-Payment

When interest rates change, only three lines have to be changed rather than every line that containsan interest rate constant .
Constant names must conform to the rules for naming internal, explicitly declared variables listed inSection 6.1 . No constant name can have embedded spaces .
The value associated with a named constant can be a compile-time expression as well as a literalvalue. For example:

Named constants can save you programming time (since you don't have to retype the congratulationsbox every time you want to display it) and execution time (since the named constant is known atcompile time) .
Allowable operators in DECLARE CONSTANT expressions include all valid arithmetic, relational, andlogical operators except exponentiation . You cannot use built-in functions in DECLARE CONSTANTexpressions .
BASIC-PLUS-2 allows you to name floating-point, integer, and string constants, but floating-pointconstants cannot be named as expressions . Only STRING and INTEGER constants can be named asexpressions in DECLARE CONSTANT statements . VAX-11 BASIC allows constants of all data types tobe named as expressions . For example:
100

	

DECLARE DOUBLE CONSTANT

	

&MIN-VALUE = O >

	

&:MAX-VALUE = PI /2
This example is valid only in VAX-11 BASIC .
Note that you can specify only one data type in a DECLARE CONSTANT statement . To declare aconstant of a different data type, you must use a second DECLARE CONSTANT statement .
5.3.2 Naming Constants External to a Program Unit
To declare constants outside the program unit, use the EXTERNAL statement . For example :
200

	

EXTERNAL LONG CONSTANT SS$_NORMALEXTERNAL WORD CONSTANT IS .SUC
The first line declares the VAX/VMS status code SS$-NORMAL to be an external LONG constant .The second line declares IS .SUC, a success code, to be an external WORD constant . Note thatVAX-11 BASIC allows external BYTE, WORD, LONG, and SINGLE constants, while BASIC-PLUS-2allows only external WORD constants . The linker or task builder supplies the values for the constantsspecified in EXTERNAL statements .

20

	

BASIC Reference Manual

100 DECLARE STRING CONSTANT Congrats = &-------------------------- + LF + CR + &:
" : Congratulations! !" + CR + CR + &
I-+____________________+--

500

!
!
PRINT Congrats

!

1000
!
PRINT Congrats

External constant names cannot exceed six characters in BASIC-PLUS-2 and 31 characters in
VAX-I I BASIC and must conform to the rules for naming external variables listed in Section 6 .1 . No
constant name can have embedded spaces .
The types of external constants you can refer to vary from system to system . In VAX-I I BASIC, the
named constant might be a system status code or a global constant declared in a VAX-I I MACRO or
VAX-I I BLISS program . In BASIC-PLUS-2, the named constant might be a global constant declared
in a MACRO-11 program or an RMS constant . See the user's guide for your system for more informa-
tion on external constants available to your programs .

5.4 Explicit Literal Notation
You can specify the value and data type of numeric literals by using a special notation . The format of
this notation in VAX-I I BASIC is :

[radix] num-str-lit [data-type]
Radix specifies an optional base .
In VAX-I I BASIC, radix can be :
" D

	

Decimal (base 10)
" B

	

Binary (base 2)
" O

	

Octal (base 8)
" X

	

Hexadecimal (base 16)
The VAX-II BASIC default radix is D, but you can also specify binary, octal, and hexadecimal
integer literals . Binary, octal, and hexadecimal notation allows you to set or clear individual bits in
the representation of an integer . This feature is useful in forming conditional expressions and in using
logical operations .
In BASIC-PLUS-2, num-str-lit is always treated as decimal (base 10), so the format for explicit literal
notation in BASIC-PLUS-2 is :

num-str-lit [data-type]
Num-str-lit is a quoted string that can consist of digits and an optional decimal point when the radix is
decimal . You can also use E notation for floating-point constants . A leading minus sign cannot appear
inside the quotation marks, but can appear before the radix .
In VAX-I I BASIC, num-str-lit can be the digits 0 and 1 when the radix is binary, the digits 0 through 7
when the radix is octal, and the digits 0 through F when the radix is hexadecimal .
Data-type is an optional single letter that corresponds to a data-type keyword, excluding INTEGER
and REAL :
" B

	

BYTE
" W WORD
" L

	

LONG
" F

	

SINGLE (continued on next page)

BASIC Reference Manual

	

21

" D DOUBLE
" G

	

GFLOAT (VAX-11 BASIC only)
" H

	

HFLOAT (VAX-11 BASIC only)
" P

	

DECIMAL (VAX-1 1 BASIC only)
For example:

"255"L

	

Specifies a LONG decimal constant with a value of 255 .
"4000"F

	

Specifies a SINGLE decimal constant with a value of 4000 .
-"125"B

	

Specifies a BYTE decimal constant with a value of -125 .
A quoted numeric string alone, without a radix and a data-type, is a string literal, not a numericliteral . For example:

In VAX-11 BASIC, if you specify a binary, octal, or hexadecimal radix, data-type must be an integer .If you do not specify a data type, BASIC uses the default integer data type . For example :

When you specify a radix other than decimal, VAX-1 1 BASIC treats the numeric string as an unsignedinteger . When, however, this value is assigned to a variable or used in an expression, VAX-1 1 BASICtreats the variable as a signed integer . For example :
100

	

DECLARE BYTE A
A = B"11111111"B
PRINT A

RUNNH
-1

"255"W

	

Specifies a WORD decimal constant with a value of 255 .
"255"

	

Is a string literal .

B"11111111 "B

	

Specifies a BYTE binary constant with a value of -1 .
B"11111111 "W

	

Specifies a WORD binary constant with a value of 255 .
B"11111111"

	

Specifies a binary constant of the default data type (BYTE, WORD, or LONG) .
B"11111111 "F

	

Is illegal because F is not an integer data type .
X"FF"B

	

Specifies a BYTE hexadecimal constant with a value of -1 .
X"FF"W

	

Specifies a WORD hexadecimal constant with a value of 255 .
X"FF"D

	

Is illegal because D is not an integer data type .
O"377"B

	

Specifies a BYTE octal constant with a value of -1 .
O"377"W

	

Specifies a WORD octal constant with a value of 255 .
O"377"G

	

Is illegal because G is not an integer data type .

In this example, VAX-11 BASIC sets all eight bits in storage location A . Because A is a BYTE integer, ithas only 8 bits of storage and its value is -1 (the 8-bit two's complement of 1 is 11111111) . If thedata type were W (WORD), VAX-11 BASIC would set the bits to 0000000011111111, and its valuewould be 255 .

22

	

BASIC Reference Manual

Note that in VAX-I I BASIC a D can appear in both the radix position and the data type position . D in
the radix position specifies that the numeric string is to be treated as a decimal number (base 10) . D in
the data type position specifies that the value is to be treated as a double-precision, floating-point
constant . A P in the data type position specifies a packed decimal constant . For example:

"255"D

	

Specifies a double-precision constant with a value of 255 .
"255 .55"P

	

Specifies a DECIMAL constant with a value of 255 .55 .
You can also use explicit literal notation to represent a single-character string in terms of its 8-bit
ASCII value. The format in VAX-I I BASIC is :

[radix] num-str-lit C
The format in BASIC-PLUS-2 is :

num-str-lit C
The letter C is an abbreviation for CHARACTER . The value of the numeric string must be between 0
and 255, inclusive .
This feature lets you create your own compile-time string constants containing nonprinting charac-
ters . For example :
100

	

DECLARE STRING CONSTANT CONTROL-G = "7"CPRINT CONTROL-G
This example declares a string constant named CONTROL-G (ASCII decimal value 7) . When BASIC
executes the PRINT statement, the terminal bell sounds .
See the BASIC User's Guide for more information on explicit literal notation .

5.5 Predefined Constants
Predefined constants are symbolic representations of either : 1) ASCII characters or 2) mathematical
values . They are also called compile-time constants because their value is known at compile time
rather than at run time . Predefined constants :
" Format program output to improve readability
" Make source code easier to understand
Table 4 lists predefined constants supplied by BASIC, their ASCII values, and their purposes .
Table 4 : Predefined Constants

(continued on next page)

BASIC Reference Manual

	

23

Decimal
ASCII

Constant Value Purpose

BEL (Bell) 7 Sounds the terminal bell
BS (Backspace) 8 Moves the cursor one position to the left
HT (Horizontal Tab) 9 Moves the cursor to the next horizontal tab stop

Table 4 : Predefined Constants (Cont.)

You can use predefined constants in many ways . For example, to print and underline a word on ahard copy terminal :
110

	

PRINT "NAME :" + BS + BS + BS + BS + BS120 END
RUNNH
NAME a

To print and underline a word on a VT100 video display terminal :
100

	

PRINT ESC + "C4mNAME :" + ESC + "10m"110 END
RUNNH
NAME :

Note that the "m" in the above example must be lowercase .
You can also create your own predefined constants with the DECLARE CONSTANT statement . Forexample :
10

	

DECLARE STRING CONSTANT Underlined-name = ESC + "C4mNAME :" + ESC + "10m"20

	

DECLARE DOUBLE CONSTANT D_PI = PI30

	

PRINT Underlined-namePRINT D_PIttPI
Line 10 defines Underlined-name as a string constant equivalent to the constant displayed by line100 in the previous example . Line 20 defines D_PI as a DOUBLE constant equal to the predefinedconstant PI . If the default REAL data size is SINGLE, the program can use both single-precision PI anddouble-precision D_PI . See the BASIC User's Guide for more information on predefined constantsand their use in BASIC programs .

24

	

BASIC Reference Manual

Constant
Decimal
ASCII
Value Purpose

LF (Line Feed) 10 Moves the cursor to the next line
VT (Vertical Tab) 11 Moves the cursor to the next vertical tab stop
FF (Form Feed) 12 Moves the cursor to the start of the next page
CR (Carriage Return) 13 Moves the cursor to the beginning of the current line
SO (Shift Out) 14 Shifts out for communications networking, screen formatting, and alternate graphics
SI (Shift In) 15 Shifts in for communications networking, screen formatting, and alternate graphics
ESC (Escape) 27 Marks the beginning of an escape sequence
SP (Space) 32 Inserts one blank space in program output
DEL (Delete) 127 Deletes the last character entered
PI None Represents the number PI with the precision of the default floating-point data type

6 .0 Variables
A variable is a named quantity whose value can change during program execution . Each variable
name refers to a location in the program's storage area . Each location can hold only one value at a
time . Variables of all data types can have subscripts that indicate their position in an array.
Depending on the program operations specified, the value of a variable can change from statement to
statement . BASIC uses the most recently assigned value when performing calculations . This value
remains until another statement assigns a new value to the variable .
You can declare variables implicitly or explicitly .
BASIC accepts these general types of variables :
" Floating-point
" Integer
" String
" RFA
" Packed Decimal (VAX-1 1 BASIC only)
" Record (VAX-11 BASIC only)
See Chapter 9 in the BASIC User's Guide for more information on RFA variables and Chapter 6 in
BASIC on VAX/VMS Systems for more information on record data structures .
6.1 Variable Names
The name given to a variable depends on whether the variable is internal or external to the program
and whether the variable is implicitly or explicitly declared .
1 .

	

The name of an internal, explicitly declared variable must conform to the following rules :
" The name consists of from 1 to 31 characters .
" The first character of the name must be an upper- or lowercase alphabetic character (A
through Z) .

" The last character of the name cannot be a dollar sign ($) or a percent sign (%) .
" The remaining characters, if present, can be any combination of upper- or lowercase letters

(A through Z), numbers (0 through 9), dollar signs ($), underscores (_), or periods (.) . The use
of underscores in variable names helps improve readability and is preferred to the use of
periods .

2 .

	

The name of an internal, implicitly declared variable must conform to the following rules :
" The name consists of from 1 to 31 characters .
" The first character of the name must be an upper- or lowercase alphabetic character (A
through Z) .

" The last character of the name can be either a dollar sign ($) to indicate a string variable or a
percent sign (%) to indicate an integer variable . If the last character is neither a dollar sign
nor a percent sign, the name indicates a variable of the default type .

BASIC Reference Manual

	

25

" The remaining characters, if present, can be any combination of upper- or lowercase letters(A through Z), numbers (0 through 9), dollar signs ($), underscores (_), or periods (.) . The useof underscores in variable names helps improve readability and is preferred to the use ofperiods .
3 .

	

The name of an external, explicitly declared variable in VAX-1 1 BASIC must follow the rulesfor naming an internal, explicitly declared variable .
4 .

	

The name of an external, explicitly declared variable in BASIC-PLUS-2 must conform to thefollowing rules :
" The name consists of from one to six characters .
" The first character of the name must be an upper- or lowercase alphabetic character (Athrough Z) .
" The remaining characters, if present, can be any combination of upper- or lowercase letters(A through Z), numbers (0 through 9), dollar signs ($), or periods (.) .

5 .

	

A program cannot have external, implicitly declared variables since all implicitly declarednames except SUB subprogram names are internal to the program.
In all cases, no variable name can have embedded spaces .

6.2 Implicitly Declared Variables
BASIC accepts three types of implicitly declared variables :
" Floating-point (or default data type)
" Integer
" String
The name of an implicitly declared variable defines its data type . Integer variables end with a percentsign (%), string variables end with a dollar sign ($), and variables of the default type (usually floating-point) end with any allowable character except a percent sign or dollar sign . All three types ofvariables must conform to the rules listed in Section 6.1 for naming variables . The current data-typedefault (INTEGER, REAL, or, in VAX-11 BASIC, DECIMAL) determines the data type of implicitlydeclared variables that do not end in a percent sign (%) or dollar sign ($) .
A floating-point variable is a named location that stores a single floating-point value. The currentdefault size for floating-point numbers (SINGLE, DOUBLE, or, in VAX-11 BASIC, GFLOAT orHFLOAT) determines the data type of the floating-point variable . The following are valid floating-point variable names:

C L. . .5 ID-NUMBER
M1

	

BIG47

	

STORAGE . LOCATION . FOR. XXF67T .J Z2 . STRESS-VALUE
If a numeric value of a different data type is assigned to a floating-point variable, BASIC converts thevalue to a floating-point number.

26

	

BASIC Reference Manual

An integer variable is a named location that stores a single integer value . The current default size for
integers (BYTE, WORD, or LONG) determines the data type of an integer variable . The following are
valid integer variable names :

ABCDEFG% C_8% RECORD.NUMBER%
B% D6E7% THE.VALUE .I .WANT%

If the default data type is INTEGER, the percent suffix (%) is not necessary .
If you assign a floating-point or decimal (VAX-11 BASIC only) value to an integer variable, BASIC
truncates the fractional portion of the value . It does not round to the nearest integer . For example:
100

	

B% = -5 .7
BASIC assigns the value -5 to the integer variable, not -6 .
A string variable is a named location that stores strings . The following are valid string variable names :

Strings have both value and length . BASIC sets all string variables to a default length of zero before
program execution begins, except those in a COMMON, MAP, or virtual array . See Sections 5 .0 and
35 .0 in Part IV of this manual for information on string length in COMMON and MAP areas. See the
BASIC User's Guide for information on default string length in virtual arrays .
During execution, the length of a character string associated with a string variable can vary from zero
(signifying a null or empty string) to 65535 characters in VAX-11 BASIC or 32767 characters in
BASIC-PLUS-2 .

6.3 Explicitly Declared Variables
In addition to implicitly declared variables described in the previous sections, BASIC lets you explic-
itly assign a data type to a variable or an array . For example :
100

	

DECLARE DOUBLE Interest-rate
Data-type keywords are described in Section 4.0 . For more information on explicit declaration of
variables, see the sections on COMMON, DECLARE, DIMENSION, DEF, FUNCTION, EXTERNAL,
MAP, and SUB in Part IV of this manual and Chapter 5 in the BASIC User's Guide .
6.4 Subscripted Variables and Arrays
A subscripted variable is part of an array . Arrays can be of any valid data type . Subscripted variables
and arrays follow the same naming conventions as nonsubscripted variables . Subscripts follow the
variable name in parentheses and define the variable's position in the array . When you create an
array, bounds follow the array name in parentheses and define the maximum size of the array . For
example :
100

	

DECLARE STRING Ema_name(1000)200

	

FOR I% = 0% TO 1000%INPUT "Employee name" ;Emp_narrne(I%)NEXT I%

BASIC Reference Manual

	

27

C1$ M$ EMPLOYEE-NAME$
L .6$ F34G$ TARGET.RECORD$
ABC1$ T. .$ STORAGE-SHELF-IDENTIFIER$

The DECLARE statement in the example on the previous page sets the bounds of array Emp-name to1000 . Thus, the maximum value for an Emp-name subscript is 1000 . The bounds of the array definethe maximum value for a subscript of that array .
In VAX-11 BASIC, subscripts can be any positive integer value from 0 to 2147483646 in LONGmode . In BASIC-PLUS-2, subscripts can be any non-negative integer value from 0 to 32766 .

The compiler signals an error if a subscript is bigger than the allowable range. Also,the amount of storage the system can allocate depends on available memory . There-fore, very large arrays may cause an internal allocation error .
An array is a set of data ordered in any number of dimensions . A one-dimensional array, likeEmp-name(1000), is called a list or vector . A two-dimensional array, like Payroll-data(5,5), is calleda matrix . An array of more than two dimensions, like Big-array(15,9,2), is called a tensor .
BASIC arrays are always zero-based . That is, the number of elements in any dimension alwaysincludes element number zero . For example, the array Emp-name(1000) contains 1001 elements,since BASIC allocates element zero . Payroll-data(5,5) contains 36 elements because BASIC alwaysallocates row and column zero .
For all arrays except virtual arrays, the total number of array elements cannot exceed 2147483647in VAX-11 BASIC and 32767 in BASIC-PLUS-2 . For example, VAX-11 BASIC allows arrayA(2147483646) but does not allow array A(1,2147483646) . BASIC-PLUS-2 allows array A(32766)but does not allow array A(1,32766) .
VAX-11 BASIC arrays can have up to 32 dimensions . BASIC-PLUS-2 arrays can have up to eightdimensions . You can also specify the type of data the array contains with data-type keywords . Table 2lists BASIC data types.
An element in a one-dimensional array has a variable name followed by one subscript in parentheses .There can be a space between the array name and the parenthetical subscripts . For example:

A(6%)
B (6%)
C$ (6%)

A(6%) refers to the seventh item in this list :
A(0%)

	

A(1 %)

	

A(2%)

	

A(3%)

	

A(4%)

	

A(5%)

	

A(6%)

A (7%,2%)

	

A%(4%,6%)

	

A$(10%,10%)

28

	

BASIC Reference Manual

Note

An element in a two-dimensional array has two subscripts, in parentheses, following the variablename . The first subscript specifies the row number, the second specifies the column . Use a comma toseparate the subscripts . There can be a space between the array name and the parenthetical sub-scripts . For example :

In the following table, the arrow points to the element specified by the subscripted variable
A%(4%,6%) :

An element in an array has as many subscripts as there are dimensions . An element of
Big_array(15%,9%,2%), for example, would have three subscripts .
Although a program can contain a variable and an array with the same name, this is regarded as poor
programming practice . Variable A and the array A(3%,3%) are separate entities and are stored in
completely separate locations and should have different names .

Note
A program cannot contain two arrays with the same name and a different number of
subscripts . For example, the arrays A(3%) and A(3%,3%) are invalid in the same
program .

BASIC arrays can be redimensioned at run time . See Chapter 7 in the BASIC User's Guide for more
information on arrays .

6.5 Initialization of Variables
BASIC sets variables to zero or null values at the start of program execution . Variables initialized by
BASIC include :
" Numeric variables and in-storage array elements (except those in MAP or COMMON statements) .
" String variables (except those in MAP or COMMON statements) .
" Local variables in function definitions . In addition, BASIC sets these values to zero each time the
program calls the function .

" Variables in subprograms . Subprogram variables are initialized to zero or the null string each time
the subprogram is called .

BASIC does not initialize virtual arrays .
Note

In BASIC-PLUS-2, variables in a MAP statement referenced in an OPEN statement are
initialized to zero or the null string when the file is opened . In VAX-1 1 BASIC, these
variables are not initialized . You can also use MACRO-11 routines to initialize MAP
and COMMON areas . See BASIC on RSX-11 M/M-PLUS Systems or BASIC on RSTS/E
Systems for more information .

BASIC Reference Manual

	

29

C O L U M N S
0 1 2 3 4 5 6

R 0 0 0 0 0 0 0 0
O 1 0 0 0 0 0 0 0
W 2 0 0 0 0 0 0 0
S 3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 .- A%(4%,6%)

7.0 Expressions
BASIC expressions consist of operands (numbers, strings, constants, variables, functions, or array
elements) separated by :
" Arithmetic operators
" String operators
" Relational operators
" Logical operators
All BASIC expressions except string concatenation and invocations of string-valued functions yield
numeric values . The way you combine numeric operators and operands and use the resulting values
allows you to produce :
" Numeric expressions
" String expressions
" Conditional expressions
BASIC evaluates expressions according to operator precedence and uses the results in program execu-
tion . Parentheses can appear in expressions to group operands and operators, thus controlling the
order of evaluation .
The following sections explain the types of expressions you can create and the way BASIC evaluates
expressions .
7.1 Numeric Expressions
Numeric expressions consist of floating-point, integer, or packed decimal (VAX-11 BASIC only)
operands separated by arithmetic operators and optionally grouped by parentheses . Table 5 shows
how numeric operators work in numeric expressions .
Table 5 : Arithmetic Operators

In general, two arithmetic operators cannot occur consecutively in the same expression . Exceptions
are the unary plus and unary minus . The following expressions are valid :

A* + B
A*-B
A *(-B)
A* +-+-B

30

	

BASIC Reference Manual

Operator Example Use

+ A + B Add B to A
- A - B Subtract B from A

A * B Multiply A by B
/ A / B Divide A by B
" A"B Raise A to the power B
** A**B Raise A to the power B

The following expression is not valid :
A-*B

An operation on two numeric operands of the same data type yields a result of that type . For example :
A% + B% yields an integer value of the default type .
G3 * M5 yields a floating-point value if the default type is REAL .

If the result of the operation exceeds the range of the data type, VAX-11 BASIC signals an overflow
error message . For example :
10

	

DECLARE BYTE At BA = 127B = 127PRINT A + B99 END

This example causes VAX-1 1 BASIC to signal the error "Integer error or overflow" because the sum of
A and B (254) exceeds the range of -128 to + 127 for BYTE integers . Similar overflow errors occur for
REAL and DECIMAL data types whenever the result of a numeric operation is outside the range of the
data type .
Assigning a value of one data type to a variable of a different data type changes the assigned value's
data type to the variable's data type . For example :
10

	

A% = 5 .1 * 6 .3

This example assigns the value 32 to the integer variable A% even though the floating-point value of
the expression is 32 .13 . This is called numeric conversion . See Chapter 5 of the BASIC User's Guide
for more information on numeric conversion .
7 .1 .1

	

Floating-Point and Integer Promotion Rules
When an expression contains operands with different data types, the data type of the result is deter-
mined by BASIC's data type promotion rules :
" With one exception, BASIC promotes operands with different data types to the lowest common data
type that can hold the largest or most precise possible value of either operand's data type, then
performs the operation in that data type, and yields a result of that data type .

" The exception to the previous rule is that when an operation involves SINGLE and LONG data
types, BASIC promotes the LONG data type to SINGLE, rather than to DOUBLE, performs the
operation, and yields a result of the SINGLE data type .

Note that BASIC does a sign extend when converting BYTE and WORD integers to a higher INTEGER
data type (WORD or LONG) . That is, the high order bit (the sign bit) determines how the additional
bits are set when the BYTE or WORD is converted to WORD or LONG. If the high order bit is zero
(positive), all higher-order bits in the converted BYTE or WORD are set to zero . If the high order bit is
one (negative), all higher-order bits in the converted BYTE or WORD are set to one .
Table 6 lists the data type results possible in numeric expressions that combine BYTE, WORD,
LONG, SINGLE, and DOUBLE data . Table 7 lists the data type results possible in numeric expres-
sions that combine the VAX-1 1 BASIC only data types, GFLOAT and HFLOAT . Note that in VAX-11
BASIC, when the operands are DOUBLE and GFLOAT, BASIC promotes both values to HFLOAT, and

BASIC Reference Manual

	

3 1

returns an HFLOAT value . The promotion of DOUBLE and GFLOAT to HFLOAT is necessary because
a DOUBLE value is more precise than a GFLOAT value, but cannot contain the largest possible
GFLOAT value . Consequently, BASIC promotes these data types to a data type that can hold the
largest and most precise value of either operand .
Table 6 : Result Data Types in BASIC Expressions

Table 7 : VAX-11 BASIC Result Data Types

As Table 6 shows, if one operand is SINGLE and one operand is DOUBLE, BASIC promotes the
SINGLE value to DOUBLE, performs the specified operation, and returns the result as a DOUBLE
value . This promotion is necessary because the SINGLE data type has less precision than the
DOUBLE value, whereas the DOUBLE data type can represent all possible SINGLE values . If BASIC
did not promote the SINGLE value and the operation yielded a result outside of the SINGLE range,
loss of precision and significance would occur .
The data types BYTE, WORD, LONG, SINGLE, and DOUBLE form a simple hierarchy : if all operands
in an expression are these data types, the result of the expression is the highest data type used in the
expression .
7.1 .2 DECIMAL Promotion Rules (VAX-11 BASIC only)
VAX-11 BASIC also allows the DECIMAL(d,s) data type . The number of digits (d) and the scale or
position of the decimal point (s) in the result of operations involving a DECIMAL value depends on the

3 2

	

BASIC Reference Manual

Operand 1 BYTE WORD
Operand 2
LONG SINGLE DOUBLE

BYTE BYTE WORD LONG SINGLE DOUBLE
WORD WORD WORD LONG SINGLE DOUBLE
LONG LONG LONG LONG SINGLE DOUBLE
SINGLE SINGLE SINGLE SINGLE SINGLE DOUBLE
DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE

Operand 1
Operand

GFLOAT
2
HFLOAT

BYTE GFLOAT HFLOAT
WORD GFLOAT HFLOAT
LONG GFLOAT HFLOAT
SINGLE GFLOAT HFLOAT
DOUBLE HFLOAT HFLOAT
GFLOAT GFLOAT HFLOAT
HFLOAT HFLOAT HFLOAT

data type of the other operand . If one operand is DECIMAL and the other is DECIMAL or INTEGER,the d and s values of the result are determined as follows :
" If both operands are typed DECIMAL, and if both operands have the same digit (d) and scale (s)

values, no conversions occur and the result of the operation has exactly the same d and s values as
the operands . Note, however, that overflow can occur if the result exceeds the range specified by
the d value.

" If both operands are DECIMAL but have different digit and scale values, BASIC always uses the
larger number of specified digits for the result .
For example:
104

	

DECLARE DECIMAL(5t2) ADECLARE DECIMAL(4#3) B
Variable A allows three digits to the left of the decimal point and two digits to the right . Variable B
allows one digit to the left of the decimal point and three digits to the right . Therefore, the result
allows three digits to the left of the decimal point and three digits to the right :

A
B
Result

" If one operand is typed DECIMAL and one is typed INTEGER, the INTEGER value is converted to a
DECIMAL(d,s) data type as follows :

BYTE is converted to DECIMAL(3,0) .
WORD is converted to DECIMAL(5,0) .
LONG is converted to DECIMAL(] 0,0) .

BASIC then determines the d and s values of the result by evaluating the d and s values of the
operands as described above .

Note that only INTEGER data types are converted to the DECIMAL data type . If one operand is
DECIMAL and one is floating-point, the DECIMAL value is converted to a floating-point value . The
total number of digits (d) in the DECIMAL value determines its new data type, as shown in Table 8 .
Table 8 : Result Data Types for DECIMAL Data

BASIC Reference Manual

	

33

Number of Floating-point OperandsDECIMAL Digitsin Operand SINGLE DOUBLE GFLOAT HFLOAT
1-6 SINGLE DOUBLE GFLOAT HFLOAT
7-15 DOUBLE DOUBLE GFLOAT HFLOAT
16 DOUBLE DOUBLE HFLOAT HFLOAT
17-31 HFLOAT HFLOAT HFLOAT HFLOAT

If the value of d is between 7 and 15, the operand is converted to :
" DOUBLE if the floating-point operand is SINGLE or DOUBLE
" GFLOAT if the floating-point operand is GFLOAT
" HFLOAT if the floating-point operand is HFLOAT
Thus, a DECIMAL(8,5) operand is converted to DOUBLE if the other operand is SINGLE or DOUBLE,to GFLOAT if the other operand is GFLOAT, and to HFLOAT if the other operand is HFLOAT .
Note also that exponentiation of a DECIMAL data type returns a REAL value .
See the BASIC User's Guide for more information on data type interactions, conversions, and promo-tion rules in BASIC numeric expressions .

7.2 String Expressions
String expressions are string entities separated by the plus sign (+) . When used in a string expression,the plus sign concatenates strings .
For example :
lop

	

INPUT "Type two words to be combined" ;A$t B$C$ = A$ + B$PRINT C$200 END
RUNNH
Type two words to be combined? hello? goodbye
hellogoodbye
Ready

7.3 Conditional Expressions
Conditional expressions can be either relational or logical expressions .
Numeric relational expressions compare numeric operands to determine whether the expression istrue or false . String relational expressions compare string operands to determine which string expres-sion occurs first in the ASCII collating sequence .
Logical expressions contain integer operands and logical operators . BASIC determines whether thespecified logical expression is true or false by testing the numeric result of the expression . Note that inconditional expressions, as in any numeric expression, when BYTE and WORD operands are con-verted to WORD and LONG, the specified operation is performed in the higher data type, and theresult returned is also of the higher data type . When one of the operands is a negative value, thisconversion will produce accurate but perhaps confusing results, because BASIC performs a signextend when converting BYTE and WORD integers to a higher integer data type . See Section 7 .1 .1 forinformation on integer conversion rules .

34

	

BASIC Reference Manual February 1984

7.3 .1 Numeric Relational Expressions
Operators in numeric relational expressions compare the values of two operands and return : 1) a
minus one if the relation is true or 2) a zero if the relation is false . The data type of the result is the
default integer type . For example :
Example 1
100

	

A = 10B = 15X% = (A <> B)IF X% = -1%THEN PRINT 'Relationship is true'ELSE IF X% = 0THEN PRINT 'Relationship is false'END IFEND IF
RUNNH
Relationship is true
Example 2
10 A = 10B = 15XX = A = BIF X% _ -1%THEN PRINT 'Relationship is true'ELSE IF X% = 0THEN PRINT 'Relationship is false'END IFEND IF

RUNNH

Relationship is false

Table 9 shows how numeric operators work in numeric relational expressions .
Table 9 : Numeric Relational Operators

BASIC Reference Manual

	

35

Operator Example Meaning

= A = B A is equal to B.
< A < B A is less than B.
> A > B A is greater than B.

<= or = < A <= B A is less than or equal to B .
>= or => A >= B A is greater than or equal to B .
<> or >< A <> B A is not equal to B.

_ = A = = B A and B will PRINT the same because
they are equal to six significant digits .

7.3.2 String Relational Expressions
Operators in string relational expressions determine how BASIC compares strings . BASIC determinesthe value of each character in the string by converting it to its ASCII value . ASCII values are listed inAppendix C in BASIC on VAX/VMS Systems, BASIC on RSX-11 MIM-PLUS Systems, and BASIC onRSTS/E Systems . BASIC compares the strings character by character, left to right, until it finds adifference in ASCII value . For example :
10 A$ = 'ABC'B$ = 'ABZ'20 IF A$ C B$THEN PRINT 'ABC comes before ABZ'GOTO 99ELSE IF A$ == B$THEN PRINT 'The strings are identical'GOTO 99ELSE IF A$ i B$THEN PRINT 'ABC comes after ABZ'GOTO 99END IFEND IFEND IF55 PRINT 'Strings are equal but not identical'99 END
In this example, BASIC compares A$ and B$ character by character . The strings are identical up tothe third character . Because the ASCII value of "Z" (90) is greater than the ASCII value of "C" (67),
A$ is less than B$. BASIC evaluates the expression A$ < B$ as true (-1), prints "ABC comes beforeABZ" and goes to line 99.
If two strings of differing lengths are identical up to the last character in the shorter string, BASIC pads
the shorter string with spaces (ASCII value 32) to generate strings of equal length, unless the operator
is the double equals sign (= =) . If the operator is the double equals sign, BASIC does not pad the
shorter string . For example :

IF B$ t A$IF A$ < B$
THEN PRINT 'B$ exactly matches C$'ELSE PRINT 'B$ does not exactly match C$'END IFIF B$ = C$THEN PRINT 'B$ matches C$ with Padding'ELSE PRINT 'B$ does not match C$'END IF

RUNNH
B$ comes before AB does not exactly match CB matches C$ with Padding
In this program, BASIC compares "ABCDE" to "ABC

	

" to determine which string comes first in thecollating sequence . "ABC

	

" comes before "ABCDE" because the ASCII value for space (32) is lowerthan the ASCII value of "D" (68) . Then BASIC compares "ABC " with "ABC" using the double

36

	

BASIC Reference Manual

10 A$ =B$ = 'ABCDE''ABC'20 PRINT 'B$ comes before A$'PRINT 'A$ comes before B$'30 C$ = 'ABC 'IF B$ == C$

equals sign and determines that the strings do not match exactly without padding . The third compari-
son uses the single equals sign . BASIC pads "ABC" with spaces and determines that the two strings
match with padding .
Table 10 shows how numeric operators work in string relational expressions .
Table 10: String Relational Operators

BASIC treats unquoted strings typed in response to the INPUT statement differently than quoted strings
by ignoring leading and trailing spaces and tabs . That is, BASIC evaluates the quoted strings "ABC"
and "ABC " as equal but not identical because the = = operator does not pad the shorter string
with spaces . When you input the same strings as unquoted strings in response to the INPUT prompt,
BASIC evaluates them as equal and identical because it ignores the trailing spaces . The LINPUT
statement, on the other hand, treats unquoted strings as string literals so the trailing spaces are part of
the string, and BASIC evaluates the strings as equal but not identical .
7.3.3 Logical Expressions
A logical expression contains either :
e A unary logical operator and one integer operand
e Two integer operands separated by a binary logical operator
e One integer operand
Logical expressions are valid only when the operands are integers . If the expression contains two
integer operands of differing data types, the resulting integer has the same data type as the higher
integer operand . For instance, the result of an expression that contains a BYTE integer and a WORD
integer would be a WORD integer . Table 6 shows how integer data types interact with each other in
expressions .
BASIC determines whether the condition is true or false by testing the result of the logical expression
to see whether any bits are set . If no bits are set, the value of the expression is zero and it is evaluated
as false ; if any bits are set, the value of the expression is nonzero, and the expression is evaluated as
true . BASIC generally accepts any nonzero value in logical expressions as true . However, logical
operators can return unanticipated results unless minus one is specified for true values and zero for
false . Therefore, logical operators should be used on the results of relational expressions to obtain
valid and predictable results . Table 11 lists logical operators . Examples that show how logical opera-
tors work on nonzero and minus one values follow the table .

BASIC Reference Manual

	

37

Operator Example Meaning

= A$ = B$ Strings A$ and B$ are identical after the shorter string has been padded with spaces to
equal the length of the longer string .

< A$ < B$ String A$ occurs before string B$ in ASCII sequence .
> A$ > B$ String A$ occurs after string B$ in ASCII sequence .

<= or =< A$<= B$ String A$ is identical to or precedes string B$ in ASCII sequence .
>= or => A$ >= B$ String A$ is identical to or follows string B$ in ASCII sequence .
<> or >< A$ <> B$ String A$ is not identical to string B$.

_ = A$ = = B$ Strings A$ and B$ are identical in composition and length, without padding .

Table 11 : Logical Operators

The truth tables in Table 12 summarize the results of these logical operations . Zero is false ; minus oneis true .
Table 12 : Truth Tables

The operators XOR and EQV are logical complements .
Note that in logical expressions, any nonzero value is evaluated as true, while in relational expres-sions, a minus one is generated as a true value. Logical operators set bits in the result of the expres-sion ; any bit set is a nonzero value and is evaluated as true . For this reason, it is important to uselogical operators on the results of relational expressions (the values of minus one and zero) to avoidunanticipated results . For example:
10 A% = 2%
20 BX = 4%30

	

IF AY THEN PRINT 'A% IS TRUE'

38

	

BASIC Reference Manual

Operator Example Meaning

NOT NOT A% The bit-by-bit complement of A% . If A% is true (-1), NOT A% is false (0) .
AND A% AND B% The logical product of A% and B%. A% AND B% is true only if both A% and B% are true .
OR A% OR B% The logical sum of A% and B% . A% OR B% is false only if both A% and B% are false ;otherwise, A% OR B% is true .
XOR A% XOR B% The logical exclusive OR of A% and B%. A% XOR B% is true if either A% or B% is truebut not if both are true .
EQV A% EQV B% The logical equivalence of A% and B%. A% EQV B% is true if A% and B% are both trueor both false ; otherwise, the value is false .
IMP A% IMP B% The logical implication of A% and B%. A% IMP B% is false only if A% is true and B% isfalse ; otherwise, the value is true .

A% NOT A% A% 11% A% OR 111%
0 -1 0 0 0
-1 0 0 -1 -1

-1 -0 -1

A% B% A% AND B% A% B% A% EQV B%
0 0 0 0 0 -1
0 -1 0 0 -1 0
-1 0 0 -1 0 0
-1 -1 -1 -1 -1 -1
A% 13% A% XOR 13% A% B% A% IMP 113%
0 0 0 0 0 -1
0 -1 -1 0 -1 -1
-1 0 -1 -1 0 0
-1 -1 0 -1 -1 -1

40

	

IF B% THEN PRINT 'B% IS TRUE'50

	

IF A% AND B% THEN PRINT 'A% AND B% IS TRUE'ELSE PRINT 'AX AND B% IS FALSE'60 END
RUNNH
A% IS TRUEB% IS TRUEA% AND B% IS FALSE
In this example, the values of A% and B% both test as true because they are nonzero values .
However, the logical AND of these two variables returns an unanticipated result of "false ."
The program returns this seemingly contradictory result because logical operators work on the indi-
vidual bits of the operands . The 8-bit binary representation of 2% is :

0 0 0 0 0 0 1 0
The 8-bit binary representation of 4% is :

0 0 0 0 0 1 0 0
Each value tests as true because it is nonzero . However, the AND operation on these two values sets
a bit in the result only if the corresponding bit is set in both operands . Therefore, the result of the
AND operation on 4% and 2% is :

0 0 0 0 0 0 0 0
No bits are set in the result, so the value tests as false (zero) .
If the value of B% is changed to 6%, the resulting value tests as true (nonzero) because both 6% and
2% have the second bit set . Therefore, BASIC sets the second bit in the result and the value tests as
nonzero and true .
The 8-bit binary representation of minus one is :

The result of -1 % AND -1 % is -1 % because BASIC sets bits in the result for each corresponding bit
that is set in the operands . The result, therefore, tests as true because it is a nonzero value . For
example :

A% IS TRUEB% IS TRUEA% AND B% IS TRUE

BASIC Reference Manual

	

39

10 A% = -1%20 B% = -1%30 IF A% THEN PRINT 'A% IS TRUE'40 IF B% THEN PRINT 'B% IS TRUE'50 IF A% AND B% THEN PRINT 'A% AND B% IS TRUE'ELSE PRINT 'A% AND B'% IS FALSE'60 END
RUNNH

Your program may also return unanticipated results if you use the NOT operator with a nonzerooperand that is not minus one. For example :

A% IS TRUEB% IS TRUENOT A% IS FALSENOT B% IS TRUE

In this example, BASIC evaluates both A% and B% as true because they are nonzero . NOT A% is
evaluated as false (zero) because the binary complement of minus one is zero . NOT B% is evaluated
as true because the binary complement of two has bits set and, therefore, is a nonzero value .

DIGITAL recommends that you use logical operators on the results of relational
expressions to avoid obtaining unanticipated results .

7.4 Evaluating Expressions

Note

BASIC evaluates expressions according to operator precedence . Each arithmetic, relational, and string
operator in an expression has a position in the hierarchy of operators . The operator's position tells
BASIC when to perform the operation . Parentheses can change the order of precedence .
Table 13 lists all operators as BASIC evaluates them . Note that :
" Operators with equal precedence are evaluated logically from left-to-right .
" BASIC evaluates expressions enclosed in parentheses first, even when the operator in parentheseshas a lower precedence than that outside the parentheses .

40

	

BASIC Reference Manual

10 A%=-I%20 B%=230 IF A% THEN PRINT 'A% IS TRUE'ELSE PRINT 'A% IS FALSE'40 IF B% THEN PRINT 'B% IS TRUE'ELSE PRINT 'B% IS FALSE'50 IF NOT A% THEN PRINT 'NOT A% IS TRUE'ELSE PRINT 'NOT A% IS FALSE'60 IF NOT B% THEN PRINT 'NOT B% IS TRUE'ELSE PRINT 'NOT B% IS FALSE'SS END
RUNNH

Table 13 : Numeric Operator Precedence

** or "

	

Highest
- (unary minus) or + (unary plus)
*or/
+ or -
+ (concatenation)
all relational operators
NOT
AND
OR, XOR
IMP
EQV

	

Lowest

BASIC thus evaluates the expression A = 152 + 12"2 - (35 * 8) in five steps :

There is one exception to this order of precedence : when an operator that does not require operands
on either side of it (such as NOT) immediately follows an operator that does require operands on bothsides (such as +), BASIC evaluates the second operator first . For example :

A% + NOT B% + C%
This expression is evaluated as :

(A% + (NOT B%)) + C%
BASIC evaluates the expression NOT B before it evaluates the expression A + NOT B. When the
NOT expression does not follow the + expression, the normal order of precedence is followed :

NOT A% + B% + C%
This expression is evaluated as :

NOT ((A% + B%) + C %)

BASIC Reference Manual

	

41

1 . 152 = 225 Exponentiation (left-most expression)
2 . 122 = 144 Exponentiation
3 . 225 + 144 = 369 Addition
4 . (35 * 8) = 280 Multiplication
5 . 369 -280 = 89 Subtraction

BASIC evaluates the two plus expressions (A% + B%) and ((A% + B%) + C%) because the plus (+)
operator has a higher precedence than the NOT operator .
BASIC evaluates nested parenthetical expressions from the inside out . For example :
100

	

A = ((((25 + 5) / 5) * 7) + 3)PRINT A300

	

B = 25 + 5 / 5 * 7 + 3PRINT B

RUNNH
4535

In this program, BASIC evaluates the parenthetical expression A quite differently from expression B.
For expression A, BASIC evaluates the innermost parenthetical expression (25 + 5) first, then the
second inner expression (30 / 5), then (6 * 7), and finally (42 + 3) . For expression B, BASIC evaluates
(5 / 5) first, then (1 * 7), then (25 + 7 + 3) to obtain a different value .

42

	

BASIC Reference Manual

1 .0 APPEND
Function
The APPEND command merges an existing BASIC source program with the program currently in
memory .
Format

APPEND [file-spec]

Syntax Rules
1 .

	

File-spec names the file of BASIC program lines you want to merge with the program
currently in memory . The VAX-11 BASIC default file type is BAS, and the BASIC-PLUS-2
default file type is B2S .

General Rules
1 .

	

If you type APPEND without specifying a file name, BASIC prompts with :
Append file name--

PART II
Compiler

Commands
APPEND

Respond with a file name. If you respond with a carriage return and no file name, VAX-1 I
BASIC searches for a file named NONAME .BAS . BASIC-PLUS-2 searches for a file named
NONAME .B2S . If the compiler cannot find NONAME .BAS or NONAME.B2S, VAX-11
BASIC signals the error "file not found" ; BASIC-PLUS-2 signals "can't find file or
account" .

BASIC Reference Manual

	

43

APPEND

Examples

2 .

	

You can append the contents of file-spec to a source program called into memory with the
OLD command or created in the BASIC environment . If there is no program in memory,
BASIC appends the file-spec to an empty program with the default file name, NONAME .

3 .

	

If the file-spec contains a BASIC line with the same line number as a line of the program in
memory, the line in the appended file replaces the line of the program in memory . Other-
wise, BASIC inserts appended lines into the program in memory in sequential, ascending
line number order .

4 .

	

The APPEND command does not change the name of the program in memory .
5 .

	

If you have not saved the appended version of the program, BASIC signals the warning
"Unsaved change has been made, CTRL/Z or EXIT to exit" the first time you try to leave
the BASIC environment .

APPEND PROGB

44

	

BASIC Reference Manual

2.0 ASSIGN (VAX-11 BASIC)
Function
The ASSIGN command equates a logical name to a complete file specification, a device, or another
logical name within the context of the BASIC environment .
Format

ASSIGN equiv-nam[:] log-nam[:]

Syntax Rules

Examples

ASSIGN

1 .

	

Equiv-nam specifies the file specification, device, or logical name to be assigned a logical
name. If you specify a physical device name, terminate it with a colon (:) .

2 .

	

Log-nam is the 1- to 63-character logical name to be associated with equiv-nam . You can
specify a logical name for any portion of a file specification . If the logical name translates
to a device name, and will be used in place of a device name in a file specification,
terminate it with a colon (:) .

General Rules
1 .

	

When the logical name assignment supersedes another logical name assigned previously,
BASIC displays the message "previous logical name assignment replaced" .

2 .

	

If log-nam has more than 63 characters, BASIC signals the error "invalid logical name" .
3 .

	

Logical names assigned with the ASSIGN command are placed in the process logical name
table and remain there until you exit the BASIC environment .

ASSIGN CLEONARD .BAS] PRO :

BASIC Reference Manual

	

45

BRLRES

3.0 BRLRES (BASIC-PLUS-2)
Function
The BRLRES command allows you to specify a memory-resident BASIC-PLUS-2 or user-createdlibrary to be used when you task-build the program . When you use the BUILD command,BASIC-PLUS-2 includes the specified library in the Task Builder command file . The default library forthe BRLRES command is chosen by your system manager when BASIC-PLUS-2 is installed .
Format

BRLRES [lib-param]
lib-param : file-spec

NONE

Syntax Rules

46

General Rules

2 .

3 .

4.

If you enter the BRLRES command without a lib-param, BASIC prompts for one and dis-plays the name of the current default memory-resident library .
" File-spec can be a library supplied by BASIC-PLUS-2 or a user-created library .
" NONE tells the Task Builder not to link your task to the BASIC-PLUS-2 default residentlibrary . Therefore, the Task Builder links to the BASIC-PLUS-2 object module library,BP20TS.OLB .
" If you type a carriage return in response to the prompt, the current default memory-resident library is used .

The memory-resident libraries supplied by BASIC-PLUS-2 are LB :[1,1]BP2RES andLB :[1,1]BP2SML on RSX-11MIM-PLUS systems and LB :BP2RES and LB :BP2SML onRSTS/E systems . LB : is a RSTS/E logical name for the library account on disk . Becausememory-resident libraries are optional, your system manager can select none, one, or bothwhen BASIC-PLUS-2 is installed . See BASIC on RSX-1 1 Ml M-PLUS Systems or BASIC onRSTSIE Systems for information on BASIC-PLUS-2 memory-resident libraries .
BASIC-PLUS-2 links the specified memory-resident library to your program when youtask-build the program, so you must use the BRLRES command before you use the BUILDcommand to include the specified library in the Task Builder command file .
The BRLRES library you specify is included in your Task Builder command files until youspecify a new library with the BRLRES command or exit from the BASIC environment .When you exit from the environment, the original default library is restored as the default .
You can override the BRLRES command with the /BRLRES qualifier added to the BUILDcommand, but the specified library remains in effect for only one BUILD operation .

BASIC Reference Manual

5 .

	

The Task Builder returns an error message when the requested memory-resident library is
not available .

6 .

	

Consult your system manager for information about the resident libraries available to you .
Examples
RSX-11 M/M-PLUS Systems
BRLRES LB :11r11BP2RES

RSTS l E Systems
BRLRES LB :BP2RES

BRLRES

BASIC Reference Manual

	

47

BUILD

4.0 BUILD (BASIC-PLUS-2)
Function
The BUILD command generates a command (CMD) file and an overlay description language (ODL)file for the Task Builder . The command file contains instructions that enable the Task Builder to linkyour program module(s) with libraries and other routines . The overlay description language filespecifies how segments of the task-built program are overlaid when you run it .
Format

BUILD [prog-nam [sub-nam, . . .]] [/qualifier] . . .

Syntax Rules

General Rules
1 .

48

2 .

3 .

4 .

5 .

2 .

3 .

4 .

Examples

Prog-nam names the program you want to build . If you do not specify a prog-nam,BASIC-PLUS-2 creates CMD and ODL files for the current program or for NONAME ifthere is no current program .
Sub-nam names the subprogram or subprograms you want to link to the main program .You must specify a prog-nam if you specify a sub-nam .
The command file takes the name of the main program and a default extension of CMD .The ODL file takes the name of the main program and a default extension of ODL.
/Qualifier specifies a qualifier keyword that sets a BASIC default . Table 17 lists allBASIC-PLUS-2 qualifiers and describes their functions .
The BUILD command line must fit on a single 80-character line .

The BUILD command does not change the current context of the BASIC-PLUS-2environment .
The BUILD command generates the CMD and ODL files . It does not cause the Task Builderto begin operation .
In addition to program names and build qualifiers, the BUILD command accepts defaultsfrom previously specified BRLRES, DSKLIB, ODLRMS, RMSRES, LIBR, and SET commands .
BUILD qualifiers tell the Task Builder to perform special operations on object moduleswhen you task-build the program . You can abbreviate all qualifiers to the first three lettersof the qualifier keyword .

BUILD MAIN tSUBI #SUB2 /DUMP /REL

BASIC Reference Manual

5.0 $Command
Function
You can enter a system command while in the BASIC environment by typing a dollar sign ($) beforethe command. BASIC passes the command to the operating system for execution . The context of theBASIC environment and the program currently in memory do not change in VAX-11 BASIC and
BASIC-PLUS-2 on RSX-I IM/M-PLUS systems . On RSTS/E systems, the system command executesand control returns to the default run-time system, not to BASIC-PLUS-2 .
Format

$ system-command

Syntax Rules
1 .

	

BASIC passes system-command directly to your operating system without checking forvalidity .
General Rules

1 .

	

The terminal displays any error messages or output that the system-command generates .
VAX-11 BASIC

2.

2 .

3 .

$ Command

Control returns to the BASIC environment after the system-command executes . The context
(source file status, loaded modules, and so on) of the BASIC environment and the programcurrently in memory do not change unless the system-command causes the operating
system to abort BASIC or log you out.
On VAX/VMS systems, the system-command you specify executes within the context of a
subprocess . Consequently, commands such as the DCL SET command execute only within
the subprocess and do not affect the process running BASIC .

BASIC-PLUS-2
On RSX-11 M l M-PLUS systems, control returns to the BASIC environment after thesystem-command executes . The context (source file status, loaded modules, and so on) ofthe BASIC environment and the program currently in memory do not change unless thesystem-command causes the operating system to abort BASIC or log you out.
On RSTS/E systems, the context of the environment and the program currently in memoryare lost . After the system command executes, control passes to monitor level, not to
BASIC-PLUS-2 .
If you have made changes to the program currently in memory, BASIC-PLUS-2 displaysthe message "Unsaved change has been made - type SCRATCH or REPLACE" when youenter a system-command .

BASIC Reference Manual

	

49

$ Command

Examples
VAX-11 BASIC
Ready
$SHOW PROTECTIONSYSTEM=RWED# OWNER=RWED# GROUP=RWEDt WORLD=RE
Ready
BASIC-PLUS-2
$DIR STOCK .B2S%Unsaved change has been made - type SCRATCH or REPLACE .
BASIC2
REPLACE
BASIC2
$DIR STOCK .B2S

5o

	

BASIC Reference Manual

6.0 COMPILE
Function
The COMPILE command converts a BASIC source program to an object module and writes the objectfile to disk .
Format

COMPILE [file-spec] [/qualifier] . . .

Syntax Rules

COMPILE

1 .

	

File-spec specifies a name for the output file or files . If you do not provide a file-spec, the
compiler uses the name of the program currently in memory for the file name, a default file
type of OBJ for the object file, and a default file type of LIS (VAX-11 BASIC) or LST
(BASIC-PLUS-2) for the listing file, if a listing file is requested . BASIC-PLUS-2 uses adefault file type of MAC for the macro source code file when a macro file is requested .

2 .

	

In VAX-11 BASIC, file-spec can precede or follow /qualifier . In BASIC-PLUS-2, file-specmust precede the qualifiers .
3 .

	

/Qualifier specifies a qualifier keyword that sets a BASIC default . See Section 22 .0 forinformation on BASIC qualifiers . Table 16 lists and describes VAX-11 BASIC qualifiers .Table 17 lists and describes BASIC-PLUS-2 qualifiers .
4.

	

In cases of ambiguous or erroneous qualifiers, VAX-11 BASIC signals "Unknown quali-fier", BASIC-PLUS-2 signals "Illegal switch", and the program does not compile . Whenqualifiers conflict, BASIC compiles the program using the last specified conflicting quali-fier . For example :

5 .

	

You can abbreviate all positive COMPILE qualifiers to the first three letters of the qualifier
keyword . A negative qualifier can be abbreviated to NO and the first three letters of the
qualifier keyword .

6 .

	

There must be a program in memory or the COMPILE command does not execute andBASIC does not signal an error or warning.
General Rules

COMPILE/ OBJ / NOOBJ
BASIC compiles the program currently in memory but does not create an OBJ file .

1 .

	

If an object file for the program already exists in your directory, BASIC-PLUS-2 on RSTSIE
systems overwrites it with the new object file . VAX-11 BASIC and BASIC-PLUS-2 on
RSX-11MIM-PLUS systems create a new version of the OBJ file .

BASIC Reference Manual

	

51

COMPILE

2 .

	

You should not specify both a file name and file type . For example :
COMPILE NEWOBJ .FIL/LIS/OBJ
" VAX-11 BASIC creates two versions of NEWOBJ .FIL . The first version, NEWOBJ .FIL;1, isthe listing file ; the second version, NEWOBJ .FIL;2, is the object file . If you specify only afile name, BASIC uses the OBJ and LIS file type defaults when creating these files .
" BASIC-PLUS-2 creates only the object file and names it NEWOBJ.FIL .

3 .

	

Use the COMPILE /NOOBJECT command to check your program for errors without pro-ducing an object file .
Examples
COMPILE NEWSTRING/DOUBLE /LIST

52

	

BASIC Reference Manual

7.0 CONTINUE
Function
The CONTINUE command continues program execution after BASIC executes a STOP statement or,in VAX-11 BASIC, encounters a CTRL/C .
Format

CONTINUE

Syntax Rules
None .

General Rules

Examples

1 .

	

In VAX-1 i BASIC, a program stops executing in response to a STOP statement or a
CTRL/C :

2 .

	

In BASIC-PLUS-2, a program stops executing when BASIC executes a STOP statement and
control passes to the BASIC-PLUS-2 debugger, which prompts with a pound sign (#) .Type the CONTINUE command to resume program execution . Note that if the program
was executed with the RUN /DEBUG command, you can enter debugger commands be-
fore resuming program execution with the CONTINUE command . See Part VI in this
manual for more information on debugger commands .

VAX-11 BASIC

CONTINUE
BASIC-PLUS-2
Stop at line 20
*CONTINUE

CONTINUE

" You can enter immediate mode commands and resume program execution with the
CONTINUE command .

" You cannot resume program execution if you have made source code changes or
additions .

%BAS-I-STOt Stop-BAS-I-FROLINMODt from line 25 in module ABCReady

BASIC Reference Manual

	

53

DELETE

8.0 DELETE
Function
The DELETE command removes a specified line or range of lines from the program currently inmemory .
Format

DELETE lin-num [sep lin-num] , . .
sep : =

Syntax Rules
1 .

	

You must enter at least one line number . If you do not, DELETE has no effect in VAX-11
BASIC, while BASIC-PLUS-2 signals the error "Illegal Delete command" .

2 .

	

The sep characters allow you to delete individual lines or a block of lines .

3 .

	

You can combine individual line numbers and line ranges in a single DELETE command.Note, however, that a line number range must be followed by a comma and not anotherhyphen, or BASIC signals an error .
General Rules

Examples

" If you separate line numbers with commas, BASIC deletes each specified line number .

1 .

	

BASIC-PLUS-2 signals an error if there are no lines in the specified range . VAX-11 BASICdoes not signal an error and the DELETE command has no effect .
2 .

	

If you do not specify a beginning line number for a range, VAX-1 1 BASIC signals the error"illegal line number" . BASIC-PLUS-2 assumes a beginning line number of 1 and deletesall lines in the range 1 - lin-num .
3 .

	

If you do not specify an end line number in a range, VAX-11 BASIC does not delete anylines and does not signal an error . BASIC-PLUS-2 deletes only the specified line number .

DELETE 50

" If you separate line numbers with a hyphen (-), BASIC deletes the inclusive range oflines . The lower line number must come first . If it does not, DELETE has no effect inVAX-1 1 BASIC, while BASIC-PLUS-2 signals the error "Bad line number pair" .

DELETE 70-80t 110t 124
DELETE 50 t60 t90-110

54

	

BASIC Reference Manual

9.0 DSKLIB (BASIC-PLUS-2)
Function
The DSKLIB command lets you select a disk-resident, object module library to be used when you
build your program . When you use the BUILD command, BASIC-PLUS-2 includes the specified
library in the Task Builder command file . Every system has a disk library default set when
BASIC-PLUS-2 is installed .
Format

DSKLIB [file-spec]

Syntax Rules
1 .

	

If you enter the DSKLIB command without a file-spec, BASIC-PLUS-2 prompts for one and
displays the name of the current default disk-resident library .

General Rules

2 .

3 .

4.

5 .

6 .

DSKLIB

" File-spec can be a disk-resident, object module library supplied with BASIC-PLUS-2 or a
user-created library .

" If you type a carriage return in response to the prompt, BASIC-PLUS-2 uses the default
disk-resident library .

The object module libraries supplied by BASIC-PLUS-2 are LB :BP20TS.OLB on RSTS/E
systems and LB : [1,1] BP20TS.OLB on RSX-1 1 M l M-PLUS systems . LB : is a RSTS / E logical
name for the library account on disk . These libraries contain the BASIC Object Time
System (OTS) . OLB is the default object module library file type . If your system does not
have memory-resident libraries, the Task Builder extracts all BASIC routines from these
disk-resident libraries . See BASIC on RSX-11MIM-PLUS Systems and BASIC on RSTS/E
Systems for more information on object module libraries .
The Task Builder links the specified library to your program when you task-build the
program . You must use the DSKLIB command before you use the BUILD command to
include the library you want in the Task Builder command file .
The DSKLIB library you specify is included in all Task Builder command files until you
specify a new library with the DSKLIB command or exit from the BASIC environment .
When you exit from the BASIC environment, the default object module library set at
installation is restored as the default disk-resident library .
You can override the DSKLIB command with the /DSKLIB qualifier added to the BUILD
command, but the specified library remains in effect for only one BUILD routine .
The Task Builder returns an error message when the requested disk-resident library is not
available .
Consult your system manager for information about the disk-resident libraries available to
you .

BASIC Reference Manual

	

55

DSKLIB

Examples
RSX-11 M/M-PLUS Systems
DSKLIB LB :11#11BP20TS

RSTS l E Systems
DSKLIB LB :BP20TS

56

	

BASIC Reference Manual

10.0 EDIT
Function
The EDIT command allows you to edit individual program lines in the BASIC environment . In
VAX-11 BASIC, EDIT with no arguments invokes the default text editor and reads the current program
into the editor's buffer . In BASIC-PLUS-2, EDIT with no arguments puts you in the BASIC-PLUS-2
editing mode. BASIC-PLUS-2 editing mode commands are listed in Table 14 and described in
Sections 10.1 to 10 .6 .
Format
VAX-11 BASIC

EDIT

EDIT [[lin-num] search-clause [replace-clause]]

search-clause :

	

delim unq-strl delim
replace-clause :

	

[unq-str2] [delim [int-constl] [, int-constl]]

BASIC-PLUS-2
EDIT [[lin-num [- lin-num]] search-clause [replace-clause]]

search-clause :

	

delim unq-strl delim
replace-clause :

	

[unq-str2] delim [int-constl]

Syntax Rules
1 .

	

Lin-num specifies the line to be edited .
2 .

	

Search-clause specifies the text you want to remove or replace . Unq-strl is the search
string you want to remove or replace .

3 .

	

Replace-clause specifies the replacement text and the occurrence of the search string you
want to replace .
" Unq-str2 is the replacement string .
" Int-constl specifies the occurrence of unq-strl you want to replace . If you do not specifyan occurrence, BASIC replaces the first occurrence of unq-str1 .

4 .

	

Delim can be any printing character not used in unq-strl or unq-str2 . The examples in this
and the following sections use the slash (/) as a delimiter .

5 .

	

The delim characters in search-clause must match, or BASIC signals an error .
6 .

	

If the delim you use to signal the end of replace-clause does not match the delim used in
search-clause, BASIC does not signal an error and treats the end delim as part of unq-str2 .

BASIC Reference Manual

	

57

EDIT

7 .

	

BASIC replaces or removes text in a program line as follows :
" If unq-strl is found, BASIC replaces it with unq-str2 .
" If unq-strl is not found, BASIC signals an error .
" If unq-strl is null, VAX-11 BASIC signals "no change made" . BASIC-PLUS-2 replacesthe first character of the last edited line with unq-str2 and does not signal an error .
" If unq-str2 is null, BASIC deletes unq-strl . The delim in the replace-clause is required ifyou want to delete unq-strl .
" BASIC matches and replaces strings exactly as you type them . If unq-strl is uppercase,BASIC searches for an uppercase string . If it is lowercase, BASIC searches for a lowercasestring .

VAX-11 BASIC
1 .

	

The EDIT command followed by a carriage return causes BASIC to temporarily save yourprogram in a file called BASEDITMP.TMP . BASIC then invokes the same editor you usewhen you type the DCL EDIT command . When you finish editing your program andexit the editor, the edited program is the program currently in memory, and the contextof the BASIC environment is unchanged . Note that BASIC deletes all versions ofBASEDITMP.TMP when you return to BASIC from the editor .
2 .

	

Int-const2 in replace-clause specifies the sub-line of a block of program code where youwant BASIC to begin the search .
BASIC-PLUS-2

1 .

	

The EDIT command followed by a carriage return puts you in the BASIC-PLUS-2 editingmode . Editing mode commands, listed in Table 14 and described in Sections 10.1 to 10.6,are valid only in the BASIC-PLUS-2 editing mode. The editing mode prompt is an asterisk

2 .

	

BASIC-PLUS-2 sets a specified line number as the current edit line, even when the editingoperation fails . That line number remains set as the current edit line until you specifyanother line number or exit the BASIC environment .
3 .

	

You can edit a range of lines by separating two line numbers with a hyphen . BASIC signalsan error and does not edit the specified range if there are spaces between the hyphen andthe line numbers .
4 .

	

If you specify a range of lines and an occurrence, BASIC replaces each occurrence ofunq-strl in each line of the range beginning with the specified occurrence . For example :
10 PRINT DISPLAY$t DISPLAY$t DISPLAY$20 PRINT DISPLAY$t DISPLAY$t DISPLAY$EDIT

	

10-20

	

/DISPLAY$ /NEW$ / 2
to PRINT DISPLAY$t NEW$# NEW$20 PRINT DISPLAY$t NEW$t NEW$
"DISPLAY$" replaced bi "NEW$" .4 substitutions

58

	

BASIC Reference Manual

General Rules

Examples

EDIT

VAX-11 BASIC

EDIT

1 .

	

VAX-11 BASIC displays the edited line with changes after the EDIT command successfully
executes .

2 .

	

If you specify a lin-num with no text parameters, VAX-1 1 BASIC displays the line .
BASIC-PLUS-2

1 .

	

BASIC-PLUS-2 displays the edited line or lines with changes after the EDIT command
successfully executes . It also displays a message showing the search string, replacement
string, and number of replacements made.

2 .

	

If you want to edit a range of numbers, you must specify both the beginning and end of the
range . BASIC-PLUS-2 does not default to the last edited line or to the last line number in
the program .

3 .

	

When you specify a lin-num with no text parameters, BASIC-PLUS-2 displays the message
"Current edit line is x", where x is the specified lin-num .

4 .

	

When you type EDIT with no parameters to enter the editing mode, BASIC-PLUS-2 checks
the last edited line number to make sure that it still exists in the current program . If it has
been deleted, BASIC-PLUS-2 displays the message "?No current line" .

VAX-11 BASIC
EDIT 100 /LEFT$/RIGHT$/3t2

BASIC-PLUS-2
EDIT 300-400 /LEFT$/ /
EDIT 300 /LEFT$/RIGHT$/3
EDIT

BASIC Reference Manual

	

59

EDIT

Table 14: BASIC-PLUS-2 Editing Mode Commands

60

	

BASIC Reference Manual

Command Function

DEFINE Used to enter a macro definition . A macro definition consists of editing commands . You cannot,
though, use the DEFINE and EXECUTE commands in a macro definition . To end the macro
definition, type a carriage return and then EXIT or CTRL /Z . You must use the EXECUTE command
to execute the macro definition .

EXECUTE Executes the macro defined by the DEFINE command as many times as you specify.
EXIT (or CTRL/Z) Allows you to exit from editing mode, execute an INSERT command, or end a DEFINE command.
FIND Searches from the last edited line to the end of the current program for a specified string .
INSERT Allows you to add program lines after a specified line number . Type a carriage return and EXIT or

CTRL/Z to execute this subcommand .
SUBSTITUTE Performs the same function and accepts the same text parameters as the EDIT command ; you

cannot, however, specify line numbers or line number ranges .

10.1 DEFINE (BASIC-PLUS-2)
Function
The DEFINE editing mode command allows you to enter a macro definition . The macro consists of a
series of editing mode commands in the order in which they are to execute .
Format

Syntax Rules
1 .

	

The macro definition must consist of valid editing mode commands or BASIC-PLUS-2
signals an error . You cannot use the DEFINE or EXECUTE editing mode commands in a
macro definition .

General Rules

Examples
*DEFINE

1 .

	

Type the DEFINE command and a carriage return, then enter your macro definition . TypeEXIT or CTRL/Z in response to the DEFINE prompt (->) when you have finished entering
your macro definition . BASIC-PLUS-2 displays the editing mode prompt, and you canenter more editing commands .

2 .

	

BASIC writes the macro definition to a file, so the definition remains in effect until youenter another DEFINE command . That is, an EXECUTE command executes the last definedmacro definition .

Enter command sequence :->FIND REM->SUBSTITUTE

	

/ REM / ! /->EXIT

DEFINE

BASIC Reference Manual

	

61

EXECUTE

10.2 EXECUTE (BASIC-PLUS-2)
Function
The EXECUTE editing mode command executes the last macro defined by the DEFINE command . Youspecify the number of times the macro is to execute .
Format

EXE
EXECUTE

	

[int-const]

Syntax Rules

Examples

1 .

	

Int-const specifies the number of times the macro executes . If you do not specify int-const,BASIC-PLUS-2 executes the macro once .
General Rules

1 .

	

An EXECUTE command always executes the last defined macro definition . If no macrodefinition exists, BASIC-PLUS-2 signals the error "Command sequence has not beendefined" .

*EXECUTE 5

62

	

BASIC Reference Manual

10.3 EXIT or CTRL/Z (BASIC-PLUS-2)
Function
The EXIT or CTRL/Z editing mode command marks the end of a DEFINE or INSERT command or exitsfrom editing mode.
Format

Syntax Rules
None .

General Rules

Examples
*DEFINE

EXIT

1 .

	

If you type EXIT or CTRL/Z in response to the editing mode prompt, BASIC-PLUS-2 exits
from editing mode.

2 .

	

If you type EXIT or CTRL/Z to end a DEFINE or INSERT command, BASIC-PLUS-2 dis-
plays the editing mode prompt and you can enter more editing commands .

Enter command sequence->FIND REM- >SUBS

	

/REM / !->EXIT

BASIC Reference Manual

	

63

FIND

10.4 FIND (BASIC-PLUS-2)
Function
The FIND editing mode command searches the current program for a specified string starting at thelast edited line and continuing to the end of the program .
Format

F
FIND

	

[unq-str]

Syntax Rules
1 .

	

The FIND command does not require character delimiters for unq-str . Delimiters are thespace after the command and a carriage return .
General Rules

1 .

	

When unq-str is found, BASIC-PLUS-2 displays the line that contains the unq-str, sets it asthe last edited line, and displays an informational message .
2 .

	

If unq-str is not found, the last edited line remains unchanged and BASIC-PLUS-2 displaysa message telling you that the string was not found .
3 .

	

The FIND command matches unq-str exactly as you type it . If unq-str is uppercase,BASIC-PLUS-2 searches for uppercase characters . The delimiters (space and carriagereturn) are not included in the match .
4 .

	

If you do not specify an unq-str, the FIND command matches the unq-str specified by thelast FIND command . If there is no previous FIND command, BASIC-PLUS-2 matches thefirst character of the last edited line .
Examples
*FIND PRIMT
330

	

PRIMT 'How many receipts do You have' ;RECEIPTS
"PRIMT" found on line 330

64

	

BASIC Reference Manual

10.5 INSERT (BASIC-PLUS-2)
Function
The INSERT editing mode command allows you to add lines to a program .
Format

I
INSERT +

	

[lin-num I

Syntax Rules

Examples

INSERT

1 .

	

Lin-num specifies the line number after which you want to insert new program lines . If you
do not specify a lin-num, BASIC defaults to the last edited line .

2 .

	

If lin-num does not exist in the source program currently in memory, BASIC signals an
error .

General Rules
1 .

	

Type in program lines, beginning with a line number, after entering the INSERT command .
When you are finished inserting lines, type EXIT or CTRL/Z to return to the editing mode.
BASIC-PLUS-2 displays the editing mode prompt and you can enter more editing
mode commands .

2 .

	

If you insert a line number that already exists, BASIC-PLUS-2 replaces the existing line
with the code you insert and does not signal a warning .

3 .

	

BASIC-PLUS-2 does not perform syntax checks on inserted program lines even when
syntax checking is enabled .

4 .

	

The current edit line does not change . For example, if the current edit line is 10 and you
insert lines 20 and 30, line 10 remains the current edit line .

*INSERT 30
Enter lines to be added after line 30->40 INPUT 'More receipts' ;RECEIPTS$->50 IF RECEIPTS$ = ""->

	

THEN GOTO 32767-> END IF->EXIT*

BASIC Reference Manual

	

65

SUBSTITUTE

10.6 SUBSTITUTE (BASIC-PLUS-2)
Function
The SUBSTITUTE editing mode command allows you to substitute one character string for another inthe program currently in memory . SUBSTITUTE is the editing mode equivalent of the EDIT commandwith one exception : you cannot specify a range of lines . The SUBSTITUTE subcommand can replaceonly one occurrence of the specified search string, while the EDIT command can replace all occur-rences in a range of lines, if you so specify .
Format

i
s
SUBSTITUTE I search-clause [replace-clause]

search-clause :

	

delim unq-strl delim
replace-clause :

	

[unq-str2] delim [int-const]

Syntax Rules

66

2 .

3 .

4 .

Delim marks the beginning and end of the search and replace strings . Delimiters arerequired before and after unq-strl . The delimiter after unq-str2 is optional .
" Delim can be any printing character not used in the search or replace strings . Theexamples in this section use the slash (/) as a delimiter .
" The beginning and ending delim characters must match, or BASIC signals an error .
Unq-strl specifies the string you want to remove or replace . Unq-str2 specifies the string tobe substituted for unq-strl .
" If unq-strl is found, BASIC replaces it with unq-str2 .
" If unq-strl is not found, BASIC signals an error .
" If you do not specify unq-str2, BASIC deletes unq-str1 .
" If you do not specify unq-strl, BASIC replaces the first character of the last edited linewith unq-str2 .
" The SUBSTITUTE subcommand matches and replaces strings exactly as you type them . Ifunq-strl is uppercase, BASIC searches for an uppercase string . If it is lowercase, BASICsearches for a lowercase string .
Int-const specifies the occurrence of str-litl you want to replace . If you do not specify anint-const, BASIC replaces the first occurrence of str-litl .
If you type only the SUBSTITUTE subcommand and a carriage return, BASIC-PLUS-2signals the error "Parameters required" .

BASIC Reference Manual

SUBSTITUTE

General Rules
1 .

	

BASIC displays the edited line with changes after the SUBSTITUTE command executes .
Examples
*SUBSTITUTE

	

/ A% /ABSOLUTE% / 3

BASIC Reference Manual

	

67

EXIT

11 .0 EXIT
Function
The EXIT command or CTRL/Z clears memory and returns control to the operating system .
Format

Syntax Rules
None .

General Rules

Examples
EXIT

1 .

	

If you type EXIT after creating a new program or editing an old program without first typingSAVE or REPLACE, BASIC signals "Unsaved change has been made, CTRL/Z or EXIT toexit" . The message warns you that the new or revised program will be lost if you do notSAVE or REPLACE it . If you type EXIT again, BASIC exits from the environment whetheryou have saved your changes or not .

68

	

BASIC Reference Manual

12.0 HELP
Function
The HELP command displays on-line documentation for BASIC commands, keywords, statements,
functions, and conventions .
Format

HELP [unq-str] . . .

Syntax Rules
1 .

	

If you type HELP with no parameters, BASIC displays a list of topics .
2 .

	

Unq-str is BASIC topic, keyword, command, statement, function, or convention .
3 .

	

The first unq-str must be a topic . If it is not, BASIC displays a list of topics for you to choose
from.

4 .

	

You can specify a subtopic after the topic . Separate one unq-str from another with a space .

5 .

	

You can use the asterisk (*) wildcard character in unq-str or alone as unq-str . If you use an
asterisk in unq-str, BASIC displays information on all topics that match the specified por-
tion of unq-str . If you use the asterisk alone, BASIC displays information on all BASIC
topics .

General Rules

ReadyHELP STATEMENTS CH
STATEMENTS

CHAIN

HELP

1 .

	

If the unq-str you specify is not a unique topic or subtopic, BASIC displays a information on
all topics or subtopics beginning with unq-str . For example :

The CHAIN statement transfers control from the current Program to another
BASIC Program . The Program to which you CHAIN must be in executable
format .
Format
CHAIN <str-exp>
Example
240 CHAIN "COSINE .EKE" (continued on next page)

BASIC Reference Manual

	

69

HELP

Examples

Topic?

GOTO

STATEMENTS
CHANGE

Topic?

The CHANGE statement : 1) converts a string of characters to their ASCIIinteger valuest or 2) converts a list of numbers to a string of ASCIIcharacters .
Format
String Variable to Array :

Example

CHANGE str-exp TO num-array
Array to String Variable :

CHANGE num-array TO str-vbl

200 CHANGE ARRAY-CHANGES TO A$

2 .

	

An asterisk (*) indicates that you want to display information that matches any portion ofthe topic you specify . For example, if you type HELP GO*, BASIC displays information onGOSUB and GOTO .
3 .

	

When information on a particular topic or subtopic is not available, BASIC signals themessage "Sorry, no documentation on unq-str" and a list of "Additional informationavailable" .

HELP STATEMENTS ON GOTO
STATEMENTS

ON

The ON GOTO statement transfers Program control to one of several lines#depending on the value of a control expression .
Format

Example

{ GO TO }ON int-exp { GOTO } target ~ . . . E OTHERWISE target I

330 ON INDEX% GOTO 700#800#500# OTHERWISE 1000)

70

	

BASIC Reference Manual

13.0 IDENTIFY
Function
The IDENTIFY command displays an identification header on the controlling terminal . The header
contains the name and version number of BASIC.
Format

General Rules

Examples

1 .

	

The message displayed by the IDENTIFY command includes the name of the BASIC com-
piler and the version number .

VAX-11 BASIC
IDENTIFY
VAX-11 BASIC V2 .o
BASIC-PLUS-2
IDENTIFY
PDP-11 BASIC-PLUS-2 V2 .0

IDENTIFY

BASIC Reference Manual

	

71

INQUIRE

14.0 INQUIRE
Function
The INQUIRE command is a synonym for the HELP command . See the HELP command for syntax
rules .

72

	

BASIC Reference Manual

15.0 LIBRARY (BASIG-PLUS-2)
Function
The LIBRARY command allows you to specify a memory-resident BASIC-PLUS-2 or user-created
library to be used when you task-build the program . When you use the BUILD command,
BASIC-PLUS-2 includes the specified library in the Task Builder command file . The default library for
the LIBRARY command is chosen by your system manager when BASIC-PLUS-2 is installed .
Format

LIBRARY [lib-param]
lib-param : file-spec

lib-nam
NONE

Syntax Rules

2 .

3 .

LIBRARY

If you enter the LIBRARY command without a lib-param, BASIC-PLUS-2 prompts for one and
displays the name of the current default memory-resident library .

General Rules

" Lib-nam or file-spec can be a memory-resident library supplied by BASIC-PLUS-2 or a user-
created library . If you specify only lib-nam with no device, BASIC-PLUS-2 assumes LB : on
RSTS / E systems and LB : [1,1] on RSX-11 M l M-PLUS systems .

" NONE tells the Task Builder not to link your task to the BASIC default memory-resident
library . Therefore, the Task Builder links to the BASIC disk-resident, object module
library, BP20TS .OLB .

" If you type a carriage return in response to the prompt, the current default memory-resident
library is used .

The memory-resident libraries supplied by BASIC-PLUS-2 are BP2RES and BP2SML .
Because memory-resident libraries are optional, your system manager can select none,
one, or both then BASIC-PLUS-2 is installed . See BASIC on RSX-1 1 Ml MPLUS Systems or
BASIC on RSTS/E Systems for information on using BASIC-PLUS-2 memory-resident librar-
ies . See your system manager for information on the libraries available on your system .
On RSTS/E systems, the LIBRARY command does not require the LB : logical name. BASIC
automatically searches this account for the memory-resident library symbol table . On
RSX-11MIM-PLUS systems, the LIBRARY command automatically references libraries on
LB :[1,1] unless you specify another UIC .
BASIC-PLUS-2 links the specified library to your program when you task-build the pro-
gram . You must use the LIBRARY command before you use the BUILD command to
include the specified library in the Task Builder command file .

BASIC Reference Manual

	

73

LIBRARY

Examples

4.

	

The library you specify is, included in your Task Builder command files until you specify anew library with the LIBRARY command or exit from the compiler . When you exit from thecompiler, the original default library is restored as the default .
5 .

	

You can override the LIBRARY command with the /LIBRARY qualifier added to the BUILD
command, but the specified library remains in effect for only one BUILD routine .

6 .

	

The Task Builder returns an error message when the requested resident library is not
available .

LIBRARY BP2RES

74

	

BASIC Reference Manual

16.0 LIST and LISTNH
Function
The LIST command displays the program lines of the program currently in memory . Line numbers are
sequenced in ascending order . LISTNH displays program lines without the program header .
Format
VAX-11 BASIC

LISTNH ~
LIST

	

[lin-num [sep [lin-num)]] . . .
sep :

BASIC-PLUS-2

LISTNH
LIST

	

[[- I fin-num] [sep [lin-num I] . . .
sep :

Syntax Rules
1 .

	

The LIST command displays program lines, along with a header containing the program
name, the current time, and the date . To suppress the program header, type LISTNH .

2 .

	

LIST without parameters displays the entire program .
3 .

	

The sep characters allow you to display single lines or a range of lines .
" To display single lines, separate line numbers with commas. For example :
LIST 30 t70
displays a header and lines 30 and 70.

" To display an inclusive range of lines, separate line numbers with a hyphen . The first
number must be lower than the second number in the range or BASIC signals an error .
For example :
LIST 30-70
displays lines 30 through 70 .

LIST

4 .

	

Line number ranges must be separated from other ranges or individual line numbers by
commas as BASIC does not allow two consecutive hyphens .

BASIC Reference Manual

	

75

LIST

VAX-11 BASIC
1 .

	

A lin-num followed by a hyphen and a carriage return displays the specified line and all
remaining lines in the program .

2 .

	

A hyphen between the LIST command and lin-num causes VAX-11 BASIC to signal an
error .

BASIC-PLUS-2
1 .

	

A hyphen between the LIST command and the lin-num displays all lines from the begin-
ning of the program up to and including the lin-num you specify .

2 .

	

A lin-num followed by a comma or a hyphen and a carriage return displays only the
specified line .

3 .

	

If there are no lines in the specified range, BASIC-PLUS-2 signals an error .
General Rules

1 .

	

BASIC displays the source program lines in the order you specify in the command line .That is, BASIC displays line 100 before line 10 if you type LIST 100,10.
Examples
VAX-11 BASIC
LIST 50t 200-3001 30000-
BASIC-PLUS-2
LISTNH -30# 2000-25001 19000

76

	

BASIC Reference Manual

17.0 LOAD
Function
The LOAD command makes a previously created object module or modules available for executionwith the RUN command .
Format

LOAD

LOAD file-spec [+ file-spec] . . .

Syntax Rules
1 .

	

File-spec must be a BASIC object module or BASIC signals an error . OBJ is the default file
type . If you specify only the file name, BASIC searches for an OBJ file in the current default
directory .

2 .

	

Each device and directory specification applies to all following file specifications until you
specify a new directory or device .

3 .

	

Each new LOAD command cancels the effect of a previous LOAD command . That is, theLOAD command clears all previously loaded object modules from memory .
4 .

	

The LOAD command accepts multiple device, directory, and file specifications .
General Rules

1 .

	

BASIC does not process the loaded object files until you issue the RUN command . Conse-
quently, errors in the loaded modules may not be detected until you execute them .

2 .

	

BASIC signals an error :
" If the file is not found
" If the file specification is not valid
" If the file is not a BASIC object module
" If run-time memory is exceeded
Errors do not change the program currently in memory .

3 .

	

Typing the LOAD command does not change the program currently in memory .
Examples
LOAD PROGA + PROGB + PROGC

BASIC Reference Manual

	

77

LOCK

18.0 LOCK
Function
The LOCK command changes default values for COMPILE command qualifiers . It is a synonym forthe SET command . See the SET command for syntax rules .

78

	

BASIC Reference Manual

19.0 NEW
Function
The NEW command clears BASIC memory and allows you to assign a name to a new program .
Format

NEW [prog-nam I

Syntax Rules

Examples

1 .

	

Prog-nam

	

is the

	

name of the program

	

you want to create .

	

VAX-] 1

	

BASIC and
BASIC-PLUS-2 on RSX-11 M IM-PLUS systems allow names to contain up to nine alpha-
numeric characters . BASIC-PLUS-2 on RSTS/E systems allows names to contain up to six
alphanumeric characters .

2 .

	

BASIC-PLUS-2 on RSTS/E systems truncates a prog-nam that exceeds six characters and
does not signal an error .

3 .

	

VAX-1 1 BASIC and BASIC-PLUS-2 on RSX-1 1 M l M-PLUS systems signal an error if theprog-nam exceeds nine characters .
4 .

	

VAX-1 1 BASIC signals "error in program name" if you specify a file type . BASIC-PLUS-2
ignores the file type and does not signal an error .

General Rules
1 .

	

If you do not specify a prog-nam, BASIC prompts with :

3 .

	

When you type the NEW command, the program currently in memory is lost . Program
modules loaded with the LOAD command remain unchanged .

NEW PROG1

New file name--

NEW

2 .

	

The default name is NONAME . If you do not provide a prog-nam in response to the
prompt, BASIC assigns the file name NONAME to your program .

BASIC Reference Manual

	

79

ODLRMS

20.0 ODLRMS (BASIC-PLUS-2)
Function
The ODLRMS command allows you to select an overlay description (ODL) file to describe the RMSoverlay structure to be used when your program is task built . When you use the BUILD command,BASIC-PLUS-2 includes the specified ODL file in the Task Builder command file . Every system hasan ODL default set when BASIC-PLUS-2 is installed . See your system manager for the name of yourBASIC default .
Format

ODLRMS [odl-param
odl-param: file-spec

NONE ~

Syntax Rules

General Rules

80

2.

3 .

4.

If you enter the ODLRMS command without an odl-param, BASIC-PLUS-2 prompts forone and displays the name of the current default ODL file .
" File-spec can be an ODL file supplied by RMS or a user-created file . Table 15 lists anddescribes RMS ODL files .
" NONE tells the Task Builder not to link your task to any RMS ODL file .
" If you type a carriage return in response to the prompt, BASIC-PLUS-2 uses the defaultODL file .

New versions of RMS can change ODL file names, so consult the RMS distribution kit forcurrent ODL names. LB : is a RSTS/E logical name for the library account on disk . OnRSX-11MIM-PLUS systems, you must specify LB :[1,1] before the ODL file name .
Enter the ODLRMS command before you enter the BUILD command. The ODL file youspecify is included in all Task Builder command files until you enter a new ODLRMScommand or exit from the BASIC environment, at which time BASIC-PLUS-2 returns to theODL default file .
You can override the ODLRMS command with the ODL qualifier to the BUILD commandfor a single BUILD operation .
Refer to the RMSRES compiler command to see which ODL files are required for each RMSlibrary .

BASIC Reference Manual February 1984

5 .

	

The Task Builder returns an error message if the ODL file you select is not available or
valid . Consult your system manager for information about ODL files available to you .

6 .

	

Consult BASIC on RSX-I I MlM-PLUS Systems or BASIC on RSTS / E Systems for more
information on using RMS libraries .

Table 15: ODL Files

Examples
RSX-IIM/M-PLUS Systems
ODLRMS LB :C1r1]RMSRLX .ODL
RSTS l E Systems
ODLRMS LB :RMSRLX .ODL

ODLRMS

February 1984

	

BASIC Reference Manual

	

81

ODLRMS File Organization Type of Overlay
Option Seq Rel Ind Library Segments

RMSRLX Yes Yes Yes Memory None
DAPRLX Yes Yes Yes Memory None
RMS11 S Yes Yes No Disk 1 1
RMS12S Yes Yes No Disk 5
RMS11 X Yes Yes Yes Disk 35
RMS12X Yes Yes Yes Disk 13
DAP11X Yes Yes Yes Disk 16

OLD

21 .0 OLD
Function
The OLD command brings a previously created BASIC program into memory .
Format

OLD [file-spec I

Syntax Rules
1 .

	

If you do not name a file-spec, BASIC prompts for one . If you do not enter a file-spec in
response to the prompt, BASIC searches for a file named NONAME .BAS (VAX-11 BASIC)
or NONAME .B2S (BASIC-PLUS-2) in the current default directory .

2 .

	

The default file type is BAS for VAX-1 1 BASIC and B2S for BASIC-PLUS-2 .
General Rules

Examples

1 .

	

If the compiler cannot find the file-spec, VAX-11 BASIC signals the error "file not found"
and BASIC-PLUS-2 signals "can't find file or account" .

2 .

	

When the specified file is found, it is placed in memory and any program currently in
memory is erased . If BASIC does not find the specified file, the program currently in
memory does not change .

3 .

	

If you specify a file that does not begin with a line number, BASIC discards all text up to the
first line number, brings the file into memory, and signals the error "Non-continued state-
ment has no line number near <line number>" . You can then LIST and SAVE the
program .

OLD CHECKReady

82

	

BASIC Reference Manual

22.0 Qualifiers
Function
BASIC qualifiers allow you to specify defaults for the compilation process and the BASIC environ-
ment . You specify qualifiers with the COMPILE and SET commands . In BASIC-PLUS-2, you can alsospecify qualifiers with the BUILD and RUN commands .
Format

command [/qualifier] . . .

Syntax Rules

2 .

General Rules

2 .

3 .

Qualifiers

The slash delimiter is not required before the first qualifier in the SET command . Multiple
qualifiers, however, must be separated by slashes or commas . See the syntax rules for the
SET command for more information on separating qualifiers .
You can abbreviate all positive qualifiers to the first three letters of the qualifier keyword .
You can abbreviate a negative qualifier to NO and the first three letters of the qualifierkeyword .

Table 16 lists VAX-11 BASIC qualifiers and their functions . Table 17 lists BASIC-PLUS-2qualifiers, the commands they can be used with, and their functions .
In cases of ambiguous or erroneous qualifiers, VAX-11 BASIC signals the error "Unknownqualifier", while BASIC-PLUS-2 signals "Illegal switch" .
When you exit from the BASIC environment, all defaults set with qualifiers return to the
defaults . Use the SHOW command before setting any qualifiers to display your system
defaults .

Examples
COMPILE / NOOBJ /DOUBLE/ DEBUG
SET

	

/TYPE-DEFAULT : EXPLICIT /LIST

BASIC Reference Manual

	

83

Qualifiers

Table 16 : VAX-11 BASIC COMPILE and SET Command Qualifiers

84

	

BASIC Reference Manual

Qualifier Function

[NO]ANSI-STANDARD Tells BASIC to compile programs according to the ANSI Minimal
BASIC Standard and to flag syntax that does not conform to the
standard . See BASIC on VAX/VMS Systems for information on
the ANSI Minimal BASIC Standard .

[NO]AUDIT [sep text-entry] Tells BASIC to include a history entry in the CDD data base when
a CDD definition is extracted . Str-lit is a quoted string . File-spec

seP : I - is a text file . The history entry includes :

st " The contents of str-lit, or up to the first 64 lines in the file
text-entry : I file-spece-spec specified by file-specspec

" The name of the program module, process, user name, and
user UIC that accessed the CDD

" The time and date of the access
" A note that access was made by the BASIC compiler
" A note that the access was an extraction

[NO]BOUNDS-CHECK Tells BASIC to perform range checks on array subscripts . BASIC
checks that all subscript references are within the array bound-
aries set when the array was declared .

BYTE Causes the compiler to allocate eight bits of storage as the defaultfor all integer data not explicitly typed in the program . Untyped
integer values are treated as BYTE values and must be in theBYTE range or BASIC signals the error "Integer error or over-
flow" . Table 2 in this manual lists BASIC data types and ranges .

[NO]CROSS- REFERENCE [sep [NO]KEYWORDS] Causes the compiler to include cross-reference information in the
program listing file . If you specify KEYWORDS, BASIC also

sep: - I cross-references BASIC keywords used in the program . The list-
ing file takes the program name as the file name and a default file
type of LIS .

[NO]DEBUG Tells BASIC to provide records for the VAX-11 Symbolic
Debugger . See BASIC on VAX/VMS Systems for information on
using the VAX- I 1 Symbolic Debugger .

DECIMAL-SIZE sep (d,s) Allows you to specify the default size and precision for all
DECIMAL data not explicitly assigned size and precision in the

sep : - program . You specify the total number of digits (d) and the num-
ber of digits to the right of the decimal point (s) . BASIC signals
the error "Decimal error or overflow" (ERR= 181) whenDECIMAL values are outside the range specified with this quali-
fier . See Table 2 in this manual and Appendix C in BASIC on
VAX/VMS Systems for information on the storage and range of
packed decimal data .

Table 16: VAX-11 BASIC COMPILE and SET Command Qualifiers (Cont .)

Qualifiers

(continued on next page)

February 1984

	

BASIC Reference Manual

	

85

Qualifier Function

DOUBLE Causes the compiler to allocate 64 bits of storage in
D-FLOAT format as the default size for all floating-point
data not explicitly typed in the program . Untyped floating-
point values are treated as DOUBLE values and must be in
the DOUBLE range or BASIC signals the error "Floating-
point error or overflow" . Table 2 in this manual lists BASIC
data types and ranges .

[NOIFLAG [sep (flag-clause, . . .)] Causes BASIC to provide compile-time information about
program elements that are not compatible with
BASIC-PLUS-2 or that DIGITAL designates as declining .sep : - An element is designated declining when BASIC has a
preferred and often more powerful way to perform the

flag-clause : [NO]BP2COMPATIBILITY operation .
[NO]DECLINING If you specify BP2COMPATIBILITY, BASIC will flag the

following source code as incompatible with
BASIC-PLUS-2 :
" String comparisons using or (>_)
" DECIMAL keyword and DECIMAL function
" HFLOAT keyword
" GFLOAT keyword
" LOC function
" MAR and MAR% functions
" MARGIN and NOMARGIN statements
" RECORD declarations
" More than 16 digits of precision in a floating-point literal
" Explicit literal notation that specifies a radix
" Explicit literal notation with data type other than "B"

(BYTE), "W" (WORD), "L" (LONG), "S" (SINGLE), "D"
(DOUBLE), or "C" (CHARACTER)

" Names in the EXTERNAL statement that have more than
six characters or contain characters not in the Radix-50
character set

" BY DESC clauses on anything other than entire arrays or
unsubscripted STRING variables

" BY VALUE clauses for anything other than BYTE or
WORD unsubscripted variables

" More than eight parameters to a DEF, subprogram, or
external function

Qualifiers

Table 16: VAX-11 BASIC COMPILE and SET Command Qualifiers (Cont .)

86

	

BASIC Reference Manual

(continued on next page)

Qualifier Function

" Arrays of more than eight dimensions
" Terminal-format files opened with no MAP or
RECORDSIZE clause and no ACCESS READ clause

" BY DESC, BY REF, and BY VALUE clauses in SUB and
FUNCTION statements

If you specify DECLINING, BASIC will flag the following
source code as declining :
" CVT$$ (use EDIT$)
" CVT$%, CVT$F, CVT%$, CVTF$, and SWAP% (use

multiple MAP statements)
" DEF* functions (use DEF functions)
" FIELD statements (use MAP DYNAMIC and REMAP)
" GOTO lin-num% (do not use the integer suffix with a

line number)
GFLOAT Causes the compiler to allocate 64 bits of storage in

G_FLOAT format as the default size for all floating-point
data not explicitly typed in the program . Untyped floating-
point values are treated as GFLOAT values and must be in
the GFLOAT range or BASIC signals "Floating-point error
or overflow" . Table 2 in this manual lists BASIC data types
and ranges .

HFLOAT Causes the compiler to allocate 128 bits of storage in
H_FLOAT format as the default size for all floating-point
data not explicitly typed in the program . Untyped floating-
point values are treated as HFLOAT values and must be in
the HFLOAT range or BASIC signals "Floating-point error
or overflow" . Table 2 in this manual lists BASIC data types
and ranges .

[NO]LINE Includes line number information in object modules . If you
specify NOLINE in a program containing a RESUME state-
ment or using the run-time ERL function, BASIC warns that
the NOLINE qualifier has been overridden .

[NO]LIST Tells BASIC to produce a source listing file . By default, this
file contains a memory allocation map. The listing file
takes the name of the program and a default file type of
LIS .

Table 16: VAX-11 BASIC COMPILE and SET Command Qualifiers (Cont.)

Qualifiers

(continued on next page)

BASIC Reference Manual

	

87

Qualifier Function

LONG Causes the compiler to allocate 32 bits of storage as the
default size for all integer data not explicitly typed in the
program . Untyped integer values are treated as LONG val-
ues and must be in the LONG range or BASIC signals the
error "Integer error or overflow" . Table 2 in this manual
lists BASIC data types and ranges .

[NO]MACHINE-CODE Causes BASIC to include the machine code generated by
the compilation in the program listing file .

[NO]OBJECT Generates an object module with the same file name as the
program and a default file type of OBJ . Use NOOBJECT to
check your program for errors without creating an object
file .

[NO]OVERFLOW [sep (data-type,. . .)] Tells BASIC to report arithmetic overflow for operations on
integer and/or packed decimal data .

sep:

data-type : IN TEGER
DECIMAL

[NO]ROUND Tells BASIC to round rather than truncate DECIMAL
values .

[NO]SETUP Tells BASIC to make calls to the Run-Time Library that set
up the stack for BASIC variables, set up dynamic string and
array descriptors, initialize variables, and enable BASIC
error handling . If you specify NOSETUP, BASIC will
attempt to optimize your program by omitting these calls .
If your program contains any of the following elements,
BASIC provides an informational diagnostic and does not
optimize your program :
" CHANGE statements
" DEF or DEF* statements
" Dynamic string variables
" Executable DIM statements
" EXTERNAL string functions
" MAT statements
" MOVE statements for an entire array
" ON ERROR statements

Qualifiers

Table 16 : VAX-11 BASIC COMPILE and SET Command Qualifiers (Cont.)

88

	

BASIC Reference Manual

(continued on next page)

Qualifier Function

" READ statements
" REMAP statements
" RESUME statements
" String concatenation
" Built-in string functions
" Virtual array declarations
Note that program modules compiled with NOSETUP
cannot perform any 1/0 and have no error handling capa-
bilities . If an error occurs in such a module, the error is
resignaled to the calling program .

[NO]SHOW [sep (show-item, . . .)] Tells BASIC what to include in the listing file :
" CDD_DEFINITIONS specifies translated CDD defini-

sep :
1 : ~

tions .
" ENVIRONMENT specifies a listing of the compilation

[NO]CDD_DEFINITIONS qualifiers in effect .
[NO]ENVIRONMENT " INCLUDE specifies a listing of the contents of %IN-

show-item : [NO]INCLUDE CLUDE files .
[NOIMAP
[NO]OVERRIDE " MAP specifies a storage allocation map .

" OVERRIDE cancels the effect of all %NOLIST directives
in the source program .

If you do not specify a show-item, BASIC uses the defaults
set with the DCL command.

SINGLE Causes the compiler to allocate 32 bits of storage in
F_FLOAT format as the default size for all floating-point
data not explicitly typed in the program . Untyped floating-
point values are treated as SINGLE values and must be in
the SINGLE range or BASIC signals the error "Floating-
point error or overflow" . Table 2 in this manual lists BASIC
data types and ranges .

[NO]SYNTAX-CHECK Tells BASIC to perform syntax checking after each program
line is typed .

[NO]TRACEBACK Causes BASIC to include traceback information in the ob-
ject file that allows reporting of the sequence of calls that
transferred control to the statement where an error
occured .

Table 16 : VAX-11 BASIC COMPILE and SET Command Qualifiers (Cont.)

Qualifiers

BASIC Reference Manual

	

89

Qualifier Function

TYPE-DEFAULT sep default-clause Sets the default data type (REAL, INTEGER, or DECIMAL)
for all data not explicitly typed in your program or specifies
that all data must be explicitly typed (EXPLICIT) .sep: _ . REAL specifies that all data not explicitly typed is float-

ing-point data of the default size (SINGLE, DOUBLE,
REAL GFLOAT, or HFLOAT).

default-clause : INTEGER . INTEGER specifies that all data not explicitly typed isDECIMAL integer data of the default size (BYTE, WORD, orEXPLICIT LONG) .
* DECIMAL specifies that all data not explicitly typed is

packed decimal data of the default size .
" EXPLICIT specifies that all data in a program must be

explicitly typed . Implicitly declared variables cause
BASIC to signal an error .

VARIANT sep int-const Establishes int-const as a value to be used in compiler
directives . The variant value can be referenced in a lexical

sep: expression by using the lexical function, %VARIANT.
Int-const always has a data type of LONG .

[NO]WARNINGS [sep warn-clause] Tells BASIC to display warning and/or informational mes-
sages. If you specify WARNINGS but do not specify a

sep: warn-clause, BASIC displays both warnings and informa-
tional messages .

warn-clause : [NO]WARNINGS
[NO]INFORMATIONALS

WORD Causes the compiler to allocate 16 bits of storage as the
default for all integer data not explicitly typed in the pro-
gram . Untyped integer values are treated as WORD values
and must be in the range -32768 to 32767 or BASIC sig-
nals the error "Integer error or overflow." Table 2 in this
manual lists BASIC data types and ranges .

Qualifiers

Table 17 : BASIC-PLUS-2 Command Qualifiers

(continued on next page)
90

	

BASIC Reference Manual

	

February 1984

Qualifier Commands Function

BRLRES : lib-param BUILD Lets you specify a memory-resident library to be
linked to your program . File-spec can be a library

file-spec supplied with BASIC-PLUS-2 or a user-createdlib-param : NONE library . NONE tells the Task Builder not to link
your task to the default memory-resident library .
See the BRLRES command syntax rules in this man-
ual for more information on memory-resident
libraries .

BYTE COMPILE Causes the compiler to allocate eight bits of storage
RUN as the default for all integer data not explicitly
SET typed in the program . Untyped integer values are

treated as BYTE values and must be in the BYTE
range or BASIC signals the error "Integer error or
overflow" . Table 2 in this manual lists BASIC data
types and ranges .

[NO]CHAIN COMPILE** Enables other programs to CHAIN into the program
RUN** using the LINE clause of the CHAIN statement . The
SET** default (CHAIN or NOCHAIN) is an installation

option . If the program has more than 200 line
numbers, NOCHAIN reduces the memory needs of
the output program by disabling storage of line
numbers in memory . You cannot chain from one
DECNET node to another .

[NO]CLUSTER[:lib-param] BUILD Tells the Task Builder to cluster memory-resident
SET libraries to increase the space available for your

file-spec task . For the cluster qualifier to have an effect, atlib-param : NONE least two resident libraries must be linked to the
task : the BASIC-PLUS-2 resident library, and one
other resident library . File-spec specifies a mem-
ory-resident library to be clustered . NONE speci-
fies that only the BASIC-PLUS-2 and RMS libraries
are clustered .
If there is no default CLUSTER library, the
CLUSTER qualifier without a parameter acts the
same as the CLUSTER:NONE qualifier . The speci-
fied library must be in the account LB : on RSTS/E
systems or the account LB : [1, l] on RSX systems .
Consult BASIC on RSX-IIM/M-PLUS Systems or
BASIC on RSTS/E Systems for more information on
using RMS libraries .

[NO]CROSS-REFERENCE[: [NO] KEYWORDS] COMPILE Causes the compiler to include cross-reference
SET information in the program listing file . If you spec-

ify KEYWORDS, BASIC also cross-references
BASIC keywords used in the program . The listing
file takes the program name as the file name and a
default file type of LST.

Table 17: BASIC-PLUS-2 Command Qualifiers (Cont .)

Qualifiers

(continued on next page)

February 1984

	

BASIC Reference Manual

	

9 1

Qualifier Commands Function

[NO]DEBUG COMPILE Tells BASIC to provide records for the
RUN BASIC-PLUS-2 debugger when you compile a pro-
SET gram or to pass control to the debugger when you

execute a program with RUN in the BASIC envi-
ronment . The LINE qualifier must be in effect when
you compile a program with the DEBUG qualifier
in effect .

DOUBLE COMPILE Causes the compiler to allocate 64 bits of storage
RUN as the default size for all floating-point data not
SET explicitly typed in the program . Untyped floating-

point values are treated as DOUBLE values and
must be in the DOUBLE range or BASIC signals the
error "Floating-point error" . Table 2 in this manual
lists BASIC data types and ranges .

DSKLIB : file-spec BUILD Lets you specify a disk-resident object module
library to be linked to your program . File-spec can
be a library supplied with BASIC-PLUS-2 or a
user-created library . NONE tells the Task Builder
not to link your task to the default object module
library . See the DSKLIB command syntax rules for
more information on disk-resident libraries .

[NO]DUMP BUILD Tells the Task Builder to generate a memory dump
SET if the program aborts with a fatal error .

EXTEND : int-const BUILD Specifies the amount of space to be added to the
SET initial task size when the task is started . The Task

Builder rounds the extension up to the nearest
32-word boundary . The maximum extension is
32000 .

FLAG : [NO]DECLINING COMPILE Causes BASIC to provide compile-time information
RUN about program elements that DIGITAL designates
SET declining . An element is designated declining

when BASIC has a preferred and often more
powerful capablity . When you specify
FLAG :DECLINING, BASIC will flag the following
source code :
" CVT$$ (use EDIT$)
" CVT$%, CVT$F, CVT%$, CVTF$, and SWAP%

(use multiple MAP statements)
" DEF* functions (use DEF functions)

Qualifiers

Table 17 : BASIC-PLUS-2 Command Qualifiers (Cont.)

92

	

BASIC Reference Manual

(continued on next page)

Qualifier Commands Function

" FIELD statements (use MAP DYNAMIC and
REMAP)

" GOTO lin-num% (do not use the integer suffix
with a line number)

[NO]IND BUILD Causes the Task Builder to include the code
SET needed for indexed file operations . BASIC-PLUS-2

enables this qualifier automatically for programs
containing an OPEN statement with an
ORGANIZATION INDEXED clause .

LIBRARY: lib-param BUILD Lets you specify a memory-resident library to be
linked to your program . File-spec and lib-nam can

lib-nam be a library supplied with BASIC-PLUS-2 or a
lib-param : file-spec user-created library . If you specify only a lib-nam

NONE with no device, BASIC assumes LB : on RSTS/E sys-
tems and LB :[l,lI on RSX systems . NONE tells the
Task Builder not to link your task to the default
memory-resident library . Therefore, the Task
Builder links to the BASIC disk-resident, object
module library, BP20TS.OLB . See the LIBRARY
command syntax rules for more information on
memory-resident libraries .

[NO]LINE COMPILE Includes line number information in object
RUN modules . If you specify NOLINE in a program con-
SET taining a RESUME statement or using the run-time

ERL function, BASIC warns that the NOLINE quali-
fier has been overridden .

[NO]LIST COMPILE Tells BASIC to produce a source listing file . The
SET listing file takes the name of the program and a

default file type of LST.

LONG COMPILE Causes the compiler to allocate 32 bits of storage
RUN as the default size for all integer data not explicitly
SET typed in the program . Untyped integer values are

treated as LONG values and must be in the LONG
range or BASIC signals the error "Integer error" .
Table 2 in this manual lists BASIC data types and
ranges .

[NO]MACRO COMPILE Converts the program into MACRO source code
SET and saves it in a file with the same name as the

program and a file type of MAC. The MAC file can
be assembled .

Table 17 : BASIC-PLUS-2 Command Qualifiers (Cont.)

Qualifiers

(continued on next page)

February 1984

	

BASIC Reference Manual

	

93

Qualifier Commands Function

[NO]MAP BUILD Includes information for the allocation map in the
Task Builder command file .

[NO]OBJECT COMPILE Generates an object module with the same file
SET name as the program and a default file type of OB) .

Use NOOBJECT to check your program for errors
without creating an object file .

ODLRMS : odl-param BUILD Lets you specify an ODL file to describe the RMS
overlay structure to be used by the Task Builder .

odl-param : file-spec File-spec can be an ODL file supplied by RMS or a
NONE user-created file . NONE tells the Task Builder not

to link your task to the default ODL file . See the
ODLRMS command syntax rules in this manual for
more information on ODL files .

PAGE-SIZE : int-const COMPILE Sets the page size for the listing file . Int-const must
SET be greater than zero or BASIC signals the warning

"Listing length out of range - ignored" .
[NO]REL BUILD Causes the Task Builder to include the code

SET needed for relative file operations . BASIC-PLUS-2
sets this qualifier automatically for programs con-
taining an ORGANIZATION RELATIVE clause in
an OPEN statement .

RMSRES : lib-param BUILD Lets you specify an RMS library that supplies code
for file and record operations to be linked to your

lib-param : file-spec program . File-spec can be a library supplied byNONE RMS or a user-created library . NONE tells the Task
Builder not to link your task to the default RMS
library . See the RMSRES command syntax rules for
more information on RMS libraries .

[NO]SCALE : const COMPILE Allows control of accumulated round-off errors
when double precision numbers (values typed
DOUBLE) are used . Numbers are stored as multi-
ples of 10 by setting the scale factor (const) from 0
to 6. Floating-point numbers are truncated to an
integer value of 0 to 6. A scale factor larger than 6
causes BASIC to signal the error message "Scale
factor of n is out of range ."

[NO]SEQ BUILD Causes the Task Builder to include the RMS-11
SET code needed for sequential file operations .

BASIC-PLUS-2 sets this qualifier automatically for
programs containing an ORGANIZATION
SEQUENTIAL clause in the OPEN statement .

Qualifiers

Table 17: BASIC-PLUS-2 Command Qualifiers (Cont.)

94

	

BASIC Reference Manual

(continued on next page)

Qualifier Commands Function

SINGLE COMPILE Causes the compiler to allocate 32 bits of storage
RUN as the default size for all floating-point data not
SET explicitly typed in the program . Untyped floating-

point values are treated as SINGLE values and must
be in the SINGLE range or BASIC signals the error
"Floating-point error" . Table 2 in this manual lists
BASIC data types and ranges .

[NO]SYNTAX-CHECK COMPILE Tells BASIC to perform syntax checking after each
RUN program line is typed .
SET

TYPE-DEFAULT: default-clause COMPILE Sets the default data type (REAL or INTEGER) for all
RUN data not explicitly typed in your program or speci-

REAL SET fies that all data must be explicitly typed
default-clause : INTEGER (EXPLICIT) .

EXPLICIT " REAL specifies that all data not explicitly typed is
floating-point data of the default size (SINGLE or
DOUBLE).

" INTEGER specifies that all data not explicitly
typed is integer data of the default size (BYTE,
WORD, or LONG).

" EXPLICIT specifies that all data in a program
must be explicitly typed . Implicitly declared vari-
ables cause BASIC to signal an error .

VARIANT : int-const COMPILE Establishes int-const as a value to be used in com-
RUN piler directives . The variant value can be refer-
SET enced i . a lexical expression by using the lexical

function, %VARIANT. Int-const always has a data
type of WORD.

[NO]VIR BUILD* Causes the Task Builder to include the RMS code
SET* needed for virtual array and block 1/0 file opera-

tions . BASIC-PLUS-2 sets this qualifier automati-
cally when you compile a program containing an
ORGANIZATION VIRTUAL clause in the OPEN
statement .

Table 17: BASIC-PLUS-2 Command Qualifiers (Cont .)

*

	

RSX only
**

	

RSTS/E only

Qualifiers

BASIC Reference Manual

	

94 .1

Qualifier Commands Function

WIDTH : int-const COMPILE Sets the width of the listing file . Int-const must be
SET in the range 72 to 132, inclusive, or BASIC signals

the warning "Listing width out of range -
ignored" .

WORD COMPILE Causes the compiler to allocate 16 bits of storage
RUN as the default for all integer data not explicitly
SET typed in the program . Untyped integer values are

treated as WORD values and must be in the range
-32768 to 32767 or BASIC signals the error
"Integer error ." Table 2 in this manual lists BASIC
data types and ranges .

23.0 RENAME
Function
The RENAME command allows you to assign a new name to the program currently in memory .
BASIC does not write the renamed program to a file until you save the program with the REPLACE or
SAVE command .
Format

RENAME [prog-nam]

Syntax Rules

RENAME

1 . Prog-nam specifies the new program name . VAX-11 BASIC and BASIC-PLUS-2 on
RSX-11MIM-PLUS systems allow names to contain up to nine alphanumeric characters .
BASIC-PLUS-2 on RSTS/E systems allows names to contain up to six alphanumeric
characters .

2 .

	

The program you want to rename must be in memory. If you type RENAME with no
program in memory, BASIC renames the default program, NONAME, to the specified
prog-nam .

VAX-11 BASIC
1 .

	

If you do not specify a prog-nam, VAX-1 1 BASIC renames the program currently in mem-
ory NONAME .

2 .

	

If you specify a file type, VAX-11 BASIC signals the error "error in program name" .
BASIC-PLUS-2

1 . BASIC-PLUS-2 prompts for the new prog-nam if you do not specify one with the
RENAME command . If you do not specify a prog-nam in response to the prompt, the name
of the program currently in memory remains unchanged .

2 .

	

If you specify a file type, BASIC-PLUS-2 ignores the file type, does not signal an error, and
assigns the B2S file type to the file when you save it .

General Rules
1 .

	

You must type SAVE or REPLACE to write the renamed program to a file . If you do not type
SAVE or REPLACE, BASIC does not save the renamed program .

2 .

	

The RENAME command does not affect the original saved version of the program . For
example :
OLD TESTReady
RENAME NEWTESReady
SAVE

BASIC Reference Manual

	

95

RENAME

Examples
RENAME NEWPRO

In this example, the OLD command calls the program named TEST into memory . The
RENAME command renames TEST to NEWTES and the SAVE command writes
NEWTES.BAS (VAX-I 1 BASIC) or NEWTES.B2S (BASIC-PLUS-2) to a file . The original file,
TEST.BAS or TEST.B2S, is not changed and is not deleted from your account .

96

	

BASIC Reference Manual

24.0 REPLACE
Function
The REPLACE command writes the current program to a storage medium.
Format

REPLACE [file-spec I

Syntax Rules
1 .

	

If you do not supply a file-spec, BASIC writes the program to the default disk with the file
name of the program currently in memory .

General Rules

" VAX-11 BASIC and BASIC-PLUS-2 on RSX-11 M/M-PLUS systems create and save anew version of the file, incrementing the version number by one . Previous versions of thefile remain unchanged .
" BASIC-PLUS-2 on RSTS/E systems overwrites the original version of the file with the
new version .

1 .

	

The file-spec does not have to match that of the program currently in memory. You can
differentiate a changed program from the original version of the program by specifying a
new file-spec . BASIC saves the program with the new file-spec .

2 .

	

The program currently in memory does not change .
Examples
REPLACE PROGA .NEW

REPLACE

BASIC Reference Manual

	

97

RESEQUENCE

25.0 RESEQUENCE (VAX-11 BASIC)
Function
The RESEQUENCE command allows you to resequence the line numbers of the program currently inmemory. BASIC also changes all references to the old line numbers so they reference the new linenumbers .
Format

RESEQUENCE [fin-numl [- lin-n=2] [lin-n=3]] [STEP int-const]

Syntax Rules

General
1 .

98

3 .

4 .

5 .

2 .

3 .

4 .

5 .

Lin-numl is the line number in the program currently in memory where resequencingbegins . The default for lin-numI is the first line of the program module .
Lin-num2 is the optional end of the range of line numbers to be resequenced . If you specifya range, BASIC begins resequencing with lin-numI and resequences through lin-num2 . Ifyou do not specify lin-num2, BASIC resequences the specified line . If you do not specifyeither lin-num I or lin-num2, BASIC resequences the entire program .
Lin-num3 specifies the new first line number ; the default number for the new first lineis 100 .
" If lin-num3 will cause existing lines to be deleted or surrounded, BASIC signals an error .
" You can specify lin-num3, the new first line number, only when resequencing a range oflines .
Int-const specifies the numbering increment for the resequencing operation . The default forint-const is 10 .
BASIC signals an error when you try to resequence a program that contains a %IF directive .BASIC also signals an error when you try to resequence a program that has a %INCLUDEdirective if the file to be included contains a reference to a line number .

Rules
Before the RESEQUENCE command executes, BASIC verifies the syntax of the program . Ifthe program is not syntactically valid, the RESEQUENCE command does not execute .
BASIC sorts the renumbered program in ascending order when the RESEQUENCE com-mand executes .
If the renumbering creates a line number greater than the maximum line number of 32767,BASIC signals an error .
BASIC signals an error if resequencing causes a change in the order in which programstatements are to execute and does not resequence the program .
BASIC issues the error "undefined line number" in the case of undefined line numbers anddoes not resequence the program .

BASIC Reference Manual

Examples

6.

	

BASIC corrects all line numbers for statements that transfer control .
7.

	

BASIC does not modify the program currently in memory when the RESEQUENCE com-mand generates an error .
8 .

	

In general, the RESEQUENCE command is not recommended for programs containing errorhandlers that test the value of ERL. However, the RESEQUENCE command correctly modi-fies the program if the tests that reference ERL are of this form :
ERL relational-operator int-lit
The RESEQUENCE command does not correctly renumber programs if the test comparesERL with an expression or a variable, or if ERL follows the relational operator . The follow-ing line number references, for example, would not be correctly renumbered :
IF ERL = 1000 + A% THEN . . .IF 1000 ? ERL THEN . . .

RESEQUENCE loo-1000 STEP 5

RESEQUENCE

BASIC Reference Manual

	

99

RMSRES

26.0 RMSRES (BASIC-PLUS-2)
Function
The RMSRES command allows you to select an RMS memory-resident library to be used when yourprogram is task built . You can also choose to use no RMS memory-resident library . The RMS library
supplies RMS code for file and record operations . After you specify a library with the RMSRES
command, when you use the BUILD command, BASIC-PLUS-2 includes the specified library in the
Task Builder command file . Every system has an RMS library default set when BASIC-PLUS-2 is
installed .
Format

RMSRES lib-param
lib-param :

NONE

Syntax Rules

100

General Rules

2 .

3 .

If you enter the RMSRES command without a lib-param, BASIC-PLUS-2 prompts for one
and displays the name of the current default RMS library .
" File-spec can be RMSRES (the RMS memory-resident library) or a user-created resident

library . Table 18 lists and describes RMS libraries .
" NONE tells the Task Builder not to link your task to the RMS default resident library .Therefore, the Task Builder links to the RMS object module library, RMSLIB .OLB .
" If you type a carriage return in response to the prompt, the current default memory-

resident library is used .

LB : is a RSTS/E logical name for the library account on disk . On RSX-11MlM-PLUS
systems, you must specify LB :[1,1] before the ODL file name .
BASIC-PLUS-2 links the specified RMS library to your program when you task-build the
program . You must use the RMSRES command before you use the BUILD command to
include the specified library in the Task Builder command file .
If you use an RMS library other than the default, you must specify one of the RMS ODL
files listed in Table 18 . See the ODLRMS compiler command for more information .

BASIC Reference Manual

	

February 1984

4 .

	

The RMSRES library you specify is included in your Task Builder command files until you
specify a new library with the RMSRES command or exit from the BASIC environment .
When you exit from the environment, the original RMS default library is restored as the
default .

5 .

	

You can override the RMSRES command with the /RMSRES qualifier added to the BUILD
command, but the specified library remains in effect for only one BUILD routine.

6 .

	

The Task Builder returns an error message when the requested library is not available .
7 .

	

Consult your system manager for information about the RMS libraries available to you.
Consult BASIC on RSX-11MIM-PLUS Systems or BASIC on RSTS/E Systems for more
information on using RMS libraries

Table 18 : RMS Libraries

Examples
RSX-1 1 M l M-PLUS Systems
RMSRES LB :11#1]RMSRES
RSTS / E Systems
RMSRES LB :RMSRES

RMSRES

February 1984

	

BASIC Reference Manual

	

101

Library File Organization Type of ODL File
Name Seq Rel Ind Library Required

RMSRES Yes Yes Yes Memory RMSRLX .ODL
DAPRES Yes Yes Yes Memory DAPRLX .ODL

RMS1 IS . ODL
RMSI2S .ODL

RMSLIB Yes Yes Yes Disk RMS11 X.ODL
RMS12X.ODL
DAP1 1 X.ODL

RUN

27 .0 RUN and RUNNH
Function
The RUN command allows you to execute a program from the BASIC environment without firstinvoking the PDP-11 Task Builder or the VAX-11 Linker to construct an executable image. Theprogram can be :
" A BASIC program brought into memory with the OLD command, created in response to the NEWcommand, or specified in the RUN command
" An object module or modules placed in memory with the LOAD command
" A combination of the above
RUN executes the program starting at the lowest line number . Program modules previously compiledand placed in memory with the LOAD command are referenced when the RUN command is given .RUNNH executes the program but does not display the program header .
Format
VAX-11 BASIC

RUNNH ~

RUN

	

[file-spec

BASIC-PLUS-2
RUNNH

RUN

	

[file-spec I [/qualifier] . . .

Syntax Rules

102

2 .
3 .
4 .

2 .

If you specify only the file name, BASIC searches for a file with a BAS (VAX-11 BASIC) orB2S (BASIC-PLUS-2) file type in the current default directory .
If you do not supply a file-spec, BASIC executes the program currently in memory .
BASIC signals the warning message "No main program" if you do not supply a file-specand do not have a program currently in memory .
The RUNNH command is identical to RUN, except that it does not display the programheader, current date, and time .

BASIC-PLUS-2
/Qualifier specifies a qualifier keyword that sets a BASIC default . See Section 22 .0 forinformation on BASIC qualifiers . Table 17 lists all BASIC-PLUS-2 qualifiers and the com-mands they can be used with, and describes their functions .
Support for RUN is an installation option . Use the SHOW command to see whether yoursystem supports the RUN command .

BASIC Reference Manual

General Rules

3.

	

The RUN command does not create an object module file or a listing file .
VAX-11 BASIC

" Type the CONTINUE command to resume program execution .

" NOCROSS
" NODEBUG
" NOLIST
" NOMACHINE
" NOOB)ECT
These qualifiers are always in effect when you run a program in the environment .

BASIC-PLUS-2
1 .

	

The program stops executing when BASIC encounters a STOP statement :

Examples
RUN PROG1

RUN

1 .

	

When you specify a file-spec with the RUN command, BASIC brings the program into
memory and then executes it . You do not have to bring a program into memory with the
OLD command in order to run it . The RUN command executes just as if the program had
been brought into memory with the OLD command .

2 .

	

If your program calls a subprogram, the subprogram must be compiled and placed in
memory with the LOAD command . If your program tries to call a subprogram that has not
been compiled and loaded, BASIC signals an error .

1 .

	

The program stops executing and control passes to the BASIC environment and immediate
mode when BASIC encounters a STOP statement in the program .
" Any BASIC statement that does not require the creation of new storage can be entered in
immediate mode to debug the program . You cannot create new variables in immediate
mode.

2 .

	

The RUN command uses whatever qualifiers have been set with the exception of those that
have no effect on a program running in the environment . These are :

" If you used the RUN command to execute the program, BASIC displays a pound sign (#)
prompt . In response to the prompt, you can type only CONTINUE to resume program
execution, or EXIT to end the program .

" If you used the RUN /DEBUG command to execute the program, control passes to the
BASIC-PLUS-2 debugger . You can then use BASIC-PLUS-2 debugger commands to
display and change program values and to analyze your program . Use the CONTINUE
debugger command to resume program execution . See Part VI in this manual for more
information on debugger commands .

BASIC Reference Manual

	

103

SAVE

28.0 SAVE
Function
The SAVE command writes the BASIC source program currently in memory to a file on the default or
specified device .
Format

SAVE [file-spec]

Syntax Rules
1 .

	

If you do not supply a file-spec, BASIC saves the file with the name of the programcurrently in memory and the BAS (VAX-11 BASIC) or B2S (BASIC-PLUS-2) default filetype .
2 .

	

If you specify only the file name, BASIC saves the program with the default file type in thecurrent default directory .
General Rules

1 .

	

In BASIC-PLUS-2, if you type SAVE and the file-spec already exists as a disk file, BASIC
displays the message "File exists - Rename or Replace" .

2 .

	

VAX-11 BASIC writes a new version of a previously saved program when you type the
SAVE command .

3 .

	

BASIC stores the sorted program in ascending line number order .
4 .

	

You can store the program on a specified device . For example :
SAVE DBA1 :NEWTST .PRO
BASIC saves the file NEWTST.PRO on disk DBA1 : .

Examples
SAVE JUNK .BAS

104

	

BASIC Reference Manual

29 .0 SCALE
Function
The SCALE command allows you to control accumulated round-off errors by multiplying numeric
values by 10 raised to the scale factor before storing them .
Format

SCALE int-const

Syntax Rules
1 .

	

In BASIC-PLUS-2, SCALE with no argument causes BASIC to display the message "Current
scale factor is n", where n is an integer from 0 to 6 inclusive . In VAX-I 1 BASIC, SCALE
with no argument causes BASIC to signal the error "illegal argument for command" .

2 .

	

Int-const specifies the power of 10 you want to use as the scaling factor .

General Rules

Examples
SCALE

" In VAX-I I BASIC, int-const must be an integer from 0 to 6, inclusive, or BASIC signals
the error "illegal argument for command" .

" In BASIC-PLUS-2, int-const can be a floating-point or integer number up to 6.999999 .
BASIC truncates a floating point value and displays the message "%Scale factor has been
truncated to n", where n is the integer portion of the value . If the specified value is
greater than 6 .999999, BASIC signals the error "Scale factor of n is out of range", where
n is the specified value .

1 .

	

SCALE affects only values of the data type DOUBLE .

SCALE

2 .

	

BASIC multiplies values using the scale factor you specify . The value 2 .488888, for
example, is rounded as follows :

February 1984

	

BASIC Reference Manual

	

105

Scale : Produces :
0 2.48889
1 2.4
2 2.48
3 2 .488
4 2 .4888
5 2 .48888
6 2 .48889

SCRATCH

30.0 SCRATCH
Function
The SCRATCH command clears any program currently in memory, removes any object files loadedwith the LOAD command, and resets the program name to NONAME .
Format

Syntax Rules
None .

General Rules
None .

Examples
SCRATCH

106

	

BASIC Reference Manual

31 .0 SEQUENCE
Function
The SEQUENCE command causes BASIC to automatically generate line numbers for your programtext . BASIC supplies line numbers for your text until you end the procedure or reach the maximumline number of 32767 .
Format

SEQUENCE [lin-num] [, int-const]

Syntax Rules

2.

General Rules

2 .

3 .

4 .

5 .

6 .
Examples
SEQUENCE 100#10

Lin-num specifies the line number where sequencing begins .

Int-const specifies the line number increment for your program .

SEQUENCE

" If you do not specify a lin-num, the VAX-11 BASIC default is the last line inserted by a
SEQUENCE command ; if there is no previous SEQUENCE command, the default is line
number 100 .

" The BASIC-PLUS-2 default lin-num is always line number 100 .

" If you do not specify an increment, VAX-11 BASIC defaults to the int-const specified inthe last SEQUENCE command ; if there is no previous SEQUENCE command, the defaultis 10.
" BASIC-PLUS-2 always defaults to 10 .

If you specify a lin-num that already contains a statement, or if the sequencing operation
generates a line number that already contains a statement, BASIC signals "Attempt to
sequence over existing statement", and returns to normal input mode.
Enter your program text in response to the line number prompt ; the carriage return ends
each line and causes BASIC to generate a new line number .
If you enter a CTRL/Z in response to the line number prompt, BASIC terminates the
sequencing operation and prompts for another command .
You can also terminate the sequence operation in BASIC-PLUS-2 by typing a carriage
return in response to the line number prompt .
When the maximum line number of 32767 is reached, BASIC terminates the sequencing
process and returns to normal input mode.
BASIC does not check syntax during the sequencing process .

BASIC Reference Manual

	

107

SET

32.0 SET
Function
The SET command allows you to specify BASIC defaults for all BASIC qualifiers . Qualifiers control thecompilation process and the run-time environment . Qualifiers are set or reset as you specify . Thedefaults you set remain in effect for all subsequent operations until they are reset or until you exit fromthe compiler .
Format

qualifier, . . .
SET

	

[/qualifier . . . I
Syntax Rules

1 .

	

/Qualifier specifies a qualifier keyword that sets a BASIC default . See Section 22 .0 forinformation on BASIC qualifiers . Table 16 lists and describes all VAX-11 BASIC qualifiers .Table 17 lists and describes all BASIC-PLUS-2 qualifiers .
2 .

	

If you do not specify any qualifiers, VAX-11 BASIC resets all defaults to the defaultsspecified with the DCL BASIC command .
3 .

	

If you do not specify any qualifiers, BASIC-PLUS-2 resets all qualifiers except those setwith the BRLRES, DSKLIB, LIBRARY, ODLRMS, RMSRES, or EXTEND qualifier to theinstallation defaults . The SCALE value set with the SCALE command is also not reset to theinstallation default .
4 .

	

VAX-11 BASIC signals the error "unknown qualifier" and BASIC-PLUS-2 signals "Illegalswitch" if you do not separate multiple qualifiers with commas or slashes, or if you mixcommas and slashes on the same command line . The same error is signaled if you separatequalifiers with a slash but do not prefix the first qualifier with a slash .
General Rules

None .
Examples
SET

	

/DOUBLE /BYTE /LIST

108

	

BASIC Reference Manual

33.0 SHOW
Function
The SHOW command displays the current defaults for the BASIC compiler on your terminal .
Format

SHOW

Syntax Rules
None .

General Rules
None .

Examples
VAX-11 BASIC
SHOW

Object fileOverflow checK integersOverflow check decimal numbersBounds checking
FLAGGERS :Declining featuresNO BASIC PLUS 2 subset

rds

SHOW

(continued on next page)

BASIC Reference Manual

	

109

NO Syntax checkingLinesVariant : 0WarningsInformationals
DEBUG INFORMATION :TracebacK recordsNO Debug symbol recSetupObject Libraries : NONEReady

BASIC-PLUS-2
SHOWPDP-11 BASIC-PLUS-2 V2 .0ENVIRONMENT INFORMATION : RMS FILE ORGANIZATION :Current edit line : 0 NO IndexNO Modules loaded NO RelativeNO Main module loaded NO SequentialRun support NO Virtual

VAX-11 BASIC V2 . Current Environment Status 11-DEC-1982 10 :05 :56 .57DEFAULT DATA TYPE INFORMATION : LISTING FILE INFORMATION INCLUDES :Data type : REALReal size : SINGLE NONO SourceCross referenceInteger size : LONG COD DefinitionsDecimal size : (1512) EnvironmentScale factor : 0 NO Override of XNOLISTNO Round decimal numbers NO Machine codeMapCOMPILATION QUALIFIERS IN EFFECT : INCLUDE files

Integer size : WORD

	

NO KeywordsScale factor : 0

	

GO lines by 132 columnsCOMPILATION QUALIFIERS :

	

BUILD QUALIFIERS :NO Object

	

NO DumpNO Macro

	

NO MapLines

	

TasK extend : 512NO Debug records

	

RMS ODL file : LB :RMSRLXNO Syntax checKino

	

BP2 DisK lib : LB :BP20TSFlag : Declining

	

BP2 Resident lib : LB :BP2RESVariant : 0

	

RMS Resident lib : LB :RMSRES

11 0

	

BASIC Reference Manual

SHOW
DEFAULT DATA TYPE INFORMATION : LISTING FILE INFORMATION :Data type : REAL NO SourceReal size : SINGLE NO Cross Reference

34 .0 UNSAVE
Function
The UNSAVE command deletes a specified file from storage .
Format

UNSAVE [file-spec]

Syntax Rules
1 .

	

File-spec is optional .

2 .

	

You do not have to supply a full file-spec . If you specify only a file name, BASIC deletes thefile with the specified name and the BAS (VAX-I I BASIC) or B2S (BASIC-PLUS-2) file typefrom the default device and directory . Other file types with the same file name are not
deleted .

General Rules

Examples

UNSAVE

" If you do not supply a file-spec, BASIC deletes a file that has the file name of the program
currently in memory and a file type of BAS (VAX-I I BASIC) or B2S (BASIC-PLUS-2) .

" If you do not supply a file-spec and do not have a program in memory, BASIC searches
for the default file NONAME .BAS .

1 .

	

The program currently in memory does not change even when it is the deleted file becauseit is a copy of the deleted file .

UNSAVE DB2 :CHECK .DAT

BASIC Reference Manual

	

11 1

1 .0 %ABORT
Function
The %ABORT directive terminates program compilation and displays a fatal error message you
supply .
Format

%ABORT [str-lit]

Syntax Rules
1 .

	

The %ABORT directive cannot begin in column one .
2 .

	

Only a line number or a comment field can appear on the same physical line as the
%ABORT directive .

General Rules

Examples
100

	

%IF %VARIANT = 2 '%,THEN%ABORT "Cannot compile with variant 2"%END %IF

PART III
Compiler
Directives

%ABORT

1 .

	

BASIC stops the compilation and terminates the listing file as soon as it encounters a
%ABORT directive . Str-lit is displayed on the terminal screen and in the compilation
listing, if one has been requested .

BASIC Reference Manual

	

113

%CROSS

2.0 %CROSS
Function
The %CROSS directive causes BASIC to begin or resume accumulating cross-reference information
for the listing file .
Format

Syntax Rules
1 .

	

The %CROSS directive cannot begin in column one .
2 .

	

Only a line number or a comment field can appear on the same physical line as the
%CROSS directive .

General Rules
1 .

	

When a cross-reference is requested, the compiler starts or resumes accumulating cross-
reference information immediately after encountering the %CROSS directive .

Examples
1000 XCrosS

11 4

	

BASIC Reference Manual February 1984

3 .0 %IDENT
Function
The %IDENT directive lets you identify the version of a program module . The identification text is
placed in the object module and printed in the listing header .
Format

%IDENT str-lit

Syntax Rules

General Rules

%IDENT

1 .

	

Str-lit is the identification text . VAX-11 BASIC allows str-lit to consist of up to 31 ASCII
characters . BASIC-PLUS-2 allows str-lit to consist of up to six RAD-50 characters . Both
truncate extra characters from str-lit and signal a warning message .

2 .

	

In BASIC-PLUS-2, if str-lit contains non-RAD-50 characters, a warning message is
issued, and the %IDENT directive is ignored . See BASIC on RSX-1 1 Ml M-PLUS Systems
or BASIC on RSTS/E Systems for more information on RAD-50 characters .

3 .

	

The %IDENT directive cannot begin in column one.
4 .

	

Only a line number or a comment field can appear on the same physical line as the
%IDENT directive .

1 .

	

The compiler inserts the identification text in the first 6 or 31 character positions of the
second line on each listing page . The compiler also includes the identification text in the
object module, if the compilation produces one, and in the map file created by the Task
Builder (BASIC-PLUS-2) or the VAX-1 1 Linker .

2.

	

The %IDENT directive should appear at the beginning of your program if you want the
identification text to appear on the first page of your listing . If the %IDENT directive
appears after the first program statement, the text will appear on the next page of the listing
file .

3 .

	

You can use the %IDENT directive only once in a module . If you specify more than one
%IDENT directive in a module, BASIC signals a warning and uses the identification text
specified in the first %IDENT .

February 1984

	

BASIC Reference Manual

	

115

%IDENT

4 .

	

The default BASIC-PLUS-2 identification text is a 6-digit number . The first two digits
represent the compiler base level, while the last four digits represent the month and day .
For example, the identification text 100712 represents base level 10, and a date of July 12 .

5 .

	

VAX-1 I BASIC does not provide a default identification text .

Examples
1010

	

X,IDENT "V3 .2"

11 6

	

BASIC Reference Manual

4.0 %IF-%THEN%ELSE-%END-%IF
Function
The %IF-%THEN-%ELSE-%END-%IF directive lets you conditionally include source code or exe-
cute another compiler directive .
Format

%IF lex-exp %THEN code [%ELSE code] %END %IF

Syntax Rules
1 .

	

The %IF directive can appear anywhere in a program where a space is allowed, except in
column one or within a quoted string . This means that you can use the %IF directive to
make a whole statement, part of a statement, or a block of statements conditional .

2 . Lex-exp is always a LONG integer in VAX-II BASIC and a WORD integer in
BASIC-PLUS-2 . It can be :
" A lexical constant named in a %LET directive .
" An integer literal, with or without the percent sign suffix .
" A lexical built-in function (%VARIANT) .

%IF-%THEN-%ELSE%END-%IF

" Any combination of the above, separated by valid lexical operators . Lexical operators
include logical operators, relational operators, and the arithmetic operators for addition
(+), subtraction (-), multiplication (*), and division (/) .

3 .

	

Code is BASIC program code . It can be any BASIC statement or another compiler directive,
including another %IF directive . You can nest %IF directives to eight levels .

4 .

	

%THEN, %ELSE, and %END %IF do not have to be on the same physical line as %IF .

General Rules
1 .

	

If lex-exp is true, BASIC processes the %THEN clause . If /ex-exp is false, BASIC processes
the %ELSE clause . If there is not an %ELSE clause, BASIC processes the %END %IF clause .
The compiler includes statements in the %THEN or %ELSE clause in the source program
and executes directives in order of occurrence .

2 .

	

You must include the %END %IF clause . Otherwise, BASIC assumes the remainder of the
program is part of the last %THEN or %ELSE clause and signals the error "missing %END
%IF" when compilation ends .

BASIC Reference Manual

	

11 7

%IF-%THEN-%ELSE-%END-%1F

Examples
100

	

%IF (%VARIANT = 2)%THEN DECLARE SINGLE HOURLY-PAY(100)%ELSE %IF (%VARIANT = 1)'%.THEN DECLARE DOUBLE SALARY-PAY(100)%ELSE %ABORT "Can't compile with specified variant"%END %IF%END %IF

1000

	

PRINT " %IF (%VARIANT = 2)%THEN PRINT 'Hourly Wage Chart'GOTO Hourly-routine%ELSE PRINT 'Salaried Wage Chart'GOTO Salary-routine%END %IF

11 8

	

BASIC Reference Manual

5.0 %INCLUDE
Function
The %INCLUDE directive lets you include BASIC source text from another program file in the current
program compilation . VAX-1 1 BASIC also lets you access record definitions in the VAX-11 Common
Data Dictionary (CDD) .
Format
General

%INCLUDE file-spec

VAX-11 BASIC
%INCLUDE %FROM %CDD str-lit

Syntax Rules
1 .
2 .

3 .

4 .
5 .

VAX-11 BASIC only
1 .

	

Str-lit specifies a VAX-11 CDD path specification . This lets you extract a RECORD defini-
tion from the CDD .

2 .

General Rules

2 .

The %INCLUDE directive cannot begin in column one .
Only a line number or a comment field can appear on the same physical line as the
%INCLUDE directive .
File-spec specifies the file to be included . BASIC uses the default device, directory, and file
type (BAS in VAX-11 BASIC and B2S in BASIC-PLUS-2) if you do not specify these parts of
the file specification .
File-spec must be a disk file or BASIC signals an error .
File-spec must be a string literal enclosed in quotation marks .

%INCLUDE

There are two types of CDD path names : absolute and relative . An absolute path name
begins with CDD$TOP and specifies the complete path to the record definition . A relative
path name begins with any string other than CDD$TOP .

The compiler includes the specified source file in the program compilation at the point of
the %INCLUDE directive and prints the included code in the program listing file if the
compilation produces one .
The included file cannot contain line numbers or BASIC signals the error "Line number
may not appear in %INCLUDE file" .

BASIC Reference Manual

	

119

%INCLUDE

3 .

	

All statements in the accessed file are associated with the line number of the program line
that contains the %INCLUDE directive . This means that a %INCLUDE directive cannot
appear before the first line number in a source program .

4 .

	

A file accessed by %INCLUDE can itself contain a %INCLUDE directive .
5 .

	

All %IF directives in an included file must have a matching %END %IF directive in the file .
VAX-11 BASIC only

1 .

	

You can control whether or not included text appears in the compilation listing with the
/SHOW:INCLUDE qualifier . When you specify /SHOW:INCLUDE, the compilation list-
ing file identifies any text obtained from an included file by placing a mnemonic in the first
character position of the line on which the text appears . The mnemonic is of the form "In"
where "I" tells you that the text was accessed with a %INCLUDE directive and "n" is a
number that tells you the nesting level of the included text . See the BASIC User's Guide for
more information on listing mnemonics .

2 .

	

When you use the %INCLUDE directive to extract a record definition from the CDD,
BASIC translates the CDD definition to the syntax of the BASIC RECORD statement .

3 .

	

You can use the /SHOW :CDD-DEFINITIONS to specify that translated CDD definitions
(in RECORD statement syntax) are included in the compilation listing file . BASIC places a
"C" in column one when the translated RECORD statement appears in the listing file .

4 .

	

When you do not specify /SHOW:CDD-DEFINITIONS, BASIC includes the names, data
types, and offsets of the CDD record components in the program listing's allocation map.

5 .

	

See BASIC on VAX/VMS Systems and the VAX-11 Common Data Dictionary Utilities
Reference Manual for more information on CDD definitions .

Examples
General
100

	

%INCLUDE "YESNO"
VAX-11 BASIC only
1000

	

XINCLUDE %FROM %CDD "CDD$TOP .EMPLOYEE"

120

	

BASIC Reference Manual

6.0 %LET
Function
The %LET directive declares and provides values for lexical constants .
only in conditional expressions in the %IF-%THEN-%ELSE directive
subsequent %LET directives .
Format

%LET %lex-const-nam = lex-exp

Syntax Rules

4.
5 .

General
1 .

Examples
100

%LET

You can use lexical constants
and in lexical expressions in

Lex-const-nam is the name of a lexical constant . Lexical constants are always LONG
integers in VAX-I I BASIC and WORD integers in BASIC-PLUS-2 .
Lex-const-nam must be preceded by a percent sign and cannot end with a dollar sign ($) or
percent sign .
Lex-exp can be:
" A lexical constant named in a previous %LET directive .
" An integer literal, with or without the percent sign suffix .
" A lexical built-in function (%VARIANT)
" Any combination of the above, separated by valid lexical operators . Lexical operators
may be logical operators, relational operators, and the arithmetic operators for addition
(+), subtraction (-), multiplication (*), and division (/) .

The %LET directive cannot begin in column one .
Only a line number or a comment field can appear on the same physical line as the %LET
directive .

Rules
You cannot change the value of lex-const-nam within a program unit once it has been
named in a %LET directive .

%LET %DEBUG-ON = 1%

BASIC Reference Manual

	

121

%LIST

7.0 %LIST
Function
The %LIST directive causes the compiler to start or resume accumulating compilation information forthe program listing file .
Format

Syntax Rules
1 .

	

The %LIST directive cannot begin in column one.
2 .

	

Only a line number or a comment field can appear on the same physical line as the%LIST directive .
General Rules

1 .

	

As soon as it encounters the %LIST directive, the compiler starts or resumes accumulatinginformation for the program listing file . Thus, the directive itself appears as the next line inthe listing file .
2 .

	

The %LIST directive has no effect unless you requested a listing file .
Examples
1014 %LIST

122

	

BASIC Reference Manual February 1984

8.0 %NOCROSS
Function
The %NOCROSS directive causes the compiler to stop accumulating cross-reference information for
the program listing file .
Format

Syntax Rules
1 .

	

The %NOCROSS directive cannot begin in column one.
2 .

	

Only a line number or a comment field can appear on the same physical line as the
%NOCROSS directive .

General Rules

Examples

1 .

	

The compiler stops accumulating cross-reference information for the program listing file
immediately after encountering the %NOCROSS directive .

2 . The %NOCROSS directive has no effect unless you requested cross-reference
information .

3 .

	

Digital recommends that you not embed a %NOCROSS directive within a statement .
Embedding a %NOCROSS directive within a statement makes the accumulation of cross-
reference information behave unpredictably .

1000 %NOCROSS

%NOCROSS

February 1984

	

BASIC Reference Manual

	

123

%NOLIST

9.0 %NOLIST
Function
The %NOLIST directive causes the compiler to stop accumulating compilation information for the
program listing file .
Format

Syntax Rules

Examples

1 .

	

The %NOLIST directive cannot begin in column one .
2 .

	

Only a line number or a comment field can appear on the same physical line as the
%NOLIST directive .

General Rules
1 .

	

As soon as it encounters the %NOLIST directive, the compiler stops accumulating informa-tion for the program listing file . Thus, the directive itself does not appear in the listing file .
2 .

	

The %NOLIST directive has no effect unless you requested a listing file .
3 . In VAX-11 BASIC, you can override all %NOLIST directives in a program with the

/SHOW:OVERRIDE qualifier .

1001 XNOLIST

124

	

BASIC Reference Manual

	

February 1984

10.0 %PAGE
Function
The %PAGE directive causes BASIC to begin a new page in the program listing file immediately after
the line that contains the %PAGE directive .
Format

Syntax Rules
1 .

	

The %PAGE directive cannot begin in column one .
2 .

	

Only a line number or a comment field can appear on the same physical line as the
%PAGE directive .

General Rules
None.

Examples
1000 %PAGE

%PAGE

BASIC Reference Manual

	

125

%SBTTL

11 .0 %SBTTL
Function
The %SBTTL directive lets you specify a subtitle for the program listing file .
Format

%SBTTL str-lit

Syntax Rules

Examples

1 .

	

VAX-11 BASIC allows str-lit to contain 45 characters . BASIC-PLUS-2 allows str-lit tocontain 48 characters .
2 .

	

BASIC truncates extra characters from str-lit and does not signal a warning or error .
3 .

	

The %SBTTL directive cannot begin in column one .
4 .

	

Only a line number or a comment field can appear on the same physical line as the
%SBTTL directive .

General Rules
1 .

	

The specified subtitle appears underneath the title on the second line of all pages of thelisting file until the compiler encounters another %SBTTL or %TITLE directive .
2 .

	

Because BASIC assumes that a subtitle is associated with a title, a new %TITLE directiveeliminates the current subtitle . In this case, no subtitle appears in the listing until thecompiler encounters another %SBTTL directive .
3 .

	

If you want a subtitle to appear on the first page of your listing, the %SBTTL directiveshould appear at the beginning of your program, immediately after the %TITLE directive .Otherwise, the subtitle will appear on the second page of the listing, but not on the first .
4 .

	

If you want the subtitle to appear on the page of the listing that contains the %SBTTLdirective, the %SBTTL directive should immediately follow a %PAGE directive or a %TITLEdirective that follows a %PAGE directive .

100

	

%SBTTL 'DESMA21S Production Elements'

126

	

BASIC Reference Manual

12.0 %TITLE
Function
The %TITLE directive lets you specify a title for the program listing file .
Format

%TITLE str-lit

Syntax Rules
1 .

	

VAX-11 BASIC allows str-lit to contain 45 characters . BASIC-PLUS-2 allows str-lit to
contain 48 characters .

2 .

	

BASIC truncates extra characters from str-lit and does not signal a warning or error .
3 .

	

The %TITLE directive cannot begin in column one .
4 .

	

Only a line number or a comment field can appear on the same physical line as the
%TITLE directive .

General Rules
1 .

	

The specified title appears on the first line of every page of the listing file until BASIC

Examples

encounters another %TITLE directive in the program .
2 .

	

The %TITLE directive should appear on the first line of your program, before the first
statement, if you want the specified title to appear on the first page of your listing .

3 .

	

If you want the specified title to appear on the page that contains the %TITLE directive, the
%TITLE directive should immediately follow a %PAGE directive .

4 .

	

Because BASIC assumes that a subtitle is associated with a title, a new %TITLE directive
eliminates the current subtitle .

100

	

%TITLE 'Production Control for DESMA219'

%TITLE

BASIC Reference Manual

	

127

%VARIANT

13.0 %VARIANT
Function
%VARIANT is a built-in lexical function that allows you to conditionally control program compila-tion . %VARIANT returns an integer value when you reference it in a lexical expression . You set thevariant value with the /VARIANT qualifier when you compile the program or with the SET command .
Format

Syntax Rules
1 .

	

The %VARIANT function can appear only in a lexical expression .
General Rules

Examples
100

128

The %VARIANT function returns the integer value specified at compile-time with the/VARIANT qualifier to the COMPILE command or with the SET command, or in VAX-11BASIC, set with the DCL BASIC command . The returned integer always has a data type ofLONG in VAX-11 BASIC and WORD in BASIC-PLUS-2 .

XIF (%LOOP-CONST <= XVARIANT)%THEN GOTO Tax-Routine%ELSE %ABORT 'Variant too large for Program to compile'%END %IF

BASIC Reference Manual

1 .0 CALL
Function

Format

Syntax Rules

PART IVStatements
CALL

The CALL statement transfers control to a BASIC subprogram or other callable routine . You can pass
optional arguments to the routine and can specify how these arguments are to be passed . When the
called routine finishes executing, control returns to the calling program .

CALL routine [pass-mech] [([actual-param])]

routine :

pass-mech :

actual-param :

sub-nam
any callable routine
BY REF
BY VALUE
BY DESC
exp
array ([,j . . .)

	

[pass-mech]

Routine is the name of the BASIC SUB subprogram you want to call or the name of any
other callable module, such as a system service or an RTL routine on VAX/VMS systems . It
cannot be a variable name .

BASIC Reference Manual

	

129

CALL

2 .

	

Pass-mech specifies how arguments are passed to the called routine . If you do not specify apass-mech, BASIC passes arguments as indicated in Tables 19 and 20 .
3 .

	

You can use passing mechanisms only when calling non-BASIC routines .
4.

	

When pass-mech appears before the parameter list, it applies to all arguments passed to thecalled routine. You can override this passing mechanism by specifying a pass-mech forindividual arguments in the actual-param list .
5 .

	

Actual-param lists the arguments to be passed to the called routine .
6.

	

You can pass expressions or entire arrays . Optional commas in parentheses after the array
name specify the dimensions of the array . The number of commas is equal to the number
of dimensions minus one. Thus, no comma specifies a one-dimensional array, one comma
specifies a two-dimensional array, two commas specify a three-dimensional array, and
so on .VAX-11 BASIC

1 .

	

The name of the routine can consist of from 1 to 31 characters and must conform to thefollowing rules :
" The first character of an unquoted name must be an alphabetic character (A through Z) .The remaining characters, if present, can be any combination of letters, digits (0 through

9), dollar signs ($), periods (.), or underscores (_) .
" A quoted name can consist of any combination of printable ASCII characters .

2 .

	

Routine can be a system service, an RTL routine, or any procedure written in a languagethat supports the VAX-11 Procedure Calling Standard. See BASIC on VAX/VMS Systems for
more information on using system services, RTL routines, and other procedures .

3 .

	

VAX-11 BASIC allows you to pass up to 255 parameters .
4.

	

You cannot pass virtual arrays .
BASIC-PLUS-2

1 .

	

The name of the routine can consist of from one to six characters and must conform to thefollowing rules :
" The first character of an unquoted name must be an alphabetic character (A through Z) .The remaining characters, if present, can be any combination of letters, digits (0 through9), dollar signs ($), or periods (.) .
" A quoted name can consist of any combination of alphabetic characters, digits, dollarsigns ($), periods (.), or spaces .

2 . Routine can be a BASIC-PLUS-2 subprogram or a subprogram written in another
language .

Although you can call routines written in other languages, BASIC-PLUS-2 doesnot support calling anything but BASIC-PLUS-2 routines .

130

	

BASIC Reference Manual

Note

CALL

3 .

	

You can pass all arguments BY REF, but you can pass only string values and entire arrays
BY DESC.

4 .

	

BASIC-PLUS-2 lets you pass up to eight parameters to a BASIC-PLUS-2 subprogram and
up to 255 parameters to a MACRO-11 subprogram .

General Rules
1 .

	

The optional pass-mech clauses tell BASIC how to pass arguments to the called sub-
program . Table 19 describes VAX-11 BASIC parameter passing mechanisms . Table 20
describes BASIC-PLUS-2 parameter passing mechanisms .
" BY REF specifies that BASIC passes the argument's address. This is the default for all
arguments except strings and entire arrays .

" BY VALUE specifies that VAX-11 BASIC passes the argument's 32-bit value and that
BASIC-PLUS-2 passes the argument's 16-bit value.

" BY DESC specifies that BASIC passes the address of a VAX-11 BASIC descriptor or a
BASIC-PLUS-2 descriptor . For information about the format of a VAX-11 BASIC descrip-
tor for strings and arrays, see Appendix C in BASIC on VAX/VMS Systems; for informa-
tion on other types of descriptors, see the VAX Architecture Handbook . BASIC-PLUS-2
creates descriptors only for strings and arrays ; these descriptors are described in Appen-
dix C in BASIC on RSX-11 Ml M-PLUS Systems and BASIC on RSTS/E Systems .

2 .

	

You can specify a null argument as an actual-param for non-BASIC routines by omitting
the argument and the pass-mech, but not the commas or parentheses . This forces BASIC to
pass a null argument as defined by your operating system and allows you to access system
routines from BASIC.

3.

	

Arguments in the actual-param list must agree in data type and number with the formal
parameters specified in the subprogram .

4 .

	

An argument is modifiable when changes to it are evident in the calling program . Changing
a modifiable parameter in a subprogram means the parameter is changed for the calling
program as well . Variables and entire arrays passed BY DESC or BY REF are modifiable .

5 .

	

An argument is nonmodifiable when changes to it are not evident in the calling program .
Changing a nonmodifiable argument in a subprogram does not affect the value of that
argument in the calling program . Arguments passed BY VALUE, constants, and expressions
are nonmodifiable. Passing an argument as an expression (by placing it in parentheses)
changes it from a modifiable to a nonmodifiable argument .

6 .

	

For expressions and virtual array elements passed BY REF, BASIC makes a local copy of the
value, and passes the address of this local copy . For dynamic string arrays, BASIC passes a
descriptor of the array of string descriptors. BASIC passes the address of the argument's
actual value for all other arguments passed BY REF .

7 .

	

No files are closed when the CALL statement executes .
VAX-11 BASIC

1 .

	

Only BYTE, WORD, LONG, and SINGLE values can be passed by BY VALUE. BYTE and
WORD values passed by VALUE are converted to LONG values .

BASIC Reference Manual

	

13 1

CALL

BASIC-PLUS-2

Examples

1 .

	

Only BYTE and WORD values can be passed BY VALUE . BYTE values passed BY VALUE
are converted to WORD values .

2 .

	

BASIC-PLUS-2 does not allow recursion . That is, once a subprogram is called, it cannot
be called again until the SUBEND or SUBEXIT statement has executed or until an error has
been trapped with ON ERROR GO BACK .

200

	

CALL SUB1 BY REF (EMPNAME$t (Z%) BY VALUE# D$() BY DESC)

Table 19: VAX-11 BASIC Parameter Passing Mechanisms

* One asterisk indicates the default parameter passing mechanisms for
BASIC programs .
Two asterisks indicate that the value can have 32 bits, at most.

13 2

	

BASIC Reference Manual

Argument Type BY VALUE BY REF BY DESC

Numeric Arguments
Variables **YES *YES YES
Constants **YES *Local copy Local copy
Expressions **YES *Local copy Local copy
Array elements **YES *YES YES
Virtual array elements **YES *Local copy Local copy
Entire arrays NO YES *YES
Entire virtual arrays NO NO NO
String Arguments
Variables NO YES *YES
Constants NO Local copy *Local copy
Expressions NO Local copy *Local copy
Array elements NO YES *YES
Virtual array elements NO Local copy *Local copy
Entire arrays NO YES *YES
Entire virtual arrays NO NO NO

Table 20: BASIC-PLUS-2 Parameter Passing Mechanisms

* One asterisk indicates the default parameter passing mechanisms for
BASIC programs . You should never use a BY clause when calling a BASIC
subprogram from a BASIC main program .

*~ Two asterisks indicate that the value can be only WORD or BYTE . Other
data types require more than the 16 bits of storage allowed .

Note
DIGITAL recommends that you not pass entire virtual arrays as parameters in the CALL
statement . Instead, you can share the data in a virtual array between a calling program
and a subprogram by opening a virtual file in either program and dimensioning the
array (using the same channel number) in both programs .

CALL

BASIC Reference Manual

	

133

Argument Type BY VALUE BY REF BY DESC

Numeric Arguments
Variables **YES *YES NO
Constants **YES *Local copy NO
Expressions **YES *Local copy NO
Array elements **YES *Local copy NO
Virtual array elements **YES *Local copy NO
Entire arrays NO YES *YES
Entire virtual arrays NO NO *YES
String Arguments
Variables NO YES *YES
Constants NO Local copy *Local copy
Expressions NO Local copy *Local copy
Array elements NO Local copy *Local copy
Virtual array elements NO Local copy *Local copy
Entire arrays NO YES *YES
Entire virtual arrays NO NO *YES

CHAIN

2.0 CHAIN

Function
The CHAIN statement transfers control from the current program to an executable BASIC program .
CHAIN closes all files, then requests that the new program begin execution . Control does not return
to the original program when the new program finishes executing .
Format

General
CHAIN str-exp

BASIC-PLUS-2 on RSTSIE only
CHAIN str-exp [LINE Iin-num

Syntax Rules
1 .

	

Str-exp represents the file specification of the program to which control is passed . It can be
a quoted or unquoted string .
" Str-exp must refer to an executable image or BASIC signals an error .
" If you do not specify a file type, VAX-11 BASIC searches for an EXE file type and
BASIC-PLUS-2 searches for a TSK file type .

" You cannot chain to a program on another node .
BASIC-PLUS-2

1 .

	

On RSTS/E systems you can specify that control pass to a specified line number in another

General Rules

The CHAIN statement is not recommended for new program development . DIGITAL
recommends that you use the CALL statement for program segmentation .

BASIC-PLUS-2 program .

Note

" Lin-num specifies a line in another BASIC program . It must be in the range 1 to 32767,
inclusive .

" If you specify a Iin-num, the program to which control passes must have been compiled
with the /CHAIN qualifier . The /CHAIN qualifier overrides the /NOLINE qualifier .

1 .

	

Execution starts at the first line number of the specified program unless your system is
RSTS/E and you have specified a fin-num at which execution is to start .

2 .

	

On RSTS/E systems, BASIC-PLUS-2 signals an error when the specified line number does
not exist .

134

	

BASIC Reference Manual

Examples

CHAIN

3 .

	

Before chaining takes place, all active output buffers (except terminal-format files) are
written, all open files are closed, and all storage is released . On RSTS/E systems, the last
buffer (512 bytes) of a terminal-format file does not get written unless the file is closed
before the CHAIN statement executes .

4 .

	

Because a CHAIN statement passes control from the executing image, the values of any
program variables are lost . This means that you can pass parameters to a chained programonly by using files or a system-specific feature such as the GET/PUT Core Common onRSTS/E systems, or LIB$GET and LIB$PUT on VMS systems .

5 .

	

See BASIC on RSTS/E Systems or BASIC on RSX-1 1 M l M-PLUS Systems for information
about how the CHAIN statement is implemented on your system .

General
100

	

CHAIN "PROG2"
goo

	

CHAIN PROG5 .EXE
BASIC-PLUS-2 on RSTS/E only
200

	

CHAIN PROGA .TSK LINE 300

BASIC Reference Manual

	

135

CHANGE

3.0 CHANGE
Function
The CHANGE statement : 1) converts a string of characters to their ASCII integer values or 2) convertsa list of numbers to a string of ASCII characters .
Format

String Variable to Array
CHANGE str-exp TO num-array

Array to String Variable
CHANGE num-array TO str-vbl

Syntax Rules
1 .

	

Num-array should be a one-dimensional array (or list) . If you specify a two-dimensionalarray, BASIC converts only the zero row of that array . BASIC does not support CHANGE toor from arrays of more than two dimensions .
2 .

	

Str-exp is a string expression .
3 .

	

VAX-1 1 BASIC does not support RECORD elements as a destination string or as a sourceor destination array for the CHANGE statement .
General Rules

String Variable to Array
1 .

	

This format converts each character in str-exp to its ASCII value .
2 .

	

BASIC assigns the value of str-exp's length to the zero element (0) or (0,0) of the num-array .
3 .

	

BASIC assigns the ASCII value of the first character in str-exp to the first element, (1) or(0,1), of num-array, the ASCII value of the second character to the second element, (2) or(0,2), and so on .
4 .

	

If the string is longer than the bounds of num-array, BASIC does not translate the excesscharacters, and signals the error "subscript out of range" (ERR= 55) . Element zero, (0) or(0,0), of num-array still contains the length of str-exp .
Array to String Variable

1 .

	

This format converts the elements of num-arr to a string of characters .
2 .

	

The length of str-vbl is determined by the value in the zero element, (0) or (0,0), ofnum-array . If the value of element zero is greater than the array bounds, BASIC signals theerror "subscript out of range" (ERR= 55) .

136

	

BASIC Reference Manual

	

February 1984

3 .

	

BASIC changes the first element, (1) or (0,1), of num-array to its ASCII character equiva-
lent, the second element, (2) or (0,2), to its ASCII equivalent, and so on . The length of the
returned string is determined by the value in the zero element of num-array . For example,
if num-arr is dimensioned as (10), but the zero element (0) contains the value 5, BASIC
changes only elements (1), (2), (3), (4), and (5) to string characters .

4 .

	

BASIC truncates floating-point values to integers before converting them to characters .
5 .

	

Values in array elements are treated modulo 256 .
Examples
String Variable to Array
50

	

DIM ARRAY-CHANGESX(G)GO

	

CHANGE "ABCDE" TO ARRAY_CHANGES%
Array to String Variable
200

	

CHANGE ARRAY_CHANGES% TO A$

CHANGE

BASIC Reference Manual

	

137

CLOSE

4.0 CLOSE
Function
The CLOSE statement ends 1/0 processing to a device or file on the specified channel .
Format

CLOSE chnl-exp, . . .

Syntax Rules
1 .

	

Chnl-exp is a numeric expression that specifies a channel number associated with a file . Itcan be preceded by an optional pound sign (#) .
General Rules

Examples

1 .

	

BASIC writes the contents of any active buffers to the file or device before it closes that fileor device .
2 .

	

Channel 0 (the controlling terminal) cannot be closed . An attempt to do so has no effect .
3 .

	

If you close a magnetic tape file that is open FOR OUTPUT, BASIC writes an end-of-file onthe magnetic tape .
4 .

	

If you try to close a channel that is not currently open, BASIC does not signal an error andthe CLOSE statement has no effect .

1000

	

CLOSE *1t 3

138

	

BASIC Reference Manual

5.0 COMMON
Function
The COMMON statement defines a named, shared storage area called a COMMON block or pro-
gram section (PSECT) . BASIC program modules can access the values stored in the COMMON by
specifying a COMMON with the same name .
Format

COM
COMMON I [(com-nam)] { [data-type I com-item I

com-item : num-unsubs-vbl-nam
num-array-nam (int-const_ .)
str-unsubs-vbl-nam = int-const
str-array-nam (int-const) [=
FILL [(

	

int-const)] [

	

=

	

int-const I
FILL% [(int-const)]
FILL$ [(int-const)] [= int-const]

int-const

Syntax Rules
1 .
2 .

3 .
4 .

Corn-nam is optional . If present, it must be in parentheses .

COMMON

A COMMON can have the same name as a program variable . However, in
BASIC-PLUS-2, a COMMON cannot have the same name as a subprogram within the

tasksame image .
A COMMON and a MAP in the same program module cannot have the same name.
Com-item declares the name and format of the data to be stored .

" Num-unsubs-vbl-nam and num-arr-nam specify a numeric variable or a numeric array .
" Str-unsubs-vbl-nam and str-arr-nam specify a fixed-length string variable or array . You
can specify the number of bytes to be reserved for the variable with the =int-const
clause . The default string length is 16 .

" The FILL, FILL%, and FILL$ keywords allow you to reserve parts of the record buffer
within or between data elements and to define the format of the storage . Int-const speci-
fies the number of FILL items to be reserved . The =int-const clause allows you to specify
the number of bytes to be reserved for string FILL items . Table 21 describes FILL item
format and storage allocation .

BASIC Reference Manual

	

139

COMMON

Note
In the applicable formats of FILL, (int-count) represents a repeat count, not anarray subscript . FILL (n) represents n elements, not n + 1 .

5 .

	

Data-type can be any BASIC data-type keyword or, in VAX-1 1 BASIC, a data type defined
in the RECORD statement . Data-type keywords, size, range, and precision are listed in
Table 2 in this manual .

6 .

	

When you specify a data-type, all following com-items, including FILL items, are of thatdata type until you specify a new data type .
7 .

	

If you do not specify any data-type, com-items take the current default data type and size .
8 .

	

Variable names, array names, and FILL items following a data-type cannot end in a dollar
sign or percent sign character .

9 .

	

Variables and arrays declared in a COMMON statement cannot be declared elsewhere in
the program by any other declarative statements .

10.

	

COMMON elements must be separated with commas.
VAX-11 BASIC

1 .

	

The default com-nam is "$BLANK" .
2 .

	

Com-nam can consist of from 1 to 31 characters . The first character of the name must bean alphabetic character (A through Z) . The remaining characters, if present, can be anycombination of letters, digits (0 through 9), dollar signs ($), periods (.), or underscores (_) .
BASIC-PLUS-2

1 .

	

The default com-nam is ".$$$$." .
2 .

	

Com-nam can consist of from one to six characters . The first character must be an alpha-betic character (A through Z) . The remaining characters, if present, can be any combina-tion of letters, digits (0 through 9), dollar signs ($), or periods (.) .

140

	

BASIC Reference Manual

Table 21 : FILL Item Formats and Storage Allocations

COMMON

General Rules

Note
in the applicable formats of FILL, (int-count) represents a repeat count, not an
array subscript . FILL (n) represents n elements, not n + 1 .

1 .

	

A COMMON area and a MAP area with the same name, in different program modules,
specify the same storage area .

2 .

	

BASIC does not execute COMMON statements . The COMMON statement allocates and
defines the data storage area at compile time .

3 .

	

When you link or task-build your program, the size of the COMMON area is the size of the
largest COMMON area with that name. That is, BASIC concatenates COMMON state-
ments with the same com-nam within a single program module into a single PSECT . The
total space allocated is the sum of the space allocated in the concatenated COMMON
statements .

4 .

	

The COMMON statement must lexically precede any reference to variables declared in it .
5 .

	

A COMMON area can be accessed by more than one program module, as long as you
define the com-nam in each module that references the COMMON .

BASIC Reference Manual

	

141

FILL Format Storage Allocation

FILL Allocates storage for one floating-point element unless preceded by a data-type ; the
number of bytes allocated depends on the default floating-point data size or the speci-
fied data-type .

FILL(int-const) Allocates storage for the number of floating-point elements specified by int-const unless
preceded by a data-type ; the number of bytes allocated for each element depends on the
default floating-point data size or the specified data-type .

FILL% Allocates storage for one integer element ; the number of bytes allocated depends on the
default integer size .

FILL%(int-const) Allocates storage for the number of integer elements specified by int-const ; the number
of bytes allocated for each element depends on the default integer size .

FILL$ Allocates 16 bytes of storage for a string element . The dollar sign can be omitted if the
FILL keyword is preceded by the STRING data-type .

FILL$(int-const) Allocates 16 bytes of storage for the number of string elements specified by int-const .
The dollar sign can be omitted if the FILL keyword is preceded by the STRING data-type.

FILL$=int-const Allocates the number of bytes of storage specified by =int-const for a string element .
The dollar sign can be omitted if the FILL keyword is preceded by the STRING data-type .

FILL$(int-const) = int-const Allocates the number of bytes of storage specified by = int-const for the number of string
elements specified by int-const . The dollar sign can be omitted if the FILL keyword is
preceded by the STRING data-type .

COMMON

Examples

6.

	

Variable names in a COMMON statement in one program module need not match those in
another program module .

7 .

	

VAX-11 BASIC does not initialize variables in COMMON blocks .
8 . Since BASIC-PLUS-2 initializes variables in COMMON blocks, you must use unique

names for each variable in each COMMON block .
9 .

	

In BASIC-PLUS-2, you should know how your program overlays if data stored in a
COMMON area is to be shared by several program modules . The COMMON should be
named in an overlay unit that will remain in memory as long as program units need to
reference the COMMON data . If the overlay that names the COMMON is forced out of
memory, BASIC reinitializes the COMMON area to zero when the overlay is brought back
into memory . See BASIC on RSX-11MIM-PLUS Systems or BASIC on RSTS/E Systems for
information on overlay structures .

10.

	

The data-type specified for com-items or the default data type and size determines the
amount of storage reserved in a COMMON block :
" BYTE integers reserve 1 byte .
" WORD integers reserve 2 bytes .
" LONG integers reserve 4 bytes .
" SINGLE floating-point numbers reserve 4 bytes .
" DOUBLE floating-point numbers reserve 8 bytes .
" GFLOAT floating-point numbers reserve 8 bytes (VAX-11 BASIC only) .
" HFLOAT floating-point numbers reserve 16 bytes (VAX-11 BASIC only) .
" DECIMAL(d,s) packed decimal numbers reserve (d+1)/2 bytes (VAX-11 BASIC only) .
" STRING reserves 16 bytes (the default) or the number of bytes you specify with
= int-const .

500

	

COMMON (INVEN) INTEGER SHELF-NUMBER# STRING ROW = 2# &DOUBLE FILLt PART_BINt LIST-PRICE

142

	

BASIC Reference Manual

6.0 DATA
Function
The DATA statement creates a data block for the READ statement .
Format

num-lit
DATA

	

str-lit

	

, .
unq-str

Syntax Rules
1 .

	

Num-lit specifies a numeric literal .
2 .

	

Str-lit is a character string that starts and ends with double or single quotation marks. The
quotation marks must match .

3 .

	

Unq-str is a character sequence that does not start and end with double or single quotation
marks and does not contain a comma .

4 .

	

Commas separate data elements . If a comma is part of a data item, the entire item must be
enclosed in quotation marks.

5 .

	

Because BASIC treats comment fields in DATA statements as part of the DATA sequence,
do not include comments .

h .

	

A DATA statement must be the last or the only statement on a line .

DATA

7 .

	

DATA statements must end with a line terminator . BASIC interprets all characters except
the ampersand (&) between the keyword DATA and the final line terminator as part of the
data . You can continue DATA statements by placing an ampersand (&) immediately before
the line terminator .

8 .

	

You cannot use the percent sign suffix for integer constants that appear in DATA state-
ments . An attempt to do so causes BASIC to signal "Data format error" (ERR= 50) when
you try to run the program .

General Rules
1 .

	

DATA statements are local to a program module .
2 .

	

BASIC does not execute DATA statements . Instead, BASIC passes control to the next exe-
cutable statement .

3 .

	

A program can have more than one DATA statement . BASIC assembles data from all DATA
statements in a single program unit into a lexically ordered single data block .

4 .

	

BASIC ignores leading and trailing blanks and tabs unless they are in a string literal .

BASIC Reference Manual

	

143

DATA

Examples

5 .

	

Commas are the only valid data delimiters . You must use a quoted string literal if the
comma is to be part of a string .

6 .

	

BASIC ignores DATA statements without an accompanying READ statement .
7 .

	

BASIC signals the error "Data format error" if the DATA item does not match the data type
of the variable specified in the READ statement or if a data element that is to be read into
an integer variable ends with a percent sign (%) . If a string data element ends with a dollar
sign ($), BASIC treats the dollar sign as part of the string .

300

	

DATA 35t 32 .31 PRODUCTION SEQUENCE# 'SYSTEM't '1t2'

144

	

BASIC Reference Manual

7.0 DECLARE
Function
The DECLARE statement explicitly assigns a data type to and names a variable, an entire array, afunction, or a constant .
Format

Variables
DECLARE data-type decl-item [, [data-type] decl-item] . . .

DEF Functions
DECLARE data-type FUNCTION { def-nam [([def-param], . . .)] }, . . .

Named Constants
DECLARE data-type CONSTANT I const-nam = const }, . . .

decl-item : unsubs-vbl-nam
array-nam (int-const, . . .)

def-param :

	

[data-type]

Syntax Rules
1 .

	

Data-type can be any BASIC data-type keyword or, in VAX-I I BASIC, a data type definedin the RECORD statement . Data-type keywords, size, range, and precision are listed inTable 2 in this manual .
Variables

1 .

	

Decl-item names a variable or an array .
2 .

	

A decl-item cannot end in a percent sign (%) or dollar sign ($) .
3 .

	

A decl-item named in a DECLARE statement cannot also be named in another DECLAREstatement, or a DEF, EXTERNAL, FUNCTION, SUB, COMMON, MAP, or DIM statement .
4 .

	

Int-const specifies the upper bounds of the array-nam .

6.

	

Decl-items of data-type STRING are dynamic strings .

DECLARE

5 .

	

Each decl-item is associated with the preceding data-type . A data-type is required for thefirst decl-item .

BASIC Reference Manual

	

145

DECLARE

DEF Functions
1 .

	

Def-nam names the DEF function . It cannot end with a percent sign (%) or dollar sign ($) .
2 .

	

Data-type specifies the data type of the value the function returns .
3 .

	

Def-params specify the number and, optionally, the data-type of the DEF parameters .Parameters define the arguments the DEF expects to receive when invoked .
" When you specify a data-type, all following parameters are of that data type until youspecify a new data type .
" If you do not specify any data-type, parameters take the current default data type andsize .
" The number of parameters equals the number of commas plus one. For example, emptyparentheses specify one parameter of the default type and size ; one comma inside theparentheses specifies two parameters of the default type and size, and so on . Onedata-type inside the parentheses specifies one parameter of the specified data type; twodata-types separated by one comma specifies two parameters of the specified type, andso on .

Named Constants
1 .

	

Const-nam is the name you assign to the const.
2 .

	

Data-type specifies the data type of the const-nam . The value of the const must be numericif the data type is numeric and string if the data type is STRING . If the data-type is STRING,const must be a quoted string or another string constant .
3 .

	

Const cannot end with a percent sign (%) or a dollar sign ($) .
4 .

	

Const cannot be of the RFA data type .
5 .

	

For VAX-11 BASIC, string constants cannot exceed 498 characters .
6.

	

For BASIC-PLUS-2, string constants cannot exceed 128 characters .
7 .

	

VAX-11 BASIC allows const to be an expression for all data types except DECIMAL.Expressions are not allowed as values when you name DECIMAL constants .
8 .

	

BASIC-PLUS-2 allows const to be an expression for STRING and INTEGER data types.Expressions are not allowed as values when you name floating-point constants .
9 .

	

Allowable operators in DECLARE CONSTANT expressions include all valid arithmetic,relational, and logical operators except exponentiation . Built-in functions cannot be used inDECLARE CONSTANT expressions . The following examples use valid expressions asvalues :
100

	

DECLARE DOUBLE CONSTANT MA){-!VALUE = (PI /2) (VAX-11 BASIC only)
100

	

DECLARE STRING CONSTANT LEFT-ARROW = (' ";-----' + LF + CR)

146

	

BASIC Reference Manual

	

February 1984

General Rules
1 .

	

The DECLARE statement is not executable .
2 .

	

The DECLARE statement must lexically precede any reference to the variables, functions,
or constants named in it .

3 .

	

You cannot declare virtual arrays .
4.

	

To avoid confusion and to retain BASIC's implicit data typing feature, variable names
ending with a dollar sign or percent sign are invalid in a DECLARE statement .

Variables

DECLARE

1 .

	

Variables named in a DECLARE statement are initialized to zero if numeric or to the null
string if string .

2 .

	

Subsequent decl-items are associated with the specified data type until you specify another
data-type .

DEF Functions
1 .

	

The DECLARE FUNCTION statement allows you to name a function defined in a DEF
statement, specify the data type of the value the function returns, and declare the number
and data type of the DEF parameters .

2 .

	

Data-type keywords must be separated by commas . For example :
100

	

DECLARE DOUBLE FUNCTION INTEREST(ttDOUBLEtSINGLE)
This example decares two parameters of the default type and size, one DOUBLE parame-
ter, and one SINGLE parameter for the function named INTEREST .

3 .

	

The first specification of a def-param is the default for subsequent arguments until you
specify another def-param .

Named Constants
1 .

	

The DECLARE CONSTANT statement allows you to name a constant value and assign a
data type to that value. Note that you can specify only one data type in a DECLARE
CONSTANT statement . To declare another constant, you must use a second DECLARE
CONSTANT statement .

2 .

	

You cannot change the value assigned to const-nam .
3 .

	

You cannot use a const-nam where a variable is required .

BASIC Reference Manual

	

147

DECLARE

Examples
Variables

4 .

	

In VAX-11 BASIC, the specified data-type determines the data type of const. For example :

5 .

	

BASIC-PLUS-2 signals the error "Constant is inconsistent with the type of <name> " if the
data type of const does not match the specified data-type .

100

	

DECLARE INTEGER CATALOG-NUMt DOUBLE PRICE# STRING ITEM-NAME
DEF Functions

Named Constants

In this example, BASIC truncates the value 1 .5 to a WORD integer, and ignores the percent
suffix and the L (LONG) data type .

148

	

BASIC Reference Manual

Note
Data types specified in a DECLARE statement override any defaults specified inCOMPILE command qualifiers or OPTION statements .

100

	

DECLARE INTEGER FUNCTION AMOUNT(ttDOUBLE,BYTE>>)

100

	

DECLARE DOUBLE CONSTANT INTEREST-RATE = 15 .22

100 DECLARE WORD CONSTANT MMM = 1 .5200 DECLARE REAL CONSTANT ZZZ = 123%300 DECLARE BYTE CONSTANT YYY = '123'L400 PRINT MMM tZZZ tYYY
RUNNH

8.0 DEF
Function
The DEF statement lets you define a single- or multi-line function .
Format

Single-Line DEF
DEF [data-type] det-nam [([[data-type] unsubs-vbl-nam], . . .)] = exp

Multi-Line DEF
DEF [data-type] det-nam [([[data-type] unsubs-vbl-nam])]

END DEF
FNEND

[statement] . . .

Syntax Rules

DEF

1 .

	

Data-type can be any BASIC data-type keyword or, in VAX-11 BASIC, a data type defined
in the RECORD statement . Data-type keywords, size, range, and precision are listed in
Table 2 in this manual .

2 .

	

The data-type that precedes the def-nam specifies the data type of the value returned by the
DEF function .

3 .

	

Def-nam is the name of the DEF function . The def-nam may contain from 1 to 31
characters .

4.

	

If the def-nam also appears in a DECLARE FUNCTION statement, the following rules
apply:
" A function data-type is required .
" The first character of the def-nam must be an alphabetic character (A through Z) . The
remaining characters may be any combination of letters, digits (0 through 9), dollar signs
($), underscores (_), or periods (.), with one restriction : the last character cannot be a
dollar sign .

5 .

	

If the def-nam does not appear in a DECLARE FUNCTION statement, but the DEF state-
ment appears before the first reference to the def-nam, the following rules apply:
" The function data-type is optional .
" The first character of the def-nam must be an alphabetic letter (A through Z) . The remain-

ing characters can be any combination of letters, digits, dollar signs, underscores, or
periods .

	

(continued on next page)

BASIC Reference Manual

	

149

DEF

" If a function data-type is specified, the last character in the def-nam cannot be a dollarsign or percent sign .
" If a function data-type is not specified, the last character in the def-nam must be apercent sign (%) for an INTEGER function, a dollar sign ($) for a STRING function, or aletter, digit, period, or underscore for a function of the default type and size .

6 .

	

If the def-nam does not appear in a DECLARE FUNCTION statement, and the DEF state-ment appears after the first reference to the def-nam, the following rules apply :
" The function data-type cannot be present .
" The first two characters of the def-nam must be FN . The remaining characters can be anycombination of letters, digits, dollar signs, underscores, or periods, with one restriction :the last character must be a percent sign (%) for an INTEGER function, a dollar sign ($)for a STRING function, or a letter, digit, period, or underscore for a function of thedefault type and size .
" There must be at least one character between the FN characters and the ending dollarsign or percent character . FN$ and FN% are not valid function names.

7.

	

Unsubs-vbl-nam specifies optional formal DEF parameters . Because the parameters arelocal to the DEF function, any reference to these variables outside the DEF body creates adifferent variable .
8 .

	

You can specify the data-type of DEF parameters with a data-type keyword or, in VAX-11BASIC, with a data type defined in a RECORD statement . If you do not include a data type,the parameters are of the default type and size . Parameters that follow a data-type keywordare of the specified type and size until you specify another data type .
9 .

	

BASIC-PLUS-2 allows you to specify up to eight parameters in a DEF statement .
10 .

	

VAX-11 BASIC allows you to specify up to 255 parameters in a DEF statement .
Single-Line DEF

1 .

	

Exp specifies the operations the function performs .
Multi-Line DEF

1 .

	

Statements specify the operations the function performs .
2 .

	

The END DEF or FNEND statement is required to end a multi-line DEF.
3 . You can use any BASIC statement except END FUNCTION, END SUB, FUNCTION,FUNCTIONEND, FUNCTIONEXIT, DEF, or DEF* in a function definition .

150

	

BASIC Reference Manual

General Rules

DEF

1 .

	

When BASIC encounters a DEF statement, control of the program passes to the next exe-
cutable statement after the DEF.

2 .

	

Functions are invoked when you use the function name in an expression .
3 .

	

You cannot specify how parameters are passed . When you invoke a function, BASIC
evaluates parameters from left to right and passes parameters to the function so that they
cannot be modified . Numeric parameters are passed BY VALUE and string parameters are
passed BY DESC, where the descriptor points to a local copy . DEF functions may reference
variables in the main program, but they cannot reference variables in other DEF or DEF*
functions . A DEF function may, therefore, modify other variables in the program, but not
variables within another DEF function .

4 .

	

A DEF is local to the program or subprogram that defines it .

5 .

	

The DEF statement, or the first invocation of a function, whichever occurs first, constitutes
the declaration of the function . The DECLARE FUNCTION statement defines the name of
the function, but does not invoke it .

6 .

	

If your program invokes a function with a name that does not start with FN before the DEF
statement defines the function, or if the number of parameters, types of parameters, or type
of result declared in the invocation disagree with the number or types of parameters
defined in the DEF statement, BASIC signals an error .

7.

	

DATA statements in a multi-line DEF are not local to the function ; they are local to the
program module containing the function definition .

8 .

	

The function value (that is, the location storing the value the function returns) is initialized
to zero or the null string each time you invoke the function .

9 .

	

ON ERROR GO BACK is the default error handler in a DEF function definition .

10 .

	

ON ERROR statements within a DEF are local to the function .

11 .

	

A GOTO, GOSUB, ON ERROR GOTO, or RESUME statement in a multi-line function
definition must refer to a line number or label in the same function definition .

12 .

	

You cannot transfer control into a multi-line DEF except by invoking the function .
13 .

	

DEF functions can be recursive .

February 1984

	

BASIC Reference Manual

	

151

DEF

Examples
Single-Line DEF
1000

	

DEF DOUBLE ADD (DOUBLE At Bt SINGLE Ct Dt E) = A + B + C + D + E2000

	

INPUT 'Enter five numbers to be added' ;VtWtXtYt22010

	

PRINT 'The sum is' ;ADD(VtWtXtYt2)
Multi-Line DEF
1000

	

DEF DOUBLE PAYROLL(INTEGER HOURS# REAL RATE)EXIT DEF IF HOURS = 0DECLARE INTEGER OVERTIMEOVERTIME = HOURS - 40IF OVERTIME G= 0THEN HOURS = HOURSELSE HOURS = 40END IFDECLARE REAL CONSTANT OVERRATE = 1 .5PAYROLL = (HOURS * RATE) + (OVERTIME * (OVER-RATE * RATE))1030

	

END DEF1040

	

INPUT "Your hours this weeK" ;MY_HOURS1045

	

INPUT "Your Par rate" ;MY_PAY_RATE1050

	

PRINT 'Your Par for the week is' ;PAYROLL(MY_HOURStMY_PAY_RATE)

15 2

	

BASIC Reference Manual

9.0 DEF*
Function
The DEF* statement lets you define a single- or multi-line function .

Format

Single-Line DEF"
DEF" [data-type] det-nam [([[data-type] unsubs-vbl-nam], . . .)] = exp

Multi-Line DEF"
DEF" [data-type] def-nam [([[data-type] unsubs-vbl-nam])]

[statement] . . .
END DEF
FNEND

Syntax Rules

2 .

4 .

Note
The DEF* statement is not recommended for new program development . DIGITAL
recommends that you use the DEF statement for defining single- and multi-line
functions .

DEF*

Data-type can be any BASIC data-type keyword or, in VAX-I I BASIC, a data type defined
in the RECORD statement . Data-type keywords, size, range, and precision are listed in
Table 2 in this manual .
The data-type that precedes the def-nam specifies the data type of the value returned by the
DEF* function .

3 . Def-nam is the
characters .
If the def-nam also appears in a DECLARE FUNCTION statement, the following rules
apply :

name of the DEF* function . The def-nam may contain from 1 to 31

" A function data-type is required .
" The first character of the def-nam must be an alphabetic character (A through Z) . The

remaining characters may be any combination of letters, digits (0 through 9), dollar signs
($), underscores (_), or periods (.), with one restriction : the last character cannot be a
dollar sign .

BASIC Reference Manual

	

153

DEF*

5 .

	

If the def-nam does not appear in a DECLARE FUNCTION statement, but the DEF* state-ment appears before the first reference to the def-nam, the following rules apply :
" The function data-type is optional .
" The first character of the def-nam must be an alphabetic letter (A through Z) . The remain-ing characters can be any combination of letters, digits, dollar signs, underscores, orperiods .
" If a function data-type is specified, the last character in the def-nam cannot be a dollarsign or a percent sign .
" If a function data-type is not specified, the last character in the def-nam must be apercent sign (%) for an INTEGER function, a dollar sign ($) for a STRING function, or aletter, digit, period, or underscore for a function of the default type and size .

6 .

	

If the def-nam does not appear in a DECLARE FUNCTION statement, and the DEF* state-ment appears after the first reference to the def-nam, the following rules apply :
" The function data-type cannot be present.
" The first two characters of the def-nam must be FN. The remaining characters can be anycombination of letters, digits, dollar signs, underscores, or periods, with one restriction :the last character must be a percent sign (%) for an INTEGER function, a dollar sign ($)for a STRING function, or a letter, digit, period, or underscore for a function of thedefault type and size .
" There must be at least one character between the FN characters and the ending dollarsign or percent character . FN$ and FN% are not valid function names .

7.

	

Unsubs-vbl-nam specifies optional formal function parameters .
g,

	

You can specify the data-type of function parameters with a data-type keyword . If you do
not specify a data-type, parameters are of the default type and size . Parameters that follow
a data-type keyword are of the specified type and size until you specify another data-type .

9 .

	

BASIC-PLUS-2 allows you to specify up to eight parameters in a DEF* statement .
10.

	

VAX-11 BASIC allows you to specify up to 255 parameters in a DEF* statement .
Single-Line DEF*

1 .

	

Exp specifies the operations the function performs .
Multi-Line DEF*

1 .

	

Statements specify the operations the function performs .
2 .

	

The END DEF or FNEND statement is required to end a multi-line DEF* .
3 . You can use any BASIC statement except END FUNCTION, END SUB, FUNCTION,FUNCTIONEND, FUNCTIONEXIT, DEF, or DEF* in a function definition .

154

	

BASIC Reference Manual

General Rules
1 .

	

When BASIC encounters a DEF* statement, control of the program passes to the next
executable statement after the DEF .

2 .

	

Functions are invoked when you use the function name in an expression .
3 .

	

You cannot specify how parameters are passed . When you invoke a DEF* function,
BASIC evaluates parameters from left to right and passes parameters to the function so that
they cannot be modified . Numeric parameters are passed BY VALUE, and string
parameters are passed BY DESC, where the descriptor points to a local copy . DEF*
functions may reference variables in the main program, but they cannot reference
variables in other DEF or DEF* functions . A DEF* function may, therefore, modify varia-
bles in the program, but not variables within another DEF* function .

4 .

	

A DEF* is local to the program or subprogram that defines it .

DEF*

5 . The DEF* statement permits inclusion of the GOTO, ON GOTO, GOSUB, and
ON GOSUB statements in a multi-line DEF* function . This allows you to transfer pro-
gram control outside the function definition .

6 .

	

Although other variables used within the body of a DEF* are not local to the DEF*, DEF*
formal parameters are . However, if you change the value of formal parameters within a
DEF* function and then transfer control out of the DEF* without executing the END DEF
or FNEND statement, variables outside the DEF* that have the same names as DEF*
formal parameters are also changed .

7 .

	

The DEF* statement, or the first invocation of a function, whichever occurs first, consti-
tutes the declaration of the function . The DECLARE FUNCTION statement defines the
name of the function, but does not invoke it .

8 .

	

If your program invokes a function before the DEF* statement defines the function, or if
the number of parameters, types of parameters, or type of result declared in the invoca-
tion disagree with the number or types of parameters defined in the DEF* statement,
BASIC signals an error .

9 .

	

DEF* function values are not initialized when DEF* functions are invoked . Therefore, if a
DEF* is invoked, and no new function value is assigned, the DEF* returns the value of its
previous invocation .

10.

	

DEF* functions can be recursive .
11 .

	

DATA statements in a multi-line DEF* are not local to the function ; they are local to the
program module containing the function definition .

12 .

	

The error handler of the program module that contains the DEF* is the default error
handler for a DEF* function, not ON ERROR GO BACK as in DEF functions . Parameters
return to their original values when control passes to the error handler .

February 1984

	

BASIC Reference Manual

	

155

DEF*

Examples
Single-Line DEF*
1000

	

DEF* STRING CONCAT(STRING A,B) = A + B2000

	

INPUT 'Enter two words' ;WORDI#WORD22010

	

PRINT CONCAT(WORDItWORD2)

Multi-Line DEF*
1000

	

DEF* DOUBLE EXAMPLE(DOUBLE A+ B, SINGLE C, D, E)EXIT DEF IF B =EXAMPLE = (A/B) + C - (DE)1030

	

END DEF1040

	

INPUT 'Enter 5 numbers' ;Y tW tX tY tZ1050

	

PRINT EXAMPLE(Y>WtXtYt2)

15 6

	

BASIC Reference Manual

10.0 DELETE
Function
The DELETE statement removes a record from a relative or indexed file .
Format

DELETE chnl-exp

Syntax Rules
1 .

	

Chnl-exp is a numeric expression that specifies a channel number associated with a file . It
must be immediately preceded by a pound sign (#) .

General Rules

Examples

1 .

	

The DELETE statement removes the current record from a file . You cannot then access the
record .

2 .

	

The file specified by chnl-exp must be open with ACCESS MODIFY or WRITE .
3 .

	

You can delete a record only if the last 1/0 statement executed on the specified channel
was a successful GET or FIND .

4 .

	

The DELETE statement leaves the Current Record Pointer undefined and the Next Record
Pointer unchanged .

5 .

	

BASIC signals an error when the I /O channel is illegal or not open, when no current record
exists, when access is illegal or illogical, when the operation is illegal, or when the record
or bucket is locked .

6 .

	

In VAX-I I BASIC, if the record being deleted is in a file opened with UNLOCK EXPLICIT,
the DELETE statement does not remove the lock on the record . If no lock was imposed with
a previous GET or FIND statement, the default lock, ALLOW NONE, remains imposed .
The lock can be removed with the FREE or UNLOCK statement . See the sections on GET,
FIND, OPEN, FREE, and UNLOCK in this manual for more information on explicit record
locking and unlocking .

1000

	

DELETE 5

DELETE

BASIC Reference Manual

	

157

DIMENSION

11 .0 DIMENSION
Function
The DIMENSION statement creates and names a static, dynamic, or virtual array . The array subscriptsdetermine the dimensions and size of the array . You can specify the data type of the array andassociate the array with an 1/0 channel .
Format

Nonvirtual, Nonexecutable

Virtual

Executable

DIM
DIMENSION

	

{ [data-type] array-nam (int-const, . . .) }, . . .

DIM
DIMENSION

	

chnl-exp, { [data-type] array-nam (int-const, . . .) [= int-const] }, . . .

DIM
DIMENSION

	

{ data-type] array-nam (int-vbl, . . .) }, . . .

Syntax Rules

15 8

1 .

	

Array-nam is an array name . It must conform to the rules for naming variables .
2 .

	

An array-nam in a DIM statement cannot also appear in a COMMON, MAP, or DECLAREstatement .

3 .

	

Data-type can be any BASIC data-type keyword or, in VAX-11 BASIC, a data type definedin the RECORD statement . Data-type keywords, size, range, and precision are listed inTable 2 in this manual .
4 . If you do not specify a data type, the array-nam determines the type of data the array holds .If the array-nam ends in a percent sign (%), the array stores integer data . If the array-namends in a dollar sign ($), the array stores string data . Otherwise, the array stores data of thedefault type and size .
5 .

	

A VAX-11 BASIC array can have up to 32 dimensions .
6 .

	

A BASIC-PLUS-2 array can have up to eight dimensions .

BASIC Reference Manual

7 .

	

Each instance of int-const or int-vbl within the parentheses specifies the upper bound of an
array dimension .

Nonvirtual, Nonexecutable
1 .

	

When all the dimension specifications are int-consts, as in DIM A(15%,10%,20%), the
DIM statement is nonexecutable and the array is static . A static array cannot appear in
another DIM statement because BASIC allocates storage at compile time .

2 .

	

A nonexecutable DIM statement must lexically precede any reference to the array it dimen-
sions . That is, you must DIMENSION a static array before you can reference array
elements .

Virtual
1 .

	

The pound sign (#) must precede chnl-exp when dimensioning virtual arrays .
2 .

	

The virtual array must be dimensioned and the file must be open before you can reference
the array .

3 .

	

When the data-type is STRING, the =int-const clause specifies the length of each array
element . The default string length is 16 characters . Virtual string array lengths are rounded
to the next higher power of two .

Executable

General Rules

" In VAX-I I BASIC, array bounds must be in the range 0 to 23 ' - ' .
" In BASIC-PLUS-2, array bounds must be in the range 0 to 2' S- ' .

1 .

	

When any of the dimension specifications are int-vbls, as in DIM A(10%,20%,Y%), the
DIM statement is executable and the array is dynamic . A dynamic array can be redimen-
sioned with a DIM statement any number of times, since BASIC allocates storage at run
time .

1 .

	

You can create an array implicitly by referencing an array element without using a DIM
statement . This causes BASIC to create an array with dimensions of (10), (10,10),
(10,10,10), and so on, depending on the number of bounds specifications in the refer-
enced array element . You cannot create virtual or executable arrays implicitly .

2 .

	

The lower bound of a BASIC array is always zero, rather than one . Thus, A(10) allocates 11
elements, A(10,10) allocates 121 elements, and A(0,0,0) allocates 1 element .

3 .

	

BASIC allocates storage for arrays by row, from right to left .

DIMENSION

" Although the compiler does not generate an error for subscript values outside of these
ranges, there is a limit to the amount of storage your system can allocate . Therefore, very
large arrays can cause an internal allocation error or a run-time error .

BASIC Reference Manual

	

159

DIMENSION

Nonvirtual, Nonexecutable
1 .

	

You can declare arrays with the COMMON, MAP, and DECLARE statements . Arrays sodeclared cannot be redimensioned with the DIM statement . Furthermore, string arraysdeclared with a COMMON or MAP statement are always fixed-length .
2 .

	

If you reference an array element declared in an array whose subscripts are larger than thebounds specified in the DIM statement, BASIC signals the error "Subscript out of range"(ERR = 55) .
Virtual

1 . When the rightmost subscript varies faster than the subscripts to the left, fewer diskaccesses are necessary to access array elements in virtual arrays .
2 .

	

Using the same DIM statement for multiple virtual arrays allocates all arrays in a single diskfile . The arrays are stored in the order they were declared .
3 . Any program or subprogram can access a virtual array by declaring it in a virtualDIMENSION statement . For example :

100

	

DIM #1t A(10)200

	

DIM #It B(10)
In this example, array B overlays array A. You must, however, specify the same channelnumber, data types, and limits in the same order as they occur in the DIM statement thatcreated the virtual array .

4 .

	

BASIC stores a string in a virtual array by padding it with trailing nulls to the length of thearray element . It removes these nulls when it retrieves the string from the virtual array .
5 .

	

In BASIC-PLUS-2 on RSX-1 1 MlM-PLUS systems and in VAX-11 BASIC, the OPEN state-ment for a virtual array must include the ORGANIZATION VIRTUAL clause for thechnl-exp specified in the DIMENSION statement .
6 .

	

BASIC does not initialize virtual arrays and treats them as statically allocated arrays . Youcannot redimension virtual arrays .
7 .

	

Refer to the BASIC User's Guide for more information on virtual arrays .
Executable

1 .

	

You create an executable, dynamic array by using integer variables for array bounds as inDIM A(Y%,X%) . This eliminates the need to dimension an array to its largest possible size .Array bounds in an executable DIM statement can be constants or variables, but notexpressions . At least one bound must be a variable .
2 .

	

You cannot reference an array named in an executable DIM statement until after the DIMstatement executes .
3 .

	

You can redimension a dynamic array to make the bounds of each dimension larger orsmaller, but you cannot change the number of dimensions . That is, you cannot redimen-sion a four-dimensional array to be a five-dimensional array .

160

	

BASIC Reference Manual

Examples
Nonvirtual, Nonexecutable
300

	

DIM STRING NAME_LIST(100t100)# BYTE AGE(100)

Virtual

4.

	

The executable DIM statement cannot be used to dimension virtual arrays, arrays received
as formal parameters, or arrays declared in COMMON, MAP, or nonexecutable DIM
statements .

5 .

	

An executable DIM statement always reinitializes the array to zero (for numeric arrays) or
the null string (for string arrays) .

6.

	

If you reference an array element declared in an executable DIM statement whose sub-
scripts are larger than the bounds specified in the last execution of the DIM, BASIC signals
the error "Subscript out of range" (ERR= 55).

100

	

DIM #1%t STRING NAM_LIST(500)t REAL AMOUNT(10t10)
Executable
200

	

DIM DOUBLE INYENTORY(BASEtMARKUP)

DIMENSION

BASIC Reference Manual

	

16 1

END

12 .0 END
Function
The END statement marks the physical and logical end of a main program, a program module, or ablock of statements .
Format

END [block]

block :

DEF
FUNCTION
GROUP

	

(VAX-11 only)
IF
RECORD

	

(VAX-11 only)
SELECT
SUB
VARIANT

	

(VAX-11 only)

Syntax Rules
1 .

	

The END statement with no block keyword marks the end of a main program . The ENDstatement must be the last statement on the lexically last line in the main program .
2 .

	

The END statement followed by a block keyword marks the end of a BASIC SUB orFUNCTION subprogram, or a DEF, IF, or SELECT statement block . In VAX-1 1 BASIC, ENDRECORD, END GROUP, and END VARIANT mark the end of a RECORD statement, or aGROUP component or VARIANT component of a RECORD statement .
3 .

	

The END block statement must be the lexically last statement in a subprogram or statementblock and must match the statement that established the subprogram or statement block.
General Rules

1 .

	

When an END statement marking the end of a main program executes, BASIC closes allfiles and releases all program storage.
2 .

	

BASIC cannot execute an END statement that marks the end of a program unit while anerror is being handled . The module must execute a RESUME or ON ERROR statementbefore the END statement .
3 .

	

BASIC signals an error when a program contains an END block statement with no corre-sponding and preceding block keyword .
4.

	

When BASIC executes an END DEF or END FUNCTION statement, it returns the functionvalue to the statement that invoked the function and releases all storage associated with theDEF or FUNCTION .

162

	

BASIC Reference Manual

5.

	

The END DEF statement restores the error handling in effect when the DEF was invoked .
6.

	

Error handlers set up in DEF* statements are global . The END DEF statement does notrestore the error handling in effect when the DEF* was invoked .
7 .

	

The END SUB and END FUNCTION statements do not affect I/O operations or files .
8 .

	

The END SUB statement releases the storage allocated to local variables and returns con-trol to the calling program .
9 .

	

The END SUB statement cannot be executed in an error handler unless the SUBEND is in a
subprogram called by the error handler.

"Bye"32767

END

BASIC Reference Manual

	

163

Examples
300 IF A = 20THEN PRINTGOTOELSE GOTO 100END IF

32767
00END

EXIT

13.0 EXIT
Function
The EXIT statement lets you exit from a SUB or FUNCTION subprogram, a multi-line DEF, or from astatement block.
Format

EXIT block

block : DEF
FUNCTION
SUB
label

Syntax Rules
1 .

	

The FUNCTION, SUB, and DEF keywords specify the type of subprogram or multi-lineDEF from which BASIC is to exit .
2 .

	

Label specifies a statement label for an IF, SELECT, FOR, WHILE, or UNTIL statementblock.

General Rules
1 .

	

An EXIT DEF, EXIT FUNCTION, or EXIT SUB statement is equivalent to an unconditionalbranch to an END DEF, END FUNCTION, or END SUB statement . Control then passes tothe statement that invoked the DEF or to the statement following the statement that calledthe subprogram .
2 .

	

The EXIT label statement is equivalent to an unconditional branch to the first statementfollowing the end of the IF, SELECT, FOR, WHILE, or UNTIL statement labelled by thelabel .
3 .

	

An error handler cannot execute an EXIT FUNCTION or EXIT SUB statement unless the
error handler calls the FUNCTION or SUB subprogram .

4.

	

An EXIT FUNCTION or EXIT SUB statement cannot be used within a multi-line DEF
function .

5 .

	

When the EXIT FUNCTION or EXIT SUB statement executes, BASIC releases all storage
allocated to local variables and returns control to the calling program .

164

	

BASIC Reference Manual February 1984

Examples

100

	

LOOP-1 : FOR I% = 1% TO 10%
PRINT I%
IF IX = 5%
THEN EXIT LOOP-1
END IF

NEXT I"/�

0
5000

	

SUB SUBA
a

0
6000

	

EXIT SUB

0
0

10000

	

END SUB

EXTERNAL

14.0 EXTERNAL
Function
The EXTERNAL statement declares constants, variables, functions, and subroutines external to your
program . You can describe parameters for external functions and subroutines .
Format

External Constants
EXTERNAL data-type CONSTANT const-nam, . . .

External Variables
EXTERNAL data-type unsubs-vbl-nam,. . .

External Functions
EXTERNAL data-type FUNCTION { func-nam [pass-mech] [([external-param], . . .)] }, . . .

External Subroutines
EXTERNAL SUB { sub-nam [pass-mech] [([external-param], . . .)] }, . . .

pass-mech:

	

BY DESC
BY REF
BY VALUE

external-param :

	

[data-type] [DIM ([,] . . .)] [

	

=

	

int-const] [pass-mech]

Syntax Rules
1 .

	

For external variables, data-type can be any valid numeric data type .
2 .

	

For external constants, data-type can be :
" For VAX-11 BASIC : BYTE, WORD, LONG, SINGLE, INTEGER (any size), or REAL (if
the default size is SINGLE) .

" For BASIC-PLUS-2 : WORD, or INTEGER (if the default size is WORD) .
3 .

	

For external functions and subroutines, data-type can be any BASIC data-type keyword
or, in VAX-1 1 BASIC, a data type defined by a RECORD statement . Data-type keywords,
size, range, and precision are listed in Table 2 in this manual .

166

	

BASIC Reference Manual February 1984

EXTERNAL

4 .

	

In VAX-I I BASIC, the name of an external constant, variable, function, or subroutine can
consist of from 1 to 31 characters and must conform to the following rules :
" The first character of an unquoted name must be an alphabetic character (A through Z) .
The remaining characters, if present, can be any combination of letters, digits (0 through
9), dollar signs ($), periods (.), and underscores (_) .

" Quoted names are allowed for the EXTERNAL SUB statement only . Quoted names can
consist of any combination of printable ASCII characters .

" An EXTERNAL SUB or EXTERNAL FUNCTION statement with empty parentheses speci-
fies that the named subprogram has zero arguments .

5 .

	

An EXTERNAL SUB or EXTERNAL FUNCTION statement with no parentheses specifies that
the named subprogram may receive any number of arguments .

6 .

	

In BASIC-PLUS-2, the name of an external constant, variable, or subroutine can consist of
from one to six characters and must conform to the following rules :
" The first character of an unquoted name must be an alphabetic character (A through Z) .
The remaining characters, if present, can be any combination of letters, digits (0 through
9), dollar signs ($), and periods (.) .

" Quoted names are allowed for the EXTERNAL SUB statement only . Quoted names can
consist of any combination of alphabetic characters, digits, dollar signs, periods, and
spaces .

External Functions and Subroutines
1 .

	

The data-type that precedes the FUNCTION keyword defines the data type of the functionresult .
2 .

	

Pass-mech specifies how parameters are to be passed to the function or subroutine .
" A pass-mech clause outside the parentheses applies to all parameters .
" A pass-mech clause inside the parentheses overrides the previous pass-mech and appliesonly to the specific parameter .

3 .

	

External-param defines the form of the arguments passed to the external function orsubprogram .
" Empty parentheses indicate that the function or subroutine is being named, but thatparameters are not being defined .
" Data-type specifies the data type of a parameter . If you do not specify a data type,parameters are of the default data type and size . When you do specify a data type, allfollowing parameters are of that data type until you specify a new data type .

February 1984

	

BASIC Reference Manual

	

167

EXTERNAL

General Rules

" The DIM keyword indicates that the parameter is an array . Commas specify array dimen-sions . The number of dimensions is equal to the number of commas plus one . Forexample :
too

	

EXTERNAL STRING FUNCTION NEW (DOUBLEt STRING DIM(t), DIM())
This example declares a function named NEW that has three parameters . The first is a
double-precision floating-point value, the second is a two-dimensional string array, andthe third is a one-dimensional string array . The function returns a string result .

" You can specify how an argument is to be passed to the function or subprogram with the
optional pass-mech clause . If you do not specify a passing mechanism for a parameter,
BASIC passes arguments by the default passing mechanisms listed in Tables 19 and 20 .

1 .

	

The EXTERNAL statement must precede any program reference to the constant, variable,function, or subroutine declared in the statement .
2 .

	

The EXTERNAL statement is not executable .
3 .

	

A name declared in an EXTERNAL CONSTANT statement may be used in any nondeclara-tive statement as if it were a constant .
4 . A name declared in an EXTERNAL FUNCTION statement may be used as a functioninvocation in an expression .
5 .

	

A name declared in an EXTERNAL SUB statement may be used in a CALL statement .
6 . The optional pass-mech clauses in the EXTERNAL FUNCTION and EXTERNAL SUB

statements tell BASIC how to pass arguments to a non-BASIC function or subprogram .
Table 19 describes VAX-II BASIC parameter passing mechanisms . Table 20 describes
BASIC-PLUS-2 parameter passing mechanisms .
" BY REF specifies that BASIC passes the argument's address . This is the default for all
arguments except strings and entire arrays .
BY VALUE specifies that VAX-II BASIC passes the argument's 32-bit value and that
BASIC-PLUS-2 passes the argument's 16-bit value .
BY DESC specifies that BASIC passes the address of a VAX-II BASIC descriptor
or a BASIC-PLUS-2 descriptor . For information about the format of a VAX-1I BASIC
descriptor for strings and arrays, see Appendix C in BASIC on VAX/VMS Systems .
BASIC-PLUS-2 creates descriptors only for strings and arrays ; these descriptors are de-
scribed in Appendix C in BASIC on RSX-1IMIM-PLUS Systems and BASIC on RSTS/E
Systems .

168

	

BASIC Reference Manual

Examples

7 .

	

The arguments passed to external functions and subroutines should match the external
parameters declared in the EXTERNAL FUNCTION or EXTERNAL SUB statement in num-
ber, type, ordinality, and passing mechanism as BASIC forces arguments to conform to the
declared parameters . BASIC signals an error when conformance is impossible (for exam-
ple, when a STRING argument is passed where an INTEGER parameter was declared) and
an informational message when a conversion results in a modifiable parameter becoming a
nonmodifiable parameter .

External Constants
100

	

EXTERNAL LONG CONSTANT SYS$FC
External Variables
100

	

EXTERNAL WORD SYSNUM
External Functions
100

	

EXTERNAL DOUBLE FUNCTION USR$2 (DOUBLE DIM(t)tbYTE BY VALUE)
External Subroutines
100

	

EXTERNAL SUB CALC BY DESC (STRING DIM(t)t BYTE BY REF)

EXTERNAL

February 1984

	

BASIC Reference Manual

	

168.1

15.0 FIELD
Function

Format

Syntax Rules

2 .

General Rules

Note
The FIELD statement is supported only for compatibility with BASIC-PLUS . Becausedata defined in the FIELD statement can be accessed only as string data, you must usethe CVTxx functions to process numeric data . This means that you must convert stringdata to numeric after you move it from the 1/0 buffer . Then, after processing, youmust convert numeric data back to string data before transferring it to the 1/0 buffer .DIGITAL recommends that you use BASIC's dynamic mapping feature or multipleMAPs instead of the FIELD statement and CVTxx functions .

The FIELD statement dynamically associates string variables with all or parts of an 1/0 buffer . FIELDstatements do not move data . Instead, they permit direct access through string variables to sections ofa specified I/O buffer .

FIELD chnl-exp, int-exp AS str-vbl [, int-exp AS str-vbl] . . .

Chnl-exp is a numeric expression that specifies a channel number associated with a file . Itmust be preceded by a pound sign (#) . A file must be open on the specified channel orBASIC signals an error .
Int-exp specifies the number of characters in the str-vbl that follows the AS keyword .

A FIELD statement is executable . You can change a buffer description at any time by
executing another FIELD statement . For example :
100

	

FIELD #I%t 40% AS WHOLE_FIELD$FIELD #1%t 10% AS A$# 10% AS B$t 10% AS C$t 10% AS D$

2 .

	

You cannot define virtual array strings as string variables in a FIELD statement .
3 .

	

See the BASIC-PLUS Language Manual for more information on the FIELD statement .

FIELD

The first FIELD statement associates the first 40 characters of a buffer with the variable
WHOLE-FIELD$. The second FIELD statement associates the first 10 characters of the
same buffer with A$, the second 10 characters with B$, and so on . Later program state-
ments can refer to any of the variables named in the FIELD statements to access specific
portions of the buffer .

BASIC Reference Manual

	

169

FIELD

VAX-II BASIC
1 .

	

A variable named in a FIELD statement cannot be used in a COMMON or MAP statement,
as a parameter in a CALL or SUB statement, or in a MOVE statement .

2 .

	

Using the FIELD statement on a VIRTUAL file that contains a virtual array causes BASIC to
signal "Illegal or illogical access" (ERR= 136) .

3 .

	

If you name an array in a FIELD statement, you cannot use MAT statements of the format :
MAT arr-naml = arr-nam2
or
MAT arr-naml = NUL$
where arr-nam I is named in the FIELD statement . An attempt to do so causes BASIC to
signal a compile-time error .

4X AS X$# 4'X, AS Y$

);

	

=

	

CYT$F (X$)Y

	

=

	

CYT$F (Y$)

Note
DIGITAL does not recommend the FIELD statement for new program development .

170

	

BASIC Reference Manual

Examples
100 FIELD #B'Z, t 2X AS U$, 2'%, AS CL$ t
210 LSET U$ = CVT%$ (U'Z,)

LSET CL$ = CVTX$(CL%)
LSET X$ = CYTF$ ()<)
LSET Y$ = CYTF$(Y)

300 U"/� = CVT$'X (U$)CLX = CVT$'X, (CL$)

16.0 FIND
Function

Format
VAX-11 BASIC

FIND

The FIND statement locates a specified record in a disk file and makes it the Current Record for a
GET, UPDATE, or DELETE operation . FIND statements are valid on RMS sequential, relative, in-
dexed, and block 1/0 files . You should not use FIND statements on terminal-format files, virtual array
files, or files opened with ORGANIZATION UNDEFINED .

FIND chnl-exp [, position-clause] [, lock-clause]

(continued on next page)

BASIC Reference Manual

	

171

RFA rfa-exp
position-clause : RECORD num-exp

KEY# key-clause
ALLOW allow-clauselock-clause : REGARDLESS
NONE

allow-clause : READ
MODIFY

str-exp
key-clause : int-expi rel-op I int-exp2

decimal-exp

EQ
rel-op : GE

GT

FIND
BASIC-PLUS-2

FIND chnl-exp [, position-clause]

str-exp
int-exp2

Syntax Rules
1 .

	

Chnl-exp is a numeric expression that specifies a channel number associated with a file . Itmust be immediately preceded by a pound sign (#) .
2 .

	

Position-clause specifies the position of a record in a file . BASIC signals an error if youspecify a position-clause and chnl-exp is not associated with a disk file .
" If you do not specify a position-clause, FIND locates records sequentially . Sequentialrecord access is valid on RMS sequential, relative, indexed, and block I/O files .
" The RFA position-clause allows you to randomly locate records by specifying the RecordFile Address (RFA) of a record . That is, you specify the disk address of a record, and RMSlocates the record at that address . All RMS file organizations may be accessed by RFA .
" The RECORD position-clause allows you to randomly locate records in relative andblock 1/0 files by specifying the record number .
" The KEY position-clause allows you to randomly locate records in indexed files by speci-fying a key of reference, a relational test, and a key value .

3 .

	

Rfa-exp in the RFA position-clause is a variable of the RFA data type that specifies therecord's Record File Address . Note that an RFA expression can only be a variable of theRFA data type or the GETRFA function . Use the GETRFA function to find the RFA of arecord .
4 .

	

Int-exp in the RECORD position-clause specifies the number of the record you want tolocate . It must be between one and the file's maximum record number .

172

	

BASIC Reference Manual

RFA rfa-exp
position-clause : RECORD num-exp

iKEY# key-clause

key-clause : int-expi rel-op

EQ
rel-op : GE

GT

5 .

	

In the key-clause :

6 .

	

When you specify a RECORD clause, chnl-exp must be a channel associated with an open
relative or block 1/0 file .

7 .

	

When you specify a KEY clause, chnl-exp must be a channel associated with an open
indexed file .

VAX-11 BASIC
1 .

	

Str-exp in the KEY clause cannot be a null string .
2 .

	

Decimal-exp in the KEY clause specifies a packed decimal value to be compared with the
key value of a record .

3 .

	

Lock-clause allows you to control how a record is locked to other access streams . The file
associated with chnl-exp must have been opened with the UNLOCK EXPLICIT clause or
BASIC signals the error "illegal record locking clause" .

4 .

	

If you specify a lock-clause, it must follow the position-clause . If the lock-clause precedes
the position-clause, BASIC signals an error .

General Rules
1 . The file associated with chnl-exp must be opened with ACCESS MODIFY, READ, orSCRATCH before your program can execute a FIND .
2 .

	

FIND does not transfer any data .

FIND

" Int-expl is the target key of reference . It must be a WORD or LONG integer between
zero and the highest-numbered key for the file, inclusive . BASIC converts BYTE integers
to WORD . The primary key is key number zero, the first alternate key is key number
one, the second alternate key is key number two, and so on . Int-exp1 must be preceded
by a pound sign (#) or BASIC signals an error .

" Str-exp and int-exp2 specify a string or integer value to be compared with the key valueof a record .
" Rel-op specifies how str-exp or int-exp2 is to be compared to int-exp l . EQ means "equal

to," GE means "greater than or equal to," and GT means "greater than ."

3 .

	

A successful sequential FIND updates both the Current Record and Next Record Pointers .
" For sequential files, a successful FIND locates the next sequential record (the record

pointed to by the Next Record Pointer) in the file, changes the Current Record Pointer to
the record just found, and sets the Next Record Pointer to the next sequential record . If
the Current Record Pointer points to the last record in a file, a sequential find causes
BASIC to signal "End of file on device" (ERR= 11) .

" For relative files, a successful FIND locates the record with the next higher record num-
ber (or cell number), makes it the Current Record, and changes the Next Record to the
Current Record plus one .

BASIC Reference Manual

	

173

FIND

" For indexed files, a successful FIND locates the next logical record in the current key ofreference, makes this the Current Record, and changes the Next Record to the CurrentRecord plus one.
" For block I/O files, a successful FIND locates the next disk block (for files withRECORDSIZE 512) or the next record (for files with RECORDSIZE greater than 512),makes it the Current Record, and changes the Next Record to the Current Record plusone.

4. A successful random FIND by KEY locates the first record whose key satisfies thekey-clause comparison :
" With an exact key match (EQ), a successful FIND locates the first record in the file thatequals the key value given in int-exp or specified by str-exp . The characters specified bystr-exp are matched approximately rather than exactly . That is, if you specify "ABC" andthe key length is six characters, BASIC matches the first record that begins with ABC . Ifyou specify "ABC ", BASIC matches only a record with the key "ABC " . If nomatch is possible, BASIC signals the error "Record not found" (ERR= 155) .
" With the greater than key match (GT), a successful FIND locates the first record with avalue greater than int-exp or str-exp . If no such record exists, BASIC signals the error"End of file on device" (ERR= 11) .
" If you specify a greater than or equal to key match (GE), a successful FIND locates thefirst record that equals the key value in int-exp or str-exp . If no exact match is possible,BASIC locates the first record with a key value higher than int-exp or str-exp .

5 .

	

A successful random access FIND by RFA or by RECORD changes the Current RecordPointer to the record specified by rfa-exp or int-exp, but leaves the Next Record Pointerunchanged .
6 .

	

A successful random access FIND by KEY changes the Current Record Pointer to the firstrecord whose key satisfies the key-clause comparison and the Next Record Pointer to therecord with the next higher value in the current key.
7 .

	

When a random access FIND by RFA, RECORD, or KEY is not successful, BASIC signals"Record not found" (ERR= 155) . The values of the Current Record Pointer and NextRecord Pointer are undefined.
8 .

	

If the RMS index lists are in memory, a FIND on an indexed file does not initiate any diskoperations .
VAX-11 BASIC

1 .

	

The type of lock you impose on a record remains in effect until you explicitly unlock it witha FREE or UNLOCK statement or until you close the file .
" ALLOW NONE specifies no access to the record . This means that other access streamscannot retrieve the record unless they bypass lock checking with GET REGARDLESS .
" ALLOW READ specifies read access to the record . This means that other access streamscan retrieve the record but cannot PUT or UPDATE the record .
" ALLOW MODIFY specifies both read and write access to the record . This means thatother access streams can GET, PUT, DELETE, or UPDATE the record .

174

	

BASIC Reference Manual

BASIC-PLUS-2

Examples

2 .

	

When you do not specify an ALLOW clause, locking is imposed as follows :

1 .

	

When you access a shared file, a successful FIND locks the record or bucket and unlocks
the previously locked record or bucket .

Sequential Access

Random Access

" If the file associated with chnl-exp was opened with UNLOCK EXPLICIT, BASIC imposes
the ALLOW NONE lock on the retrieved record and the next GET or FIND does not
unlock the previously locked record .

" If the file associated with chnl-exp was not opened with UNLOCK EXPLICIT, BASIC locks
the retrieved record and unlocks the previously locked record .

100

	

MAP (XYZ) STRING LAST-NAME = 10t FIRST-NAME = 6
150

	

OPEN 'EMP .DAT' AS FILE #1t &
ORGANIZATION SEQUENTIAL# MAP XYZ

200

	

FIND #1

100

	

DECLARE RFA Address(99)
200

	

MAP (XYZ) STRING LAST-NAME = 10t FIRST-NAME
300

	

OPEN 'EMP .DAT' AS FILE #1# &ORGANIZATION SEQUENTIAL# MAP XYZ
400

	

FIND #1Address(0) = GETRFA(1)
00

500

	

FIND #1t RFA Address(5)
00

600

	

OPEN 'NEWEMP .DAT' AS FILE #2t &
ORGANIZATION RELATIVE+ MAP XYZ

700

	

FIND #2, RECORD A%Address(A%) = GETRFA(2)
00
FIND #2# RFA Address(A%)
a0

900

	

OPEN 'OLDEMP .DAT' AS FILE #3# &
ORGANIZATION INDEXEDt MAP XYZt &PRIMARY KEY LAST-NAME

FIND #3t KEY #0 EQ "JONES"
Address(5) = GETRFA(3)
00
FIND #3t RFA Address(7)

6

FIND

BASIC Reference Manual

	

175

FIND

VAX-11 BASIC
100 MAP (XYZ) STRING LAST-NAME = 10t FIRST-NAME = 6200 OPEN 'EMP .DAT' AS FILE #1t &ORGANIZATION INDEXEDt &MAP XYZ# PRIMARY KEY LAST_NAMEt &UNLOCK EXPLICIT400 FIND #3t KEY u0 EQ "JONES"# ALLOW READ

176 BASIC Reference Manual

17.0 FNEND
Function
The FNEND statement is a synonym for END DEF. See the END statement for syntax rules .
Format

FNEND

FNENDEND DEF

February 1984

	

BASIC Reference Manual

	

177

FNEXIT

18 .0 FNEXIT
Function
The FNEXIT statement is a synonym for the EXIT DEF statement . See the EXIT statement for syntax
rules .
Format

FNEXIT
EXIT DEF

178

	

BASIC Reference Manual

	

February 1984

19 .0 FOR
Function
The FOR statement repeatedly executes a block of statements, while incrementing a specified control
variable for each execution of the statement block. FOR loops can be conditional or unconditional,
and can modify other statements .
Format

Unconditional
FOR num-unsubs-vbl = num-expi TO num-exp2 [STEP num-exp3]

[statement] . . .
NEXT num-unsubs-vbl

Conditional
UNTIL

FOR num-unsubs-vbl = num-expl [STEP num-exp3]

	

~
WHILE cond-exp

[statement] . . .
NEXT num-unsubs-vbl

Unconditional Statement Modifier
statement FOR num-unsubs-vbl = num-expl TO num-exp2 [STEP num-exp3]

Conditional Statement Modifier
UNTIL

statement FOR num-unsubs-vbl = num-expi [step num-exp3]

	

~
WHILE cond-exp

Syntax Rules
1 .

	

Num-unsubs-vbl is the loop variable . It is incremented each time the loop executes .

FOR

2 .

	

In unconditional FOR loops, num-expl is the initial value of the loop variable, while
num-exp2 is the maximum value .

3 .

	

In conditional FOR loops, num-expl is the initial value of the loop variable, while the
cond-exp in the WHILE or UNTIL clause is the condition that controls loop iteration .

4.

	

Num-exp3 in the STEP clause is the value by which the loop variable is incremented after
each execution of the loop .

5 .

	

In VAX-1 1 BASIC, you can nest FOR loops to a maximum of 12 levels, depending on the
complexity of the loops.

February 1984

	

BASIC Reference Manual

	

179

FOR

Examples

6 .

	

In BASIC-PLUS-2, you nest FOR loops to a maximum of 8 levels, depending on thecomplexity of the loops .
7 .

	

An inner loop must be entirely within an outer loop ; the loops cannot overlap .
8 .

	

You cannot use the same loop variable in nested FOR loops . That is, if the outer loop uses"FOR I = 1 TO 10", you cannot use the variable I as a loop variable in an inner loop .
9 .

	

The default for num-exp3 is one if there is no STEP clause .
10 .

	

You can transfer control into a FOR loop only be returning from a function invocation, asubprogram call, or an error handler that was invoked in the loop .
11 .

	

Each FOR statement must have a corresponding NEXT statement or BASIC signals anderror .
General Rules

1 .

	

The starting, incrementing, and ending values of the loop do not change during loopexecution .
2 .

	

The loop variable can be modified inside the FOR loop .
3 .

	

BASIC converts num-exp 1, num-exp2, and num-exp3 to the data type of num-unsubs-vbl(the loop variable) before storing them .
4 .

	

When an unconditional FOR loop ends, the loop variable contains the value last used inthe loop, not the value that caused loop termination .
5 .

	

During each iteration of a conditional loop, BASIC tests the value of cond-exp before itexecutes the loop .

6 . When FOR is used as a statement modifier, BASIC executes the statement untilnum-unsubs-vbl equals or exceeds num-exp2 or until the WHILE or UNLESS condition issatisfied .

Unconditional

0

400

	

NEXT I

Unconditional
100 FOR

0
0

200

	

NEXT Z

" If you specify a WHILE clause and cond-exp is false (value zero), BASIC exits from theloop . If the cond-exp is true (value nonzero), the loop executes again .
" If you specify an UNTIL clause and cond-exp is true (value nonzero), BASIC exits fromthe loop . If the exp is false (value zero), the loop executes again .

3 TO 99 STEP 3

0 STEP 2 UNTIL X

180

	

BASIC Reference Manual February 1984

Unconditional Statement Modifier
100

	

A = A + .0005 FOR I = 1 TO 10

Conditional Statement Modifier
100

	

FIND #2 FOR I = 1 UNTIL ERR=155

FREE

20 .0 FREE (VAX-11 BASIC)
Function
The FREE statement unlocks all records and buckets associated with a specified channel .
Format

FREE chnl-exp

Syntax Rules
1 .

	

Chnl-exp is a numeric expression that specifies a channel number associated with a file . It
must be immediately preceded by a pound sign (#) .

General Rules

Examples

1 .

	

The file specified by chnl-exp must be open .
2 .

	

You cannot use the FREE statement with files not on disk .
3 .

	

If there are no locked records or buckets on the specified channel, the FREE statement has
no effect and BASIC does not signal an error .

4 .

	

The FREE statement does not change record buffers or pointers .
5 .

	

Your program must execute a GET or FIND statement after a FREE statement executes
before a PUT statement can execute .

450

	

FREE #G'%

182

	

BASIC Reference Manual February 1984

21 .0 FUNCTION
Function

FUNCTION

The FUNCTION statement marks the beginning of a FUNCTION subprogram and defines the subpro-
gram's parameters .
Format
VAX-11 BASIC

FUNCTION data-type func-nam [pass-mech] [([formal-param], . . .)]

END FUNCTION
FUNCTIONEND

[statement] . . .

pass-mech :

	

BY REFI BY DESC

formal-param :

	

unsubs-vbl-nam
[data-type]

	

array-nam (

	

int-const

	

, . . .) int-const] [pass-mech]

BASIC-PLUS-2
FUNCTION data-type func-nam [([formal-param], . . .)]

S
END FUNCTION
FUNCTIONEND

[statement] . . .

formal-param :

	

unsubs-vbl-nam
[data-type]

	

array-nam (

	

t int-constl

	

. . . .

BASIC Reference Manual

	

183

FUNCTION

Syntax Rules
1 .

	

Func-nam names the FUNCTION subprogram . The last character of the name cannot be a
dollar sign ($) .

2 .

	

Data-type can be any BASIC data-type keyword or, in VAX-I I BASIC, a data type defined
in the RECORD statement . Data-type keywords, size, range, and precision are listed in
Table 2 in this manual .

3 .

	

The data-type that precedes the func-nam specifies the data type of the value returned by
the FUNCTION subprogram .

4. Formal-param specifies the number and type of parameters for the arguments the
FUNCTION subprogram expects to receive when invoked .
" Empty parentheses indicate that the FUNCTION subprogram has zero parameters .
" Data-type specifies the data type of a parameter. If you do not specify a data type,
parameters are of the default data type and size . When you do specify a data type, all
following parameters are of that data type until you specify a new data type .

" If you specify a data-type, unsubs-vbl-nam and array-nam cannot end in a percent sign
(%) or dollar sign ($) .

" Parameters defined in formal-param must agree in number and type with the arguments
specified in the function invocation .

5 .

	

The FUNCTION statement must be the first statement in the FUNCTION subprogram .
6 .

	

Compiler directives and comment fields (!), because they are not BASIC statements, may
precede the FUNCTION statement . However, they cannot precede the subprogram's first
numbered line . Note that REM is a BASIC statement ; therefore, it cannot precede the
FUNCTION statement .

7 .

	

Every FUNCTION statement must have a corresponding END FUNCTION statement or
FUNCTIONEND statement .

8.

	

Any BASIC statement except END, SUB, SUBEND, END SUB, or SUBEXIT can appear in a
FUNCTION subprogram .

VAX-II BASIC

1 .

	

Func-nam can consist of from 1 to 31 characters The first character must be an alphabeticcharacter (A through Z) . The remaining characters, if present, can be any combination ofletters, digits (0 through 9), dollar signs ($), periods (.), or underscores (_) .
2 .

	

If the data type is STRING, the =int-const clause allows you to specify the length of the
string . The default string length is 16 .

3 .

	

VAX-I I BASIC allows you to specify from 1 to 32 formal-params .

184

	

BASIC Reference Manual February 1984

4.

	

Pass-mech specifies the parameter passing mechanism by which the FUNCTION sub-
program receives arguments when invoked . A pass-mech should be specified only when
the FUNCTION subprogram is being called by a non-BASIC program .

5.

	

A pass-mech clause outside the parentheses applies by default to all FUNCTION parame-
ters . A pass-mech clause in the formal-param list overrides the specified default and applies
only to the immediately preceding parameter .

BASIC-PLUS-2
1 .

	

Func-nam can consist of from one to six characters . The first character must be an alpha-
betic character (A through Z) . The remaining characters, if present, can be any combina-
tion of letters, digits (0 through 9), dollar signs ($), and periods (.) .

2 .

	

BASIC-PLUS-2 allows you to specify from one to eight formal-params .
General Rules

1 .

	

FUNCTION subprograms must be declared with the EXTERNAL statement before your
program can invoke them .

2 .

	

FUNCTION subprograms receive parameters BY REF or BY DESC .

FUNCTION

" BY REF specifies that the FUNCTION subprogram receives the argument's address.
" BY DESC specifies that the FUNCTION subprogram receives the address of a VAX-11
BASIC descriptor or a BASIC-PLUS-2 descriptor . For information about the format of a
VAX-11 BASIC descriptor for strings arid arrays, see Appendix C in BASIC on VAX/VMS
Systems ; for information on other types of descriptors, refer to the VAX Architecture
Handbook . BASIC-PLUS-2 creates descriptors only for strings and arrays ; these descrip-
tors are described in Appendix C in BASIC on RSX-I 1 Ml M-PLUS Systems and BASIC on
RSTS/E Systems .

3 . All variables and data, except virtual arrays, COMMON areas, and MAP areas in a
FUNCTION subprogram, are local to the subprogram .

4.

	

BASIC initializes local numeric variables to zero and local string variables to the null string
each time the FUNCTION subprogram is invoked .

5 .

	

ON ERROR GO BACK is the default error handler for a FUNCTION subprogram .
BASIC-PLUS-2

1 .

	

BASIC-PLUS-2 receives numeric unsubs-vbls BY REF and string unsubs-vbls and entire
arrays BY DESC.

VAX-11 BASIC
1 .

	

By default, VAX-1 1 BASIC FUNCTION subprograms receive numeric unsubs-vbls BY REF,
and all other parameters BY DESC. You can override these defaults with a BY clause :
" Any parameter can be received BY DESC .
" To receive a string parameter BY REF, you must specify the string length .
" To receive an entire array BY REF, you must specify the array bounds .

February 1984

	

BASIC Reference Manual

	

185

FUNCTION

Examples
VAX-11 BASIC only

BASIC-PLUS-2 only
100

	

FUNCTION DOUBLE CALC (SINGLE At Bt DOUBLE C(10t50))
y

250

	

END FUNCTION

186

	

BASIC Reference Manual

100 FUNCTION GFLOAT SIGMA BY DESC &(GFLOAT A(20r2O)t &Bt HFLOAT C BY REF)

250
0
END FUNCTION

22.0 FUNCTIONEND
Function
The FUNCTIONEND statement is a synonym for the END FUNCTION statement . See the END
statement for syntax rules.
Format

FUNCTIONEND

FUNCTIONENDEND FUNCTION

BASIC Reference Manual

	

187

FUNCTIONEXIT

23.0 FUNCTIONEXIT
Function
The FUNCTIONEXIT statement is a synonym for the EXIT FUNCTION statement . See the EXIT state-ment for syntax rules .
Format

FUNCTIONEXIT
EXIT FUNCTION

188

	

BASIC Reference Manual

24.0 GET
Function

Format
VAX-11 BASIC

GET

The GET statement moves a record from a file to a record buffer and makes the data available for
processing . GET statements are valid on RMS sequential, relative, indexed, and block I/O files, and
on RSTS/E non-RMS block 1/0 files . You should not use GET statements on terminal-format files,
virtual array files, or files opened with ORGANIZATION UNDEFINED .

GET chnl-exp [, position-clause] [, lock-clause]

(continued on next page)

BASIC Reference Manual

	

189

RFA rfa-exp
position-clause : RECORD num-exp

KEY# key-clause
ALLOW allow-clauselock-clause : REGARDLESS

NONE
allow-clause : READ

MODIFY
str-exp

key-clause : int-expi rel-op I int-exp2
decimal-exp

EQ
rel-op : GE

GT

GET

BASIC-PLUS-2

GET chnl-exp (, position-clause]
RFA rfa-exp

position-clause :

	

RECORD num-exp
KEY# key-clause

key-clause :

	

int-expl rel-op

EO
rel-op :

	

GE
GT

str-exp
int-exp2

Syntax Rules
1 .

	

Chnl-exp is a numeric expression that specifies a channel number associated with a file . Itmust be immediately preceded by a pound sign (#) .
2 .

	

Position-clause specifies the position of a record in a file . BASIC signals an error if youspecify a position-clause and chnl-exp is not associated with a disk file .
" If you do not specify a position-clause, GET retrieves records sequentially . Sequential

record access is valid on RMS sequential, relative, indexed, and block 1/0 files .
" The RFA position-clause allows you to randomly retrieve records by specifying the Rec-ord File Address (RFA) of a record . That is, you specify the disk address of a record, andRMS retrieves the record at that address . All RMS file organizations may be accessed byRFA .
" The RECORD position-clause allows you to randomly retrieve records in relative and
block 1/0 files by specifying the record number .

" The KEY position-clause allows you to randomly retrieve records in indexed files byspecifying a key of reference, a relational test, and a key value .
3 .

	

Rfa-exp in the RFA position-clause is an expression of the RFA data type that specifies the
record's Record File Address . Note that an RFA expression can be only a variable of the
RFA data type or the GETRFA function . Use the GETRFA function to find the RFA of a
record .

4 .

	

Int-exp in the RECORD position-clause specifies the number of the record you want to
retrieve . It must be between one and the file's maximum record number .

190

	

BASIC Reference Manual

5 .

	

In the key-clause :
" Int-expl is the target key of reference . It must be a WORD or LONG integer between
zero and the highest-numbered key for the file, inclusive . BASIC converts BYTE integers
to WORD . The primary key is key number zero, the first alternate key is key number one,
the second alternate key is key number two, and so on . Int-exp 1 must be preceded by a
pound sign (#) or BASIC signals an error .

" Str-exp and int-exp2 specify a string or integer value to be compared with the key value of
a record . Str-exp can contain fewer characters than the key of the record you want to
retrieve .

" Re/-op specifies how str-exp or int-exp2 is to be compared to int-expl . EQ means "equal
to," GE means "greater than or equal to," and GT means "greater than ."

6 .

	

When you specify a RECORD clause, chnl-exp must be a channel associated with an open
relative or block I/O file .

7 .

	

When you specify a KEY clause, chnl-exp must be a channel associated with an open
indexed file .

VAX-11 BASIC
1 .

	

Str-exp in the KEY clause cannot be a null string .

GET

2 .

	

Decimal-exp in the KEY clause specifies a packed decimal value to be compared with the
key value of a record .

3 .

	

Lock-clause allows you to control how a record is locked to other access streams or to
override lock checking when accessing shared files that may contain locked records .

4 .

	

If you specify a lock-clause, it must follow the position-clause . If the lock-clause precedes
the position-clause, BASIC signals an error .

5 .

	

If you specify an allow-clause, the file associated with chnl-exp must have been opened
with the UNLOCK EXPLICIT clause or BASIC signals the error "illegal record locking
clause" .

General Rules
1 .

	

The file specified by chnl-exp must be open with ACCESS READ or MODIFY before your
program can execute a GET. The default ACCESS clause is MODIFY .

2 .

	

If the last I/O operation was a successful FIND, a sequential GET retrieves the Current
Record located by the FIND and sets the Next Record Pointer to the Current Record plus
one .

3 .

	

If the last 1/0 operation was not a FIND, a sequential GET retrieves the Next Record and
sets the Next Record Pointer to the Current Record plus one .
" For sequential files, a sequential GET retrieves the next record in the file .
" For relative and block 1/0 files, a sequential GET retrieves the record with the next
higher cell number .

" For indexed files, a sequential GET retrieves the record with the next higher value in the
current key of reference .

BASIC Reference Manual

	

191

GET

4 .

	

A successful random GET by RFA or by RECORD retrieves the record specified by rfa-expor int-exp .
5 . A successful random GET by KEY retrieves the first record whose key satisfies the

key-clause comparison :
" With an exact key match (EQ), a successful GET retrieves the first record in the file thatequals the key value given in int-exp or specified by str-exp . The characters specified bystr-exp are matched approximately rather than exactly. That is, if you specify "ABC" andthe key length is six characters, BASIC matches the first record that begins with ABC . Ifyou specify "ABC ", BASIC matches only a record with the key "ABC " . If nomatch is possible, BASIC signals the error "Record not found" (ERR= 155) .
" With the greater than key match (GT), a successful GET retrieves the first record with avalue greater than int-exp or str-exp . If no such record exists, BASIC signals the error "Endof file on device" (ERR= 11).
" If you specify a greater than or equal to key match (GE), a successful GET retrieves thefirst record that equals the key value in int-exp or str-exp . If no exact match is possible,BASIC retrieves the first record with a key value higher than int-exp or str-exp .

6 .

	

A successful random GET by RFA, RECORD, or KEY sets the value of the Current RecordPointer to the record just read . The Next Record Pointer is set to the Current Record plusone.
7 .

	

An unsuccessful GET leaves the record pointers and the 1/0 buffer in an undefined state .
8 .

	

If the retrieved record is smaller than the receiving buffer, BASIC fills the remaining bufferspace with nulls .
9 .

	

If the retrieved record is larger than the receiving buffer, BASIC truncates the record andsignals an error .
10 .

	

A successful GET sets the value of the RECOUNT variable to the number of bytes trans-ferred from the file to the record buffer .
11 .

	

Because a GET statement on a block I/O file always transfers an integral number of512-byte disk blocks, your program must perform record blocking and deblocking . SeeChapter 9 in the BASIC User's Guide for more information .
VAX-II BASIC

1 .

	

The type of lock you impose on a record remains in effect until you explicitly unlock it witha FREE or UNLOCK statement or until you close the file .
" ALLOW NONE specifies no access to the record . This means that other access streamscannot retrieve the record unless they bypass lock checking with GET REGARDLESS .
" ALLOW READ specifies read access to the record . This means that other access streamscan retrieve the record, but cannot PUT or UPDATE the record .
" ALLOW MODIFY specifies both read and write access to the record . This means thatother access streams can GET, PUT, DELETE, or UPDATE the record .

192

	

BASIC Reference Manual

2 .

	

When you do not specify an ALLOW clause, locking is imposed as follows :

Examples

" If the file associated with chnl-exp was opened with UNLOCK EXPLICIT, BASIC imposes
the ALLOW NONE lock on the retrieved record and the next GET or FIND does not
unlock the previously locked record .

" If the file associated with chnl-exp was not opened with UNLOCK EXPLICIT, BASIC locks
the retrieved record and unlocks the previously locked record .

3 .

	

REGARDLESS specifies that the GET statement can override lock checking and read a
record locked by another program .

4 .

	

REGARDLESS does not impose a lock on the retrieved record .
BASIC-PLUS-2

GET

1 .

	

When you access a shared file, a successful GET locks the record or bucket and unlocks
the previously locked record or bucket .

Sequential Access
100

	

MAP (XYZ) STRING LAST-NAME = 10t FIRST-NAME = G
150

	

OPEN 'EMP .DAT' AS FILE #1t &
ORGANIZATION SEQUENTIALt MAP XYZ

200

	

GET #4

Random Access

00
FIND #2t RFA Address(AX)00 (continued on next page)

BASIC Reference Manual

	

193

100200 MAP (XYZ) STRING LAST-NAME = 10t FIRST-NAME
DECLARE RFA Address(99)

= 6
300 OPEN 'EMP .DAT' AS FILE #1t &

ORGANIZATION SEQUENTIALt MAP XYZ
400 GET #1Address(0) = GETRFA(1)

500
00
GET #1t RFA Address(5)

600
00
OPEN 'NEWEMP .DAT' AS FILE #2t &

ORGANIZATION RELATIVEt MAP XYZ
700 GET #2# RECORD A%Address(A%) = GETRFA(2)

GET

900

	

OPEN 'OLDEMP .DAT' AS FILE #3#

	

&ORGANIZATION INDEXED# MAP XYZt

	

&PRIMARY KEY LAST-NAMEGET #3t KEY #0 EQ "JONES"Address(5) = GETRFA(3)
00
GET #3t RFA Address(7)

VAX-11 BASIC
100 MAP (XYZ) STRING LAST-NAME = 10t FIRST-NAME = 6300 OPEN 'EMP .DAT' AS FILE #1t &ORGANIZATION INDEXEDt &MAP XYZ# PRIMARY KEY LAST_NAME# &UNLOCK EXPLICIT400 GET #1t KEY #0 EQ "JONES"# ALLOW READ

194 BASIC Reference Manual

25.0 GOSUB
Function
The GOSUB statement transfers control to a specified line number or label and stores the location of
the GOSUB statement for eventual return from the subroutine .
Format

target

Syntax Rules

Examples

GOSUB

1 .

	

Target must refer to an existing line number or label in the same program unit as the
GOSUB statement or BASIC signals an error .

2 .

	

Target cannot be inside a FOR/NEXT, WHILE, or UNTIL loop or a multi-line functiondefinition unless the GOSUB statement is also within that loop or function definition .
General Rules

None.

200

	

GOSUB 1100

0

1100

	

! Subroutine 1

0

0

2100 RETURN

BASIC Reference Manual

	

195

GOTO

26.0 GOTO
Function
The GOTO statement transfers control to a specified line number or label .
Format

GO TO
GOTO ~

	

target

Syntax Rules
1 .

	

Target must refer to an existing line number or label in the same program unit as the GOTOstatement or BASIC signals an error .
2 .

	

Target cannot be inside a FOR/NEXT, WHILE, or UNTIL loop or a multi-line functiondefinition unless the GOTO statement is also inside that loop or function definition .
General Rules

None .
Examples
20

	

GOTO 200

196

	

BASIC Reference Manual

27.0

	

IF
Function
The IF statement evaluates a conditional expression and transfers program control depending on the
resulting value .
Format

IF

Conditional

statement. . .
THEN lin-num

	

lin-num
IF cond-exp

	

[ELSE

	

statement . . .

	

[END IF I
GOTO target

Statement Modifier
statement IF cond-exp

Syntax Rules
Conditional

1 .

	

Cond-exp can be any valid conditional expression .
2 .

	

Any executable statement is valid in the THEN or ELSE clause, including another IF state-
ment . You can include any number of statements in either clause .

3 .

	

All statements between the keyword THEN and the next ELSE, line number, or END IF are
part of the THEN clause . All statements between the ELSE keyword and the next line
number or END IF are part of the ELSE clause .

4 .

	

You can omit the THEN keyword when the target of a GOTO statement in the THEN is a
lin-num . The THEN keyword is required when the target of a GOTO statement is a label .

5 .

	

BASIC assumes a GOTO statement when the ELSE keyword is followed by a lin-num .
When the target of a GOTO statement is a label, the GOTO keyword is required .

6 .

	

If a THEN or ELSE clause contains a FOR, SELECT, UNTIL, or WHILE statement, then a
corresponding NEXT or END statement must appear in the same THEN or ELSE clause .

7 .

	

IF statements can be nested to 12 levels .
8.

	

The END IF statement terminates the most recent unterminated IF statement .
9 .

	

A new line number terminates all unterminated IF statements .

BASIC Reference Manual

	

197

IF

Statement Modifier
1 .

	

IF can modify any executable statement except a block statement such as FOR, WHILE,UNTIL, or SELECT .
2 .

	

Cond-exp can be any valid conditional expression .
General Rules

Conditional
1 .

	

BASIC evaluates cond-exp for truth or falsity . If true (nonzero), BASIC executes the THENclause . If false (zero), BASIC skips the THEN clause and executes the ELSE clause, ifpresent .
2 .

	

The NEXT keyword cannot be in a THEN or ELSE clause unless the IF statement associatedwith the NEXT keyword is also part of the THEN or ELSE clause .
3 .

	

Execution continues at the statement following the END IF or ELSE clause . If the statementdoes not contain an ELSE clause, execution continues at the next statement after the THENclause .
Statement Modifier

1 .

	

BASIC executes statement only if the cond-exp is true (nonzero) .
Examples
Conditional
19000

	

IF ERR = 11
THEN

Statement Modifier

198

	

BASIC Reference Manual

IF ERL = 1000THEN GOTO ERROR-ROUTINEELSE

END IFEND IFELSE PRINT ERT$(ERR)END IF

IF ERL = 2000THEN 32700ELSE IF ERL = 3000THEN GOTO ERROR-ROUTINEEND IF

100

	

PRINT 'END OF PROCESSING' IF ERR = 11

28.0 INPUT
Function
The INPUT statement assigns values from your terminal or from a terminal-format file to program
variables .
Format

INPUT [chnl-exp,] [prompt] vbl [sep [prompt] vbl] . . .

sep :

prompt :

	

str-const sep

Syntax Rules

INPUT

1 .

	

Chnl-exp is a numeric expression that specifies a channel number associated with a file . It
must be immediately preceded by a pound sign (#) .

2 .

	

Vbl cannot be a DEF function name unless the INPUT statement is inside the multi-line DEF
that defines the function .

General Rules
1 .

	

The default chnl-exp is zero (the controlling terminal) . If a chnl-exp is specified, a file must
be open on that channel with ACCESS READ or MODIFY before the INPUT statement can
execute .

2 .

	

You can include more than one prompt in an INPUT statement . The first prompt is issued
for the first vbl, the second prompt for the second vbl, and so on . The sep that follows the
vbl associated with the prompt has no formatting effect . BASIC always advances to a new
line when you terminate input with a carriage return .

3 .

	

Sep in the prompt clause determines where the question mark is displayed and where the
cursor is positioned for input .
" A comma tells BASIC to skip to the next print zone and display the question mark . For
example :
100 INPUT 'NAME'tYOUR_NAME$
Run
NAME ?

" A semicolon tells BASIC to display the question mark next to str-const . For example :
100 INPUT 'ADDRESS' ;ADDR$
Run
ADDRESS?

BASIC Reference Manual

	

199

INPUT

4.

	

BASIC signals an error if the INPUT statement has no argument .
5 .

	

If input comes from a terminal, BASIC displays the contents of str-const, if present, and aquestion mark (?) . If you have not specified a str-const, BASIC displays only the questionmark . The program then waits for data .
6 .

	

If the open channel does not correspond to a terminal, BASIC displays only the questionmark .
7.

	

When BASIC receives a line terminator or a complete record, it checks each data elementfor correct data type and range limits, then assigns the values to the correspondingvariables .
8 .

	

If you specify a string variable to receive the input text, and the user enters an unquotedstring in response to the prompt, BASIC ignores the string's leading and trailing spaces andtabs . An unquoted string cannot contain any commas .
9 .

	

When you enter several data elements in response to the INPUT prompt, you must separatethem with commas .
10 .

	

If there is not enough data in the current record or line to satisfy the variable list, BASICtakes one of the following actions :
" If the input device is a terminal, BASIC repeats the question mark, but not the str-const,on a new line until sufficient data is entered.
" If the input device is not a terminal, BASIC signals "Not enough data in record"(ERR =59) .

11 .

	

If there are more data items than variables in the INPUT response, BASIC ignores theexcess .
12 .

	

If there is an error in converting or assigning data (for example, assigning string data to anumeric variable), BASIC takes one of the following actions:
" If the input device is a terminal, BASIC signals a warning, reexecutes the INPUT state-ment, and displays str-const and the question mark .
" If the input device is not a terminal, BASIC signals "Illegal number" (ERR= 52) or "Dataformat error" (ERR= 50) .

13 .

	

When a RESUME statement transfers control to an INPUT statement, the INPUT statementretrieves a new record regardless of any data left in the previous record .
14 .

	

After a successful INPUT statement, the RECOUNT variable contains the number of char-acters transferred from the file or terminal to the record buffer .

200

	

BASIC Reference Manual

15 .

	

If you terminate input text with CTRL/Z, BASIC assigns the value to the variable and signals
"End of file on device" (ERR= 11) when the next terminal input statement executes . If there
is no next INPUT, INPUT LINE, or LINPUT statement in the program, the CTRL/Z is passed
to BASIC as a signal to exit the BASIC environment . BASIC signals "Unsaved changes have
been made, CTRL /Z or EXIT to exit" if you have made changes to your program. If you
have not made changes, BASIC exits from the BASIC environment and does not signal an
error .

"ID NUMBER" ;ID%

INPUT

BASIC Reference Manual

	

201

Examples
400 INPUT "TYPE IN 3 INTEGERS" ;A%t B%t C%
100 INPUT #3%t RECORD_STRING$
150 INPUT #1%t "PURCHASE NUMBER" ;PO_NUM% ; "COST" ; COSTt

INPUT LINE

29.0 INPUT LINE
Function
The INPUT LINE statement assigns a string value, including the line terminator, from a terminal orterminal-format file to a string variable .
Format

INPUT LINE [chnl-exp,] [prompt] str-vbl [sep [prompt] str-vbl] . . .

sep :

prompt :

	

str-const sep

Syntax Rules
1 .

	

Chnl-exp is a numeric expression that specifies a channel number associated with a file . Itmust be immediately preceded by a pound sign (#) .
2 .

	

Vbl cannot be a DEF function name unless the INPUT LINE statement is inside the multi-line DEF that defines the function .
General Rules

1 .

	

The default chnl-exp is zero (the controlling terminal) . If a chnl-exp is specified, a file mustbe open on that channel with ACCESS READ before the INPUT LINE statement can exe-cute .
2 .

	

You can include more than one prompt in an INPUT LINE statement . The first prompt isissued for the first vbl, the second prompt for the second vbl, and so on . The sep thatfollows the vbl associated with the prompt has no formatting effect . BASIC alwaysadvances to a new line when you terminate input with a carriage return .
3 .

	

Sep in the prompt clause determines where the question mark is displayed and where thecursor is positioned for input.
" A comma tells BASIC to skip to the next print zone and display the question mark . Forexample :
100 INPUT LINE 'NAME'tYOUR_NAME
Run
NAME ?

" A semicolon tells BASIC to display the question mark next to str-const. For example:
100 INPUT LINE 'ADDRESS' ;ADDR$
Run
ADDRESS?

202

	

BASIC Reference Manual

4 .

	

BASIC signals an error if the INPUT LINE statement has no argument .

INPUT LINE

5 .

	

If input comes from a terminal, BASIC displays the contents of str-const, if present, and a
question mark (?) . If you have not specified a str-const, BASIC displays only the question
mark . The program then waits for data .

6.

	

If chnl-exp does not correspond to a terminal, BASIC displays only the question mark .
7 .

	

The INPUT LINE statement assigns all input characters including the line terminator(s) to
str-vbl . Single and double quotation marks, commas, tabs, leading and trailing spaces, or
other special characters in the string are part of the data .

8.

	

When a RESUME statement transfers control to an INPUT LINE statement, the INPUT LINE
statement retrieves a new record regardless of any data left in the previous record .

9 .

	

After a successful INPUT LINE statement, the RECOUNT variable contains the number of
characters transferred from the file or terminal to the record buffer .

10 .

	

If you terminate input text with CTRL/Z, BASIC assigns the value to the variable and signals
"End of file on device" (ERR= 11) when the next terminal input statement executes . If there
is no next INPUT, INPUT LINE, or LINPUT statement in the program, the CTRL/Z is passed
to BASIC as a signal to exit the BASIC environment . BASIC signals "Unsaved changes have
been made, CTRL /Z or EXIT to exit" if you have made changes to your program . If you
have not made changes, BASIC exits from the BASIC environment and does not signal an
error .

Examples
650

	

INPUT LINE "Type two words" t Z$ t"Type Your name" 9N$
390

	

INPUT LINE #4Xt RECORD_STRING$

BASIC Reference Manual

	

203

ITERATE

30.0 ITERATE
Function
The ITERATE statement allows you to explicitly reexecute a loop .
Format

ITERATE [label]

Syntax Rules
1 .

	

Label is the label of the first statement of a FOR-NEXT, WHILE, or UNTIL loop
2 .

	

The ITERATE statement can be used only within a FOR-NEXT, WHILE, or UNTIL loop .
General Rules

Examples

1 .

	

ITERATE is equivalent to an unconditional branch to the current loop's NEXT statement . Ifyou supply a label, ITERATE transfers control to the NEXT statement in the specified loop . ifyou do not supply a label, ITERATE transfers control to the current loop's NEXT statement .
2 .

	

Label must conform to the rules for naming variables .

1000 Date-loop :

PRINT Item$NEXT

204

	

BASIC Reference Manual

WHILE 1% =GET #1 1%
ITERATE Date-loop IF Day$::f Today$ITERATE Date-loop IF Month$ <:> This month$ITERATE Date-loop IF Year$ <;> This_iear$

31 .0 KILL
Function
The KILL statement deletes a disk file, removes the file's directory entry, and releases the file's storage
space .
Format

KILL file-spec

Syntax Rules
1 .

	

File-spec can be a quoted string constant, a string variable, or a string expression . It cannotbe an unquoted string constant .
General Rules

Examples

1 .

	

The KILL statement marks a file for deletion but does not delete the file until all users have
closed it .

2 .

	

If you do not specify a complete file-spec, BASIC uses the default device and direc-
tory . If you do not specify a file version, VAX-11 BASIC and BASIC-PLUS-2 on
RSX-11MIM-PLUS systems delete the highest version of the file .

3 .

	

The file-spec must exist or BASIC signals an error .
4 .

	

You can delete a file in another directory if you have access to that directory and privilegeto delete the file .

200

	

KILL "TEMP .DAT"

KILL

BASIC Reference Manual

	

205

LET

32.0 LET
Function
The LET statement assigns a value to one or more variables .
Format

[LET] vbl = exp

Syntax Rules

Examples

1 .

	

Vb1 cannot be a DEF or FUNCTION name unless the LET statement occurs inside that DEF
block or in that FUNCTION subprogram .

2 .

	

You cannot assign string data to a numeric variable or numeric data to a string variable .
3 .

	

The keyword LET is optional .
General Rules

1 .

	

When you assign a value to a subscripted variable, BASIC evaluates the subscripts from left
to right before evaluating exp and assigning the value . In the following example, line 10
assigns the value 5 to I, then line 20 assigns the value 2 to A(5) and to I :
10

	

LET I = 5
20

	

LET A(I)tI = 2

2 .

	

The value assigned to a numeric variable is converted to the variable's data type . For
example, if you assign a floating-point value to an integer variable, BASIC truncates the
value to an integer .

3 .

	

For dynamic strings, the destination string's length equals the source string's length .
4 .

	

When you assign a value to a fixed-length string variable, the value is left-justified and
padded with spaces or truncated to match the length of the string variable .

10

	

LET A = 3 .14120

	

A$ = "ABCDEFG"

206

	

BASIC Reference Manual

33.0 LINPUT
Function
The LINPUT statement assigns a string value, without line terminators, from a terminal or terminal-
format file to a string variable.
Format

LINPUT [chnl-exp,] [prompt] str-vbl [sep [prompt] str-vbl] . . .

sep :

prompt :

	

str-const sep

Syntax Rules
1 .

	

Chnl-exp is a numeric expression that specifies a channel number associated with a file . It
must be immediately preceded by a pound sign (#) .

2 .

	

Vbl cannot be a DEF function name unless the LINPUT statement is inside the multi-lineDEF that defines the function .
General Rules

1 .

	

The default chnl-exp is zero (the controlling terminal) . If you specify a chnl-exp, the file
associated with that channel must have been opened with ACCESS READ or MODIFY .

2.

	

You can include more than one prompt in an INPUT LINE statement . The first prompt is
issued for the first vbl, the second prompt for the second vbl, and so on . The sep that
follows the vbl associated with the prompt has no formatting effect . BASIC always
advances to a new line when you terminate input with a carriage return .

3 .

	

Sep in the prompt clause determines where the question mark is displayed and where the
cursor is positioned for input.
" A comma tells BASIC to skip to the next print zone and display the question mark . For
example:
100

	

LINPUT "NAME"t`(OUR_NAME

LINPUT

Run
NAME

	

?

	

(continued on next page)

BASIC Reference Manual

	

207

LINPUT

" A semicolon tells BASIC to display the question mark next to str-const . For example :
100 LINPUT "ADDRESS" ;ADDR$
Run
ADDRESS?

4 .

	

BASIC signals an error if the LINPUT statement has no argument.
5 .

	

If input comes from a terminal, BASIC displays the contents of str-const, if present, and aquestion mark (?) . If you have not specified a str-const, BASIC displays only the questionmark . The program then waits for data .
6 .

	

If chnl-exp does not correspond to a terminal, BASIC displays only the question mark .
7 .

	

The LINPUT assigns all characters except the line terminator(s) to str-vbl . Single and doublequotation marks, commas, tabs, leading and trailing spaces, or other special characters inthe string are part of the data .
8 .

	

If the RESUME statement transfers control to a LINPUT statement, the LINPUT statementretrieves a new record regardless of any data left in the previous record .
9 .

	

After a successful LINPUT statement, the RECOUNT variable contains the number of bytestransferred from the file or terminal to the record buffer .
10 .

	

If you terminate input text with CTRL/Z, BASIC assigns the value to the variable and signals"End of file on device" (ERR= 11) when the next terminal input statement executes . If thereis no next INPUT, INPUT LINE, or LINPUT statement in the program, the CTRL /Z is passedto BASIC as a signal to exit the BASIC environment .
Examples
100

	

LINPUT "ENTER YOUR LAST NAME" ;Last_name$
200

	

LINPUT u2%# Last_name$

208

	

BASIC Reference Manual

34.0 LSET
Function
The LSET statement assigns left-justified data to a string variable . LSET does not change the length of
the destination string variable .
Format

LSET str-vbl = str-exp

Syntax Rules
1 .

	

Str-vbl is the destination string . Str-exp is the string value assigned to str-vbl .
2 .

	

BASIC evaluates str-vbl's subscripts (if present) before evaluating str-exp .
3 .

	

Str-vbl cannot be a DEF function name unless the LSET statement is inside the multi-line
DEF that defines the function .

General Rules
1 .

	

The LSET statement treats all strings as fixed-length . LSET neither changes the length of the
destination string nor creates new storage . Rather, it overwrites the str-vbl's current storage .

2 .

	

If the destination string is longer than str-exp, LSET left-justifies str-exp and pads it with
spaces on the right . If smaller, LSET truncates characters from the right of str-exp to match
the length of str-vbl .

Examples
10

	

LSET ALPHA$='XYZ'
20

	

LSET A$ t B$ = CODE$ + NAME$

LSET

BASIC Reference Manual

	

209

MAP

35.0 MAP
Function
The MAP statement defines a named area of statically allocated storage called a PSECT, declares datafields in the record, and associates them with program variables .
Format

MAP (map-nam) { [data-type] map-item I

map-item : num-unsubs-vbl-nam
num-array-nam (int-const)
str-unsubs-vbl-nam [= int-const]
str-array-nam (int-const) [= int-const
FILL [(int-const)] [= int-const]
FILL% [(int-const)]
FILL$ [(int-const)] [= int-const]

Syntax Rules
Map-nam is global to the program and task . It cannot appear elsewhere in the program unitas a variable name .

2 .

	

In VAX-11 BASIC, map-nam can consist of from 1 to 31 characters . The first character ofthe name must be an alphabetic character (A through Z) . The remaining characters, ifpresent, can be any combination of letters, digits (0 through 9), dollar signs ($), periodsor underscores (-) .
3 .

4 .

In BASIC-PLUS-2, map-nam can consist of from one to six characters . The first charactermust be an alphabetic character (A through Z) . The remaining characters, if present, can beany combination of letters, digits (0 through 9), dollar signs ($), or periods (.) .
Map-item declares the name and format of the data to be stored .
" Num-unsubs-vbl-nam and num-arr-nam specify a numeric variable or a numeric array .
" Str-unsubs-vbl-nam and str-arr-nam specify a fixed-length string variable or array . Youcan specify the number of bytes to be reserved for the variable with the = int-constclause . The default string length is 16 .
" The FILL, FILL%, and FILL$ keywords allow you to reserve parts of the record bufferwithin or between data elements and to define the format of the storage. Int-const speci-fies the number of FILL items to be reserved . The =int-const clause allows you to specifythe number of bytes to be reserved for string FILL items. Table 21 describes FILL itemformat and storage allocation .

21 0

	

BASIC Reference Manual

5 .

	

Data-type can be any BASIC data-type keyword or, in VAX-1 1 BASIC, a data type definedby a RECORD statement . Data-type keywords, size, range, and precision are listed inTable 2 .
6.

	

When you specify a data-type, all following map-items, including FILL items, are of thatdata type until you specify a new data type .
7 .

	

If you do not specify any data-type, map-items without a data-typing suffix character (% or$) take the current default data type and size .
8 .

	

Variable names, array names, and FILL items following a data-type cannot end in a dollarsign or percent sign .
9.

	

Variables and arrays declared in a MAP statement cannot be declared elsewhere in theprogram by any other declarative statements .
General Rules

Note
In the applicable formats of FILL, (int-count) represents a repeat count, not anarray subscript . FILL (n), for example, represents n elements, not n + 1 .

1 .

	

BASIC does not execute MAP statements . The MAP statement allocates static storage anddefines data at compile time .
2.

	

A program can have multiple MAPS with the same name . The allocation for each MAPoverlays the others . Thus, data is accessible in many ways . The actual size of the data areais the size of the largest MAP. When you link or task-build your program, the size of theMAP area is the size of the largest MAP with that name .
3 .

	

Map-items with the same name can appear in different MAP statements with the samemap-nam only if they match exactly in attributes such as data type, position, and so forth .If the attributes are not the same, BASIC signals an error . For example :

Line 300 causes BASIC to signal the error "variable <name> not aligned in multiplereferences in MAP <name>", while line 400 generates the error "attributes of overlaidvariable <name< don't match" .
4 .

	

The MAP statement should precede any reference to variables declared in it .
5 .

	

Storage space for map-items is allocated in order of occurrence in the MAP statement .

MAP

6 .

	

A MAP area can be accessed by more than one program module, as long as you define themap-nam in each module that references the MAP.
7 .

	

ACOMMON area and a MAP area with the same name specify the same storage area andare not allowed in the same program module .

BASIC Reference Manual

	

211

100 MAP (ABC) LONG At B200 MAP (ABC) LONG At C ! This MAP statement is valid300 MAP (ABC) LONG Bt A ! This MAP statement Produces an error400 MAP (ABC) WORD At B ! This MAP statement Produces an error

MAP

8 .

	

A MAP named in an OPEN statement's MAP clause is associated with that file . The file's
records and record fields are defined by that MAP . The size of the MAP determines the
record size for file I/O, unless the OPEN statement includes a RECORDSIZE clause .

9.

	

VAX-11 BASIC does not initialize variables in the MAP statement .
10.

	

BASIC-PLUS-2 initializes MAP variables to zero or a null string .
Examples
200

	

MAP (BUF1) BYTE AGEt STRING EMP_NAME = 20> SINGLE EMP_NUM
400

	

MAP (BUF1) BYTE FILLt STRING LAST-NAME = 12, FILL = 8P SINGLE FILL

21 2

	

BASIC Reference Manual

36.0 MAP DYNAMIC
Function
The MAP DYNAMIC statement names the variables and arrays whose size and position in a MAP
buffer can change at run time . BASIC sets all variable and array element pointers to the beginning of
the MAP buffer when the MAP DYNAMIC statement is processed .
Format

MAP DYNAMIC (map-nam) { [data-type] map-item I
map-item : num-unsubs-vbl-nam

num-array-nam (int-const)
str-unsubs-vbl-nam
str-array-nam (int-const)

Syntax Rules

3 .

4 .

5 .
6 .

7 .

8 .

Map-nam is the storage area named in a MAP statement .

MAP DYNAMIC

Map-item declares the name and data type of the items to be stored in the map buffer . All
variable pointers point to the beginning of the map buffer until the program executes a
REMAP statement .
" Num-unsubs-vbl-nam and num-arr-nam specify a numeric variable or a numeric array.
" Str-unsubs-vbl-nam and str-arr-nam specify a string variable or array . You cannot specify
the number of bytes to be reserved for the variable in the MAP DYNAMIC statement . All
string items have a fixed-length of zero until the program executes a REMAP statement .

Data-type can be any BASIC data-type keyword or, in VAX-1 1 BASIC, a data type defined
in the RECORD statement . Data-type keywords, size, range, and precision are listed in
Table 2 in this manual .
When you specify a data-type, all following map-items are of that data type until you
specify a new data type .
If you do not specify any data-type, map-items take the current default data type and size .
Variable names and array names following a data-type cannot end in a dollar sign or
percent sign suffix character .
Variables and arrays declared in a MAP DYNAMIC statement cannot be declared else-
where in the program by any other declarative statements .
Map-items must be separated with commas .

BASIC Reference Manual

	

21 3

MAP DYNAMIC

General Rules

Examples

1 .

	

The MAP DYNAMIC statement does not affect the amount of storage allocated to the map
buffer declared in a previous MAP statement . Until your program executes a REMAP
statement, all variable and array element pointers point to the beginning of the MAP buffer .

2 .

	

BASIC does not execute MAP DYNAMIC statements . The MAP DYNAMIC statement
names the variables whose size and position in the MAP buffer can change and defines
their data type .

3 .

	

If there is no MAP statement in the program unit with the same map-nam specified in the
MAP DYNAMIC statement, BASIC signals the error "Insufficient space for MAP DYNAMIC
variables in MAP <name>" .

4 .

	

The MAP DYNAMIC statement must lexically precede the REMAP statement or BASIC
signals the error "MAP variable <name> referenced before declaration" .

100 MAP (MY .BUF) STRING DUMMY = 512MAP DYNAMIC (MY .BUF) STRING LAST# FIRST# MIDDLEt &BYTE AGE# STRING EMPLOYERt &STRING CHARACTERISTICS

214 BASIC Reference Manual

37.0 MARGIN (VAX-11 BASIC)
Function
The MARGIN statement specifies the margin width for a terminal or for records in a terminal-format
file .
Format

MARGIN [chnl-exp,] int-exp

Syntax Rules
1 .

	

Chnl-exp is a numeric expression that specifies a channel number associated with a file . It
must be immediately preceded by a pound sign (#) .

2 .

	

Int-exp specifies the margin width .
General Rules

Examples

1 .

	

If you do not specify a chnl-exp, BASIC sets the margin on the controlling terminal .
2 .

	

The file associated with chnl-exp must be an open terminal-format file .

MARGIN

3 .

	

BASIC signals the error "Illegal operation" (ERR = 141) if the file associated with chnl-exp
is not a terminal-format file .

4 .

	

If chnl-exp does not correspond to a terminal, and if int-exp is zero, BASIC sets the right
margin to the size specified by the RECORDSIZE clause in the OPEN statement, if present .
If no RECORDSIZE clause is present, BASIC sets the margin to the RMS blocksize .

5 .

	

If chnl-exp is not present or if it corresponds to a terminal, and if int-exp is zero, BASIC sets
the right margin to the size specified by the RECORDSIZE clause in the OPEN statement, if
present . If no RECORDSIZE clause is present, BASIC sets the margin to the default terminal
width .

6 .

	

BASIC prints as much of a specified record as the margin setting allows on one line before
going to a new line . Numeric fields are never split across lines .

7 .

	

If you specify a margin larger than the channel's recordsize, BASIC signals an error .
8 .

	

The MARGIN statement is in effect only while chnl-exp is open . When you close chnl-exp,
BASIC returns to the default margin when you reopen the channel .

30

	

MARGIN #4t 132%

BASIC Reference Manual

	

21 5

MAT

38.0 MAT
Function
The MAT statement lets you implicitly create and manipulate one- and two-dimensional arrays . Youcan use the MAT statement to assign values to array elements or to redimension a previously dimen-
sioned array . You can also perform matrix arithmetic operations such as multiplication, addition, and
subtraction, and other matrix operations such as transposing and inverting matrices .
Format

Initialization (Numeric)
ICON

MAT num-array =

	

IDN

	

[(int-expl [, int-exp2])]
ZER

Initialization (String)
MAT str-array = NUL$ [(int-expl [, int-exp2])]

Array Arithmetic

MAT num-arrayl = num-array2 I

	

-

	

num-array3

Scalar Multiplication
MAT num-array4 = (num-exp) " num-array5

Inversion and Transposition
-

	

TRN ~
MAT num-array6

	

INV

	

(num-array7)

Syntax Rules

21 6

1 .
2 .

3 .

You cannot use the MAT statement on arrays of more than two dimensions .
In VAX-I I BASIC, you cannot use the MAT statement on arrays of data-type DECIMAL or
on arrays named in a RECORD statement.
When initializing arrays, you can specify the array bounds . Int-expl and int-exp2 definethe upper bounds of the array being implicitly created or the new dimensions of an existingarray .

BASIC Reference Manual

4 .

	

If you are creating an array, int-expI and int-exp2 cannot exceed 10 .
" If you do not specify bounds, BASIC creates the array and dimensions it to (10) or

(10,10) .
" If you do specify bounds, BASIC creates the array with the specified bounds . If the
bounds exceed (10) or (10,10), BASIC signals "Redimensioned array" (ERR=105) .

5 .

	

To perform MAT operations on arrays larger than (10,10), create the input and output
arrays with the DIM statement .

6 .

	

When the array exists, the following rules apply :
" If you specify bounds, BASIC redimensions the array to the specified size . However,
MAT operations cannot increase the total number of array elements .

" If you do not specify bounds, BASIC does not redimension the array .
7 .

	

An array passed to a subprogram and redimensioned there by a MAT statement remains
redimensioned when control returns to the calling program, with two exceptions :

Initialization

" When the array is within a RECORD and is passed BY DESC.
" When the array is passed BY REF .

1 .

	

CON sets all elements of num-array to one, except those in row and column zero .
2 .

	

IDN creates an identity matrix from num-array . The number of rows and columns in
num-array must be identical . IDN sets all elements to zero except those on the diagonal
from num-array(1,1) to num-array(n,n), which are set to one .

3 .

	

ZER sets all array elements to zero, except those in row and column zero .

MAT

4 .

	

NUL$ sets all elements of a string array to the null string, except those in row and column
zero .

Array Arithmetic
1 .

	

The equals sign (=) assigns the results of the specified operation to the elements in
num-array 1 .

2 .

	

If num-array3 is not specified, BASIC assigns the values of num-array2's elements to the
corresponding elements of num-arrayl . Num-arrayl must have at least as many rows and
columns as num-arrayl .

3 .

	

Use the plus sign (+) to add the elements of two arrays . Num-arrayl and num-array3 must
have identical bounds .

4 .

	

Use the minus sign (-) to subtract the elements of two arrays . Num-arrayl and num-array3
must have identical bounds .

5 .

	

Use the asterisk (*) to perform matrix multiplication on the elements of num-arrayl and
num-array3 and to assign the results to num-arrayl . This operation gives the dot product of
num-arrayl and num-array3 . All three arrays must be two-dimensional, and the number of
columns in num-arrayl must equal the number of rows in num-array3 . BASIC redimen-
sions num-array l to have the same number of rows as num-arrayl and the same number of
columns as num-array3 .

February 1984

	

BASIC Reference Manual

	

21 7

MAT

Scalar Multiplication
1 .

	

BASIC multiplies each element of num-array5 by num-exp and stores the results in the
corresponding elements of num-array4 .

Inversion and Transposition
1 . TRN transposes num-array7 and assigns the results to num-array6 . If num-array7 hasm rows and n columns, num-array6 will have n rows and m columns . Both arrays must betwo-dimensional .
2 .

	

You cannot transpose a matrix to itself : MAT A = TRN(A) is invalid .
3 .

	

INV inverts num-array7 and assigns the results to num-array6 . Num-array7 must be a two-
dimensional array that can be reduced to the identity matrix using elementary row opera-
tions . The row and column dimensions must be identical .

General Rules

Examples

1 .

	

You cannot increase the number of array elements or change the number of dimensions in
an array when you redimension with the MAT statement . That is, you can redimension anarray with dimensions (5,4) to (4,5) or (3,2), but you cannot redimension that array to (5,5)or to (10) . The total number of array elements includes those in row and column zero .

2 .

	

If an array is named in both a DIM statement and a MAT statement, the DIM statementmust lexically precede the MAT statement .
3 .

	

MAT statements do not operate on elements in : 1) the zero element (one-dimensional
arrays) or 2) the zero row or column (two-dimensional arrays) . MAT statements use these
elements to store results of intermediate calculations . Therefore, you should not depend on
values in row and column zero if your program uses MAT statements .

Initialization (Numeric)
100

	

MAT

	

CONVERT

	

=

	

ZEft (10 > 1 O)

Initialization (String)
1000

	

MAT NA-MEN = NUL$(5t5)
Array Arithmetic
2000

	

MAT NEW-INT = OLD-INT - RSLT-INT
Scalar Multiplication
3000

	

MAT 240 = (4 .24) * 2
Inversion and Transposition
4000 MAT Q% = INV (Z%)

21 8

	

BASIC Reference Manual February 1984

39.0 MAT INPUT
Function
The MAT INPUT statement assigns values from a terminal or terminal-format file to array elements .
Format

MAT INPUT [chnl-exp,] { array [(int-expl [, int-exp2])] I

Syntax Rules

MAT INPUT

1 .

	

Chnl-exp is a numeric expression that specifies a channel number associated with a file . It
must be immediately preceded by a pound sign (#) .

2.

	

The file associated with chnl-exp must be an open terminal-format file . If chnl-exp is not
specified, BASIC takes data from the controlling terminal .

3 .

	

You cannot use the MAT INPUT statement on arrays of more than two dimensions .
4.

	

In VAX-11 BASIC, you cannot use the MAT INPUT statement on arrays of data-type
DECIMAL or on arrays named in a RECORD statement .

5 .

	

Int-expl and int-exp2 define the upper bounds of the array being implicitly created or the
dimensions of an existing array .

6 .

	

If you are creating an array, int-expl and int-exp2 cannot exceed 10 .
" If you do not specify bounds, BASIC creates the array, dimensions it to (10,10), and
prompts only for the first array element.

" If you do specify bounds, BASIC creates the array with the specified bounds . If the
bounds exceed (10) or (10,10), BASIC signals "Redimensioned array" (ERR= 105) .

7.

	

To MAT INPUT to arrays larger than (10,10), create the input and output arrays with the
DIM statement . When the array exists, the following rules apply:

General Rules

" If you specify bounds, BASIC redimensions the array to the specified size . However,
MAT INPUT cannot increase the total number of array elements .

" If you do not specify bounds, BASIC does not redimension the array .

1 .

	

The MAT INPUT statement prompts with a question mark on terminals open on channel
zero only .

2 .

	

Use commas to separate data elements and a line terminator to end the input of data . Use
an ampersand before the line terminator to input data on more than one line .

3 .

	

The MAT INPUT statement assigns values by row. That is, it assigns values to all elements
in row one before beginning row two .

BASIC Reference Manual

	

21 9

MAT INPUT

4.

	

The MAT INPUT statement assigns the row number of the last data element transferred intothe array to the system variable, NUM .
5 .

	

The MAT INPUT statement assigns the column number of the last data element transferredinto the array to the system variable, NUM2 .
6 .

	

If there are fewer elements in the input data than there are array elements, BASIC does notchange the remaining array elements .
7 .

	

If there are more data elements in the input stream than there are array elements, BASICignores the excess .
8 .

	

Row zero and column zero are not changed .
Examples
1000 MAT INPUT EMP_NAME$(10,10)

220

	

BASIC Reference Manual

40.0 MAT LINPUT
Function
The MAT LINPUT statement receives string data from a terminal or terminal-format file and assigns it
to string array elements .
Format

MAT LINPUT [chnl-exp,] { str-array [(int-expl [, int-exp2])] I

Syntax Rules
1 .

	

Chnl-exp is a numeric expression that specifies a channel number associated with a file . It
must be immediately preceded by a pound sign (#).

2 .

	

You cannot use the MAT LINPUT statement on arrays of more than two dimensions .
3 .

	

In VAX-II BASIC, you cannot use the MAT LINPUT statement on arrays of data-type
DECIMAL or on arrays named in a RECORD statement .

4.

	

The file associated with chnl-exp must be an open terminal-format file . If chnl-exp is not
specified, BASIC takes data from the controlling terminal .

5 .

	

Int-expl and int-exp2 define the upper bounds of the array being implicitly created or the
dimensions of an existing array .

6 .

	

If you are creating an array, int-expI and int-exp2 cannot exceed 10 .

General Rules

MAT LINPUT

" If you do not specify bounds, BASIC creates the array, dimensions it to (10,10), and
prompts only for the first array element .

" If you do specify bounds, BASIC creates the array with the specified bounds . If the
bounds exceed (10) or (10,10), BASIC signals "Redimensioned array" (ERR= 105) .

7.

	

To MAT LINPUT to arrays larger than (10, 10), create the input and output arrays with the
DIM statement .

8.

	

When the array exists, the following rules apply:
" If you specify bounds, BASIC redimensions the array to the specified size . However,MAT LINPUT cannot increase the total number of array elements .
" If you do not specify bounds, BASIC does not redimension the array .

1 .

	

For terminals open on channel zero only, the MAT LINPUT statement prompts with aquestion mark for each string array element, starting with element (1,1) . BASIC assignsvalues to all elements of row one before beginning row two.
2.

	

The MAT LINPUT statement assigns the row number of the last data element transferredinto the array to the system variable, NUM.

BASIC Reference Manual

	

221

MAT LINPUT

3 .

	

The MAT LINPUT statement assigns the column number of the last data element transferredinto the array to the system variable, NUM2 .
4.

	

Typing only a line terminator in response to the question mark prompt causes BASIC toassign a null string to that string array element .
5 .

	

MAT LINPUT does not change row and column zero .
Examples
400

	

MAT LINPUT TIME_CARD$(10%)

22 2

	

BASIC Reference Manual

41 .0 MAT PRINT
Function
The MAT PRINT statement prints the contents of a one- or two-dimensional array on your terminal or
assigns the value of each array element to a record in a terminal-format file .
Format

MAT PRINT [chnI-exp,] { array [(int-expl [, int-exp2])] [sep] } . . .
sep :

Syntax Rules
1 .

	

Chnl-exp is a numeric expression that specifies a channel number associated with a file . It
must be immediately preceded by a pound sign (#) .

2 .

	

You cannot use the MAT PRINT statement on arrays of more than two dimensions .
3 .

	

In VAX-11 BASIC, you cannot use the MAT PRINT statement on arrays of data-type
DECIMAL or on arrays named in a RECORD statement .

4 .

	

The file associated with chnl-exp must be an open terminal-format file . If you do not
specify a chnl-exp, BASIC takes data from the controlling terminal .

5 .

	

Int-expl and int-exp2 define the upper bounds of the array being implicitly created or the
dimensions of an existing array .

6 .

	

If the array does not exist, the following rules apply :
" If you do not specify bounds, BASIC creates the array and dimensions it to (10,10) .
" if you do specify bounds, BASIC creates the array with the specified bounds . If the
bounds exceed (10) or (10,10), BASIC prints (10) or (10,10) elements and signals
"Subscript out of range" (ERR = 55) .

7 .

	

When the array exists, the following rules apply :

MAT PRINT

" If the specified bounds are smaller than the maximum bounds of a dimensioned array,
BASIC prints a subset of the array, but does not redimension the array . For example, if
you use the DIM statement to dimension A(20,20), and then MAT PRINT A(2,2), BASIC
prints elements (1,1), (1,2), (2,1), and (2,2) only ; array A(20,20) does not change .

" If you do not specify bounds, BASIC prints the entire array .

BASIC Reference Manual

	

223

MAT PRINT

General Rules

Examples

8.

	

Sep determines the output format for the array :
" If you use a comma, BASIC prints each array element in a new print zone and starts eachrow on a new line .
" If you use a semicolon, BASIC separates each array element with a space and starts eachrow on a new line .
" If you do not use a sep character, BASIC prints each array element on its own line .

9 .

	

When you use the MAT PRINT statement to print more than one array, each array nameexcept the last must be followed with either a comma or a semicolon . BASIC prints a blankline between arrays .

1 .

	

The MAT PRINT statement does not print elements in row or column zero .
2 .

	

The MAT PRINT statement cannot redimension an array .

500

	

MAT PRINT #1t TIME_CARD$(25) ;

224

	

BASIC Reference Manual

42.0 MAT READ
Function
The MAT READ statement assigns values from DATA statements to array elements .
Format

MAT READ { array [(int-expl [, int-exp2])] }, . . .

Syntax Rules

MAT READ

1 .

	

You cannot use the MAT READ statement on arrays of more than two dimensions.

2 .

	

In VAX-II BASIC, you cannot use the MAT READ statement on arrays of data-type
DECIMAL or on arrays named in a RECORD statement .

3 .

	

Int-expl and int-exp2 define the upper bounds of the array being implicitly created or the
dimensions of an existing array .

4 .

	

If you are creating an array, int-expI and int-exp2 cannot exceed 10 .
" If you do not specify bounds, BASIC creates the array and dimensions it to (10, 10) .
" If you do specify bounds, BASIC creates the array with the specified bounds . If the
bounds exceed (10) or (10, 10), BASIC signals "Redimensioned array" (ERR =105) .

5 .

	

To MAT READ arrays larger than (10, 10), create the array with the DIM statement .

6 .

	

When the array exists, the following rules apply :

General Rules

" If you specify bounds, BASIC redimensions the array to the specified size . However,
MAT READ cannot increase the total number of array elements .

" If you do not specify bounds, BASIC does not redimension the array .

1 .

	

The DATA statement(s) must be in the same program unit as the MAT READ statement .

2 .

	

The MAT READ statement assigns data items by row . That is, it assigns data items to all
elements in row one before beginning row two .

3 .

	

The MAT READ statement does not read elements into row or column zero .
4 .

	

The MAT READ statement assigns the row number of the last data element transferred into
the array to the system variable, NUM .

BASIC Reference Manual

	

225

MAT READ

Examples

5 .

	

The MAT READ statement assigns the column number of the last data element transferredinto the array to the system variable, NUM2.
6 .

	

If you MAT READ an existing array without specifying bounds, BASIC does not redimen-sion the array . If you MAT READ an existing array and specify bounds, BASIC redimen-sions the array .

100

	

MAT READ ZZ

22 6

	

BASIC Reference Manual

43.0 MOVE
Function
The MOVE statement transfers data between a record buffer and a list of variables .
Format

MOVE

I TO
MOVE

	

FROM

	

chnl-exp, move-item, . . .

move-item: num-vbl
num-array ([j . . .)
str-vbl [= int-exp
str-array ([j . . .) [= int-exp]
[data-type I FILL [(int-exp)] [= int-const
FILL% [(int-exp)]
FILL$ [(int-exp)] [= int-exp]

Syntax Rules
1 .

	

Chnl-exp is a numeric expression that specifies a channel number associated with a file . It
must be immediately preceded by a pound sign (#) .

2 .

	

Move-item specifies the variable or array to which or from which data is to be moved .
3 .

	

Num-vbl and num-array specify a numeric variable or a numeric array . Parentheses indi-
cate the number of dimensions in a numeric array . The number of dimensions is equal to
the number of commas plus one . That is, empty parentheses indicate a one-dimensional
array, one comma indicates a two-dimensional array, and so on .

4 .

	

Str-vbl and str-array specify a fixed length string variable or array . Parentheses indicate the
number of dimensions in a string array . The number of dimensions is equal to the number
of commas plus one . You can specify the number of bytes to be reserved for the variable or
array elements with the =int-exp clause . The default string length for a MOVE FROM
statement is 16 . For a MOVE TO statement, the default is the string's length .

5 .

	

The FILL, FILL%, and FILL$ keywords allow you to transfer fill items of a specific data type .
Table 21 shows FILL item formats, representations, and storage requirements .
" If you specify a data-type before the FILL keyword, the fill is of that data type . If you do

not specify a data-type, the fill is of the default data type . Data-type can be any BASIC
data-type keyword or, in VAX-I I BASIC, a data type defined by a RECORD statement .
Data-type keywords, size, range, and precision are listed in Table 2 in this manual . FILL
items following a data-type cannot end in a dollar sign or percent sign .

" Int-exp specifies the number of FILL items to be moved .
" FILL% indicates integer fill . FILL$ indicates string fill . The =int-exp clause specifies the
number of bytes to be moved for string FILL items .

BASIC Reference Manual

	

227

MOVE

Note
In the applicable formats of FILL, (int-exp) represents a repeat count, not anarray subscript . FILL (n), for example, represents n elements, not n + 1 .

6 .

	

You cannot use an expression or function reference as a move-item .
General Rules

1 .

	

Before a MOVE FROM statement can execute, the file associated with chnl-exp must beopen and there must be a record in the record buffer .
2 .

	

A MOVE statement neither transfers data to or from external devices, nor invokes the
system Record Management Services . Instead, it transfers data between user areas . Thus, a
record should first be fetched with the GET statement before using a MOVE FROM, and aMOVE TO should be followed by a PUT or UPDATE statement that writes the record to afile .

3 .

	

MOVE FROM transfers data from the record buffer to the move-item .
4 .

	

MOVE TO transfers data from the move-item to the record buffer .
5 .

	

The MOVE statement does not affect the record buffer's size . If a MOVE statement partiallyfills a buffer, the rest of the buffer is unchanged . If there is more data in the variable listthan in the buffer, BASIC signals "MOVE overflows buffer" (ERR= 161) .
6 .

	

Each MOVE statement to or from a channel transfers data starting at the beginning of thebuffer . For example :
200

	

MOVE FROM #1%t I%t A$ = I%
In this example, BASIC assigns the first value in the record buffer to I% ; the value of I% is
then used to determine the length of A$.

7 .

	

If a MOVE statement operates on an entire array :
" BASIC transfers elements of row and column zero (contrast this with the MAT

statements) .
" The storage size of the array elements and the size of the array determine the amount of
data moved . A MOVE statement that transfers data from the buffer to a longword integer
array transfers the first four bytes of data into element (0,0), the next four bytes of data
into element (0,1), and so on .

8 .

	

If the MOVE TO statement specifies an explicit string length, the following restrictions
apply :
" If the string is equal to or longer than the explicit string length, BASIC moves only the

specified number of characters into the buffer .
" If the string is shorter than the explicit string length, BASIC moves the entire string and
pads it with spaces to the specified length .

9 .

	

BASIC does not check the validity of data during the MOVE operation .

228

	

BASIC Reference Manual

Examples
990

	

MOVE FROM #4%t RUNS% # HITS% t ERRORS% t RBI% t BAT-AVERAGE
100

	

MOVE TO #9%t FILL$ = 10%t A$ = 10%t B$ = 30%t C$ = 2%

MOVE

BASIC Reference Manual

	

229

NAME AS

44.0 NAME AS
Function
The NAME AS statement changes the name of a specified file .
Format

NAME file-specl AS file-spec2

Syntax Rules
1 .

	

File-specl and file-spec2 must be string expressions .
2 .

	

There is no default for file type in file-specl or file-spec2 . If the file to be renamed has a filetype, file-specl must include both the file name and the file type . If you specify only a filename, BASIC searches for a file with no file type . If you do not specify a file type forfile-spec2, BASIC names the file, but does not assign a file type .
General Rules

1 .

	

If the file specified by file-specl does not exist, BASIC signals "Can't find file or account"(ERR =5) .
2 .

	

In VAX-11 BASIC and BASIC-PLUS-2 on RSX-11MIM-PLUS systems, file version num-bers are optional . BASIC renames the highest version of file-specl if you do not specify aversion number .
3 .

	

In VAX-11 BASIC and BASIC-PLUS-2 on RSX-1 1Ml M-PLUS systems, if you use theNAME AS statement on an open file, BASIC does not rename the file until you close it .
Examples
400 NAME "OUT .DAT" AS "RERUN .DAT"
500

	

NAME OLD_FILE$ AS NEW-FILE

230

	

BASIC Reference Manual

45.0 NEXT
Function
The NEXT statement marks the end of a FOR, UNTIL, or WHILE loop .
Format

NEXT [num-unsubs-vbl]

Syntax Rules
1 .

	

Num-unsubs-vbl is required in a FOR loop and must correspond to the num-unsubs-vbl
specified in the FOR statement .

2 .

	

Num-unsubs-vbl is not allowed in an UNTIL or WHILE loop .
General Rules

1 .

	

Each NEXT statement must have a corresponding FOR, UNTIL, or WHILE statement or
BASIC signals an error .

Examples
100 NEXT I%

NEXT

BASIC Reference Manual

	

231

NOMARGIN

46 .0 NOMARGIN (VAX-11 BASIC)
Function
The NOMARGIN statement removes the right margin limit set with the MARGIN statement for a
terminal or a terminal-format file .
Format

NOMARGIN [chnl-exp I

Syntax Rules
1 .

	

Chnl-exp is a numeric expression that specifies a channel number associated with a file . It
must be immediately preceded by a pound sign (#) .

General Rules

Examples

1 .

	

When you specify NOMARGIN, the right margin is set to 132 .
2 .

	

Chnl-exp, if specified, must be an open terminal-format file or a terminal .
3 .

	

If you do not specify a chnl-exp, BASIC sets the margin on the controlling terminal to 132 .
4 .

	

The NOMARGIN statement applies to the specified channel only while the channel is
open . If you close the channel and then reopen it, BASIC uses the default margin of 72 .

1000 NOMARGIN #2X

232

	

BASIC Reference Manual

47 .0 ON ERROR GO BACK
Function
After BASIC executes an ON ERROR GO BACK in a subprogram or DEF, control transfers to the
calling program when an error occurs .
Format

ONERROR
ON ERROR

	

GO BACK

Syntax Rules
None .

General Rules

Examples

ON ERROR GO BACK

1 .

	

The ON ERROR GO BACK statement is the default error handler for DEF functions .
2.

	

An ON ERROR GO BACK statement executed in the main program is equivalent to an
ON ERROR GOTO 0 statement .

3 .

	

If a main program calls a subprogram named SUB1, and SUB1 calls the subprogram
named SUB2, an ON ERROR GO BACK statement executed in SUB2 transfers control to
SUB1 when an error occurs in SUB2 . If SUB1 also has executed an ON ERROR
GO BACK statement, BASIC transfers control to the main program's error handling
routine.

4.

	

If there is no error outstanding, execution of an ON ERROR GO BACK statement causes
subsequent errors to return control to the calling program's error handler.

5 .

	

If there is an error outstanding, execution of an ON ERROR GO BACK statement immedi-
ately transfers control to the calling program's error handler.

6 .

	

The ON ERROR GO BACK statement remains in effect until the program unit completes
execution or until BASIC executes another ON ERROR statement .

100

	

SUB LIST (A$)ON ERROR GOTO 19000OPEN A$ FOR INPUT AS FILE #1400

	

LINPUT #1# B$PRINT B$600

	

GOTO 400
0019000

	

IF (ERR = 11%) AND (ERL = 400%)THEN CLOSE #1%RESUME 32767ELSE ON ERROR GO BACK32767 SUBEND

BASIC Reference Manual

	

233

ON ERROR GOTO

48.0 ON ERROR GOTO
Function
The ON ERROR GOTO statement transfers program control to a specified line or label in the currentprogram unit when an error occurs .
Format

ONERROR ~

	

I GOTO ~
ON ERROR

	

GOTO

	

target

Syntax Rules
1 .

	

Target must exist in the same program unit as the ON ERROR GOTO statement .
2 .

	

If an ON ERROR GOTO is in a DEF, target must also be in that function definition .
General Rules

1 .

	

Execution of an ON ERROR GOTO statement causes subsequent errors to transfer controlto the specified target .
2 .

	

The ON ERROR GOTO statement remains in effect until the program unit completesexecution or until BASIC executes another ON ERROR statement .
3 .

	

BASIC does not allow recursive error handling . If a second error occurs during execution ofan error-handling routine, control passes to the BASIC error handler and the program stopsexecuting.
Examples
500

	

ON ERROR GOTO 5999
B00

	

ON ERROR GOTO YES-ROUTINE

234

	

BASIC Reference Manual

49.0 ON ERROR GOTO 0
Function
The ON ERROR GOTO 0 statement disables user error handling and passes control to the BASIC
error handler when an error occurs .
Format

GO TO
ON ERROR

	

GOTO '

	

0

Syntax Rules
None .

General Rules

Examples

1 .

	

If an error is outstanding, execution of an ON ERROR GOTO 0 statement immediately
transfers control to the BASIC error handler .

2 .

	

If there is no error outstanding, execution of an ON ERROR GOTO 0 statement causes
subsequent errors to transfer control to the BASIC error handler .

19000

	

ON ERROR GOTO

ON ERROR GOTO 0

BASIC Reference Manual

	

235

ON GOSUB

50.0 ON GOSUB
Function
The ON GOSUB statement transfers program control to one of several subroutines, depending on thevalue of a control expression .
Format

ON int-exp GOSUB target [OTHERWISE target]

Syntax Rules

Examples

1 .

	

Target must exist in the current program unit .
2 .

	

Control cannot be transferred into a statement block (such as FOR/NEXT, UNTIL/NEXT,WHILE/NEXT, DEF/END DEF, or SELECT/END SELECT) .
3 .

	

You can use the ON GOSUB statement in a statement block if ON GOSUB and all itstargets are inside that statement block.
General Rules

1 .

	

Int-exp determines which target BASIC selects as the GOSUB argument . If int-exp equalsone, BASIC selects the first target . If int-exp equals two, BASIC selects the second target,and so on .
2.

	

If there is an OTHERWISE clause, and if int-exp is less than one or greater than the numberof targets in the list, BASIC selects the target of the OTHERWISE clause .
3.

	

If there is no OTHERWISE clause, and if int-exp is less than one or greater than the numberof targets in the list, BASIC signals "ON statement out of range" (ERR= 58).
4.

	

If a target specifies a nonexecutable statement, BASIC transfers control to the first execut-able statement that lexically follows the target .

150

	

ON CONTROL% GOSUB 1001200>300#400
200

	

ON A% GOSUB 10000t12000t14000 OTHERWISE 21000

236

	

BASIC Reference Manual

51 .0 ON GOTO
Function
The ON GOTO statement transfers program control to one of several lines, depending on the value of
a control expression .
Format

ON GOTO

GO TO ~
ON int-exp

	

GOTO

	

target [OTHERWISE target

Syntax Rules

Examples

1 .

	

Target must exist in the current program unit .
2 .

	

Control cannot be transferred into a statement block (such as FOR/NEXT, UNTIL/NEXT,
WHILE/NEXT, DEF/END DEF, SELECT/END SELECT) .

3.

	

You can use the ON GOTO statement in a statement block if ON GOTO and all its targets
are inside that statement block .

General Rules
1 .

	

Int-exp determines which line number BASIC selects as the GOTO argument . If int-exp
equals one, BASIC selects the first target . If int-exp equals two, BASIC selects the second
target, and so on .

2 .

	

If there is an OTHERWISE clause, and if int-exp is less than one or greater than the number
of targets in the list, BASIC transfers control to the target of the OTHERWISE clause .

3 .

	

If there is no OTHERWISE clause, and if int-exp is less than one or greater than the number
of line numbers in the list, BASIC signals "ON statement out of range" (ERR= 58) .

4 .

	

If a target specifies a nonexecutable statement, BASIC transfers control to the first execut-
able statement that lexically follows the target .

330

	

ON INDEX% GOTO 700t800t900 OTHERWISE 1000

BASIC Reference Manual

	

237

OPEN

52.0 OPEN
Function
The OPEN statement opens a file for processing . It transfers user-specified file characteristics toRecord Management Services and verifies the results .
Format

OPEN file-specl

open-clause :

NONE
READ

ALLOW WRITE
MODIFY

APPEND
READ

ACCESS WRITE
MODIFY
SCRATCH

LIST
RECORDTYPE FORTRAN

NONE
ANY

238

	

BASIC Reference Manual

(continued on next page)

[
FOR INPUT
FOR OUTPUT

]
AS [FILE] chnl-expl [, open-clause] . . .

VIRTUAL
UNDEFINED

[ORGANIZATION] INDEXED STREAM
SEQUENTIAL VARIABLE
RELATIVE FIXED

Key:
str-unsubs-vbl
int-unsubs-vbl
decimal-unsubs-vbl
(str-unsubs-vblt , . . . str-unsubs-vbl8)

February 1984

OPEN

BASIC Reference Manual

	

239

{ RECORDSIZE int-expi }
{ FILESIZE int-exp2
{ WINDOWSIZE int-exp3 } (Except on RSTS/E)
{ TEMPORARY
{ CONTIGUOUS }
{ MAP map-nam
{ CONNECT chnl-exp2
{ BUFFER int-exp4
{ USEROPEN Func-nam
{ DEFAULTNAME file-spec2
{ EXTENDSIZE int-exp5 } (Except on RSTS/E)
{ MODE int-exp6 } (BASIC-PLUS-2 only)
{ CLUSTERSIZE int-exp7 } (BASIC-PLUS-2 on RSTS/E only)
{ BLOCKSIZE int-exp8 } (Sequential files)
{ NOREWIND } (Sequential files)
{ NOSPAN } (Sequential files)
{ SPAN } (Sequential files)
{ BUCKETSIZE int-exp9 } (Relative and Indexed files)
{ PRIMARY [KEY] key [DUPLICATES] } (Indexed files)
{ ALTERNATE [KEY] key [DUPLICATES][CHANGES } (Indexed files)
{ UNLOCK EXPLICIT } (VAX-11 BASIC only)

OPEN

Syntax Rules
1 .

	

File-spec I specifies the file to be opened and associated with chnl-exp1 . It can be any valid
string expression and must conform to your system's rules for file specifications . BASIC
passes these values to RMS without editing, alteration, or validity checks.
" VAX-11 BASIC does not supply any default file specifications unless you include theDEFAULTNAME clause in the OPEN statement .
" BASIC-PLUS-2 supplies the device as a default . If a device has been supplied in aprevious OPEN statement, that device is used as the default . If there is no previousdevice, SY : is supplied as the default device . There is no default for the file type unless
you include the DEFAULTNAME clause in the OPEN statement .

2 .

	

The FOR clause determines how BASIC opens a file .
" If you open a file FOR INPUT, the file must exist or BASIC signals an error .
" If you open a file FOR OUTPUT, BASIC creates the file if it does not exist . If the file does

exist, VAX-11 BASIC and BASIC-PLUS-2 on RSX-11MIM-PLUS systems create a new
version of the file . BASIC-PLUS-2 on RSTS/E systems overwrites the existing file .

" If you do not specify either FOR INPUT or FOR OUTPUT, BASIC tries to open an existingfile . If there is no such file, BASIC creates one .
3 .

	

Chnl-exp is a numeric expression that specifies a channel number to be associated with
file-spec . It can be preceded by an optional pound sign (#) .
" In VAX-1 1 BASIC, chnl-exp must be in the range 1 to 99 .
" In BASIC-PLUS-2, chnl-exp must be in the range 1 to 12 .

4 .

	

The ORGANIZATION clause specifies the file organization . When present, it must precedeall other clauses . When your OPEN statement has ORGANIZATION SEQUENTIAL,RELATIVE, or INDEXED, you get an RMS file .
" On VAX/VMS and RSX-1 1 MIM-PLUS systems, you get a terminal-format file when youomit the ORGANIZATION clause entirely . Terminal-format files are implemented as
RMS sequential variable files and store ASCII characters in variable-length records . Car-riage control is performed by the operating system ; the record does not contain carriagereturns or line feeds . You use essentially the same syntax to access terminal-format filesas when reading from or writing to the terminal (INPUT and PRINT).

" On RSTS/E systems, when you omit the ORGANIZATION clause, you get a terminal-format file that is a native mode RSTS/E ASCII stream file . RSTS/E ASCII stream filescontain embedded carriage control characters . That is, carriage return and line feedcharacters are part of the record . See BASIC on RSTS/E Systems for more information onRSTS/E native mode files .
5 .

	

In the USEROPEN clause, func-nam must be a separately compiled FUNCTION subpro-
gram and must conform to FUNCTION statement rules for naming subprograms .

6 .

	

The key specified in the PRIMARY KEY or ALTERNATE KEY clause must be declared in theMAP statement referenced by the OPEN statement .

240

	

BASIC Reference Manual

	

February 1984

General Rules
1 .

	

The OPEN statement does not retrieve records .

OPEN

2 .

	

Channel zero, the terminal, is always open . If you try to open channel zero, VAX-11
BASIC signals the error "Illegal 1/0 channel" (ERR= 46) and BASIC-PLUS-2 signals "1/0channel already open at line <number>" .

3 .

	

A statement that accesses a file cannot execute until you open that file and associate it witha chnl-exp .
4 .

	

If a program opens a file on a channel already associated with an open file, BASIC closesthe previously opened file and opens the new one .
5 .

	

The FOR clause does not specify how your program can use the file or how others canshare it . The ACCESS clause specifies how you use the file and the ALLOW clause specifieshow the file is shared .
6.

	

The ALLOW clause determines how other users can access the file :
" ALLOW NONE lets no other users access the file . This is the default if any ACCESS otherthan READ is specified .
" ALLOW READ lets other users have READ access to the file . This is the default forACCESS READ.
" ALLOW WRITE lets other users have WRITE access to the file .
" ALLOW MODIFY lets other users have unlimited access to the file .

7 .

	

The ACCESS clause determines how the program can use the file :
" ACCESS READ allows only FIND, GET, or other input statements on the file . The OPENstatement cannot create a file if the ACCESS READ clause is specified .
" ACCESS WRITE allows only PUT, UPDATE, or other output statements on the file .
" ACCESS MODIFY allows any 1/0 statement except SCRATCH on the file . ACCESSMODIFY is the default .
" ACCESS SCRATCH allows any 1/0 statement valid for a sequential or terminal-formatfile .
" ACCESS APPEND is the same as ACCESS WRITE for sequential files, except that BASICpositions the file pointer after the last record when it opens the file . You cannot useACCESS APPEND on relative or indexed files .

8 .

	

The RECORDTYPE clause can be used only with RMS files . It specifies the file's recordattributes :
" LIST specifies implied carriage control, <CR> <LF> in BASIC-PLUS-2, and <CR> in
VAX-1 1 BASIC . This is the default for all file organizations except VIRTUAL.

" FORTRAN specifies a control character in the record's first byte .
" NONE specifies no attributes . This is the default for VIRTUAL files .
" ANY specifies a match with any file attributes when opening an existing file . If you createa new file, ANY is treated as LIST for all organizations except VIRTUAL . For VIRTUAL, itis treated as NONE.

BASIC Reference Manual

	

241

OPEN

9 .

	

The RECORDSIZE clause specifies the file's record size :
For ORGANIZATION FIXED, int-expl specifies the size of all records .

" For ORGANIZATION VARIABLE, int-expl specifies the size of the largest record .
If you specify both a RECORDSIZE and a MAP clause, the RECORDSIZE clause overridesthe record size set by the MAP clause . If you specify a MAP but no RECORDSIZE, therecord size is equal to the MAP size . If there is no MAP, the RECORDSIZE clausedetermines the record size . If there is no MAP or RECORDSIZE specified, BASIC uses thedefault record size for the file organization when creating the file . When a programopens an existing file, BASIC uses the file's record size .
When creating SEQUENTIAL files, BASIC supplies a default record size of 132 .
The record size is always 512 for VIRTUAL files unless you specify a RECORDSIZE .

" If you do not specify a RECORDSIZE clause when opening an existing file, BASICretrieves the record size value from the file . If you open a new file of ORGANIZATIONRELATIVE and do not specify a RECORDSIZE clause, BASIC signals "Bad recordsizevalue on OPEN" (ERR= 148) .
10 .

	

The FILESIZE clause lets you pre-extend a new file to a specified size . The value of int-exp2is the initial allocation of disk blocks . The FILESIZE clause has no effect on an existing file .
11 . Int-exp3 in the WINDOWSIZE clause lets you specify the number of block retrievalpointers you want to maintain in memory for the file . Retrieval pointers are associated withthe file header and point to contiguous blocks on disk . By keeping retrieval pointers inmemory, you can reduce the 1/0 associated with locating a record, as the operatingsystem does not have to access the file header for pointers as frequently . The numberof retrieval pointers in memory at any one time is determined by the system defaultor by the WINDOWSIZE clause . The usual default number of retrieval pointers onRSX-11MIM-PLUS and VAX/VMS systems is seven .

" On VAX/VMS systems, a value of 0 specifies the default number of retrieval pointers . Avalue of 255 means to map the entire file, if possible . Values between 128 and 254,inclusive, are reserved .
" On RSX-1 1 Ml M-PLUS systems, you can specify up to 127 retrieval pointers .
" On RSTS/E systems the number of pointers in a window block is fixed at seven . Thus,you cannot use the WINDOWSIZE clause . You can, however, use the CLUSTERSIZEclause to increase the number of contiguous blocks mapped by one retrieval pointer.

12 .

	

The TEMPORARY clause causes BASIC to delete the output file as soon as the programcloses it .
13 .

	

The CONTIGUOUS clause causes RMS to try to create the file as a contiguous sequence ofdisk blocks in BASIC-PLUS-2 and as a contiguous-best-try sequence of disk blocks inVAX-1 1 BASIC . The CONTIGUOUS clause does not affect existing files or nondisk files .

242

	

BASIC Reference Manual

14 .

	

The MAP clause specifies that a previously declared map-nam is associated with the file's
record buffer . The MAP clause determines the record buffer's address and length unless
overridden by the RECORDSIZE clause .
" The size of the largest MAP with the same map-nam in the current program unit becomes
the file's record size if the OPEN statement does not include a RECORDSIZE clause .

" If there is no MAP clause, the record buffer space that BASIC allocates is not directly
accessible . Thus, MOVE statements are needed to access data in the record buffer .

" You must have a MAP clause when creating an indexed file ; you cannot use KEY clauses
without MAP statements since keys serve as offsets into the buffer .

15 . The BUFFER clause can be used with all file organizations except UNDEFINED . For
RELATIVE and INDEXED files, int-exp4 specifies the number of device or file buffers Rec-
ord Management Services uses for file processing . For SEQUENTIAL files, int-exp4 speci-
fies the size of the buffer ; for example, BUFFER 8 for a SEQUENTIAL file sets the buffer size
to eight 512-byte blocks .

16 . The USEROPEN clause lets you open a file with your own FUNCTION subprogram .
Func-nam must conform to the FUNCTION statement rules for naming subprograms .
BASIC calls the user program after it fills the FAB (File Access Block), the RAB (Record
Access Block), and the XABs (Extended Attribute Blocks) . The subprogram must issue the
appropriate RMS calls, including $OPEN and $CONNECT, and return the RMS status as
the value of the function . See the BASIC User's Guide for more information on the
USEROPEN routine.

17 .

	

The DEFAULTNAME clause lets you supply a default file specification . If file-specl is not a
complete file spec, file-spec2 in the DEFAULTNAME clause supplies the missing parts . For
example :
10

	

INPUT "FILE NAME" ;FNAM$20

	

OPEN FNAM$ FOR INPUT AS FILE #lZ, 8:DEFAULTNAME "DB2 : .DAT"

OPEN

If you type "ABC" for the file name, BASIC tries to open DB2 :ABC.DAT . BASIC-PLUS-2
allows DEFAULTNAME for RMS files only .

18 .

	

The EXTENDSIZE clause lets you specify the increment by which Record Management
Services extends a file after its initial allocation is filled . The value of int-exp5 is in
512-byte disk blocks .

19 .

	

The BLOCKSIZE clause specifies the physical blocksize of magnetic tape files . The value of
int-exp8 is the number of records in a block. Thus, the block size in bytes is the product of
the RECORDSIZE and the BLOCKSIZE value . The default BLOCKSIZE is one record .

20 .

	

The NOREWIND clause controls tape positioning on magnetic tape files . If you specify
neither ACCESS APPEND nor NOREWIND, the OPEN statement positions the tape at its
beginning and then searches for the file .

21 .

	

The NOSPAN clause specifies that sequential records do not cross block boundaries . SPAN
specifies that records can cross block boundaries . SPAN is the default . This clause does not
affect nondisk files .

February 1984

	

BASIC Reference Manual

	

243

OPEN

22 .

	

The BUCKETSIZE clause applies only to relative and indexed files . It specifies the size of anRMS bucket . The value of int-exp9 is the number of records in a bucket . The default is onerecord .
23 . The PRIMARY KEY clause lets you specify an indexed file's key. You must specify aPRIMARY KEY when opening an indexed file . The ALTERNATE KEY clause lets you specifyup to 254 alternate keys . The ALTERNATE key clause is optional .

" RMS creates one index list for each PRIMARY and ALTERNATE key you specify . Theseindexes are part of the file and contain pointers to the records . Each key you specifycorresponds to a sorted list of record pointers .
" The keys you specify determine the order in which records in the file are stored . All keysmust be variables declared in the file's corresponding MAP statement . The position of thekey in the MAP statement determines its position in the record . The data type and size ofthe key are as declared in the MAP statement .
" A key can be an unsubscripted string or WORD variable in BASIC-PLUS-2 and anunsubscripted string, WORD, LONG, or packed decimal variable in VAX-11 BASIC .
You can also create a segmented index key for string keys by separating the stringvariable names with commas and enclosing them in parentheses . You can then referencea segment of the specified key by referencing one of the string variables instead of theentire key. A string key can have up to eight segments .
The order of appearance of keys determines key numbers. The PRIMARY KEY, whichmust appear first, is key zero . The first ALTERNATE KEY is one, and so on .

" DUPLICATES in the PRIMARY and ALTERNATE key clauses specifies that two recordscan have the same key value . If you do not specify DUPLICATES, the key value must beunique in all records .
" CHANGES in the ALTERNATE key clause specifies that you can change the value of analternate key when updating records . If you do not specify CHANGES when creating thefile, you cannot change the value of a key. You cannot specify CHANGES with thePRIMARY KEY clause .

VAX-11 BASIC
1 .

	

If you open a terminal-format file with RECORDTYPE NONE, you must explicitly insertcarriage control characters into the records your program writes to the file .
2 .

	

When you PRINT to a terminal-format file, you must supply a RECORDSIZE if the margin isto exceed 72 characters . For example, if you want to PRINT a 132-character line, specifyRECORDSIZE 132 or use the MARGIN and NOMARGIN statements .
3 .

	

The CONTIGUOUS clause does not guarantee that the file will occupy a contiguous diskarea. If RMS can locate the file in a contiguous area, it will do so . However, if there is notenough free contiguous space for a file, RMS allocates the largest possible contiguous areasand does not signal an error . See the VAX-1 1 RMS User's Guide for more information oncontiguous disk allocation .

244

	

BASIC Reference Manual

4.

	

The CONNECT clause permits multiple record streams to be connected to the file .

5 .

	

VAX-I I RMS does not allow the EXTENDSIZE clause for relative and indexed files .
6 .

	

If you specify NOREWIND, the OPEN statement does not position the tape . Your program
can search for records from the current position .

7 .

	

The ALLOW clause can be used in the OPEN statement to specify file sharing of relative,
indexed, sequential, and virtual files . But for sequential and virtual files, VAX-11 RMS
restricts file sharing to files with fixed-length, 512-byte records . It does not allow the
sharing of sequential files with variable-length records (the default), or of virtual files with
recordsizes other than 512 .

8 .

	

The UNLOCK EXPLICIT clause allows you to explicitly lock records with GET and FIND
statements .

9.

	

KEY clauses are optional for existing files if the keys in the file match BASIC defaults . If you
do specify a key, it must match a key in the file .

BASIC-PLUS-2

OPEN

" The CONNECT clause must specify an INDEXED file already opened on chnl-exp2 with
the primary OPEN statement . You cannot connect to a connected channel, only to the
initially opened channel . You can connect more than one stream to an open channel .

" All clauses of the two files to be connected must be identical except MAP,
CONNECT, and USEROPEN .

" The type of lock you impose on a record with GET or FIND remains in effect until you
explicitly unlock the record or file with a FREE or UNLOCK statement or until you close
the file .

" If you specify UNLOCK EXPLICIT, and do not impose a lock on a record with GET or
FIND, BASIC imposes the ALLOW NONE lock by default and the next GET or FIND does
not unlock the previously locked record .

" You must open a file with UNLOCK EXPLICIT before you can lock records with GET and
FIND statements . See the sections on GET and FIND in this manual and Chapter 8 in
BASIC on VAX/VMS Systems for more information on explicit record locking and unlock-
ing .

1 .

	

The ORGANIZATION SEQUENTIAL STREAM clause specifies an RMS sequential stream
file .

2 .

	

On RSTS/E systems, you can create both RMS sequential stream and RSTS/E ASCII stream

	

RSTS
files :
" If you specify ORGANIZATION SEQUENTIAL STREAM, the file is RMS sequential

stream .
" If you omit the ORGANIZATION clause entirely, the file is RSTS/E ASCII (that is, a
RSTS/E terminal-format file) .

3 .

	

If you specify a CONTIGUOUS clause and there is not enough free contiguous space, RMS
signals an error .

February 1984

	

BASIC Reference Manual

	

245

OPEN

4 .

	

The CONNECT clause in BASIC-PLUS-2 establishes additional record access streams forRMS files that allow your program to process more than one record of a file at the sametime . Each stream represents an independent and concurrently active sequence of recordoperations .
" The CONNECT clause must specify a RELATIVE or INDEXED file already open onchnI-exp2 .
" Each CONNECT established in a secondary OPEN statement uses another 1/0 channel .Because there are 12 1/0 channels available, you can have a maximum of 12 connectsto a file .
" All clauses in the secondary OPEN statements must be identical except MAP, CON-NECT, and USEROPEN .
" BASIC-PLUS-2 signals the error "Invalid file option" (ERR=139) if your programattempts to connect to a record stream that is already connected to another stream .

5 .

	

BASIC-PLUS-2 provides the MODE clause for non-RMS file operations . Int-exp6 specifiesa MODE value.
" On RSX-I IMIM-PLUS systems, MODE is ignored except when your program is doingdevice-specific 1/0 to a magnetic tape . In this case, you can use MODE to set the tapedensity. In all other cases, RSX-I I Ml M-PLUS systems ignore the MODE value. See
BASIC on RSX-I IMIM-PLUS Systems for information on MODE values .

" On RSTS/E systems, MODE values affect only native-mode files, not RMS files . Further,MODE values have different meanings depending on the context in which you use them .This is because other pieces of software scan the MODE value to see which bits are set .For example, bit 14 may have one meaning to the RSTS/E terminal driver, anothermeaning to the file processor, and a third meaning to the diskette device driver . SeeBASIC on RSTSIE Systems for information on MODE values .
6 .

	

BASIC-PLUS-2 on RSTS/E systems does not support the EXTENDSIZE clause .
7 .

	

On RSTS/E systems, you can specify the smallest amount of contiguous disk space to beallocated when an RMS or RSTS/E native-mode file's present allocation is exhausted . Youdo this with the CLUSTERSIZE clause . Int-exp7 must be a power of two. For example, aCLUSTERSIZE of eight means that each time the file requires more disk space, the RSTS/Eoperating system must have at least eight contiguous disk blocks to allocate . If the disk isfragmented, there may be no eight-block clusters, and BASIC-PLUS-2 signals the error"No room for user on device" .
" The default size of the clusters is a disk pack parameter set when the disk pack isinitialized or mounted . This parameter, called a CLUSTER (of 512-byte blocks), becomesthe default CLUSTERSIZE (the smallest amount of disk space that can be allocated for anyfile operations on that disk pack) .
" The CLUSTERSIZE clause does not affect the number of blocks read or written . It speci-fies only the smallest amount of disk space that can be allocated to a file .
" VAX- I I BASIC and BASIC-PLUS-2 on RSX-I I M/M-PLUS systems do not support theCLUSTERSIZE clause ; however, the EXTENDSIZE clause serves a similar function .

246

	

BASIC Reference Manual

OPEN

8 .

	

If you specify NOREWIND, the OPEN FOR OUTPUT statement positions the tape at the
logical end of the tape . The program can then write records . The OPEN FOR INPUT
statement searches for the specified file without rewinding . If the file is not found, BASIC
rewinds the tape and searches for the file from the start of the tape . If the file is still not
found, BASIC signals the error "File not found" .

February 1984

	

BASIC Reference Manual

	

247

Examples
100 OPEN "INPUT .DAT" FOR INPUT AS FILE #4t &ORGANIZATION SEQUENTIAL FIXEDt &RECORDSIZE 200, &MAP ABC t &ALLOW MODIFYt ACCESS MODIFY
200 OPEN Newfile$ FOR OUTPUT AS FILE #3tORGANIZATION INDEXEDtMAP Emp_nametDEFAULTNAME "DB2 : .DAT"r &PRIMARY KEY Last$ DUPLICATESt &ALTERNATE KEY First$ CHANGES
100 MAP (SEGKEY) STRING LAST-NAME = 15t &FIRST-NAME = 15, MI = 1200 OPEN "NAMES .IND" FOR OUTPUT AS FILE #1t &ORGANIZATION INDEXEDt &PRIMARY KEY (LAST_NAMEt FIRST_NAME# MI)t &MAP SEGKEY

OPTION

53.0 OPTION
Function
The OPTION statement allows you to set compilation qualifiers such as default data type, size, andscale factor . In VAX-I I BASIC, you can also set compilation conditions such as subscript checking,overflow checking, decimal rounding, and setup in a source program . The defaults affect only theprogram module in which the OPTION statement occurs .
Format

OPTION option-clause, . . .

TYPE = type-clause
SIZE = size-clause

(active-item, . . .)

248

	

BASIC Reference Manual

option-clause : SCALE = int-const
ACTIVE (VAX-11 BASIC only)= active-clauseINACTIVE (VAX-11 BASIC only)

INTEGER I
REALtype-clause : EXPLICIT
DECIMAL

I
(VAX-11 BASIC only)

size-clause : size-item
(size-item, . . .)
INTEGER int-clause

size-item : REAL real-clause
DECIMAL (d,s) (VAX-11 BASIC only)
BYTE

int-clause : WORD
LONG
SINGLE
DOUBLEreal-clause : GFLOAT (VAX-11 BASIC only)
HFLOAT (VAX-11 BASIC only)

active-clause : active-item

active-item :
INTEGER OVERFLOW
DECIMAL OVERFLOW
SETUP

	

(all VAX-11 BASIC only)
DECIMAL ROUNDING
SUBSCRIPT CHECKING

Syntax Rules
1 .

	

Option-clause specifies the compilation qualifiers to be in effect for the program module .

2 .

	

You can have more than one option in an OPTION statement, or you can use multiple
OPTION statements in a program module . However, each OPTION statement must lexi-
cally precede all other source code in the program module, with the exception of comment
fields, REM, SUB, FUNCTION, and OPTION statements .

General Rules

OPTION

" Type-clause sets the default data type for variables not explicitly declared in the program
module . You can specify only one type-clause in a program module .

" Size-clause sets the default data subtypes for floating-point, integer, and (VAX-11 BASIC
only) packed decimal data . Size-item specifies the data subtype you want to set . You can
specify an INTEGER and/or REAL size-item in BASIC-PLUS-2 and an INTEGER, REAL,
and/or DECIMAL size-item in VAX-11 BASIC . Multiple size-items in an OPTION state-
ment must be enclosed in parentheses and separated by commas.

" SCALE controls the scaling of double precision floating-point variables . Int-const speci-
fies the power of 10 you want as the scaling factor . It must be an integer from 0 to 6,
inclusive, or BASIC signals an error . See the SCALE command in Section II of this manual
for more information on scaling .

" In VAX-11 BASIC, active-clause specifies the decimal rounding, integer and decimal
overflow checking, setup, and subscript checking conditions you want in effect for the
program module . Active-item specifies the conditions you want to set . Multiple
active-items in an OPTION statement must be enclosed in parentheses and separated by
commas.

1 .

	

OPTION statement specifications apply only to the program module in which the state-
ment appears and affect all variables in the module, including SUB and FUNCTION
parameters .

2 .

	

BASIC signals an error in the case of conflicting options. For example, you cannot specify
more than one type-clause or SCALE factor in the same program unit .

3 .

	

If you do not specify a type-clause or a subtype-clause, BASIC uses the current environ-
ment default data types.

4 .

	

If you do not specify a scale factor, BASIC uses the current environment default scale
factor .

BASIC Reference Manual

	

249

OPTION

5 .

	

In VAX-11 BASIC, ACTIVE specifies the conditions that are to be in effect for a particularprogram module . INACTIVE specifies the conditions that are not to be in effect for aparticular program module . If a condition does not appear in an active-clause, VAX-11BASIC uses the current environment default for the condition . See Table 16 in thismanual for information on the INTEGER-OVERFLOW, DECIMAL-OVERFLOW, SETUP,DECIMAL-ROUNDING, and SUBSCRIPT-CHECKING compilation qualifiers . Thesequalifiers correspond to active-clause conditions (INTEGER OVERFLOW, DECIMALOVERFLOW, SETUP, DECIMAL ROUNDING, and SUBSCRIPT CHECKING) .

250

	

BASIC Reference Manual

Examples
10 FUNCTION REAL DOUBLE MONTHLY_PAYMENT# &(DOUBLE INTEREST_RATEt &LONG NO_OF_PAYMENTSt &DOUBLE PRINCIPLE)20 OPTION TYPE = REAL# &SIZE _ (REAL DOUBLE# INTEGER LONG)t &SCALE = 4

54.0 PRINT
Function
The PRINT statement transfers program data to a terminal or a terminal-format file .
Format

PRINT

To the Controlling Terminal
PRINT [output-list I

To a Channel
PRINT chnl-exp [, output-list I

output-list :

	

[exp] [sep [exp I] . . . [sep
sep :

Syntax Rules
1 .

	

Chnl-exp is a numeric expression that specifies a channel number associated with a file . Itmust be immediately preceded by a pound sign (#) . If you do not specify a chnl-exp,BASIC prints to the controlling terminal .
2 .

	

Output-list specifies the expressions to be printed and the print format to be used .
3 .

	

Exp can be any valid expression .
4 .

	

A sep character must separate each exp. The sep characters control the print format :
" A comma tells BASIC to skip to the next print zone before printing the expression .
" A semicolon tells BASIC to print the expression immediately after the previousexpression .

General Rules
1 .

	

A terminal-format file must be open on the specified chnl-exp .
2 .

	

A PRINT line has an integral number of print zones . Note, though, that the number of printzones in a line differs from terminal to terminal .
3 .

	

The right margin setting, if set by the MARGIN statement, controls the width of the PRINTline .
4.

	

The PRINT statement prints string constants and variables exactly as they appear, with noleading or trailing spaces .

BASIC Reference Manual

	

251

PRINT

5 .

	

BASIC prints quoted string literals exactly as they appear. Thus, you can print quotationmarks, commas, and other characters by enclosing them in quotation marks.
6.

	

A PRINT statement with no output-list prints a blank line .
7.

	

An exp in the output-list can be followed by more than one sep character . That is, you canomit an exp and specify where the next exp is to be printed by the use of multiple sepcharacters . For example :
100

	

PRINT "Name"tt"Address and " ;"City"RunPROGA

	

16-MAR-83 16 :16
Name

	

Address and City
In this example, the double commas after "Name" cause BASIC to skip two print zones
before printing "Address and " . The semicolon causes the next expression, "City", to be
printed immediately after the preceding expression .

8 .

	

When printing numeric fields, BASIC precedes each number with a space or minus sign
and follows it with a space. If a number can be represented exactly by six decimal digits or
less, and, optionally, a decimal point, BASIC prints it that way.

9 .

	

BASIC rounds a number with an integer portion of six decimal digits or less (for example,
1234.567) to six digits (1234.57) . If a number has more than six decimal digits, BASIC
rounds the number to six digits and prints it in E format .

10 .

	

BASIC does not print trailing zeros to the right of the decimal point. If all digits to the right
of the decimal point are zeros, BASIC omits the decimal point as well .

11 .

	

BASIC does not print more than six digits in explicit notation . If a number requires more
than six digits, BASIC uses E format and precedes positive exponents with a plus sign (+).

12 .

	

The PRINT statement can print up to :
" Three digits of precision for BYTE integers
" Five digits of precision for WORD integers
" Six digits of precision for SINGLE floating-point numbers
" Ten digits of precision for LONG integers
" Sixteen digits of precision for DOUBLE floating-point numbers
" Fifteen digits of precision for GFLOAT floating-point numbers (VAX-11 BASIC only)
" Thirty-three digits of precision for HFLOAT floating-point numbers (VAX-1 1 BASIC only)
" Thirty-one digits of precision for DECIMAL numbers (VAX-11 BASIC only)
" The string length for STRING values

252

	

BASIC Reference Manual

13 .

	

A comma or semicolon can also follow the last item in output-list :

14 .

	

If no punctuation follows the last item in the output-list :

15 .

	

If a string field does not fit on the current line :

16 .

	

If a numeric field is the first field in a line, and the numeric field spans more than one line,
BASIC prints part of the number on one line and the remainder on the next . Otherwise,
numeric fields are never split across lines . If the entire field cannot be printed at the end of
one line, the number is printed on the next line .

17 .

	

When a number's trailing space does not fit in the last print zone, the number is printed
without the trailing space .

18 .

	

VAX-1 1 BASIC rounds a floating point number with a magnitude between 0.1 and 1 .0 to
six digits . For magnitudes smaller than 0 .1, BASIC rounds the number to six digits and
prints it in E format .

19 .

	

For magnitudes smaller than 1, BASIC-PLUS-2 prints up to five leading zeros and six
significant digits in explicit point unscaled notation .

Examples

PRINT

" When printing to a terminal, BASIC does not generate a line terminator after printing the
last item . The next item printed with a PRINT statement is printed at the position speci-
fied by the sep character following the last item in the first PRINT statement .

" When printing to a terminal-format file, BASIC does not write out the record until a
PRINT statement without trailing punctuation executes .

" When printing to a terminal, BASIC generates a line terminator after printing the last
item .

" When printing to a terminal-format file, BASIC writes out the record after printing the last
item .

" When printing string elements to a terminal, BASIC prints as much as will fit on the
current line and prints the remainder on the next line .

" When printing string elements to a terminal-format file, BASIC prints the entire element
on the next line .

100

	

PRINT "THE ANSWER IS " ;SUM%
200

	

PRINT #1t EMP_NUMt EMP-NAME ;

	

EMP-AGE7

February 1984

	

BASIC Reference Manual

	

253

PRINT USING

55.0 PRINT USING
Function
The PRINT USING statement generates output formatted according to a format string (either numeric
or string) to a terminal or a terminal-format file .
Format

PRINT [chnl-exp] USING str-exp sep output-list
sep:

output-list :

	

[exp] [sep [exp]] . . . [sep]

Syntax Rules
1 .

	

Chnl-exp is a numeric expression that specifies a channel number associated with a file . It
must be immediately preceded by a pound sign (#) . If you do not specify a chnl-exp,
BASIC prints to the controlling terminal .

2 .

	

Str-exp is the format string . It must contain at least one valid format field and must be
followed by a sep character and at least one exp.

3 .

	

Output-list specifies the expressions to be printed .
" Exp can be any valid expression .
" A sep character must separate each exp .

4 .

	

The sep characters in the PRINT USING statement do not control the print format as in thePRINT statement .
General Rules

1 .

	

The PRINT USING statement can print up to :
" Three digits of precision for BYTE integers
" Five digits of precision for WORD integers
" Six digits of precision for SINGLE floating-point numbers
" Ten digits of precision for LONG integers
" Sixteen digits of precision for DOUBLE floating-point numbers
" Fifteen digits of precision for GFLOAT floating-point numbers (VAX-11 BASIC only)
" Thirty-three digits of precision for HFLOAT floating-point numbers (VAX-1 1 BASIC only)
" Thirty-one digits of precision for DECIMAL numbers (VAX-1 1 BASIC only)
" The string length for STRING values

254

	

BASIC Reference Manual

2 .

	

A terminal-format file must be open on the specified chnI-exp or BASIC signals an error .
3 .

	

PRINT USING rounds a floating-point number once .
4 .

	

Format string characters control the format of numeric output .
The pound sign (#) reserves space for one sign or digit .

" The comma (,) causes BASIC to insert commas before every third significant digit to the
left of the decimal point . In the format field, the comma must be to the left of the
decimal point, and to the right of the rightmost dollar sign, asterisk, or pound sign . A
comma reserves space for a comma or digit .

PRINT USING

The period (.) inserts a decimal point . The number of reserved places on either side of
the period determines where the decimal point appears in the output .

" The hyphen (-) reserves space for a sign and specifies trailing minus sign format . If
present, it must be the last character in the format field . It makes BASIC print negative
numbers with a minus sign after the last digit, and positive numbers with a trailing
space . The trailing minus sign format (-) can be used as part of a dollar sign ($$) format
field .

" The letters CD enclosed in angle brackets (<CD>) print CR (Credit Record) after nega-
tive numbers or zero and DR (Debit Record) after positive numbers . If present, it must
be the last format in the format field . The (<CD>) format can be used as part of a dollarsign ($$) format field .

" Four carets(^^^^) specify E notation for floating-point numbers . They reserve four places
for SINGLE, DOUBLE, and VAX-1 1 BASIC GFLOAT values and five places for VAX-1 1
BASIC HFLOAT values . If present, they must be the last characters in the format field .

" Two dollar signs ($$) reserve space for a dollar sign and a digit and cause BASIC to print
a dollar sign immediately to the left of the most significant digit .

" Two asterisks (**) reserve space for two digits and cause BASIC to fill the left side of the
numeric field with leading asterisks .
A zero enclosed in angle brackets (<0>) prints leading zeros instead of leading spaces .
A percent sign enclosed in angle brackets (<%>) prints all spaces in the field if the
value of the print item is zero .

Note
When the dollar sign ($$), asterisk-fill (**), or zero-fill (<0>) formats are used to form
one print field, they are mutually exclusive . Additionally, when the zero-fill (<0>) or
blank-if-zero (<%>) formats are used to form one print field, they also are mutually
exclusive .

" An underscore (-) forces the next formatting character in the format string to be inter-
preted as a literal . It affects only the next character . If the next character is not a valid
formatting character, the underscore has no effect and will itself be printed as a literal .

February 1984

	

BASIC Reference Manual

	

255

PRINT USING

5 .

	

BASIC interprets any other characters in a numeric format string as string literals .
6 .

	

Depending on usage, the same format string characters can be combined to form one or
more print fields within a format string . For example :
" When a dollar sign ($$) or asterisk-fill (**) format precedes a pound sign (#) , it modifies
the pound sign format . The ($$) or (**) reserves two places, and with the pound signs
forms one print field . For example :
**$$###

	

forms one field and reserves five spaces
****##

	

forms one field and reserves four spaces

When these formats are not followed by a pound sign or a blank-if-zero (<%>) format,
they reserve two places and form a separate print field .

" When a zero-fill (<0>) or blank-if-zero (<%>) format precedes a pound sign (#), it
modifies the pound sign format . The (<0>) or (<%>) reserves one place, and with the
pound signs forms one print field . For example :
**<0>####

	

forms one field and reserves five spaces
**<%>###

	

forms one field and reserves four spaces

When these formats are not followed by a pound sign, they reserve one space and form
a separate print field .

" When a blank-if-zero (<%>) format follows a dollar sign ($$) or asterisk-fill (**) format,
it modifies the ($$) or (**) format string . The (<%>) reserves one space, and with the
($$) or (**) format string forms one print field . For example :
**$$<%>###

	

forms one field and reserves six spaces
****<%>##

	

forms one field and reserves five spaces

When the (<%>) precedes a ($$) or (**), it reserves one space and forms a separate
print field .

7 .

	

In VAX-I I BASIC, the comma (digit separator), dollar sign (currency symbol), and deci-
mal point (radix point) are the defaults for U .S . currency . The PRINT USING statement
accesses the system-wide logical names for these symbols . To cause PRINT USING to
format foreign currency, these logical names must be changed .

8 .

	

For E notation, PRINT USING left-justifies the number in the format field and adjusts the
exponent to compensate, except when printing zero . When printing zero in E notation,
BASIC prints leading spaces, leading zeros, a decimal point, and zeros in the fractional
portion if the PRINT USING string contains these formatting characters, and then the
string "E+00" .

9 .

	

Zero cannot be negative . That is, if a small negative number rounds to zero, it is repre-
sented as a positive zero .

256

	

BASIC Reference Manual

	

February 1984

10.

	

If there are reserved positions to the left of the decimal point, and the printed number is
less than one, BASIC prints one zero to the left of the decimal point and pads with spaces
to the left of the zero .

11 .

	

If there are more reserved positions to the right of the decimal point than fractional digits,
BASIC prints trailing zeros in those positions .

12 .

	

If there are fewer reserved positions to the right of the decimal point than fractional digits,
BASIC rounds the number to fit the reserved positions .

13 .

	

If a number does not fit in the specified format field, BASIC prints "%", followed by the
number in PRINT format .

14 .

	

Format string characters control string output . All format characters except the backslash
and exclamation point must start with a single quote (') . A single quote by itself reserves
one character position . A single quote followed by format character(s) marks the begin-
ning of a character format field and reserves one character position .

" L reserves one character position . The number of Ls plus the leading single quote
determines the field's size . BASIC left-justifies the print expression and pads with spaces
if the print expression is less than or equal to the field's width . If the print expression is
larger than the field, BASIC left-justifies the expression and truncates its right side to fit
the field .

" R reserves one character position . The number of Rs plus the leading single quote
determines the field's size . BASIC right-justifies the print expression and pads with
spaces if the print expression is less than or equal to the field's width . If the print
expression is larger than the field, BASIC left-justifies the expression and truncates its
right side to fit the field .

Note

PRINT USING

VAX-11 BASIC accepts either upper- or lowercase string formatting characters .
BASIC-PLUS-2 accepts only uppercase string formatting characters .

C reserves one character position . The number of Cs plus the leading single quote
determines the field's size . If the string does not fit in the field, BASIC truncates its right
side . Otherwise, BASIC centers the print expression in this field . If the string cannot be
centered exactly, it is offset one character to the left .

" E reserves one character position . The number of Es plus the leading single quote
determines the field's size . BASIC left-justifies the print expression if it is less than or
equal to the field's width and pads with spaces . Otherwise, BASIC expands the field to
hold the entire print expression .

" Two backslashes (\

	

\) when separated by n spaces reserve n + 2 character positions .
PRINT USING left-justifies the string in this field . BASIC does not allow a leading
quotation mark with this format .

" An exclamation point (!) creates a 1-character field . The exclamation point both starts
and ends the field . BASIC does not allow a leading quotation mark with this format .

February 1984

	

BASIC Reference Manual

	

256.1

Examples

Note

PRINT USING

The backslash and exclamation formatting characters are included for com-patibility with BASIC-PLUS . DIGITAL recommends that you do not use thistype of character field for new program development .
15 .

	

BASIC interprets any other characters in the format string as string literals and prints themexactly as they appear .
16 .

	

A comma or semicolon can also follow the last item in output-list :
" When printing to a terminal, BASIC does not generate a line terminator after printing thelast item . The next item printed with a PRINT statement is printed at the position speci-fied by the sep character following the last item in the first PRINT statement .
" When printing to a terminal-format file, BASIC does not write out the record until aPRINT statement without trailing punctuation executes .

17 .

	

If no punctuation follows the last item in the output-list :
" When printing to a terminal, BASIC generates a line terminator after printing the lastitem .
When printing to a terminal-format file, BASIC writes out the record after printing the lastitem .

500

	

PRINT USING "$$#### .##-"t 8832 .331 -88 .31 A-VARIABLE
300

	

PRINT #1 USING "'E"9 "NOW IS THE TIME FOR ALL GOOD MEN"

BASIC Reference Manual

	

257

PUT

56.0 PUT
Function
The PUT statement transfers data from the record buffer to a file . PUT statements are valid on RMS
sequential, relative, indexed, and block I /O files . You cannot use PUT statements on terminal-format
files, virtual array files, or files opened with ORGANIZATION UNDEFINED .
Format

PUT chnl-exp [, RECORD num-exp] [, COUNT int-exp]

Syntax Rules

General Rules

258

2 .

3 .

4.

Chnl-exp is a numeric expression that specifies a channel number associated with a file . Itmust be immediately preceded by a pound sign (#) .
PUT with no RECORD clause writes data to an RMS sequential, relative, indexed, or block
I/O file .
" For sequential files, PUT adds a record at the end of the file .
" For relative and block I/O files, PUT places the record in the empty cell pointed to bythe Next Record Pointer . If the file is empty, the first PUT places a record in cell number
one, the second in cell number two, and so on .

" For indexed files, RMS stores records in order of ascending primary key value andupdates all index keys .
The RECORD clause allows you to randomly write records to a relative or block I/O file byspecifying the record number . Int-exp must be between one and the maximum recordnumber defined in the OPEN statement .
Int-exp in the COUNT clause specifies the record's size . If there is no COUNT clause, therecord's size is that defined by the MAP or RECORDSIZE clause (RECORDSIZE overridesMAP) in the OPEN statement .
" If you write a record to a file with variable-length records, int-exp must be between zeroand the maximum record size specified in the OPEN statement, inclusive .
" If you write a record to a file with fixed-length records, the COUNT clause serves nopurpose. If used, int-exp must equal the record size specified in the OPEN statement .
" In BASIC-PLUS-2, if int-exp equals zero, the entire record is written to the file .

For sequential access, the file associated with chnl-exp must be open with ACCESS WRITE,MODIFY, SCRATCH, or APPEND .
To add records to an existing sequential file, open it with ACCESS APPEND . If you are notat the end of the file when attempting a PUT to a sequential file, BASIC signals "Not at endof file" (ERR = 149) .

BASIC Reference Manual

	

February 1984

Examples

3 .

	

For random access, the relative or block I/O file associated with chnl-exp must be openwith ACCESS WRITE or MODIFY .
4 .

	

After a PUT statement executes, there is no Current Record Pointer. The Next Record
Pointer is set as follows :
" For sequential files, PUT sets the Next Record Pointer to the end-of-file .
" For relative and block 1/0 files, a sequential PUT sets the Next Record Pointer to theNext Record plus one . A random PUT leaves the Next Record Pointer unchanged .
" For indexed files, PUT leaves the Next Record Pointer unchanged .

Sequential, Relative, Indexed, and Block 1/0 Files
700

	

PUT #3t COUNT 55%
Relative and Block I/O Files Only
2000

	

PUT #5# RECORD 133# COUNT 16%

PUT

5 .

	

When you specify a RECORD clause, BASIC evaluates int-exp and uses this value as therelative record number of the target cell .
" If the target cell is empty or occupied by a deleted record, BASIC places the record inthat cell .
" If there is a record in the target cell, the PUT statement fails, and BASIC signals the error"Record already exists" (ERR= 153) .

6.

	

If an existing record in an indexed file has a record with the same key value as the one youwant to PUT to the file, BASIC signals the error "Duplicate key detected" (ERR = 134) if
you did not specify DUPLICATES for the key in the OPEN statement . If you specified
DUPLICATES, RMS stores the records in a first-in, first-out sequence .

7 .

	

The number specified in the COUNT clause determines how many bytes are transferredfrom the buffer to a file :
" If you have not completely filled the record buffer before executing a PUT, BASIC padsthe record with nulls to equal the specified value .
" If the specified COUNT value is less than the buffer size, the record is truncated to equal
the specified value

8 . The number in the COUNT clause must not exceed the size specified in the MAP
or RECORDSIZE clause in the OPEN statement or BASIC signals "Size of record invalid"
(ERR = 156) .

9. Although block I/O files are implemented through RMS on VAX/VMS systems and
RSX-11MIM-PLUS systems, when you write a record to a block I/O file, RMS does not
perform the same error checking as with relative files . A PUT will write a record to a diskblock specified in the RECORD clause, regardless of whether the block already contains a
record . See Chapter 9 in the BASIC User's Guide for more information on RMS block 1/0files . See the RSTS/E Programming Manual for information on RSTS/E native-mode block
1/0 files .

BASIC Reference Manual

	

259

RANDOMIZE

57.0 RANDOMIZE
Function
The RANDOMIZE statement gives the random number function, RND, a new starting point .
Format

RANDOMIZE
RANDOM

Syntax Rules
None .

General Rules

Examples

1 .

	

Without the RANDOMIZE statement, successive runs of the same program generate thesame random number sequence. If you use the RANDOMIZE statement before invokingthe RND function, the starting point changes for each run . Thus, a different random num-ber sequence appears each time .

45 RANDOMIZE

260

	

BASIC Reference Manual

58.0 READ
Function
The READ statement assigns values from a DATA statement to variables .
Format

READ vbl, . . .

Syntax Rules
1 .

	

In VAX-1 1 BASIC, vbI cannot be a DEF function name, unless the READ statement is inside
the multi-line DEF body .

2 .

	

In BASIC-PLUS-2, vbl can be a DEF function name . If you assign a value to the DEF
function name in this way, the next invocation of the function returns that value if it is not
modified by the function body .

3 .

	

If your program has a READ statement without DATA statements, BASIC signals a compile-
time error .

General Rules

READ

1 .

	

When BASIC initializes a program unit, it forms a data sequence of all values in all DATA
statements . An internal pointer points to the first value in the sequence .

2 .

	

When BASIC executes a READ statement, it sequentially assigns values from the data
sequence to variables in the READ statement variable list . As BASIC assigns each value, it
advances the internal pointer to the next value .

3 .

	

BASIC signals the error "Out of data" (ERR=57) if there are fewer data elements thanREAD statements . Extra data elements are ignored .
4 .

	

The data type of the value must agree with the data type of the variable to which it is
assigned or BASIC signals "Data format error" (ERR= 50) .

5 .

	

IF you READ a string variable, and the DATA element is an unquoted string, BASIC ignoresleading and trailing spaces . If the DATA element contains commas, they must be insidequotation marks .
6 .

	

BASIC evaluates subscript expressions in the variable list after it assigns a value to the
preceding variable, and before it assigns a value to the subscripted variable . For example :
100

	

READ At A$(A)

0

0

500

	

DATA 10# NELSON

BASIC assigns the value 10 to variable A, then assigns the string "NELSON" to array
element A$(10) .

BASIC Reference Manual

	

261

READ

Examples
1000

	

READ At B%t C$
02000

	

DATA 32 .51 Bt ENDDATA

262

	

BASIC Reference Manual

59.0 RECORD (VAX-11 BASIC)
Function
The RECORD statement lets you name and define data structures in a BASIC program and providesthe BASIC interface to the VAX-] 1 Common Data Dictionary (CDD) . You can use the definedRECORD name anywhere a BASIC data-type keyword is valid .
Format

RECORD

RECORD rec-nam
rec-component

END RECORD [rec-nam]

rec-component :

rec-item :

variant-clause : VARIANT
case-clause

case-clause : CASE

data-type rec-item [, [data-type] rec-item]
group-clause
variant-clause
unsubs-vbl [= int-const]
array (int-const, . . .) [- int-const]
FILL [(int-const)] [- int-const]

group-clause :

	

GROUP group-nam [(int-const, . . .)]
rec-component

END GROUP [group-nam]

END VARIANT

[rec-component]

BASIC Reference Manual

	

263

RECORD

Syntax Rules
1 .

	

Each line of text in a RECORD, GROUP, or VARIANT block can have an optional line
number .

2 . Data-type can be a BASIC data-type keyword or a previously defined rec-nam or
group-nam . Table 2 lists and describes BASIC data-type keywords .

3 .

	

If the data-type of a rec-item is STRING, the string is fixed-length . You can supply an
optional string length with the =int-exp clause . If you do not specify a string length, the
default is 16 .

4 .

	

Int-const in the group-clause specifies the number of times the GROUP block occurs in the
RECORD data structure .

General Rules
1 .

	

Rec-item must conform to the rules for naming BASIC variables .

2 .

	

Variables and arrays in a record definition are also called elementary record components .
3 .

	

The RECORD statement names and defines a data structure called a record template, but
does not allocate any storage. When you use the record template as a data type in a
statement such as DECLARE, MAP, or COMMON, you declare a record instance . This
declaration of the record instance allocates storage for the RECORD . For example :
1000

	

DECLARE EMPLOYEE EMP_REC
This statement declares a variable named EMP_REC . EMP_REC is of the user-defined
data type EMPLOYEE .

4.

	

Whenever you access an elementary record component, that is, a variable named in a
RECORD definition, you do it in the context of the record instance . Therefore, rec-item
names need not be unique in your program . For example, you can have a variable called
FIRST-NAME in any number of different RECORD definitions . However, you cannot use a
BASIC keyword as a rec-item name and you cannot have two variables or arrays with the
same name at the same level in the RECORD or GROUP definition .

264

	

BASIC Reference Manual

	

February 1984

RECORD

5 .

	

The declarations between the RECORD statement and the END RECORD statement arecalled a RECORD block .
6 .

	

The declarations between the GROUP keyword and the END GROUP keywords are calleda GROUP block. The GROUP keyword is valid only within a RECORD block .
7 .

	

A repeated GROUP is similar to an array within the record as it is zero-based . Thus, arepeat-count of 10 actually specifies 11 repetitions of the named GROUP .
8 .

	

The declarations between the VARIANT keyword and the END VARIANT keywords arecalled a VARIANT block .
9 .

	

The amount of space allocated for a VARIANT field in a RECORD is equal to the spaceneeded for the variant field requiring the most storage. A record component outside of thisoverlaid field determines which record variant is used .
10 .

	

The rec-nam qualifies the group-nam and the group-nam qualifies the rec-item . You canaccess a particular rec-item within a record by specifying rec-nam: :group-nam : :rec-item .This specification is called a fully qualified reference . The full qualification of a rec-item isalso called a component path name .
11 . The group-nam is optional in a rec-item specification unless there is more than onerec-item with the same name . For example :

10

	

DECLARE EMPLOYEE EMP_REC
00100

	

RECORD AddressSTRING Streets Cityt States ZipEND RECORD Address200

	

RECORD EmployeeGROUP Emp_nameSTRING First = 15STRING Middle = 1STRING Last = 15END GROUP Emp_nameADDRESS WorkADDRESS HomeEND RECORD Employee
You can access the rec-item "Last" by specifying only "EMP_REC : :Last" because only onerec-item is named "Last." However, if you try to reference "EMP_REC : :City", BASIC signalsan error because "City" is an ambiguous field, a component of both "Work" and "Home."To access "City," you must specify either "EMP_REC : :Work : :City" or"EMP_REC : :Home : :City ."

February 1984

	

BASIC Reference Manual

	

265

RECORD

Examples
1000

	

RECORD EMP_WAGE_CLASSGROUP EMP_NAMESTRING Last = 15STRING First = 14STRING Middle = 1END GROUP EMP_NAMEGROUP EMP_ADDRESSSTRING Street = 15STRING City _ 20STRING StateDECIMAL(5 tO) ZipEND GROUP EMP_ADDRESSSTRING WAGE-CLASS =VARIANT CASEGROUP HOURLYDECIMAL(4t2) Hourly-waleSINGLE Regular_aar_ytdSINGLE Oyertime_Pay_ytdEND GROUP HOURLYCASEGROUP SALARIEDDECIMAL(7t2) Yearly-salarySINGLE Pa "r_rtdEND GROUP SALARIEDCASEGROUP E)QECUTIYEDECIMAL(8t2) Yearly-salarySINGLE Pav_ytdSINGLE Expenses_vtdEND GROUP E);ECUTIYEEND VARIANTEND RECORD EMP_WAGE_CLASS

266

	

BASIC Reference Manual

	

February 1984

60 .0 REM
Function
The REM statement permits program documentation .
Format

REM [comment]

Syntax Rules

Examples

1 .

	

REM must be the only statement on the line or the last statement on a multi-statement line .
2 .

	

Because the REM statement is not executable, you can place it anywhere in a program,
except where other statements, such as SUB and END SUB, must be the first or last
statement in a program unit .

3 .

	

BASIC interprets every character between the keyword REM and the next line number as
part of the comment .

General Rules
1 .

	

When the REM statement is the first statement on a line-numbered line, BASIC treats any
reference to that line number as a reference to the next higher-numbered executable
statement .

2 .

	

The REM statement is similar to the comment field that begins with an exclamation point,
with one exception : the REM statement must be the last statement on a multi-statement
line . The exclamation point comment field can be ended with a line terminator and fol
lowed by a BASIC statement . See Section I of this manual for more information on the
comment field .

500

	

REM THIS IS A COMMENT

BASIC Reference Manual

	

267

REMAP

61 .0 REMAP
Function
The REMAP statement defines or redefines the position in the record buffer of variables named in theMAP DYNAMIC statement .
Format

REMAP (map-nam) remap-item, . . .
remap-item : num-vbl-nam

num-array-nam ([int-exp, . . .])
str-vbl-nam [-- int-exp]
str-array-nam ([int-exp, . . .]) [= int-exp]
[data-type] FILL [(int-exp)] [= int-exp
FILL% [(int-exp)]
FILL$ [(int-exp)] [- int-exp]

Syntax Rules
1 .
2 .

3 .

Map-nam is the name of a map area declared in the MAP and MAP DYNAMIC statements .
Remap-item names a variable, array, or array element declared in a preceding MAPDYNAMIC statement :
" Num-vbl-nam specifies a numeric variable or array element . Num-arr-nam () specifies anentire numeric array .
" Str-vbl-nam specifies a string variable or array element . Str-arr-nam () specifies an entirefixed-length string array . You can specify the number of bytes to be reserved for stringvariables and array elements with the =int-exp clause . The default string length is 16 .
Remap-item can also be a FILL item . The FILL, FILL%, and FILL$ keywords let you reserveparts of the record buffer . Int-exp specifies the number of FILL items to be reserved . The=int-exp clause allows you to specify the number of bytes to be reserved for string FILLitems . Table 21 describes FILL item format and storage allocation .

4 .

	

All remap-items, except FILL items, must have been named in a previous MAP DYNAMICstatement, or BASIC signals an error .

268

	

BASIC Reference Manual

Note
In the applicable formats of FILL, (int-count) represents a repeat count, not anarray subscript . FILL (n), for example, represents n elements, not n + 1 .

" When you specify a data-type, all following FILL items are of that data type until youspecify a new data type .
" If you do not specify any data-type, FILL items take the current default data type and size .
" FILL items following a data-type cannot end in a dollar sign or percent sign suffixcharacter .

6 .

	

Remap-items must be separated with commas.
General Rules

1 .

	

The REMAP statement does not affect the amount of storage allocated to the map area.
2 .

	

Each time a REMAP statement executes, BASIC sets record pointers to the named map areafor the specified variables from left to right .
3 .

	

The REMAP statement must be preceded by a MAP DYNAMIC statements or BASIC signalsthe error "No such MAP area <name>" . The MAP statement creates a named area ofstatic storage, the MAP DYNAMIC statement specifies the variables whose positions canchange at run time, and the REMAP statement specifies the new positions for the variablesnames in the MAP DYNAMIC statement .
4 .

	

Until the REMAP statement executes, all variables named in the MAP DYNAMIC statementpoint to the first byte of the MAP area and all string variables have a length of zero . Whenthe REMAP statement executes, BASIC sets the internal pointers as specified in the REMAPstatement . For example :
100 MAP (DUMMY) STRING MAP-BUFFER = 50MAP DYNAMIC (DUMMY) LONG At STRING Bt SINGLE C(7)REMAP (DUMMY) B=14t At C()

REMAP

5 .

	

Data-type can be any BASIC data-type keyword or, in VAX-1 1 BASIC, a data type definedin a RECORD statement . Data-type keywords, size, range, and precision are listed in Table2 in this manual . You can specify a data type only for FILL items .

The REMAP statement sets a pointer to byte 1 of DUMMY-MAP for string variable B, a
pointer to byte 15 for LONG variable A, and pointers to bytes 19, 23, 27, 31, 35, 39, 43,
and 47 for the elements in SINGLE array C.

5 .

	

You can use the REMAP statement to redefine the pointer for an array element or variable
more than once in a single REMAP statement . For example:
100 MAP (DUMMY) STRING = 48MAP DYNAMIC (DUMMY) LONG At B(10)REMAP (DUMMY) B()t B(0)
This REMAP statement sets a pointer to byte 1 in DUMMY-MAP for array B . Since array B
uses a total of 44 bytes, the pointer for the first element of array B, B(0) points to byte 45 .
References to array element B(0) will be to bytes 45 through 48. Pointers for array elements
1 through 10 are set to bytes 1, 4, 8, 12, and so forth .

6 .

	

Because the REMAP statement is local to a program module, it affects pointers only in the
program module in which it executes .

BASIC Reference Manual

	

269

REMAP

Examples
100 MAP (EMPREC) STRING MAP-BUFFER = 100MAP DYNAMIC (EMPREC) STRING EMP_NAMEt &LONG BADGE_N0t &STRING STREETt CITYt STATE# &WORD ZIP# &STRING START-DATEREMAP (EMPREC) EMP_NAME = 20t &BADGE_NOt &STREET = 10t &CITY = 10t &STATE = 2r &ZIPt &START-DATE = 8

0
500

0
REMAP (EMPREC) EMP_NAME = 10tBADGE-N0#STRING FILL = 32tWORD FILLtSTART-DATE = 8

270 BASIC Reference Manual

RESUME

63 .0 RESUME
Function
The RESUME statement marks an exit point from an error-handling routine . BASIC clears the error
condition and returns program control to a specified line number or to the program block in which
the error occurred .
Format

RESUME [lin-num

Syntax Rules

272

1 .
2 .

General Rules

2 .

3 .

Lin-num must exist within the same program unit as the RESUME statement .
The RESUME statement cannot be used in a multi-line DEF unless the lin-num is also in
the DEF function definition .

The RESUME statement does not accept a label as an argument . Therefore, you should
number lines that are to receive control from the error handler .
When no lin-num is specified in a RESUME statement, BASIC transfers control based on
where the error occurs . If the error occurs on a numbered line containing a single state-
ment, BASIC always transfers control to that statement . However, if the error occurs
within a multi-statement line :
" Within a FOR, WHILE, or UNTIL loop, BASIC transfers control to the first statement that
follows the FOR, WHILE, or UNTIL statement .

" Within a SELECT block, BASIC transfers control to the start of the CASE block in which
the error occurs .

" After a loop or SELECT block, BASIC transfers control to the statement that follows the
NEXT or END SELECT statement .

" If none of the above conditions occurs, BASIC transfers control back to the statement
that follows the most recent line number or label .

To simplify and clarify error handling, DIGITAL recommends that the RESUME statement
always be used with lin-num .

BASIC Reference Manual

	

February 1984

Examples

4 .

	

A RESUME statement with a specified lin-num transfers control to the first statement of a
multi-statement line, regardless of which statement caused the error .

5 .

	

A RESUME statement cannot transfer control out of the current program unit . Thus, a
RESUME statement with no lin-num cannot terminate an error handler in the following
situation : (1) the error handler is handling an error that occurred in a subprogram or an
external function, and (2) the error was passed to the calling program's error handler by
an ON ERROR GO BACK statement or by default .

6 .

	

The execution of a RESUME with no lin-num is illegal if there is no error active . A
RESUME with a lin-num is always legal . After clearing the error condition, BASIC transfers
control to the specified line .

19100

	

RESUME 300
19990 RESUME

RESUME

BASIC Reference Manual

	

272.1

64.0 RETURN
Function
The RETURN statement transfers control to the statement immediately following the most recently
executed GOSUB or ON GOSUB statement in the current program unit .
Format

Syntax Rules
1 .

	

RETURN is the last statement executed in a subroutine even if it is not the last statement in
the subroutine .

General Rules

Examples
Boo RETURN

RETURN

1 .

	

Execution of a RETURN statement before the execution of a GOSUB or ON GOSUB causes
BASIC to signal "RETURN without GOSUB" (ERR= 72) .

BASIC Reference Manual

	

273

RSET

65 .0 RSET
Function
The RSET statement assigns right-justified data to a string variable . RSET does not change a string
variable's length .
Format

RSET str-vbl = str-exp

Syntax Rules
1 .

	

BASIC evaluates the str-vbl subscript expression (if present) before assigning values .
2 .

	

Str-vbl cannot be a DEF function name, unless the RSET statement is inside the DEF
function definition .

General Rules
1 .

	

The RSET statement treats strings as fixed-length . It does not change the length of str-vbl nordoes it create new storage locations .
2 .

	

If str-vbl is longer than str-exp, RSET right-justifies the data and pads it with spaces on theleft .
3 .

	

If str-vbl is shorter than str-exp, RSET truncates str-exp on the left .
Examples
100

	

RSET ZZ$ = "LMNOP"

274

	

BASIC Reference Manual

66.0 SCRATCH
Function
The SCRATCH statement deletes the Current Record and all following records in an RMS sequential
file .
Format

SCRATCH chnl-exp

Syntax Rules
None .

General Rules
1 . Before you execute the SCRATCH statement, the file must be opened with ACCESS

SCRATCH .
2 .

	

The SCRATCH statement applies to ORGANIZATION SEQUENTIAL files only .
3 .

	

The SCRATCH statement has no effect on terminals or unit record devices .
4.

	

For disk files, the SCRATCH statement discards the current record and all that follow it in
the file . The file is not physically shortened.

5 .

	

For magnetic tape files, the SCRATCH statement overwrites the current record with two
end-of-file marks.

Examples
600

	

SCRATCH #4%

SCRATCH

BASIC Reference Manual

	

275

SELECT

67.0 SELECT
Function
The SELECT statement lets you specify an expression, a number of possible values the expression may
have, and a number of alternative statement blocks to be executed for each possible case . The END
SELECT keywords terminate the SELECT block. The code between SELECT and END SELECT is called
a SELECT block, and the code between CASE statements is called a CASE block .
Format

SELECT expl
case-clause

[else-clause]
END SELECT

case-clause :

	

CASE case-item

case-item :

	

[rel-op] exp2
exp3 TO exp4 ~

else-clause :

	

CASE ELSE

[statement] . . .

[statement] . . .

Syntax Rules

276

2 .

Expl is the expression to be tested against the case-clauses and the else-clause . i t can be
numeric or string .
" Case-clause consists of the CASE keyword followed by a case-item and statements to be
executed when the case-item is true .

" Else-clause consists of the CASE ELSE keywords followed by statements to be executed
when no previous case-item has been selected as true .

Case-item is either an expression to be compared with expl or a range of values separated
with the keyword TO .
" Rel-op is a relational operator specifying how expl is to be compared to exp2 . If you do

not include a rel-op, BASIC assumes the equals (=) operator . BASIC executes the state-
ments in' the CASE block when the specified relational expression is true .

BASIC Reference Manual

3 .

	

A SELECT statement can have only one else-clause. The else-clause is optional and, when
present, must be the last CASE block in the SELECT block .

General Rules

Examples

" Exp3 and exp4 specify a range of numeric or string values separated by the keyword TO.
Separate multiple ranges with commas. BASIC executes the statements in the CASE block
when expl falls within any of the specified ranges .

1 .

	

Each statement in a SELECT block can have its own line number .

SELECT

2 .

	

The SELECT statement begins the SELECT BLOCK and the END SELECT keywords terminate
it . BASIC signals an error if you do not include the END SELECT keywords .

3 .

	

Each CASE keyword establishes a CASE block . The next CASE or END SELECT keyword
ends the CASE block.

4 .

	

You can nest SELECT blocks within a CASE or CASE ELSE block.
5 .

	

BASIC evaluates expl when the SELECT statement is first encountered ; BASIC then com-
pares expl with each case-clause in order of occurrence until a match is found or until a
CASE ELSE block or END SELECT is encountered .

6.

	

The following conditions constitute a match :
" Expl satisfies the relationship to exp2 specified by rel-op .
" Exp 1 is greater than or equal to exp3, but less than or equal to exp4, greater than or equal

to exp5 but less than or equal to exp6, and so on .
7 .

	

When a match is found between exp I and a case-item, BASIC executes the statements in
the CASE block where the match occurred . If ranges overlap, the first match causes BASIC
to execute the statements in the CASE block . After executing CASE block statements,
control passes to the statement immediately following the END SELECT keywords .

8 .

	

If no CASE match occurs, BASIC executes the statements in the else-clause, if present, and
then passes control to the statement immediately following the END SELECT keywords .

9 .

	

If no CASE match occurs and you do not supply a case-else clause, control passes to the
statement following the END SELECT keywords .

100

	

SELECT A% + B% + CZCASE = 100PRINT 'THE !VALUE IS EXACTLY 100'CASE 1 TO 99PRINT 'THE VALUE IS BETWEEN 1 AND 99'CASE ` 100PRINT 'THE VALUE IS GREATER THAN 100'CASE ELSEPRINT 'THE !VALUE IS LESS THAN 100'END SELECT

BASIC Reference Manual

	

277

SLEEP

68.0 SLEEP
Function
The SLEEP statement suspends program execution for a specified number of seconds or until a
carriage return is entered from the controlling terminal .
Format

SLEEP int-exp

Syntax Rules

Examples

1 .

	

In VAX-11 BASIC, int-exp must be between 0 and 2147483647, inclusive ; if it is greater
than 2147483647, BASIC signals the error "Integer error or overflow" (ERR= 51) .

2 .

	

In BASIC-PLUS-2, int-exp must be between 0 and 32767, inclusive ; if it is greater than
32767, BASIC signals "Integer error" and does not suspend program execution .

General Rules
1 .

	

Int-exp is the number of seconds BASIC waits before resuming program execution .
2 .

	

Pressing the RETURN key on the controlling terminal cancels the effect of the SLEEP
statement .

60

	

SLEEP 120%

278

	

BASIC Reference Manual

62.0 RESTORE (RESET)
Function

Format

Syntax Rules

General Rules

Examples

RESTORE

The RESTORE statement resets the DATA pointer to the beginning of the DATA sequence or sets the
record pointer to the first record in a file . RESET is a synonym for RESTORE .

RESET
RESTORE

	

[chnl-exp [, KEY # int-exp]]

1 .

	

Chnl-exp is a numeric expression that specifies a channel number associated with a file . It
must be immediately preceded by a pound sign (#) .

2 .

	

Int-exp must be between zero and the number of keys in the file minus one, inclusive .

1 .

	

The RESTORE statement is not allowed on virtual array files or on files opened on unit
record devices .

2 .

	

If you do not specify a chnl-exp, RESTORE resets the DATA pointer to the beginning of the
DATA sequence .

3 .

	

RESTORE affects only the current program unit . Thus, executing a RESTORE statement in a
subprogram does not affect the DATA pointer in the main program .

4 .

	

If there is no chnl-exp, and the program has no DATA statements, RESTORE has no effect .
5 .

	

The file specified by chnl-exp must be open .
6 .

	

If chnl-exp specifies a magnetic tape file, BASIC rewinds the tape to the first record in the
file .

7 .

	

The KEY clause applies to indexed files only . It sets a new key of reference equal to int-exp
and sets the Next Record Pointer to the first logical record in that key .

8 .

	

For indexed files, the RESTORE statement without a KEY clause sets the Next Record
Pointer to the first logical record specified by the current key of reference . If there is no
current key of reference, the RESTORE statement sets the Next Record Pointer to the first
logical record of the primary key .

9 .

	

If you use the RESTORE statement on any file type other than indexed, BASIC sets the Next
Record Pointer to the first record in the file .

400

	

RESTORE #7%t KEY #4'X

BASIC Reference Manual

	

271

RESUME

63 .0 RESUME
Function
The RESUME statement marks an exit point from an error-handling routine . BASIC clears the error
condition and returns program control to a specified line number or to the program block in which
the error occurred .
Format

RESUME [lin-num]

Syntax Rules
1 .
2 .

General Rules

272

2 .

3 .

Lin-num must exist within the same program unit as the RESUME statement .
The RESUME statement cannot be used in a multi-line DEF unless the lin-num is also in
the DEF function definition .

The RESUME statement does not accept a label as an argument . Therefore, you should
number lines that are to receive control from the error handler .
When no lin-num is specified in a RESUME statement, BASIC transfers control based onwhere the error occurs . If the error occurs on a numbered line containing a single state-ment, BASIC always transfers control to that statement . However, if the error occurswithin a multi-statement line :
" Within a FOR, WHILE, or UNTIL loop, BASIC transfers control to the first statement thatfollows the FOR, WHILE, or UNTIL statement .
" Within a SELECT block, BASIC transfers control to the start of the CASE block in which
the error occurs .

" After a loop or SELECT block, BASIC transfers control to the statement that follows theNEXT or END SELECT statement .
" If none of the above conditions occurs, BASIC transfers control back to the statementthat follows the most recent line number or label .
To simplify and clarify error handling, DIGITAL recommends that the RESUME statementalways be used with lin-num .

BASIC Reference Manual February 1984

Examples

4.

	

A RESUME statement with a specified lin-num transfers control to the first statement of a
multi-statement line, regardless of which statement caused the error .

5 .

	

A RESUME statement cannot transfer control out of the current program unit . Thus, a
RESUME statement with no lin-num cannot terminate an error handler in the following
situation : (1) the error handler is handling an error that occurred in a subprogram or an
external function, and (2) the error was passed to the calling program's error handler by
an ON ERROR GO BACK statement or by default .

6 .

	

The execution of a RESUME with no lin-num is illegal if there is no error active . A
RESUME with a lin-num is always legal . After clearing the error condition, BASIC transfers
control to the specified line .

19100

	

RESUME 300
19990 RESUME

RESUME

BASIC Reference Manual

	

272.1

64.0 RETURN
Function
The RETURN statement transfers control to the statement immediately following the most recently
executed GOSUB or ON GOSUB statement in the current program unit .
Format

Syntax Rules
1 .

	

RETURN is the last statement executed in a subroutine even if it is not the last statement in
the subroutine .

General Rules
1 .

	

Execution of a RETURN statement before the execution of a GOSUB or ON GOSUB causes
BASIC to signal "RETURN without GOSUB" (ERR= 72) .

Examples
800 RETURN

RETURN

BASIC Reference Manual

	

273

RSET

65 .0 RSET
Function
The RSET statement assigns right-justified data to a string variable . RSET does not change a stringvariable's length .
Format

RSET str-vbf, . . . = str-exp

Syntax Rules
1 .

	

BASIC evaluates the str-vbl subscript expression (if present) before assigning values .
2 .

	

Str-vbl cannot be a DEF function name, unless the RSET statement is inside the DEFfunction definition .
General Rules

1 .

	

The RSET statement treats strings as fixed-length . It does not change the length of str-vbl nordoes it create new storage locations .
2 .

	

If str-vbl is longer than str-exp, RSET right-justifies the data and pads it with spaces on theleft .
3 .

	

If str-vbl is shorter than str-exp, RSET truncates str-exp on the left .
Examples
100

	

RSET ZZ$ = "LMNOP"

274

	

BASIC Reference Manual

66.0 SCRATCH
Function
The SCRATCH statement deletes the Current Record and all following records in an RMS sequential
file .
Format

SCRATCH

SCRATCH chnl-exp

Syntax Rules
None .

General Rules

Examples

1 . Before you execute the SCRATCH statement, the file must be opened with ACCESS
SCRATCH.

2 .

	

The SCRATCH statement applies to ORGANIZATION SEQUENTIAL files only .
3 .

	

The SCRATCH statement has no effect on terminals or unit record devices .
4 .

	

For disk files, the SCRATCH statement discards the current record and all that follow it in
the file . The file is not physically shortened .

5 .

	

For magnetic tape files, the SCRATCH statement overwrites the current record with two
end-of-file marks.

600

	

SCRATCH #4%

BASIC Reference Manual

	

275

SELECT

67.0 SELECT
Function
The SELECT statement lets you specify an expression, a number of possible values the expression may
have, and a number of alternative statement blocks to be executed for each possible case . The END
SELECT keywords terminate the SELECT block . The code between SELECT and END SELECT is called
a SELECT block, and the code between CASE statements is called a CASE block .
Format

SELECT expi
case-clause

[else-clause]
END SELECT

case-clause :

	

CASE case-item

case-item :

	

[rel-op I exp2I expi TO exp4 ~
else-clause :

	

CASE ELSE

[statement] . . .

[statement] . . .

Syntax Rules

276

2 .

Exp1 is the expression to be tested against the case-clauses and the else-clause . It can be
numeric or string .
" Case-clause consists of the CASE keyword followed by a case-item and statements to be
executed when the case-item is true .

" Else-clause consists of the CASE ELSE keywords followed by statements to be executed
when no previous case-item has been selected as true .

Case-item is either an expression to be compared with expi or a range of values separated
with the keyword TO.
" Rel-op is a relational operator specifying how expi is to be compared to exp2 . If you do

not include a rel-op, BASIC assumes the equals (=) operator . BASIC executes the state-
ments in , the CASE block when the specified relational expression is true .

BASIC Reference Manual

General Rules

" Exp3 and exp4 specify a range of numeric or string values separated by the keyword TO.
Separate multiple ranges with commas. BASIC executes the statements in the CASE block
when expl falls within any of the specified ranges .

3 .

	

A SELECT statement can have only one else-clause. The else-clause is optional and, when
present, must be the last CASE block in the SELECT block .

1 .

	

Each statement in a SELECT block can have its own line number .
2 .

	

The SELECT statement begins the SELECT BLOCK and the END SELECT keywords terminate
it . BASIC signals an error if you do not include the END SELECT keywords .

Examples

3 .

	

Each CASE keyword establishes a CASE block. The next CASE or END SELECT keyword
ends the CASE block .

4 .

	

You can nest SELECT blocks within a CASE or CASE ELSE block.
5 .

	

BASIC evaluates expl when the SELECT statement is first encountered ; BASIC then com-
pares expl with each case-clause in order of occurrence until a match is found or until a
CASE ELSE block or END SELECT is encountered .

6.

	

The following conditions constitute a match :
" Expl satisfies the relationship to exp2 specified by rel-op .

SELECT

" Exp1 is greater than or equal to exp3, but less than or equal to exp4, greater than or equal
to exp5 but less than or equal to exp6, and so on .

7 .

	

When a match is found between expl and a case-item, BASIC executes the statements in
the CASE block where the match occurred . If ranges overlap, the first match causes BASIC
to execute the statements in the CASE block . After executing CASE block statements,
control passes to the statement immediately following the END SELECT keywords .

8.

	

If no CASE match occurs, BASIC executes the statements in the else-clause, if present, and
then passes control to the statement immediately following the END SELECT keywords .

9.

	

If no CASE match occurs and you do not supply a case-else clause, control passes to the
statement following the END SELECT keywords .

100

	

SELECT AX. + B% + CX.CASE = 100PRINT 'THE VALUE IS EXACTLY 100'CASE 1 TO 99PRINT 'THE VALUE IS BETWEEN 1 AND 99'CASE :` 100PRINT 'THE VALUE IS GREATER THAN 100'CASE ELSEPRINT 'THE VALUE IS LESS THAN 100'END SELECT

BASIC Reference Manual

	

277

SLEEP

68.0 SLEEP
Function
The SLEEP statement suspends program execution for a specified number of seconds or until acarriage return is entered from the controlling terminal .
Format

SLEEP int-exp

Syntax Rules
1 .

	

In VAX-I I BASIC, int-exp must be between 0 and 2147483647, inclusive; if it is greaterthan 2147483647, BASIC signals the error "Integer error or overflow" (ERR= 51) .
2 .

	

In BASIC-PLUS-2, int-exp must be between 0 and 32767, inclusive; if it is greater than32767, BASIC signals "Integer error" and does not suspend program execution .
General Rules

Examples

1 .

	

Int-exp is the number of seconds BASIC waits before resuming program execution .
2.

	

Pressing the RETURN key on the controlling terminal cancels the effect of the SLEEPstatement .

SO

	

SLEEP 120%

278

	

BASIC Reference Manual

69.0 STOP
Function
The STOP statement halts program execution .
Format

Syntax Rules
None .

General Rules

Examples

1 .

	

STOP is valid anywhere in a program .
2 .

	

The STOP statement does not close files .
VAX-II BASIC

STOP

1 .

	

When a STOP statement executes in a program executed with the RUN command in the
BASIC environment, BASIC prints the line number and module name associated with the
STOP statement, then displays the BASIC prompt . In response to the prompt, you can type
immediate mode statements, CONTINUE to resume program execution, or any valid com-
piler command . See BASIC on VAX/VMS Systems for more information on immediate
mode .

2 .

	

When a STOP statement is in an executable image, the line number, module name, and a
pound sign (#) prompt are printed . In response to the prompt, you can type CONTINUE to
continue program execution or EXIT to end the program . If the program module was
compiled with the /NOLINE qualifier, no line number is displayed .

BASIC-PLUS-2
1 .

	

When a STOP statement executes in a program executed with the RUN /DEBUG command
or compiled with the /DEBUG qualifier, control passes to the BASIC-PLUS-2 debugger .
The debugger prints the line number and module name associated with the STOP state-
ment, then displays the pound sign (#) prompt . You can then use BASIC-PLUS-2 debugger
commands to analyze and debug your program . See Part VI in this manual for information
on BASIC-PLUS-2 debugger commands . Use the EXIT command to exit from the debugger
and end the program .

2 .

	

When a STOP statement executes in a program executed with RUN or compiled without
the /DEBUG qualifier, the line number of the STOP statement and a pound sign (#)
prompt are printed . In response to the prompt, you can type CONTINUE to continue
program execution or EXIT to end the program . The EXIT command closes all files before
leaving the program .

95 STOP

BASIC Reference Manual

	

279

SUB

70.0 SUB
Function
The SUB statement marks the beginning of a BASIC subprogram and specifies its parameters by
number and data type .
Format
VAX-11 BASIC

SUB sub-name [pass-mech] [([formal-param], . . .)]
[statement] . . .

END SUB
SUBEND

pass-mech: BY DESC
BY REF

formal-param :

	

unsubs-vbl-nam
[data-type] array-nam (

	

int-const

	

, . int-const] [pass-mech]

BASIC-PLUS-2

SUB sub-name [([formal-param], . . .)]
[statement] . . .

END SUB
SUBEND

formal-param :

	

unsubs-vbl-nam
[data-type]) array-nam (

	

int-const

	

, . . .)
L,

	

I . . .

280

	

BASIC Reference Manual

Syntax Rules
1 .

	

Sub-nam is the name of the separately compiled subprogram .
2 .

	

Formal-param specifies the number and type of parameters for the arguments the SUB
subprogram expects to receive when invoked .
" Empty parentheses indicate that the SUB subprogram has no parameters .
" Data-type specifies the data type of a parameter . If you do not specify a data type,
parameters are of the default data type and size . When you do specify a data type, all
following parameters are of that data type until you specify a new data type . Data-type
keywords, size, range, and precision are listed in Table 2 in this manual .

" If you specify a datatype, unsubs-vbl-nam and array-nam cannot end in a percent sign
(%) or dollar sign ($) .

3 .

	

The SUB statement must be the first statement in the SUB subprogram .
4 .

	

Compiler directives and comment fields (!), because they are not BASIC statements, may
precede the SUB statement . However, they cannot precede the subprogram's first
numbered line . Note that REM is a BASIC statement ; therefore, it cannot precede the SUB
statement .

5 . Every SUB statement must have a corresponding END SUB statement or SUBEND
statement .

6 .

	

Any BASIC statement except END, FUNCTION, END FUNCTION, or EXIT FUNCTION
can appear in a SUB subprogram .

VAX-11 BASIC
1 .

	

Sub-nam can consist of from 1 to 31 characters and must conform to the following rules :
" The first character of an unquoted name must be an alphabetic character (A through Z) .
The remaining characters, if present, can be any combination of letters, digits (0 through
9), dollar signs ($), periods (.), or underscores (_) .

" A quoted name can consist of any combination of printable ASCII characters .
2 .

	

Data-type can be any BASIC data-type keyword or a data type defined in the RECORD
statement .

3 .

	

If the data type is STRING, the =int-const clause allows you to specify the length of the
string . If you do not specify a string length, the default length is 16.

4 .

	

Pass-mech specifies the parameter passing mechanism by which the subprogram receives
arguments when called by non-BASIC programs .

SUB

5 .

	

A pass-mech clause outside the parentheses applies by default to all SUB parameters . A
pass-mech clause in the formal-param list overrides the specified default and applies only
to the immediately preceding parameter .

6 .

	

If you do not specify a pass-mech, the SUB program receives arguments by the default
passing mechanisms, as shown in Table 19 .

February 1984

	

BASIC Reference Manual

	

281

SUB

7 . Parameters defined in formal-param must agree in number, type, ordinality, andpass-mech with the arguments specified in the CALL statement of the calling program .
8 .

	

You can specify from 1 to 32 formal-params .
BASIC-PLUS-2

1 .

	

Sub-nam can consist of from one to six characters and must conform to the following rules :
" The first character of an unquoted name must be an alphabetic character (A through Z) .The remaining characters, if present, can be any combination of letters, digits (0 through9), dollar signs ($), or periods (.) .
" A quoted name can consist of any combination of alphabetic characters, digits, dollarsigns ($), periods (.), or spaces .

2 .

	

Data-type can be any BASIC data-type keyword .
3 .

	

Parameters defined in formal-param must agree in number, type, and ordinality with thearguments specified in the CALL statement of the calling program .
4 .

	

You can specify from one to eight formal-params .
General Rules

1 .

	

All variables, except those named in MAP and COMMON statements and in DATA state-ments in a subprogram, are local to that subprogram .
2 .

	

BASIC initializes local variables upon each entry to the subprogram as follows :
" Numeric variables are initialized to zero .
" String variables are initialized to the null string .

VAX-II BASIC
1 .

	

SUB subprograms receive parameters BY REF or BY DESC. A SUB subprogram cannotreceive any parameter BY VALUE . Table 19 lists and describes VAX- I 1 BASIC parameterpassing mechanisms .
" BY REF specifies that the subprogram receives the argument's address .
" BY DESC specifies that the subprogram receives the address of a VAX-1 1 BASIC descrip-tor . For information about the format of a VAX-11 BASIC descriptor for strings andarrays, see Appendix C in BASIC on VAX/VMS Systems . For information on other typesof descriptors, see the VAX Architecture Handbook .

2 .

	

By default, VAX-71 BASIC subprograms receive numeric unsubs-vbls BY REF and all otherparameters BY DESC . You can override these defaults for strings and arrays with a BYclause :
" If you specify a string length with the = int-const clause, you must also specify BY REF. Ifyou specify BY REF and do not specify a string length, BASIC uses the default stringlength of 16 .
" If you specify array bounds, you must also specify BY REF.

3 .

	

RECORD data structures are initialized to zero or the null string .
4 .

	

VAX-1 1 BASIC subprograms may be called recursively .

282

	

BASIC Reference Manual

BASIC-PLUS-2

1 .

You cannot specify how subprograms receive parameters in BASIC-PLUS-2

.

Numeric

unsubs-vbIs

are received BY REF and string unsubs-vbIs and entire arrays are received BY

DESC .

Table 20 lists and describes BASIC-PLUS-2 BASIC parameter passing mechanisms

.

2 .

	

BASIC-PLUS-2

subprograms cannot be called recursively

.

Examples

VAX-11

BASIC

BASIC-PLUS-2

"

BY REF specifies that the subprogram receives the argument's address

.

100

	

SUB

SUBPRO (BYTE AGE# DOUBLE WAGE(20t2O)t STRING EMP_NAME)

0
0

900

	

END

SUB

SUB

"

BY DESC specifies that the subprogram receives the address of a BASIC-PLUS-2 descrip-

tor .

For information about the format of a BASIC-PLUS-2 descriptor, see Appendix C in

BASIC

on RSX-11M/M-PLUS Systems and BASIC on RSTS/E Systems

.

BASIC

Reference Manual	

283

100 SUB

SUB3 BY REF (DOUBLE At Bt

&
STRING

EMP_NAM = 20 BY DESCt

&
WAGE(20))

900 END

SUB

SUBEND

71 .0 SUBEND
Function
The SUBEND statement is a synonym for END SUB . See the END statement for syntax rules .
Format

SUBEND ~

END SUB

284

	

BASIC Reference Manual

72.0 SUBEXIT
Function
The SUBEXIT statement is a synonym for the EXIT SUB statement . See the EXIT statement for syntax
rules .
Format

SUBEXIT

SUBEXIT ~

EXIT SUB

BASIC Reference Manual

	

285

UNLESS

73.0 UNLESS
Function
UNLESS modifies a statement . BASIC executes the modified statement only if a conditional expres-sion is false .
Format

statement UNLESS cond-exp

Syntax Rules
1 .

	

The UNLESS qualifier cannot be used on nonexecutable statements or on statements suchas SELECT, IF, and DEF that establish a statement block .
2 .

	

Cond-exp can be any conditional expression .
General Rules

1 .

	

BASIC executes the statement only if cond-exp is false (value zero) .
Examples
100

	

PRINT "A DOES NOT EQUAL 3" UNLESS A% = 3%

286

	

BASIC Reference Manual

74.0 UNLOCK
Function
The UNLOCK statement unlocks the current record or bucket locked by the last FIND or GETstatement .
Format

UNLOCK chnl-exp

Syntax Rules
1 .

	

Chnl-exp is a numeric expression that specifies a channel number associated with a file . Itmust be immediately preceded by a pound sign (#) .
General Rules

1 .

	

A file must be opened on chnl-exp before UNLOCK can execute .
2 .

	

The UNLOCK statement does not apply to files not on disk.
3 .

	

If the current record is not locked by a previous GET or FIND statement, the UNLOCKstatement has no effect and BASIC does not signal an error .
4.

	

The UNLOCK statement does not affect record buffers .
5 .

	

After you execute the UNLOCK statement, you cannot UPDATE or DELETE the currentrecord .
Examples
90

	

UNLOCK #10

UNLOCK

BASIC Reference Manual

	

287

UNTIL

75.0 UNTIL
Function
The UNTIL statement marks the beginning of an UNTIL loop or modifies the execution of anotherstatement .
Format

Conditional
UNTIL cond-exp

[statement] . . .
NEXT

Statement Modifier
statement UNTIL cond-exp

Syntax Rules
1 .

	

Cond-exp can be any valid relational or logical expression .
Conditional

1 .

	

A NEXT statement must end the UNTIL loop .
General Rules

Conditional
1 .

	

BASIC evaluates cond-exp before each loop iteration . If the expression is false (value zero),BASIC executes the loop . If the expression is true (value nonzero), control passes to the firstexecutable statement after the NEXT statement.
Statement Modifier

Examples
1 .

	

BASIC executes the statement repeatedly until cond-exp is true .

Conditional
10

	

UNTIL A >=A = A + .01TOTAL = TOTAL + 1NEXT
Statement Modifier
100

	

A = A + 1 UNTIL A ?= 200

288

	

BASIC Reference Manual

76.0 UPDATE
Function
The UPDATE statement replaces a record in a file with a record in the record buffer . UPDATE is valid
only on RMS sequential, relative, and indexed files .
Format

UPDATE chnl-exp [, COUNT int-exp]

Syntax Rules
1 .

	

Chnl-exp is a numeric expression that specifies a channel number associated with a file . It
must be immediately preceded by a pound sign (#) .

2 .

	

Int-exp in the COUNT clause specifies the record's size .
3 .

	

In BASIC-PLUS-2, if int-exp equals zero, the entire record is written to the file .

General Rules

UPDATE

1 .

	

The file associated with chnl-exp must be a disk file opened with ACCESS MODIFY .

2 .

	

Each UPDATE statement must be preceded by a successful GET or FIND operation or
BASIC signals "No current record" (ERR = 131) . Because FIND locates but does not
retrieve records, you must specify a COUNT clause in the UPDATE statement when the
preceding operation was a FIND . Int-exp in the COUNT clause must exactly specify the
size of the old record .

3 .

	

After an UPDATE statement executes, there is no Current Record Pointer. The Next Record
Pointer is unchanged .

4 .

	

The length of the new record must be the same as that of the existing record for all files
with fixed-length records . If the new record is larger than the existing record, BASIC
truncates the right side of the new record to fit the existing record . If the new record is
smaller than the existing record, the file gets corrupted .

5 .

	

If you write a record to a sequential file with fixed-length records, int-exp in the COUNT
clause must exactly match the size of the old record .

6.

	

For sequential files with variable-length records, the length of the new record must be the
same as that of the existing record .
" If you specify a COUNT clause, int-exp must match the size of the existing record .
" in the absence of a COUNT clause, UPDATE uses the record size set by the last success-

ful GET on that channel .

BASIC Reference Manual

	

289

UPDATE

Examples

7 .

	

For relative files with variable-length records, the new record can be larger or smaller thanthe record it replaces .
" The new record must be smaller than or equal to the maximum record size set with theMAP or RECORDSIZE clause when the file was opened .
" You must use the COUNT clause to specify the size of the new record if it is differentfrom that of the record last accessed by a GET on that channel .

8 .

	

For indexed files with variable-length records, the new record can be larger or smaller thanthe record it replaces .
" When an indexed file permits duplicate primary keys, an updated record must be thesame length as the old one.
" When the program does not permit duplicate primary keys, the new record can be nolonger than the maximum record size specified in the MAP or RECORDSIZE clause whenthe file was opened and must include at least the primary key field .
" An alternate key for the new record can differ from that of the existing record only if theOPEN statement for that file specified CHANGES for the alternate key .

9 .

	

On RSTS/E systems, you can use UPDATE on native-mode files opened with mode 1 bit set(UPDATE mode) .

100

	

UPDATE #4# COUNT 32

290

	

BASIC Reference Manual

77.0 WAIT
Function

WAIT

The WAIT statement specifies the number of seconds the program waits for terminal input beforesignaling an error .
Format

WAIT int-exp

Syntax Rules

Examples

1 .

	

The WAIT statement must precede an INPUT, INPUT LINE, LINPUT, MAT INPUT, or MATLINPUT statement, or it has no effect .
2 .

	

In VAX-11 BASIC, int-exp must be between 0 and 2147483647, inclusive ; if it is greaterthan 2147483647, BASIC signals the error "Integer error or overflow" (ERR =51) .
3 .

	

In BASIC-PLUS-2, int-exp must be between 0 and 32767, inclusive; if it is greater than32767, BASIC signals "Integer error" and the WAIT statement has no effect .
General Rules

1 . Int-exp is the number of seconds BASIC waits for input before signaling the error,
"Keyboard wait exhausted" (ERR = 15) .

2 .

	

After BASIC executes a WAIT statement, all input statements wait the specified amount of
time before BASIC signals an error .

3 .

	

WAIT 0 disables the WAIT statement .

50

	

WAIT GOINPUT "YOU HAVE SIXTY SECONDS TO TYPE YOUR NAME"+ NAME$WAIT 0

BASIC Reference Manual

	

291

WHILE

78.0 WHILE
Function
The WHILE statement marks the beginning of a WHILE loop or modifies the execution of anotherstatement .
Format

Conditional
WHILE cond-exp

[statement] . . .
NEXT

Statement Modifier
statement WHILE cond-exp

Syntax Rules
1 .

	

Cond-exp can be any valid relational or logical expression .
Conditional

1 .

	

A NEXT statement must end the WHILE loop .
General Rules

Conditional

Statement Modifier

Examples

1 .

	

BASIC evaluates cond-exp before each loop iteration . If the expression is true (value non-
zero), BASIC executes the loop . If the expression is false (value zero), control passes to the
first executable statement after the NEXT statement .

1 .

	

BASIC executes the statement repeatedly as long as cond-exp is true .

Conditional
10

	

WHILE X <: 100
X = X + SQR(X)NEXT

Statement Modifier
100

	

X% = X'X. + 1% WHILE X% <; 100%

292

	

BASIC Reference Manual

1 .0 ABS
Function
The ABS function returns a floating-point number that equals the absolute value of a specified
floating-point expression .
Format

real-vbl = ABS(real-exp)

Syntax Rules
None.

General Rules

Examples

1 .

	

BASIC expects the argument of the ABS function to be a real-exp . When the argument is a
real-exp, BASIC returns a value of the same floating-point size . When the argument is not a
real-exp, BASIC converts the argument to the default floating-point size and returns a value
of the default floating-point size .

400

	

A = ABS(-300 * G)
410

	

B = -39 .2
420

	

PRINT ABS(B)t A

PART VFunctions
ABS

2 .

	

The returned floating-point value is always greater than or equal to zero . The absolute
value of zero is zero . The absolute value of a positive number equals that number . The
absolute value of a negative number equals that number multiplied by minus one .

BASIC Reference Manual

	

293

ABS%

2.0 ABS%
Function
The ABS% function returns an integer number that equals the absolute value of a specified integer
expression .
Format

int-vbl = ABS%(int-exp)

Syntax Rules
None .

General Rules

Examples

1 .

	

If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default integer size .

2 .

	

The returned value is always greater than or equal to zero . The absolute value of zero is
zero . The absolute value of a positive number equals that number . The absolute value of a
negative number equals that number multiplied by minus one .

400

	

A = ABS%(-100% * G%)410

	

B = -39420

	

PRINT ABS%(B)t A

294

	

BASIC Reference Manual

3 .0 ASCII
Function
The ASCII function returns the ASCII value (base 10) of a string's first character .
Format

ASC
int-vbI =

	

ASCII I (str-exp)

Syntax Rules
None .

General Rules
1 .

	

The ASCII value of a null string is zero .
2 . The ASCII function returns an integer value of the default size between 0 and 255,

inclusive .
Examples
500

	

ASC_VAL = ASCII(EMP_NAM$)

ASCII

BASIC Reference Manual

	

295

ATN

4.0 ATN
Function
The ATN function returns the angle, in radians, of a specified tangent .
Format

real-vbl = ATN(real-exp)

Syntax Rules
None .

General Rules

Examples

1 .

	

ATN returns a value from -PI /2 through PI /2 .
2 .

	

The returned angle is expressed in radians .
3 .

	

BASIC expects the argument of the ATN function to be a real-exp . When the argument is areal-exp, BASIC returns a value of the same floating-point size . When the argument is not areal-exp, BASIC converts the argument to the default floating-point size and returns a valueof the default floating-point size .

150

	

ANGLE-RAD = ATN(T)160

	

ANGLE _DEG

	

=

	

ANGLE _RAD/(PI/180)

296

	

BASIC Reference Manual

5.0 BUFSIZ
Function
The BUFSIZ function returns the buffer size, in bytes, of a specified channel .
Format

int-vbl = BUFSIZ(chnl-exp)

Syntax Rules
None .

General Rules

BUFSIZ

1 .

	

Chnl-exp is the channel expression of an open file . If the specified channel is closed,
BUFSIZ returns zero . You cannot include a pound sign (#) in chnl-exp .

2 .

	

In BASIC-PLUS-2, BUFSIZ of channel zero returns the current terminal width or, in a
batch stream, 512 .

3 .

	

In VAX-11 BASIC, BUFSIZ of channel zero always returns 132 .
4 .

	

Int-vbl is a WORD integer in BASIC-PLUS-2 and a LONG integer in VAX-11 BASIC .
Examples
100

	

A = BUFSIZ(2)

BASIC Reference Manual

	

297

CCPOS

6.0 CCPOS
Function
The CCPOS function returns the output record's current character or cursor position on a specifiedchannel .
Format

int-vbl = CCPOS(chnl-exp)

Syntax Rules
None .

General Rules
1 .

	

Chnl-exp must specify an open file or terminal . You cannot include a pound sign (#) in
chnl-exp .

2 . If chnl-exp is zero, CCPOS returns the current character position of the controlling
terminal .

3 .

	

The int-vbl returned by the CCPOS function is of the default integer size .
4 .

	

The CCPOS function counts only characters . If you use cursor addressing sequences suchas escape sequences, the value returned will not be the cursor position .
5 .

	

The first character position on a line is zero .
Examples
100

	

CHNLO = CCPOS (0)

298

	

BASIC Reference Manual

7.0 CHR$
Function
The CHR$ function returns a 1-character string that corresponds to the ASCII value you specify .
Format

str-vbl = CHR$(int-exp)

Syntax Rules
None .

General Rules

Examples

1 .

	

CHR$ returns the character whose ASCII value equals int-exp . If int-exp is greater than 255,
BASIC treats it modulo 256 . For example, CHR$(325) is the same as CHR$(69) .

2 .

	

BASIC treats all arguments as unsigned 8-bit integers in the range 0 to 255 . Negative
numbers are treated as the two's complement (for example, -1 is treated as 255) .

3 .

	

If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size .

220

	

A$ = CHR$(G5)230

	

PRINT CHR$(VALUE)

CHR$

BASIC Reference Manual

	

299

COMP%

8.0 COMP%
Function
The COMP% function compares two numeric strings and returns a minus one, zero, or one, depend-ing on the results of the comparison .
Format

int-vbl = COMP%(str-exp1, str-exp2)

Syntax Rules
1 .

	

Str-expl and str-exp2 are numeric strings . They can contain up to 60 ASCII digits and anoptional decimal point and leading sign .
General Rules

1 .

	

If str-expl is greater than str-exp2, COMP% returns one .
2 .

	

If the string expressions are equal, COMP% returns zero .
3 .

	

If str-expl is less than str-exp2, COMP% returns minus one .
4 .

	

The value returned by the COMP% function is an integer of the default size .
Examples
400

	

NUM_STRING$ = "35°425

	

OLD-NUM-STRING$ = "33 .1"450

	

ALPHA = COMPX,(NUM_STRING$t OLD-NUM-STRING$)

300

	

BASIC Reference Manual

9.0 COs
Function
The COS function returns the cosine, in radians, of an angle .
Format

real-vbl = COS(real-exp)

Syntax Rules
None .

General Rules

Examples

1 .

	

The returned value is between minus one and one .
2 .

	

BASIC expects the argument of the COS function to be a real-exp . When the argument is a
real-exp, BASIC returns a value of the same floating-point size . When the argument is not a
real-exp, BASIC converts the argument to the default floating-point size and returns a value
of the default floating-point size .

900

	

COSINE .ALPHA = COS(PI/2)

COs

BASIC Reference Manual

	

301

CTRLC

10.0 CTRLC
Function
The CTRLC function enables CTRL/C trapping . When CTRL/C trapping is enabled, a CTRL/C typedat the terminal causes control to be transferred to the program's error handler .
Format

int-vbl = CTRLC

Syntax Rules
None .

General Rules

Examples

1 .

	

After the CTRLC function is invoked, control passes to the error handler when BASICencounters a CTRL/C . If there is no error handler in a program, the program aborts whenBASIC encounters a CTRL/C .
2 . CTRL/C trapping is asynchronous ; that is, BASIC suspends execution and signals"Programmable "C trap" (ERR =28) as soon as it detects a CTRL /C . Consequently, astatement can be interrupted while executing . A statement so interrupted may be onlypartially completed and variables may be left in an undefined state .
3 .

	

BASIC can trap more than one CTRL /C error in a program as long as the error does notoccur while the error handler is executing . If a second CTRL/C is detected while the errorhandler is processing the first CTRL/C, the program aborts .
4.

	

On RSX-11 MIM-PLUS systems, the task that contains the CTRLC function must be able toattach to a terminal as soon as the CTRLC function is enabled . If another task is attached tothe terminal, the task that enabled the CTRLC function terminates with a directive error .
5 .

	

The CTRLC function always returns a value of zero .

10

	

ON ERROR GOTO 1900020

	

YX = CTRLC

19000

	

IF " (ERR = 28) THEN YX = CTRLC19010 RESUME

302

	

BASIC Reference Manual

11 .0 CVT$$
Function
The CVT$$ function is identical to the EDIT$ function . See the EDIT$ function for syntax and general
rules .

Format

DIGITAL recommends that you use the EDIT$ function rather than the CVT$$ function
for new program development .

str-vbl = CVT$$(str-exp, int-exp)

Examples
100

	

A$ = CVT$$(B$t4B)

Note

CVT$$

BASIC Reference Manual

	

303

CVTxx

12.0 CVTxx
Function

The CVT$% function maps the first 2 characters of a string into a 16-bit integer . The CVT%$ function
translates a 16-bit integer into a 2-character string . The CVT$F function maps a 4- or 8-character
string into a floating-point variable . The CVTF$ function translates a floating-point number into a 4-
or 8-byte character string . The number of characters translated depends on whether the floating-point
variable is single- or double-precision .
Format

int-vbl = CVT$%(str-vbl)
str-vbl = CVT%$(int-vbl)
str-vbl = CVTF$(real-vbl)
real-vbl = CVT$F(str-vbl)

Syntax Rules

General Rules

304

CVT functions are supported only for compatibility with BASIC-PLUS . DIGITAL
recommends that you use BASIC's dynamic mapping feature or multiple MAP state-
ments for new program development .

1 .

	

In VAX-1 1 BASIC, CVT functions reverse the order of the bytes when moving them to or
from a string . Thus, you can mix MAP and MOVE statements, but you cannot use FIELD
and CVT functions on a file if you also plan to use MAP or MOVE .

CVT$

Note

1 .

	

If the CVT$% str-vbl has fewer than two characters, BASIC pads the string with nulls .
2 .

	

In VAX-11 BASIC, if the default data type is LONG, only two bytes of data are extracted
from str-vbl ; the high-order byte is sign-extended into a longword .

3 .

	

The value returned by the CVT$% function is an integer of the default size .
CVT%$

1 .

	

Only two bytes of data are inserted into str-vbl .
2 .

	

If you specify a floating-point variable for int-vbl, BASIC truncates it to an integer of the
default size . If the default size is BYTE and the value of int-vbl exceeds 127, BASIC signals
an error .

BASIC Reference Manual

CVTF
1 .

	

CVTF maps four characters when the program is compiled with /SINGLE and eight char-
acters when the program is compiled with /DOUBLE .

2 .

	

If str-vbl has fewer than four or eight characters, BASIC pads the string with nulls .
3 .

	

The real-vbl returned by the CVTF function is of the default floating-point size . In VAX-1 1
BASIC, if the default size is GFLOAT or HFLOAT, BASIC signals the error "Floating CVT
illegal for GFLOAT or HFLOAT" .

CVTF$
1 .

	

The CVTF$ function maps single-precision numbers to a 4-character string and double-
precision numbers to an 8-character string .

2 .

	

BASIC expects the argument of the CVTF$ function to be a real-exp . When the argument is
a real-exp, BASIC returns a value of the same floating-point size . When the argument is not
a real-exp, BASIC converts the argument to the default floating-point size and returns a
value of the default floating-point size . In VAX-I I BASIC, if the default floating-point size
is GFLOAT or HFLOAT, BASIC signals the error "Floating CVT illegal for GFLOAT or
HFLOAT" .

Examples
10

	

AX = CVT$%(EMP-NAME$)
20

	

A$ = CVT%$(A%)
100

	

A

	

=

	

CVTF (EMP-NAME$)
110

	

EMP-NAME$ = CVTF$(A)

Note
DIGITAL does not recommend the CVTxx functions for new program development .

CVTxx

BASIC Reference Manual

	

305

DATE$

13.0 DATE$
Function
The DATE$ function returns a string containing a day, month, and year in the form dd-Mmm-yy .
Format

str-vbl = DATE$(int-exp)

Syntax Rules
1 .

	

Int-exp can have up to six digits in the form YYYDDD, where the "Y" characters specifythe number of years since 1970 and the "D" characters specify the day of that year .
2 .

	

You must fill all three of the "D" positions with digits or zeros before you fill the "Y"positions . For example :
" DATE$(121) returns the date 01-May-70, day 121 of the year 1970 .
" DATE$(1201) returns the date 20-Jul-71, day 201 of the year 1971 .
" DATE$(12001) returns the date 01-Jan-82, day 1 of the year 1982 .
" DATE$(10202) returns the date 21-Jul-80, day 202 of the year 1980 .

3 .

	

If int-exp equals zero, DATE$ returns the current date .
General Rules

1 .

	

The str-exp returned by the DATE$ function consists of nine characters and expresses the

Examples

day, month, and year in the form dd-Mmm-yy .
2 .

	

If you specify an invalid date, such as day 385, results are undefined and unpredictable .
3 .

	

If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of thedefault size .
4 .

	

On RSTS/E systems, the form of the DATE$ function's output can be changed to ISOformat, yy.mm.dd, during the installation procedure, or to the format selected by thesystem manager at system start-up time .

500

	

PRINT DATE(9231)

306

	

BASIC Reference Manual February 1984

14.0 DECIMAL (VAX-11 BASIC Only)
Function
The DECIMAL function converts a numeric expression or numeric string to the DECIMAL data type .
Format

decimal-vbl = DECIMAL(exp [, int-constl, int-const2])

Syntax Rules
1 .

	

Int-constl specifies the total number of digits (the precision) and int-const2 specifies the
number of digits to the right of the decimal point (the scale) . If you do not specify these
values, BASIC uses the d (digits) and s (scale) defaults for the DECIMAL data type .

2 . Int-constl and int-const2 must be positive integers in the range 1 to 31, inclusive .
Int-const2 cannot exceed the value of int-constl .

3 .

	

Exp can be either a numeric expression or a numeric string . If a numeric string, it can
contain up to 31 ASCII digits and an optional decimal point and leading sign .

General Rules

Examples

1 .

	

If exp is a string, BASIC ignores leading, trailing, and embedded spaces and tabs .
2 .

	

The DECIMAL function returns a zero when a string argument contains only spaces and
tabs, or when it is null .

100

	

INPUT "enter a decimal value" ;DEC-VALUEB = DECIMAL(DEC-VALUEt5,2)PRINT Bs DECIMAL(HOURLY-PAY)

DECIMAL

BASIC Reference Manual

	

307

DET

15.0 DET
Function
The DET function returns the value of the determinant of the last matrix inverted with the MAT INV
function .
Format

real-vbl = DET

Syntax Rules
None.

General Rules

Examples

1 .

	

When a matrix is inverted with the MAT INV statement, BASIC calculates the determinant
as a by-product of the inversion process . The DET function retrieves this value .

2 .

	

If your program does not contain a MAT INV statement, the DET function returns a zero .
3 .

	

The value returned by the DET function is a floating-point value of the default floating-
point size .

100

	

DETERMINANT = DET
PRINT DET

308

	

BASIC Reference Manual

16.0 DIF$
Function
DIF$ returns a string whose value is the difference between two numeric strings .
Format

str-vbl = DIF$(str-expl, str-exp2)

Syntax Rules

Examples

DIF$

1 .

	

Str-expI and str-exp2 specify the numeric strings you want to process . They can contain up
to 54 ASCII digits, an optional decimal point, and an optional leading sign .

General Rules
1 .

	

BASIC subtracts str-exp2 from str-expI and stores the result in str-vbl .
2 .

	

The difference between two integers takes the precision of the larger integer .
3 .

	

The difference between two decimal fractions takes the precision of the more precise
fraction, unless trailing zeros generate that precision .

4 .

	

The difference between two floating-point numbers takes precision as follows :
" The difference of the integer parts takes the precision of the larger part .
" The difference of the decimal fraction part takes the precision of the more precise part .

5 .

	

BASIC truncates leading and trailing zeros .

500

	

RESULT$ = DIF$("6776"t "-455")

BASIC Reference Manual

	

309

ECHO

17.0 ECHO
Function
The ECHO function causes characters to be echoed at a terminal open on a specified channel .
Format

int-vbl = ECHO(chnl-exp)

Syntax Rules
None.

General Rules
1 .

	

Chnl-exp must specify a terminal . You cannot include a pound sign (#) in chnl-exp .
2 .

	

The ECHO function is the complement of the NOECHO function ; that is, ECHO disables
the effect of ECHO and vice versa .

3 .

	

The ECHO function has no effect on an unopened channel .
4 .

	

The ECHO function always returns a value of zero .
Examples
100

	

Y = ECHO(0)

31 0

	

BASIC Reference Manual

18.0 EDIT$
Function
The EDIT$ function performs one or more string editing functions, depending on the value of its
integer argument .
Format

str-vbl = EDIT$(str-exp, int-exp)

Syntax Rules
None.

General Rules
1 .

	

BASIC edits str-exp to produce str-vbl .
2 .

	

The editing that BASIC performs depends on the value of int-exp . Table 22 describes EDIT$
values and functions .

3 .

	

All values are additive ; that is, you can perform the editing functions of values 8, 16, and
32 by specifying a value of 56 .

4 .

	

If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size .

Table 22: EDIT$ Values

Examples
100

	

NEW_STRING$ = EDIT$(OLD_STRING$t 32 + SG)

EDIT$

BASIC Reference Manual

	

31 1

Value Edit Performed

1 Discards each character's parity bit (bit 7)
2 Discards all spaces and tabs
4 Discards all carriage returns, line feeds, form feeds, deletes, escapes, and nulls
8 Discards leading spaces and tabs

16 Converts multiple spaces and tabs to a single space
32 Converts lowercase letters to uppercase letters
64 Converts left bracket ([) to left parenthesis [(] and right bracket (1) to right parenthesis p]

128 Discards trailing spaces and tabs (same as TRM$ function)
256 Suppresses all editing for characters within quotation marks ; if the string has only one quotation mark, BASIC

suppresses all editing for the characters following the quotation mark

ERL

19 .0 ERL
Function
The ERL function returns the number of the line where the last error occurred .
Format

int-vbl = ERL

Syntax Rules
None .

General Rules

Examples

1 .

	

If the ERL function is used before an error occurs or after BASIC executes a RESUME
statement, results are undefined .

2 . The ERL function overrides the /NOLINE qualifier . If a program compiled with the
/NOLINE qualifier in effect contains an ERL function, BASIC signals the message "ERL
overrides NOLINE" .

3 .

	

The int-vbl returned by the ERL function is a WORD integer in BASIC-PLUS-2 and a
LONG integer in VAX-I I BASIC .

300

	

IF (ERL = 20) THEN RESUME 500
00500

	

PRINT 'Error occurred on line' ;ERL

31 2

	

BASIC Reference Manual

20.0 ERN$
Function
The ERN$ function returns the name of the main program, subprogram, or (VAX-1 1 BASIC only) DEF
that was executing when the last error occurred .
Format

str-vbl = ERN$

Syntax Rules
None .

General Rules
1 .

	

In BASIC-PLUS-2, if the ERN$ function executes before an error occurs, ERN$ is unde-
fined . When an error occurs, ERN$ is set to the name of the module that caused the error .

2 .

	

On VAX-11 systems, if the ERN$ function executes before an error occurs or after BASIC
executes a RESUME statement, ERN$ returns a null string .

Examples
2000

	

PRINT 'Error in modUle' ;ERN$

February 1984

ERN$

BASIC Reference Manual

	

313

ERR

21 .0 ERR
Function
The ERR function returns the number of the latest run-time error .
Format

int-vbl = ERR

Syntax Rules
None .

General Rules

Examples

1 .

	

If the ERR function is used before an error occurs or after BASIC executes a RESUME
statement, results are undefined .

2 .

	

The int-vbl returned by the ERR function is always a WORD integer in BASIC-PLUS-2 and
a LONG integer in VAX-11 BASIC .

3 .

	

Appendix B in BASIC on VAX/VMS Systems, BASIC on RSX-11MIM-PLUS Systems, or
BASIC on RSTS/E Systems lists run-time errors and their numbers .

2000

	

IF (ERR = 11) THEN RESUME 1000

31 4

	

BASIC Reference Manual

22.0 ERT$
Function
The ERT$ function returns explanatory text associated with an error number .
Format

str-vbl = ERT$(int-exp)

Syntax Rules
None .

General Rules

Examples

1 .

	

Int-exp is an error number . It must be between 0 and 255, inclusive .
2 .

	

The ERT$ function can be used at any time to return the text associated with a specified
error number .

3 .

	

If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size .

2020

	

PRINT 'Error' ;ERR ;' on line' ;ERLPRINT ERT$(ERR)

ERT$

BASIC Reference Manual

	

31 5

EXP

23.0 EXP
Function
The EXP function returns the value of the mathematical constant "e", raised to a specified power .
Format

real-vbl = EXP(real-exp)

Syntax Rules
None .

General Rules

Examples

1 .

	

The EXP function returns the value of "e" raised to the power of real-exp .
2 .

	

When the default size is SINGLE or DOUBLE, EXP allows arguments between -88 and 88,
inclusive . In VAX-11 BASIC, if the default size is GFLOAT, EXP allows arguments in the
range -709 to 709, inclusive ; if the default size is HFLOAT, the arguments can be in the
range -11356 to 11355 . When the argument exceeds the upper limit of a range, BASIC
signals an error . When the argument exceeds the lower limit of a range, the EXP function
returns zero and BASIC does not signal an error .

3 .

	

BASIC expects the argument of the EXP function to be a real-exp . When the argument is a
real-exp, BASIC returns a value of the same floating-point size . When the argument is not a
real-exp, BASIC converts the argument to the default floating-point size and returns a value
of the default floating-point size .

100

	

A = EXP(U .6)

31 6

	

BASIC Reference Manual

24.0 FIX
Function
The FIX function truncates a floating-point value at the decimal point and returns the integer portion
represented as a floating-point value .
Format

real-vbl = FIX(real-exp)

Syntax Rules
None .

General Rules

Examples

1 .

	

The FIX function returns the integer portion of a floating-point value, not an integer value .
2 .

	

BASIC expects the argument of the FIX function to be a real-exp . When the argument is a
real-exp, BASIC returns a value of the same floating-point size . When the argument is not a
real-exp, BASIC converts the argument to the default floating-point size and returns a value
of the default floating-point size .

3 .

	

If real-exp is negative, FIX returns the negative integer portion . For example, FIX(-5 .2)
returns -5.

200

	

FIX-!VALUE = FIX(-3 .333)
210

	

PRINT FIX(24 .566)t FIX-VALUE

FIX

BASIC Reference Manual

	

31 7

FORMAT$

25.0 FORMAT$
Function
The FORMAT$ function converts an expression to a formatted string .
Format

str-vbl = FORMAT$(exp, str-exp)

Syntax Rules
None .

General Rules
1 .

	

The rules for building a format string are the same as those for printing numbers with the
PRINT USING statement .

Examples
500

	

PRINT FORMAT$(12345t

31 8

	

BASIC Reference Manual

26.0 FSP$
Function
The FSP$ function returns a string describing an open file on a specified channel .
Format

FSP$

str-vbl = FSP$(chnl-exp)

Syntax Rules
1 .

	

A file must be open on chnl-exp . You cannot include a pound sign (#) in chnl-exp .
2 .

	

The FSP$ function must come immediately after the OPEN statement for the file .
General Rules

Examples

1 .

	

In BASIC-PLUS-2, byte 1 returns the RMS record format field (RFM). In VAX-I I BASIC,
byte 1 is undefined .

2 .

	

In BASIC-PLUS-2, bytes 9 and 10 in the returned string contain the RMS Bucketsize (BKS)
or RMS Blocksize (BLS) for magnetic tape . Byte 12 is the number of indexes (keys) in the
file . In VAX-I I BASIC, the FSP$ function returns zeros in bytes 9 through 12 .

3 .

	

Use the FSP$ function with files opened as ORGANIZATION UNDEFINED. Then use
multiple MAP statements to interpret the returned data .

4 .

	

See the BASIC User's Guide and the RMS User's Guide for more information on FSP$
values .

Note
VAX-II BASIC supports the FSP$ function for compatibility with BASIC-PLUS-2 .
However, you can access the information in bytes 9 through 12 in the returned string
more efficiently in VAX-II BASIC by using the USEROPEN clause in the OPEN
statement .

500

	

A$ = FSP$(1)

BASIC Reference Manual

	

319

FSS$

27.0 FSS$ (BASIC-PLUS-2 Only)
Function
The FSS$ function scans a file name string beginning at a specified position and returns a
30-character string describing the file name and status . Because file specifications differ from system
to system, the returned string contains system-specific information . See BASIC on RSX-11 MI M-PLUS
Systems or BASIC on RSTS/E Systems for more information on the values returned by the FSS$
function .
Format

str-vbl = FSS$(str-vbl, int-vbl)

Syntax Rules
1 .

	

Str-vbl names the file name string to be scanned .
2 .

	

Int-vbl specifies the character position at which scanning starts .
General Rules

1 .

	

If you specify a floating-point variable for int-vbl, BASIC truncates it to an integer of the
default size .

2 .

	

Str-vbl is a 30-character string . See BASIC on RSX-11 MIM-PLUS Systems and BASIC onRSTS/E Systems for information on the encoding of str-vbl .

Examples
100

	

Y$

	

=

	

FSS$ (A$ #B'X,)

320

	

BASIC Reference Manual

Note
VAX-11 BASIC does not support the FSS$ function . However, the DEFAULTNAME
clause in the OPEN statement supplies default file specification components .

28 .0 GETRFA
Function
The GETRFA function returns the Record File Address (RFA) of the last record accessed in an RMS file
open on a specified channel .
Format

GETRFA

rfa-vbl = GETRFA(chnl-exp)

Syntax Rules
1 .

	

Rfa-vbl is a variable of the RFA data type .
2 .

	

Chnl-exp is the channel number of an open RMS file . You cannot include a pound sign (#)
in the channel expression .

3 .

	

You must access a record in the file with a GET, FIND, or PUT statement before using the
GETRFA function, or BASIC signals "No current record" (ERR= 131) .

General Rules
1 .

	

There must be a file open on the specified chnl-exp or BASIC signals an error .
2 .

	

You can use the GETRFA function with RMS sequential, relative, indexed, and (except on
RSTS/E systems) block I/O files .

3 .

	

The RFA value returned by the GETRFA function can be used only for assignments to and
comparisons with other variables of the RFA data type . Comparisons are limited to equal to
(=) and not equal to (<>) relational operations .

4.

	

RFA values cannot be printed or used for any arithmetic operations .
Examples
100

	

DECLARE RFA R_ARRAY(99)

0
500

	

FOR I% = 1% TO 100%
PUT #1
R_ARRAY(I%) = GETRFA(1)

NEXT I%

February 1984

	

BASIC Reference Manual

	

32 1

INSTR

29 .0 INSTR
Function
The INSTR function searches for a substring within a string . It returns the position of the substring'sstarting character .

	

,
Format

int-vbl -- INSTR(int-exp, str-exp1, str-exp2)

Syntax Rules
None .

General Rules
1 . The INSTR function searches str-exp1, the main string, for the first occurrence of asubstring, str-exp2, and returns the position of the substring's first character .
2 .

	

Int-exp specifies the character position in the main string at which BASIC starts the search .
3 .

	

INSTR returns the character position in the main string at which BASIC finds the substring,except in the following situations :
" If only the substring is null, and if int-exp is less than or equal to zero, INSTR returns avalue of one .
" If only the substring is null, and if int-exp is equal to or greater than one and less than orequal to the length of the main string, INSTR returns the value of int-exp .
" If only the substring is null, and if int-exp is greater than the length of the main string,INSTR returns the main string's length plus one .
" If the substring is not null, and if int-exp is greater than the length of the main string,INSTR returns zero .
" If only the main string is null, INSTR returns zero .
" If both the main string and the substring are null, INSTR returns one .

4 .

	

If BASIC cannot find the substring, INSTR returns zero .
5 .

	

If int-exp does not equal one, BASIC still counts from the beginning of the main string tocalculate the starting position of the substring . That is, BASIC counts character positionsstarting at position one, regardless of where you specify the start of the search . For example, if you specify 10 as the start of the search and BASIC finds the substring at position 15,INSTR returns the value 15 .
6 .

	

If int-exp is less than one, BASIC assumes a starting position of one .
7 .

	

If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of thedefault size .

322

	

BASIC Reference Manual

	

February 1984

Examples

VAX-11 BASIC supplies the INSTR function only for compatibility with
BASIC-PLUS-2 and BASIC-PLUS . DIGITAL recommends that you use the POS func-
tion for substring searches .

300

	

Y = INSTR(It ALPHA$t "JKLMN")

Note

INSTR

BASIC Reference Manual

	

323

INT

30.0 INT
Function
The INT function returns the floating-point value of the largest whole number less than or equal to a
specified expression .
Format

real-vbl = INT(real-exp)

Syntax Rules
None .

General Rules
1 .

	

If real-exp is negative, BASIC returns the largest whole number less than or equal to
real-exp . For example, INT(-5 .3) is -6 .

2 .

	

BASIC expects the argument of the INT function to be a real-exp . When the argument is a
real-exp, BASIC returns a value of the same floating-point size . When the argument is not a
real-exp, BASIC converts the argument to the default floating-point size and returns a value
of the default floating-point size .

3 .

	

This example contrasts the INT and FIX functions :
10 TEST-NUM = -32 .720

	

PRINT "INT OF -32 .7 IS : "+ INT(TEST_NUM)30

	

PRINT "FIX OF -32 .7 IS : " ; FIX(TEST_NUM)40 END
RUNNH
INT OF -32 .7 IS : -33FIX OF -32 .7 IS : -32

Examples
650

	

RESULT = INT(G .GG7)

324

	

BASIC Reference Manual

31 .0 INTEGER
Function
The INTEGER function converts a numeric expression or numeric string to a specified or default
INTEGER data type .
Format

LONG
int-vbl = INTEGER(exp

	

, BYTE

	

)
WORD

Syntax Rules
1 .

	

Exp can be either numeric or string . A string expression can contain the ASCII digits 0
through 9, a plus sign (+), or a minus sign (-) .

General Rules

Examples

INTEGER

1 .

	

BASIC evaluates exp, then converts it to the specified INTEGER size . If you do not specify a
size, BASIC uses the default INTEGER size .

2 .

	

If exp is a string, BASIC ignores leading and trailing spaces and tabs .
3 .

	

The INTEGER function returns a zero when a string argument contains only spaces and
tabs, or when it is null .

100

	

INPUT "Enter a floating-point number"9F_PPRINT INTEGER(F_Pt WORD)

BASIC Reference Manual

	

325

LEFT$

32.0 LEFT$
Function
The LEFT$ function extracts a specified substring from a string's left side, leaving the main string
unchanged .
Format

LEFT
str-vbl =

	

LEFT$

	

(str-exp, int-exp)

Syntax Rules
None .

General Rules

Examples

1 .

	

The LEFT$ function extracts a substring from the left of the specified str-exp and stores it in
str-vbI .

2 .

	

Int-exp specifies the number of characters to be extracted from the left side of the str-exp .
3 .

	

If int-exp is less than one, LEFT$ returns a null string .
4 .

	

If int-exp is greater than the length of str-exp, LEFT$ returns the entire string .
5 .

	

If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size .

VAX-11 BASIC supplies the LEFT$ function only for compatibility with BASIC-PLUS
and BASIC-PLUS-2 . DIGITAL recommends that you use the SEG$ function for sub-
string extraction .

410

	

SUB_STRING$ = LEFT$(ALPHA$t 5%)

326

	

BASIC Reference Manual

Note

33 .0 LEN
Function
The LEN function returns an integer value equal to the number of characters in a specified string .
Format

int-vbl = LEN(str-exp)

Syntax Rules
None .

General Rules
1 .

	

If str-exp is null, LEN returns a value of zero .
2 .

	

The length of str-exp includes leading, trailing, and embedded blanks . Tabs in str-exp are
treated as a single space .

3 .

	

The value returned by the LEN function is an integer of the default size .
Examples
'21(10

	

LENGTH = LEN(ALPHA$)

LEN

BASIC Reference Manual

	

327

LOC

34.0 LOC (VAX-11 BASIC Only)
Function
The LOC function returns a longword integer specifying the virtual address of a simple or subscriptedvariable . For dynamic strings, the LOC function returns the address of the descriptor rather than theaddress of the data .
Format

int-vbl = LOC(vbl)

Syntax Rules
1 .

	

Vbl can be any local or external, simple or subscripted variable .
2 .

	

Vbl cannot be a virtual array element .
General Rules

1 .

	

The LOC function always returns a LONG value .
Examples
100

	

DECLARE LONG B t A2 00

	

A = LOC(B)

328

	

BASIC Reference Manual February 1984

35.0 LOG
Function
The LOG function returns the natural logarithm (base "e") of a specified number . The LOG function
is the inverse of the EXP function .
Format

LOG

real-vbl = LOG(real-exp)

Syntax Rules
None .

General Rules

Examples

1 .

	

Real-exp must be greater than zero . An attempt to find the logarithm of zero or a negative
number causes BASIC to signal "Illegal argument in LOG" (ERR= 53) .

2 .

	

The LOG function uses the mathematical constant "e" as a base . BASIC approximates "e"
to be 2 .718281828459045 (double precision) .

3 .

	

The LOG function returns the exponent to which "e" must be raised to equal real-exp .
4 .

	

BASIC expects the argument of the LOG function to be a real-exp . When the argument is a
real-exp, BASIC returns a value of the same floating-point size . When the argument is not a
real-exp, BASIC converts the argument to the default floating-point size and returns a value
of the default floating-point size .

10

	

EXPONENT = LOG(100 .35)

BASIC Reference Manual

	

329

LOG10

36 .0 LOG10
Function
The LOG10 function returns the common logarithm (base 10) of a specified number .
Format

real-vbl = LOG10(real-exp)

Syntax Rules
None .

General Rules

Examples

1 .

	

Real-exp must be larger than zero . An attempt to find the logarithm of zero or a negative
number causes BASIC to signal "Illegal argument in LOG" (ERR= 53) .

2 .

	

The LOG10 function returns the exponent to which 10 must be raised to equal real-exp .
3 .

	

BASIC expects the argument of the LOG10 function to be a real-exp . When the argument is
a real-exp, BASIC returns a value of the same floating-point size . When the argument is not
a real-exp, BASIC converts the argument to the default floating-point size and returns a
value of the default floating-point size .

600

	

EXP-BASE-10 = LOG10(250)

330

	

BASIC Reference Manual

37.0 MAG
Function
The MAG function returns a number that equals the absolute value of a specified expression . The
returned value has the same data type as the expression .
Format

vbl = MAG(exp)

Syntax Rules
None .

General Rules

Examples

1 .

	

The returned value is always greater than or equal to zero . The absolute value of zero is
zero . The absolute value of a positive number equals that number. The absolute value of a
negative number equals that number multiplied by minus one.

2 .

	

The MAG function is similar to the ABS function in that it returns the absolute value of a
number . The ABS function, however, takes a floating-point argument and returns a
floating-point value . The MAG function takes an argument of any numeric data type and
returns a value of the same data type as the argument .

100

	

DECLARE LONG A200

	

PRINT MAG(A)

MAG

BASIC Reference Manual

	

331

MAGTAPE

38.0 MAGTAPE
Function
The MAGTAPE function permits your program to control unformatted magnetic tape files .
Format

int-vbli = MAGTAPE(int-const, int-vbl2, chnl-exp)

Syntax Rules
1 .

	

Int-const is an integer between 1 and 9, inclusive, that specifies the code for the MAGTAPE
function you want to perform . Function codes are described in Table 23 . See BASIC on
RSX-11MIM-PLUS Systems or BASIC on RSTS/E Systems for more information on mag-
netic tape function codes .

2 .

	

VAX-11 BASIC supports only function code 3, rewind tape . Table 24 explains how to
perform other MAGTAPE functions on VAX/VMS Systems .

3 .

	

Int-vbl2 is an integer parameter for function codes 4, 5, and 6 .
" Int-vb12 for function 4 is a value from 1 to 32767, inclusive, that specifies the number of

records to skip .
" Int-vbl2 for function 5 is a value from 1 to 32767, inclusive, that specifies the number of
records to backspace .

" Int-vbl2 for function 6 specifies the density and/or parity of the magnetic tape drive . See
BASIC on RSX-11MIM-PLUS Systems or BASIC on RSTS/E Systems for information on
setting the density and parity of the magnetic tape drive .

4 .

	

The chnl-exp associated with the magnetic tape must be open .
Table 23 : MAGTAPE Function Codes

332

	

BASIC Reference Manual

	

February 1984

Code Meaning

1 Rewind and take tape off-line
2 Write end-of-file (EOF) mark
3 Rewind tape
4 Advance tape a specified number of records
5 Backspace tape a specified number of records
6 Set density and parity
7 Return status of tape
8 Return characteristics of file open on tape (RSTS/E only)
9 Rewind when file is closed (RSTS/E only)

General Rules
1 .

	

You cannot use the MAGTAPE function with RMS files .
2 .

	

Function codes 8 and 9 are valid only on RSTS/E systems .
3 .

	

If int-const equals 1, 2, 3, 6, or 9, int-vbl l always equals zero .
4 .

	

If int-const equals 4, int-vbll is an integer of the default size that equals the number of
records not skipped .

5 .

	

If int-const equals 5, int-vbll is an integer of the default size that equals the number of
records not backspaced .

6 .

	

If int-const equals 7, int-vbll is a 16-bit integer that reflects the status of the specified
magnetic tape . See BASIC on RSX-1 1 M l M-PLUS Systems or BASIC on RSTS/E Systems for
information on bit values and meaning .

7 .

	

If int-const equals 9, int-vbll is a 16-bit integer that describes the file characteristics of the
specified magnetic tape . See the RSTS/E Programming Manual for information on bit
values and meaning .

8 .

	

On RSTS/E systems, the "rewind when file is closed" function (9) must appear after the

	

RSTS
OPEN statement and before the CLOSE statement associated with the specified magnetic
tape .

Table 24: Performing MAGTAPE Functions in VAX-11 BASIC

Examples
200

	

I

	

=

	

MAGTAPE

	

(1 t0 t2)

MAGTAPE

February 1984

	

BASIC Reference Manual

	

333

MAGTAPE Function VAX-11 BASIC Actions

Write EOF Close channel
Skip records Perform GETs, ignore data until reaching de-

sired record
Backspace Rewind tape, perform GETS, ignore data until

reaching desired record
Set density Use the DCL MOUNT command qualifiers

(/DENSITY and /FOREIGN), or the $MOUNT
system service

Status Use the USEROPEN clause in the OPEN state-
ment to access the RAB$L_STS and the
RAB$L_STV

MAR

39.0 MAR (VAX-11 BASIC Only)
Function
The MAR function returns the current margin width of a specified channel .
Format

MAR
int-vbl = ; MAR% ~ (chnl-exp)

Syntax Rules
None .

General Rules
1 .

	

The file associated with chnl-exp must be open . You cannot include a pound sign (#) in
chnl-exp .

2 .

	

If chnl-exp specifies a terminal, the MAR function returns zero if you have not set a margin
width with the MARGIN statement . If you have set a margin width, the MAR function
returns that number .

3 .

	

The value returned by the MAR function is an integer of the default size .
Examples
200

	

WIDTH = MAR(0)

334

	

BASIC Reference Manual

40.0 MID$
Function
The MID$ function extracts a specified substring from the middle of a string, leaving the main string
unchanged .
Format

MID
MIDstr-vbl =

	

$ (str-exp, int-expl, int-exp2)

Syntax Rules
None .

General Rules

Examples

1 .

	

The MID$ function extracts a substring from str-exp and stores it in str-vbl . Int-expl speci-
fies the position of the substring's first character . Int-exp2 specifies the length of the sub-
string .

2 .

	

If int-expl is less than one, BASIC assumes a starting position of one .
3 .

	

If int-expl is greater than the length of str-exp, MID$ returns a null string .
4 .

	

If int-exp2 is greater than the length of str-exp, BASIC returns the string that begins at
int-expl and includes all characters remaining in the string .

5 .

	

If int-exp2 is less than or equal to zero, MID$ returns a null string .
6 .

	

If you specify a floating-point expression for int-expl or int-exp2, BASIC truncates it to an
integer of the default size .

VAX-I I BASIC supplies the MID$ function only for compatibility with BASIC-PLUS
and BASIC-PLUS-2 . DIGITAL recommends that you use the SEG$ function for sub-
string extraction .

220

	

NEW_STRING$ = MID$(OLD_STRING$t 5# 8)

February 1984

Note

MID$

BASIC Reference Manual

	

335

NOECHO

41 .0 NOECHO
Function
The NOECHO function disables echoing of input on a terminal .
Format

int-vbl = NOECHO(chnl-exp)

Syntax Rules
None .

General Rules
1 .

	

Chnl-exp must specify a terminal . You cannot include a pound sign (#) in chnl-exp .
2 .

	

If you specify NOECHO, BASIC still accepts characters typed on the terminal as input, but
the characters do not echo on the terminal .

3 .

	

The NOECHO function is the complement of the ECHO function ; that is, NOECHO dis-
ables the effect of ECHO and vice versa .

4 .

	

NOECHO always returns zero .
Examples
500

	

Y = NOECHO(0)

336

	

BASIC Reference Manual

42.0 NUM
Function
The NUM function returns the row number of the last data element transferred into an array by a MAT
I /O statement .
Format

int-vbl = NUM

Syntax Rules
None.

General Rules
1 .

	

NUM returns zero if it is invoked before BASIC has executed any MAT I/O statements .
2 .

	

For a two-dimensional array, NUM returns an integer specifying the row number of the last
data element transferred into the array . For a one-dimensional array, NUM returns the
number of elements entered .

3 .

	

The value returned by the NUM function is an integer of the default size .
Examples
10

	

ROW-COUNT = NUM

NUM

BASIC Reference Manual

	

337

NUM2

43.0 NUM2
Function
The NUM2 function returns the column number of the last data element transferred into an array by a
MAT 1/0 statement .
Format

int-vbl = NUM2

Syntax Rules
None .

General Rules
1 .

	

NUM2 returns zero if it is invoked before BASIC has executed any MAT 1/0 statements or
if the last array element transferred was in a one-dimensional list .

2 .

	

The NUM2 function returns an integer specifying the column number of the last data
element transferred into an array .

3 .

	

The value returned by the NUM2 function is an integer of the default size .
Examples
100

	

COLUMN-COUNT = NUM2

338

	

BASIC Reference Manual

44.0 NUM$
Function

NUM$

The NUM$ function evaluates a numeric expression and returns a string of characters in PRINT
statement format, with leading and trailing spaces .
Format

str-vbl = NUM$(num-exp)

Syntax Rules
None .

General Rules
1 .

	

If num-exp is positive, the first character in the string expression is a space. If num-exp is
negative, the first character is a minus sign .

2 .

	

The NUM$ function does not include trailing zeros in the returned string . If all digits to the
right of the decimal point are zeros, NUM$ omits the decimal point as well .

3 .

	

When num-exp has an integer portion of six digits or less (for example, 1234 .567), BASIC
rounds the number to six digits (1234.57) . If num-exp has seven decimal digits or more,
BASIC rounds the number to six digits and prints it in E format .

4.

	

When num-exp is between 0.1 and 1, BASIC rounds it to six digits . When num-exp is
smaller than 0 .1, BASIC rounds it to six digits and prints it in E format .

5 .

	

If num-exp is a longword integer, the returned string can have up to 10 digits .
6 .

	

The last character in the returned string is a space.
Examples
660

	

NUMBER$ = NUM$(34 .55000/32 .4)

BASIC Reference Manual

	

339

NUM1$

45.0 NUM1$
Function
The NUM1$ function changes a numeric expression to a numeric character string without leading
and trailing spaces .
Format

str-vbl = NUM1$(num-exp)

Syntax Rules
None .

General Rules
1 .

	

The NUM1$ function returns a string consisting of numeric characters and a decimal point
that corresponds to the value of num-exp. Leading and trailing spaces are not included in
the returned string .

2 .

	

The NUM1$ function returns :
" Three digits for BYTE integers
" Five digits for SINGLE floating-point numbers and WORD integers
" Ten digits for LONG integers
" Sixteen digits for DOUBLE floating-point numbers
" Fifteen digits for GFLOAT floating-point numbers (VAX-11 BASIC only)
" Thirty-three digits for HFLOAT floating-point numbers (VAX-11 BASIC only)

3 .

	

The NUM1$ function does not produce E notation .
Examples
750

	

NUMBER$

	

=

	

NUM1$(PI/2)

340

	

BASIC Reference Manual

46.0 ONECHR (BASIC-PLUS-2 Only)
Function
The ONECHR function allows single-character input (ODT submode) on a specified channel . This
function must be used in conjunction with the GET statement .
Format

int-vbl = ONECHR(chnl-exp)

Syntax Rules
1 .

	

Chnl-exp must refer to an open terminal . You cannot include a pound sign (#) in chnl-exp .
2 .

	

The ONECHR function must be used immediately before the GET statement .
General Rules

Examples

ONECHR

1 .

	

BASIC disables the ONECHR function immediately after a GET statement executes . There-
fore, your program must invoke the ONCHR function for each single character input you
want to perform .

2 .

	

Control passes to the program as soon as you enter a character . You do not have to type a
line terminator .

100

	

OPEN "TI :" FOR INPUT AS FILE #1%110

	

YX = ONECHR(1%)120

	

GET #1%MOVE FROM *I%t A$ = 1%PRINT A$

Note
VAX-11 BASIC does not support the ONECHR function . To perform this function in
VAX-11 BASIC, you must use the system service SYS$QIO .

BASIC Reference Manual

	

341

PLACE$

47.0 PLACE$
Function
The PLACE$ function explicitly changes the precision of a numeric string . PLACE$ returns a numeric
string, truncated or rounded, according to the value of an integer argument you supply .
Format

str-vbl = PLACE$(str-exp, int-exp)

Syntax Rules
1 .

	

Str-exp specifies the numeric string you want to process . It can contain up to 60 ASCII
digits and an optional decimal point and leading sign .

2 .

	

If str-exp consists of more than 60 characters, BASIC signals the error "Illegal number"
(ERR =52) .

3 .

	

Int-exp specifies the numeric precision of str-exp . Table 25 shows examples of rounding
and truncation and the values of int-exp that produce them .

General Rules
1 .

	

Str-exp is rounded and/or truncated according to the value of int-exp .
2 .

	

If int-exp is between -60 and 60, rounding and truncation occur as follows :
" For positive integer expressions, rounding occurs to the right of the decimal place . For
example, if int-exp is 1, rounding occurs one digit to the right of the decimal place (the
number is rounded to the nearest tenth) . If int-exp is 2, rounding occurs two digits to the
right of the decimal place (the number is rounded to the nearest hundredth), and so on .

" If int-exp is zero, BASIC rounds to the nearest unit .
For negative integer expressions, rounding occurs to the left of the decimal point . If
int-exp is -1, for example, BASIC moves the decimal point one place to the left, then
rounds to units . If int-exp is -2, rounding occurs two places to the left of the decimal
point ; BASIC moves the decimal point two places to the left, then rounds to tens .

3 .

	

If int-exp is between 9940 and 10060, truncation occurs :
" If int-exp is 10000, BASIC truncates the number at the decimal point .
" If int-exp is greater than 10000 (10000 plus n) BASIC truncates the numeric string n
places to the right of the decimal point . For example, if int-exp is 10001 (10000 plus 1),
BASIC truncates the number starting one place to the right of the decimal point . If int-exp
is 10002 (10000 plus 2), BASIC truncates the number starting two places to the right of
the decimal point, and so on .

342

	

BASIC Reference Manual

Examples

" If int-exp is less than 10000 (10000 minus n), BASIC truncates the numeric string n places
to the left of the decimal point. For example, if int-exp is 9999 (10000 minus 1), BASIC
truncates the number starting one place to the left of the decimal point. If int-exp is 9998
(10000 minus 2), BASIC truncates the number starting two places to the left of the
decimal point, and so on.

4 .

	

If int-exp is not between -60 and 60 or 9940 and 10060, BASIC returns zero .
5 .

	

If you specify a floating-point expresstion for int-exp, BASIC truncates it to an integer of the
default size .

6.

	

Table 25 shows examples of rounding and truncation and the values of int-exp that pro-
duce them . The number used is 123456 .54321 .

500

	

NUMBER$ = PLACE$(OLD_NUMBER$t 10001)

PLACE$

BASIC Reference Manual

	

343

PLACE$

Table 25 : Rounding and Truncation of 123456.654321

344

	

BASIC Reference Manual

Int-exp Effect Value Returned

-5 Rounded to 100,000s and truncated 1
-4 Rounded to 10,000s and truncated 12
-3 Rounded to 1000s and truncated 123
-2 Rounded to 100s and truncated 1235
-1 Rounded to 10s and truncated 12346
0 Rounded to units and truncated 123457
1 Rounded to tenths and truncated 123456 .7
2 Rounded to hundredths and truncated 123456.65
3 Rounded to thousandths and truncated 123456.654
4 Rounded to ten-thousandths and truncated 123456.6543
5 Rounded to hundred-thousandths and truncated 123456.65432

9,995 Truncated to 100,000s 1
9,996 Truncated to 10,000s 12
9,997 Truncated to 1000s 123
9,998 Truncated to 100s 1234
9,999 Truncated to 10s 12345
10,000 Truncated to units 123456
10,001 Truncated to tenths 12345 .6
10,002 Truncated to hundredths 123456.65
10,003 Truncated to thousandths 123456.654
10,004 Truncated to ten-thousandths 123456.6543
10,005 Truncated to hundred-thousandths 123456.65432

POS

48.0 POS
Function
The POS function searches for a substring within a string and returns the substring's starting character
position .
Format

int-vbl = POS(str-expi, str-exp2, int-exp)

Syntax Rules
None .

General Rules
1 .

	

The POS function searches str-exp I, the main string, for the first occurrence of str-exp2, the
substring, and returns the position of the substring's first character .

2 .

	

Int-exp specifies the character position in the main string at which BASIC starts the search .
3 .

	

If int-exp is greater than the length of the main string, POS returns zero .
4 .

	

POS always returns the character position in the main string at which BASIC finds the
substring :
" if only the substring is null, and if int-exp is less than or equal to zero, POS returns a
value of one .

" If only the substring is null, and if int-exp is equal to or greater than one and less than or
equal to the length of the main string, POS returns the value of int-exp .

" If only the substring is null and if int-exp is greater than the length of the main string, POS
returns the main string's length plus one .

" if only the main string is null, POS returns zero .
" if both the main string and the substring are null, POS returns one .

5 .

	

If BASIC cannot find the substring, POS returns zero .
6 .

	

If int-exp is less than one, BASIC assumes a starting position of one .
7 .

	

If int-exp does not equal one, BASIC still counts from the string's beginning to calculate the
starting position of the substring . That is, BASIC counts character positions starting at
position one, regardless of where you specify the start of the search . For example, if you
specify 10 as the start of the search and BASIC finds the substring at position 15, POS
returns the value 15 .

BASIC Reference Manual

	

345

POS

Examples

8.

	

If you know that the substring is not near the beginning of the string, specifying a starting
position greater than one speeds program execution by reducing the number of characters
BASIC must search .

9 .

	

If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size .

400

	

Y = POS(ALPHA$t "JKLMN"r 1)

346

	

BASIC Reference Manual

49.0 PROD$
Function
The PROD$ function returns a numeric string that is the product of two numeric strings . The precision
of the returned numeric string depends on the value of an integer argument.
Format

str-vbl = PROD$(str-expl, str-exp2, int-exp)

Syntax Rules
1 .

	

Str-expI and str-exp2 specify the numeric strings you want to process . They can contain up
to 60 ASCII digits and an optional decimal point and leading sign .

2 .

	

If str-exp consists of more than 60 characters, BASIC signals the error "Illegal number"
(ERR =52) .

3 .

	

Int-exp specifies the numeric precision of str-exp . Table 25 shows examples of rounding
and truncation and the values of int-exp that produce them .

General Rules
1 .

	

Str-exp is rounded and/or truncated according to the value of int-exp .
2 .

	

If int-exp is between -60 and 60, rounding and truncation occur as follows :

" If int-exp is zero, BASIC rounds to the nearest unit .

PROD$

" For positive integer expressions, rounding occurs to the right of the decimal place . For
example, if int-exp is 1, rounding occurs one digit to the right of the decimal place (the
number is rounded to the nearest tenth) . If int-exp is 2, rounding occurs two digits to the
right of the decimal place (the number is rounded to the nearest hundredth), and so on.

" For negative integer expressions, rounding occurs to the left of the decimal point . If
int-exp is -1, for example, BASIC moves the decimal point one place to the left, then
rounds to units . If int-exp is -2, rounding occurs two places to the left of the decimal
point ; BASIC moves the decimal point two places to the left, then rounds to tens .

3 .

	

If int-exp is between 9940 and 10060, truncation occurs :
" If int-exp is 10000, BASIC truncates the number at the decimal point .
" If int-exp is greater than 10000 (10000 plus n), BASIC truncates the numeric string n
places to the right of the decimal point . For example, if int-exp is 10001 (10000 plus 1),
BASIC truncates the number starting one place to the right of the decimal point . If int-exp
is 10002 (10000 plus 2), BASIC truncates the number starting two places to the right of
the decimal point, and so on .

(continued on next page)

BASIC Reference Manual

	

347

PROD$

Examples

" If int-exp is less than 10000 (10000 minus n), BASIC truncates the numeric string n places
to the left of the decimal point . For example, if int-exp is 9999 (10000 minus 1), BASIC
truncates the number starting one place to the left of the decimal point . If int-exp is 9998
(10000 minus 2), BASIC truncates the number starting two places to the left of the
decimal point, and so on .

4 .

	

If int-exp is not between -60 and 60 or 9940 and 10060, BASIC returns zero .
5 .

	

If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size .

6.

	

Table 25 shows examples of rounding and truncation and the values of int-exp that pro-
duce them . The number used is 123456 .654321 .

300

	

PRODUCT$

	

=

	

PROD ("88793" t

	

Z$#

	

0)

348

	

BASIC Reference Manual

50 .0 QUO$
Function
The QUO$ function returns a numeric string that is the quotient of two numeric strings . The precision
of the returned numeric string depends on the value of an integer argument .
Format

str-vbl = QUO$(str-expl, str-exp2, int-exp)

Syntax Rules
1 .

	

Str-expl and str-exp2 specify the numeric strings you want to process . They can contain up
to 60 ASCII digits and an optional decimal point and leading sign .

2 .

	

If str-exp consists of more than 60 characters, BASIC signals the error "Illegal number"
(ERR =52).

3 .

	

Int-exp specifies the numeric precision of str-exp . Table 25 shows examples of rounding
and truncation and the values of int-exp that produce them .

General Rules
1 .

	

Str-exp is rounded and/or truncated according to the value of int-exp .
2 .

	

If int-exp is between -60 and 60, rounding and truncation occur as follows :
" For positive integer expressions, rounding occurs to the right of the decimal place. For
example, if int-exp is 1, rounding occurs one digit to the right of the decimal place (the
number is rounded to the nearest tenth) . If int-exp is 2, rounding occurs two digits to the
right of the decimal place (the number is rounded to the nearest hundredth), and so on .

" If int-exp is zero, BASIC rounds to the nearest unit .
" For negative integer expressions, rounding occurs to the left of the decimal point . If
int-exp is -1, for example, BASIC moves the decimal point one place to the left, then
rounds to units . If int-exp is -2, rounding occurs two places to the left of the decimal
point ; BASIC moves the decimal point two places to the left, then rounds to tens .

3 .

	

If int-exp is between 9940 and 10060, truncation occurs :
" If int-exp is 10000, BASIC truncates the number at the decimal point.

QUO$

" If int-exp is greater than 10000 (10000 plus n), BASIC truncates the numeric string n
places to the right of the decimal point. For example, if int-exp is 10001 (10000 plus 1),
BASIC truncates the number starting one place to the right of the decimal point. If int-exp
is 10002 (10000 plus 2), BASIC truncates the number starting two places to the right of
the decimal point, and so on .

(continued on next page)

BASIC Reference Manual

	

349

QUO$

Examples

" If int-exp is less than 10000 (10000 minus n), BASIC truncates the numeric string n places
to the left of the decimal point . For example, if int-exp is 9999 (10000 minus 1), BASIC
truncates the number starting one place to the left of the decimal point . If int-exp is 9998
(10000 minus 2), BASIC truncates the number starting two places to the left of the
decimal point, and so on .

4.

	

If int-exp is not between -60 and 60 or 9940 and 10060, BASIC returns zero .
5 .

	

If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size .

6.

	

Table 25 shows examples of rounding and truncation and the values of int-exp that pro-
duce them . The number used is 123456 .654321 .

200

	

QUOTIENT$ = QUO$("453 .221"t "30"t 10000)

350

	

BASIC Reference Manual

51 .0 RAD$
Function
The RAD$ function converts a specified integer to a 3-character string in Radix-50 format .
Format

str-vbl = RAD$(int-vbl)

Syntax Rules
None .

General Rules

Examples

RAD$

1 .

	

The RAD$ function converts int-vbl to a 3-character string in Radix-50 format and stores it
in str-vbl . Radix-50 format allows you to store three characters of data as a 2-byte integer .

2 .

	

See Appendix C in BASIC on RSX-11 MIM-PLUS Systems or BASIC on RSTSIE Systems for
information on the Radix-50 character set and ASCII/Radix-50 equivalents .

3 .

	

VAX-11 BASIC supports the RAD$ function, but not its complement, the FSS$ function .
DIGITAL recommends that you use Run-Time Library routines for Radix-50 operations .

4.

	

If you specify a floating-point variable for int-vbl, BASIC truncates it to an integer of the
default size .

100

	

RADIX$ = RAD$(999)

BASIC Reference Manual

	

35 1

RCTRLC

52.0 RCTRLC
Function
The RCTRLC function disables CTRL/C trapping .
Format

int-vbl = RCTRLC

Syntax Rules
None .

General Rules
1 .

	

After BASIC executes the RCTRLC function, a CTRL/C typed at the terminal returns you to
command level (BASIC or monitor) .

2 .

	

RCTRLC always returns a zero .
Examples
200

	

Y = RCTRLC

352

	

BASIC Reference Manual

53.0 RCTRLO
Function
The RCTRLO function cancels the effect of a CTRL/C) typed on a specified channel .
Format

int-vbl = RCTRLO (chnl-exp)

Syntax Rules
None .

General Rules

Examples

1 .

	

Chnl-exp must refer to a terminal .

RCTRLO

2 .

	

RCTRLO has no effect if the specified channel is open to a device that does not use the
CTRL/C) convention .

3 .

	

If you type a CTRL/C) to cancel terminal output, nothing is printed on the specified termi-
nal until your program executes the RCTRLO or until you type another CTRL/O, at which
time normal terminal output resumes .

4 .

	

The RCTRLO function always returns a zero .

10

	

PRINT "A" FOR I% = 1% TO 100%Y% = RCTRLO(0%)PRINT "Normal output is resumed"

BASIC Reference Manual

	

353

55 .0 RECOUNT
Function
The RECOUNT function returns the number of characters transferred by the last input operation .
Format

int-vbl = RECOUNT

Syntax Rules
None.

General Rules

Examples

1 .

	

The RECOUNT value is set by every input operation on any channel, including channel
zero .
" After an input operation from your terminal, RECOUNT contains the number of charac-

ters (bytes), including line terminators, transferred .
" After accessing a file record, RECOUNT contains the number of characters in the record .

2 .

	

Because RECOUNT is reset by every input operation on any channel, use the RECOUNT
function to copy the RECOUNT value to a different storage location before executing
another input operation .

3 .

	

If an error occurs during an input operation, the value of RECOUNT is undefined .
4 .

	

RECOUNT is unreliable after a CTRL/C interrupt because the CTRL/C trap may have
occurred before BASIC set the value for RECOUNT .

200

	

CHARACTER-COUNT = RECOUNTPRINT CHARACTER-COUNT!' characters received'

RECOUNT

5 .

	

The RECOUNT function returns a LONG value in VAX-11 BASIC and a WORD value in
BASIC-PLUS-2 .

BASIC Reference Manual

	

355

RIGHT$

56.0 RIGHT$
Function
The RIGHT$ function extracts a substring from a string's right side, leaving the main string
unchanged .
Format

RIGHT
str-vbl =

	

RIGHT$

	

(str-exp, int-exp)

Syntax Rules
None .

General Rules

Examples

1 .

	

The RIGHT$ function extracts a substring from str-exp and stores the substring in str-vbl .
The substring begins with the character in the position specified by int-exp and ends with
the rightmost character in the string .

2 .

	

If int-exp is less than or equal to zero, RIGHT$ returns the entire string .
3 .

	

If int-exp is greater than the length of str-exp, RIGHT$ returns a null string .
4 .

	

If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size .

600

	

NEW_STRING$ = RIGHT$(ALPHA$t 21)

356

	

BASIC Reference Manual

Note
VAX-11 BASIC includes the RIGHT$ function only for compatibility with BASIC-PLUS
and BASIC-PLUS-2 . DIGITAL recommends using the SEG$ function for substring
extraction .

57 .0 RND
Functions
The RND function returns a random number greater than or equal to zero and less than one .
Format

real-vbl = RND

Syntax Rules
None .

General Rules

Examples

1 .

	

The RND function returns a pseudorandom number if not preceded by a RANDOMIZE
statement ; that is, each time a program runs, BASIC generates the same random number or
series of random numbers .

2 .

	

If the RND function is preceded by a RANDOMIZE statement, BASIC generates a different
random number or series of numbers each time a program executes .

3 .

	

In BASIC-PLUS-2, the RND function returns a floating-point value of the default size . In
VAX-11 BASIC, RND always returns a single-precision value .

990

	

R_NUM = RND

RND

BASIC Reference Manual

	

357

SEG$

58.0 SEG$
Function
The SEG$ function extracts a substring from a main string, leaving the original string unchanged .
Format

str-vbl = SEG$(str-exp, int-expi, int-exp2)

General Rules

Examples

1 .

	

BASIC extracts the substring from str-exp, the main string, and stores the substring in
str-vbl . The substring begins with the character in the position specified by int-expi and
ends with the character in the position specified by int-exp2 .

2 .

	

If int-expi is less than one, BASIC assumes a value of one .
3 .

	

If int-expi is greater than int-exp2 or the length of str-exp, the SEG$ function returns a null
string .

4 .

	

If int-expi equals int-exp2, the SEG$ function returns the character at the position specified
by int-exp I .

5 .

	

Unless int-exp2 is greater than the length of str-exp, the length of the returned substring
equals int-exp2 minus int-exp I plus one . If int-exp2 is greater than the length of str-exp, the
SEG$ function returns all characters from the position specified by int-expi to the end of
str-exp .

6 .

	

If you specify a floating-point expression for int-expi or int-exp2, BASIC truncates it to an
integer of the default size .

300

	

CENTER$ = SEG$(ALPHA$t 15t 20)

358

	

BASIC Reference Manual

59.0 SGN
Function

SGN

The SGN function determines whether a numeric expression is positive, negative, or zero . It returns a
one if the expression is positive, a minus one if the expression is negative, and zero if the expression
is zero .
Format

int-vbl = SGN(real-exp)

Syntax Rules
None .

General Rules
1 .

	

If real-exp does not equal zero, SGN returns ABS(real-exp)/real-exp .
2 .

	

If real-exp equals zero, SGN returns zero .
3 .

	

SGN returns an integer of the default size .
Examples
750

	

SIGN = SGN(-U535/G-3000)

BASIC Reference Manual

	

359

SIN

60.0 SIN
Function
The SIN function returns the sine, in radians, of an angle .
Format

real-vbl = SIN(real-exp)

Syntax Rules
None .

General Rules

Examples

1 .

	

The returned value is between minus one and one .
2 .

	

BASIC expects the argument of the ABS function to be a real-exp . When the argument is a
real-exp, BASIC returns a value of the same floating-point size . When the argument is not a
real-exp, BASIC converts the argument to the default floating-point size and returns a value
of the default floating-point size .

100 S1-ANGLE = SIN(PI/2)

360

	

BASIC Reference Manual

61 .0 SPACE$
Function
The SPACE$ function creates a string containing a specified number of spaces .
Format

str-vbl = SPACE$(int-exp)

Syntax Rules
None .

General Rules
1 .

	

Int-exp specifies the number of spaces in the returned string .
2 .

	

BASIC treates an int-exp less than zero as zero .
3 .

	

If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size .

Examples
880

	

FILLER$ = SPACE$(32)

SPACE$

BASIC Reference Manual

	

361

SQR

62.0 SQR
Function
The SQR function returns the square root of a positive number .
Format

SQRT ~
real-vbl = SQR (real-exp)

Syntax Rules
None .

General Rules

Examples

1 .

	

VAX-11 BASIC signals the error "Imaginary square roots" (ERR= 54) and program execu-
tion stops when real-exp is negative .

2 .

	

BASIC-PLUS-2 returns the warning message "%Imaginary square roots" and the square
root of the absolute value of the expression when real-exp is negative . The program does
not stop executing .

3 .

	

BASIC assumes that the argument of the SQR function is a real-exp . When the argument is
a real-exp, BASIC returns a value of the same floating-point size . When the argument is not
a real-exp, BASIC returns a value of the default floating-point size .

425

	

ROOT = SQR(35*37)

362

	

BASIC Reference Manual

63.0 STATUS
Function
The STATUS function returns an integer value containing information about the last opened channel .
Your program can test each bit to determine the status of the channel .
Format

int-vbl = STATUS

Syntax Rules
None .

General Rules

STATUS

1 .

	

The STATUS function returns a WORD integer in BASIC-PLUS-2 and a LONG integer in
VAX-11 BASIC .

2 .

	

The value returned by the STATUS function is undefined until BASIC executes an OPEN
statement .

3 .

	

The STATUS value is set by every input operation on any channel . Therefore, the STATUS
value should be copied to a different storage location before your program executes
another input operation .

4 .

	

The syntax for STATUS is the same for VAX-11, RSTS/E, and RSX-11MIM-PLUS systems.
However, the returned information is different on every system .

5 .

	

Depending on the error, the STATUS function on RSX-11 Ml M-PLUS systems displays a
value representing one of the following :
" The RMS-11 primary status field (STS) or the RMS secondary status field (STV) . See the
RMS-11 MACRO User's Guide for more information .

" The device characteristics after an RMS-11 OPEN file operation (set by the DEV field of
the FAB) . See the RMS-1 1 MACRO User's Guide for more information .

" The Directive Status Word ($DSW) and its corresponding error code, in the event of a
directive error . See the RSX-11 M/M-PLUS Mini Reference for the error codes .

" The STATUS field of a QIO . See the RSX-1 1 Ml M-PLUS 1/0 Drivers Reference Manual
for more information .

" The first word of a GETLUN directive describing device characteristics . See the
RSX-1 1 M l M-PLUS Executive Reference Manual .

See BASIC on RSX-1 1Ml M-PLUS Systems for information on STATUS values set for an
OPEN file operation with no errors .

BASIC Reference Manual

	

363

STATUS

6 .

	

Depending on the error, the STATUS function on RSTS/E systems displays a value repre-
senting one of the following :
" The RMS-11 primary status field (STS) or the RMS secondary status field (STV) . See the
RMS-11 MACRO User's Guide for more information .

" The device characteristics after an RMS-11 OPEN file operation (set by the DEV field of
the FAB) . See the RMS-11 MACRO User's Guide for more information .

For OPEN operations where no errors occur, the status word describes the device charac-
teristics of the FIRQB and FQFLAG field . The first 7 bits describe the device, and bits 7
through 15 describe characteristics of the OPEN statement . See the BASIC-PLUS Language
Manual and the RSTS/E System Directives Manual for more information on STATUS
values .

7 .

	

In VAX-11 BASIC, if an error occurs during an input operation, the value of STATUS isundefined . When no error occurs, the six low-order bits of the returned value contain
information about the type of device accessed by the last input operation . Table 26 lists
STATUS bits set by VAX-11 BASIC .

Table 26 : VAX-11 BASIC STATUS Bits

Examples
150

	

Y% = STATUS

364

	

BASIC Reference Manual

Bit Set Device Type

0 Record-oriented device
1 Carriage-control device
2 Terminal
3 Directory device
4 Single directory device
5 Sequential block-oriented device (magtape)

64.0 STR$
Function
The STR$ function changes a numeric expression to a numeric character string without leading and
trailing spaces .
Format

str-vbl = STR$(num-exp)

Syntax Rules
None .

General Rules

Examples

1 .

	

If num-exp is negative, the first character in the returned string is a minus sign .

STR$

2 .

	

Like the NUM$ function, the STR$ function produces E notation . Unlike the NUM$ func-
tion, the STR$ function does not return leading or trailing spaces .

3 .

	

Like the NUM1$ function, the STR$ function does not return leading or trailing spaces .
Unlike the NUM1$ function, the STR$ function produces E notation.

4. When you print a number whose integer portion is six digits or less (for example,
1234.567), BASIC rounds the number to six digits (1234 .57) . If a number has seven integer
digits or more, BASIC rounds the number to six digits and prints it in E format .

5 .

	

When you print a number with magnitude between 0.1 and 1, BASIC rounds it to six digits .
When you print a number with magnitude smaller than 0 .1, BASIC rounds it to six digits
and prints it in E format .

800

	

Z$ = STR$(85)

BASIC Reference Manual

	

365

STRING$

65.0 STRING$
Function
The STRING$ function creates a string containing a specified number of identical characters .
Format

str-vbl = STRING$(int-exp1, int-exp2)

Syntax Rules
None .

General Rules

Examples

1 .

	

Int-expI specifies the character string's length . VAX-11 BASIC signals the error "String too
long" (ERR=227) if int-expl is greater than 65535 . BASIC-PLUS-2 signals the error
"Integer error" (ERR= 51) if int-exp is greater than 32767 .

2 .

	

If int-expl is less than or equal to zero, BASIC treats it as zero .
3 .

	

Int-exp2 is the decimal ASCII value of the character that makes up the string . This value is
treated modulo 256.

4 .

	

BASIC treats all arguments as unsigned 8-bit integers . Negative numbers are treated as the
two's complement (for example, -1 is treated as 255) .

5 .

	

If either int-expl or int-exp2 is a floating-point expression, BASIC truncates it to an integer
of the default size .

340

	

A_STRING$ = STRING$(10t 65)

366

	

BASIC Reference Manual

66.0 SUM$
Function
The SUM$ function returns a string whose value is the sum of two numeric strings .
Format

Syntax Rules

General Rules
1 .

	

BASIC adds str-exp2 to str-expl and stores the result in str-vbl .

4 .

	

SUM$ omits trailing zeros to the right of the decimal point .
5 .

	

The sum of two floating-point numbers takes precision as follows :
" The sum of the integer parts takes the precision of the larger part .
" The sum of the decimal fraction part takes the precision of the more precise part .

6 .

	

SUM$ truncates leading and trailing zeros .
Examples
600

	

SIGMA$ = SUM$("234 .444"t A$)

SUM$

str-vbl = SUM$(str-expl, str-exp2)

1 .

	

Str-expl and str-exp2 specify the numeric strings you want to process . They can contain up
to 54 ASCII digits and an optional decimal point and leading sign .

2 .

	

If str-expl and str-exp2 are integers, str-vbl takes the precision of the larger string unless
trailing zeros generate that precision .

3 .

	

If str-exp I and str-exp2 are decimal fractions, str-vbl takes the precision of the more precise
fraction unless trailing zeros generate that precision .

BASIC Reference Manual

	

367

SWAP%

67.0 SWAP%
Function
The SWAP% function transposes a WORD integer's bytes .
Format

int-vbl = SWAP%(int-exp)

Syntax Rules
1 .

	

SWAP% is a WORD function . BASIC evaluates int-exp and converts it to the WORD data
type, if necessary .

General Rules
1 .

	

BASIC transposes the bytes of int-exp and returns a WORD integer .
Examples
500

	

S-25 = SWAPX(3)

368

	

BASIC Reference Manual

68.0 SYS (BASIC-PLUS-2 on RSTS / E Only)
Function
The SYS function lets you perform special I /O functions, establish special characteristics for a job, set
terminal characteristics, and cause the monitor to execute special operations .
Format

str-vbl = SYS(str-exp)

Syntax Rules
1 .

	

Str-exp is a RSTS/E SYS call code . See the RSTS/E Programming Language manual for a
complete list of SYS call codes and their meanings .

General Rules
1 .

	

Because SYS calls request that the RSTS/E monitor perform an operation, often the function
performed has no counterpart on other host systems. However, for compatibility with
RSTS/E BASIC-PLUS, VAX-11 BASIC supports a subset of SYS calls . Table 27 lists the
VAX-11 BASIC subset of RSTS/E SYS calls .

Table 27: VAX-11 BASIC Subset of RSTS/E SYS Calls

SYS

(continued on next page)

BASIC Reference Manual

	

369

Code Function

0 Cancel CTRL/O
1 Not implemented
2 Enable echo
3 Disable echo
4 Not implemented
5 Exit with no prompt
6 Call File Processor
7 Get core common ; can be used only between BASIC images
8 Put core common ; can be used only between BASIC images
9 Exit and clear program
10 Reserved
11 Cancel type ahead
12 Not implemented
13 Reserved
14 Not implemented

SYS

Table 27: VAX-11 BASIC Subset of RSTS/E SYS Calls (Cont .)
These FIP calls (and only these) are also supported :

Examples
100

	

OPEN User_Kerboard$ AS FILE #1200

	

TmP$ = SYS(CHR$(11)) ! Cancel any typeahead from user300

	

LINUT 'Enter the first line of text' ;User input$

370

	

BASIC Reference Manual

Code Function

-23 Terminate file name string scan
-13 Set priority (can set only priority ; requires ALTPRI privilege)
-10 Begin file name string scan
-7 Enable CTRL/C trap
9 Get error message (VAX-1 I BASIC error message)
10 Assign a device
11 Deassign a device
12 Deassign all devices
18 Send/receive message (requires SYSNAM privilege)
22 Send/receive message (cannot get job number, privileges,

or receive selection ; cannot use DECnet ; requires PRMMBX
privilege)

69.0 TAB
Function
When used with the PRINT statement, the TAB function moves the cursor or print mechanism right to
a specified column .
Format

str-vbl = TAB(int-exp)

Syntax Rules
1 .

	

Int-exp specifies the column number of the cursor or print mechanism.
General Rules

Examples

1 .

	

You cannot TAB beyond the current MARGIN restriction .
2 .

	

The leftmost column position is zero .
3 .

	

If int-exp is less than the current cursor position, the TAB function has no effect .
4 .

	

The TAB function can move the cursor or print mechanism only from the left to the right .
5 .

	

You can use more than one TAB function in the same PRINT statement .
6.

	

Use semicolons to separate multiple TAB functions in a single statement . If you use com-
mas, BASIC moves to the next print zone before executing the TAB function .

7 .

	

The TAB function is valid only for terminals .
8 .

	

If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size .

200

	

PRINT A$;TAB(15) ;5$;TAB(30) ;"HELLO"

TAB

BASIC Reference Manual

	

371

TAN

70.0 TAN
Function
The TAN function returns the tangent, in radians, of an angle .
Format

real-vbl = TAN(real-exp)

Syntax Rules
None .

General Rules

Examples

1 .

	

BASIC expects the argument of the ABS function to be a real-exp . When the argument is a
real-exp, BASIC returns a value of the same floating-point size . When the argument is not a
real-exp, BASIC converts the argument to the default floating-point size and returns a value
of the default floating-point size .

550

	

K = TAN(2*PI)

372

	

BASIC Reference Manual

71 .0 TIME
Function
The TIME function returns the time of day (in seconds) as a floating-point number . On VAX-11 and
RSTS/E systems the TIME function can also return CPU time and device connect time .
Format

real-vbl = TIME(int-exp)

Syntax Rules
None.

General Rules
1 .

	

The value returned by the TIME function depends on the value of int-exp .
2 .

	

If int-exp equals 0, TIME returns the number of seconds since midnight .
3 .

TIME

BASIC-PLUS-2 on RSX-11 MI M-PLUS systems accepts only an argument of zero . All
other arguments to the TIME function are undefined and cause BASIC to signal "Not
implemented" (ERR=250) .

4 .

	

VAX-11 BASIC and BASIC-PLUS-2 on RSTS/E systems also accept arguments from 1
through 4 and return values as shown in Table 28 . All other arguments to the TIME
function are undefined and cause BASIC to signal "Not implemented" (ERR= 250) .

5 .

	

In BASIC-PLUS-2, the TIME function returns a floating-point value of the default size . In
VAX-11 BASIC, TIME always returns a single-precision value .

6 .

	

If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size .

BASIC Reference Manual

	

373

TIME

Table 28: TIME Function Values

Examples
150

	

PRINT TIME(O)

374

	

BASIC Reference Manual

Argument
Value:

VAX-11 BASIC
Returns:

BASIC-PLUS-2 on
RSTS/E Systems Returns:

1 The current job's CPU time in tenths The current job's CPU time in tenths
of a second of a second

2 The current job's connect time in The current job's connect time in
minutes minutes

3 Zero Kilo-core ticks
4 Zero Device time in minutes

72.0 TIME$
Function
The TIME$ function returns a string displaying the time of the day.

Format

str-vbl = TIME$(int-exp)

Syntax Rules
None .

General Rules

Examples

1 .

	

If int-exp equals zero, TIME$ returns the current time of day .
2 .

	

Int-exp is the number of minutes before midnight . Str-vbI is the time of day .

TIME$

3 .

	

The value of int-exp must be in the range 0 to 1440, inclusive, or BASIC signals an error .
4 .

	

In VAX-I I BASIC the TIME$ function uses a 12-hour, AM/PM clock. Before 12 :00 noon,TIME$ returns HH:MM AM, and after 12 :00 noon, HH :MM PM .
5 .

	

In BASIC-PLUS-2 the TIME$ function uses either an AM/PM or a 24-hour clock. Theclock type is an installation option .
6 .

	

On RSTSIE systems only, the clock type can also be set by the system manager at systemstart-up time .
7 .

	

If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of thedefault size .

200

	

CURRENT_TIME$ = TIME$(O)

February 1984

	

BASIC Reference Manual

	

375

TRM$

73.0 TRM$
Function
The TRM$ function removes all trailing blanks and tabs from a specified string .
Format

str-vbl = TRM$(str-exp)

Syntax Rules
None .

General Rules
1 .

	

The returned str-vbl is the same as str-exp with all the trailing blanks and tabs removed .
Examples
600

	

NEW_STRING$ = TRM$(DLD_STRING$)

376

	

BASIC Reference Manual

74.0 VAL
Function
The VAL function converts a numeric string to a floating-point value .
Format

real-vbl = VAL(str-exp)

Syntax Rules
1 .

	

Str-exp can contain the ASCII digits 0 through 9, uppercase E, and an optional decimal
point and leading sign .

2 .

	

BASIC ignores leading, trailing, and embedded spaces and tabs .
General Rules

1 .

	

If str-exp is null, or contains only spaces and tabs, VAL returns a zero .
2 .

	

The value returned by the VAL function is of the default floating-point size .
Examples
100

	

REAL-NUM

	

=

	

VAL("990 .3 ")

VAL

BASIC Reference Manual

	

377

VAL%

75.0 VAL%
Function
The VAL% function converts a numeric string to an integer .
Format

int-vbi = VAL%(str-exp)

Syntax Rules
1 .

	

Str-exp can contain the ASCII digits 0 through 9 and an optional leading sign .
2 .

	

BASIC ignores leading, trailing, and embedded spaces and tabs .
General Rules

1 .

	

If str-exp is null or contains only spaces and tabs, VAL% returns a value of zero .
2 .

	

The value returned by the VAL% function is an integer of the default size .
3 .

	

If str-exp contains a decimal point, BASIC signals the error "Illegal number" (ERR= 52) .
Examples
100

	

A = VALX("999")

378

	

BASIC Reference Manual

76.0 XLATE
Function
The XLATE function translates one string to another by referencing a table string you supply .
Format

XLATE

str-vbl = XLATE(str-exp1, str-exp2)

Syntax Rules
1 .

	

Str-expl is the input string . Str-exp2 is the table string, and str-vbl is the returned string .
General Rules

Examples

1 .

	

Str-exp2 can contain up to 256 ASCII characters, numbered from 0 to 255 ; the position of
each character in the string corresponds to an ASCII value . Because zero is a valid ASCII
value (null), the first position in the table string is position zero .

2 .

	

XLATE scans str-expI character by character, from left to right . It finds the ASCII value n of
the first character in str-expl and extracts the character it finds at position n in str-exp2 .
XLATE then appends the character from str-exp2 to str-vbl . XLATE continues this process,
character by character, until the end of str-expl is reached .

3 .

	

The output string may be smaller than the input string .
" XLATE does not translate nulls . If the character at position n in str-exp2 is a null, XLATE
does not append that character to str-vbl .

" If the ASCII value of the input character is outside the range of positions in str-exp2,
XLATE does not append any character to str-vbl .

100

	

OUTPUT$ = XLATE(INPUT$t TABLE$)

BASIC Reference Manual

	

379

PART VI
BASIC-PLUS-2

Debugger Commands

When you run a task-built program, execution stops at the first line number of the first module
compiled with the /DEBUG qualifier and control passes to the debugger . When you run a program in
the BASIC environment, control passes to the debugger when the first line number of the program
executed with the RUN /DEBUG command is encountered or when the first line number of an object
module compiled with the /DEBUG qualifier and loaded with the LOAD command is encountered .
When control passes to the BASIC-PLUS-2 debugger, an identifying message and prompt are
displayed :
DEBUG :module-name

Note
This section describes BASIC-PLUS-2 debugger commands . See BASIC on VAX/VMS
Systems for information on the VAX-11 Symbolic Debugger .

BASIC-PLUS-2 debugger commands help you locate run-time errors and debug program modules
interactively in the BASIC environment or from monitor level . To use debugger commands, you must
compile or run at least one program module using the /DEBUG qualifier .

Module-name is the name of the first program module encountered that was compiled with the
/DEBUG qualifier or executed with the RUN /DEBUG command . The pound sign (#) prompt signals
you to enter debugger commands . For example :
#BREAK 300 RE

#TRACE M
#CONTINUE RE

BASIC Reference Manual

	

38 1

In the example on the previous page, the BREAK command will cause execution to stop at the firststatement on line 300 ; the TRACE command will cause the line numbers and statement numbers tobe displayed as they execute . The CONTINUE command causes the program module to execute untilline 300; input, output, and the processing proceeds as usual until the breakpoint is reached . Whenthe BREAK command has successfully executed, the debugger displays a message identifying yourcurrent position in the program module and prompts for another debugger command . For example :
at line 100 statement 1
at line 100 statement 2
at line 100 statement 3
at line 200 statement 1
at line 200 statement 2
BREAK at line 300 statement 1 DEBTST

The identifying message names the debugger command that stopped program execution (BREAK), the
line number and statement where execution stopped, and the name of the currently executing mod-
ule (DEBTST in the above example) . If the main program is executing, no module name is displayed .The # prompt signals you to enter more debugger commands.
Use the EXIT command to exit from the debugger and end program execution .
When you compile a program with the /DEBUG qualifier, BASIC links the debugger program modulefrom the BASIC-PLUS-2 OTS to your program . This increases the size of your task by at least 4Kbytes . When you task-build the program, the debugger records are included in the executable taskimage . When you run the executable image, BASIC-PLUS-2 accesses these records and you can usethe debugger commands described in the following sections .
No debugger records are generated for program modules not compiled with the /DEBUG qualifier .
Thus, you cannot access information, trace module execution, or establish breakpoints in modulesnot compiled with the /DEBUG qualifier . You can, however, use debugger commands to accessinformation about the entire task if you compile at least one program module with the /DEBUGqualifier .
After you have debugged your module and changed the source code where necessary, compile themodule without the /DEBUG qualifier to reduce memory requirements .
Debugger commands are described on the following pages . All debugger commands except BREAK
ON can be abbreviated to three letters .
For an example of a complete debugging session and more information on using the BASIC-PLUS-2debugger, see BASIC on RSTSIE Systems or BASIC on RSX-11M/M-PLUS Systems .

382

	

BASIC Reference Manual

1 .0 BREAK (BASIC-PLUS-2)
Function
The BREAK command lets you stop program execution at program line numbers, particular state-
ments, or at the beginning of CALL statements, user-defined functions ; and FOR, UNTIL, and WHILE
loops. The program stops before executing the specified breakpoint .
Format

BREAK

	

ON block
[ON] stmnt-break, . . .

block:
CALL
DEF
LOOP

stmnt-break : lin-num [stmnt-num] [;mod-nam]

Syntax Rules

2.

BREAK

The BREAK command with no parameters sets a breakpoint at each line number. The
program stops at each line number before executing any statements on the line .
Block specifies a block statement . The ON keyword is required . You can specify only one
block statement in a BREAK ON statement :
" BREAK ON CALL stops execution each time BASIC executes a CALL statement to a
subprogram . The program stops before any statements in the subprogram execute. If you
are executing a task-built program, both the calling and the called program must be
compiled with the /DEBUG qualifier or the BREAK ON CALL command has no effect . If
you are executing a program in the BASIC environment, the called program must be
compiled with the /DEBUG qualifier .

" BREAK ON DEF stops execution each time BASIC encounters a user-defined function in a
module compiled with the /DEBUG qualifier . The statement stops before any statements
in the function execute .

" BREAK ON LOOP stops execution each time BASIC encounters a FOR, WHILE, or
UNTIL statement or modifier . The program stops each time the program loops back to
the loop statement . The program stops after the loop is initialized or incremented, but
before any statements in the loop execute .

BASIC Reference Manual

	

383

BREAK

General Rules

Examples

3 .

	

Stmnt-break specifies a particular line number or statement where execution is to stop .
" Lin-num specifies a program line .
" Stat-num specifies a particular statement associated with lin-num . The period (.) is re-quired and must immediately follow the line number . BASIC signals an error if youinclude a space between lin-num and stat-num . The cross-reference listing file lists state-ments on multi-statement lines by number .
" Mod-nam specifies that the preceding breakpoint is a breakpoint only in the namedprogram module . The semicolon (;) is required .
" You can specify a maximum of 10 stmnt-break breakpoints . If you specify more than 10breakpoints, BASIC signals the error, "No room" .

1 .

	

If you specify a stmnt-break or block that does not exist, no break occurs, BASIC does notsignal an error or warning, and the program executes normally .
2 .

	

To disable program breakpoints, use the UNBREAK command .

#BREAK 30 .21 500 ;PROGB# 2000 .3 ;PR000
#BREAK ON CALL
#CON
BREAK at line 30 statement 2
#

384

	

BASIC Reference Manual

2.0 CONTINUE (BASIC-PLUS-2)
Function
The CONTINUE command continues program execution .
Format

Syntax Rules
None

General Rules

Examples

1 .

	

When you have finished entering debugger commands, type CONTINUE to resume pro-
gram execution .

#BREAK ON LOOP
#CON

CONTINUE

BASIC Reference Manual

	

385

CORE

3.0 CORE (BASIC-PLUS-2)
Function
The CORE command returns the number of words currently allocated in memory for your entire task .Use the CORE command in conjunction with the FREE, STRING, and I/O BUFFER commands todetermine how memory is allocated for your task .
Format

Syntax Rules
None .

General Rules

386

1 .
2 .

3 .

4 .

Examples
#CORE
CORE = 7647

The CORE command displays the total number of words currently allocated to your task .
The maximum allowable program space is 32K words on RSX-11MIM-PLUS systems and31 K words on RSTS/E systems, minus the size of your resident library . Consult BASIC on
RSX-1 1 M/M-PLUS Systems or BASIC on RSTS/E Systems for more information on programspace and resident libraries .
You can use the CORE command only when at least one program module has beencompiled with the /DEBUG qualifier . Note, however, that the number returned by theCORE command reflects the memory allocation for the entire task, not just the modulecompiled with /DEBUG .
Knowing the size of core memory can help you control the size of your program andoptimize accordingly . Consult BASIC on RSX-11 MI M-PLUS Systems or BASIC on RSTS/E
Systems for information on optimization .

BASIC Reference Manual

4 .0 ERL (BASIC-PLUS-2)
Function
The ERL command returns the number of the line executing when the last error occurred .
Format

Syntax Rules
None .

General Rules
1 .

	

The ERL command tells you the number of the line executing when the last error occurred .
2 .

	

If no errors have occurred, the result returned by ERL is undefined .
Examples
#ERL
ERL = 1050

ERL

BASIC Reference Manual

	

387

ERN

5.0 ERN (BASIC-PLUS-2)
Function
The ERN command returns the 1- to 6-character name of the program module that was executing
when the last successfully handled error occurred . If a fatal error was not successfully trapped,
control passes from the debugger to command level .
Format

Syntax Rules
None.

General Rules

Examples

1 .

	

The ERN command returns a module name only when an error has been successfully
handled .

2 .

	

If no errors have occurred, the result returned by ERN is undefined .

#ERN
ERN$ = CHECKS

388

	

BASIC Reference Manual

6.0 ERR (BASIC-PLUS-2)
Function
The ERR command returns the error number of the last error that occurred .
Format

Syntax Rules
None .

General Rules

Examples
#ERR
ERR = 55

1 .

	

The ERR command tells you the number of the last error .
2 .

	

If no errors have occurred, the result returned by ERR is undefined .

ERR

3 .

	

Refer to Appendix B in BASIC on RSTS/E Systems or BASIC on RSX-11 M lM-PLUS Systems
for a list of errors and their numbers .

BASIC Reference Manual

	

389

EXIT

7.0 EXIT (BASIC-PLUS-2)
Function
The EXIT command returns control to BASIC if you are executing a program in the BASIC environ-
ment and to command level if you are executing a task-built program .
Format

Syntax Rules
None .

General Rules
1 .

	

The EXIT command does not close open channels .
Examples
*EXIT

390

	

BASIC Reference Manual

8.0 FREE (BASIC-PLUS-2)
Function
The FREE command returns the number of words currently available in memory for 1/0 and string
operations before BASIC must perform another memory extension . Use the FREE command in con-
junction with the CORE, STRING, and I/O BUFFER commands to determine how memory is allo-
cated for your task .
Format

Syntax Rules
None .

General Rules

2 .

3 .

Examples
#FREE
FREE = 184

FREE

The FREE command returns an integer corresponding to the number of free words availablein memory for 1/0 and string operations .
When string or I/O operations exceed the available free space, BASIC extends the amount
of memory allocated for your task .
Knowing the amount of free space available can help you control the size of your programand optimize accordingly . Consult BASIC on RSX-1 I M l M-PLUS Systems or BASIC onRSTS/E Systems for information on optimization .

BASIC Reference Manual

	

391

I/O BUFFER

9.0 1/0 BUFFER (BASIC-PLUS-2)
Function
The I /O BUFFER command returns the number of words currently allocated for 1/0 buffer space . Use
the I/O BUFFER command in conjunction with the CORE, STRING, and FREE commands to deter-mine how memory is allocated for your task .
Format

Syntax Rules
None.

General Rules

2.

Examples

The 1/0 BUFFER command tells you the total number of words allocated for 1/0 buffer
space .
Knowing the size of the 1/0 buffer can help you control the size of your program and
optimize accordingly . Consult BASIC on RSX-1 1 M l M-PLUS Systems or BASIC on RSTS/E
Systems for information on optimization .

#1/0 BUFFER1/0 BUFFERS = 1765
u

392 BASIC Reference Manual

10 .0 LET (BASIC-PLUS-2)
Function
The LET command allows you to change the contents of program variables .
Format

vbl2
LET vbli =

	

I const

Syntax Rules

LET

1 .

	

Vbl1 specifies the numeric or string variable you want to change . If you attempt to create anew variable with the LET command, BASIC signals "Illegal syntax in LET" .
2 .

	

Const or vb12 specifies the new value for vbl1 . The LET command allows constants or
variables as arguments but does not allow expressions .

3 .

	

You cannot set string variables to a null string with the LET command . If you try to do so,
BASIC signals "Illegal syntax in LET" . However, you can set a variable to the null string in
your source program and then assign that variable to another variable with the LET
debugger command . For example :

General Rules

1000

	

NULL= ""1010 A$="HELLO"1020

	

PRINT A$
Compile or run the program with the /DEBUG qualifier, establish a breakpoint at line
1020, and set A$ to the null string with the LET command :
BREAK at line 1020
#LET A$ = NULL$

1 .

	

You can change only one variable with each LET command. To change more than oneprogram variable, you must enter more than one LET command .
2 .

	

When executing a task-built program, you can change program variables only in program
modules compiled with the /DEBUG qualifier .

3 .

	

You cannot access program variables across program modules . That is, you cannot access
a variable in SUB1 from the main program or from another subprogram, and you cannot
access a variable in the main program from a subprogram .

4.

	

BASIC signals "Illegal syntax in LET" when you try to access a variable across modules orin a module not compiled with the /DEBUG qualifier .

BASIC Reference Manual

	

393

LET

Examples

#LET

AX=15%

#LET

NAME="MITCHELL"

#

394

	

BASIC

Reference Manual

11 .0 PRINT (BASIC-PLUS-2)
Function
The PRINT command allows you to display the current contents of program variables .
Format

Syntax Rules
1 .

	

Vbl specifies the numeric or string variable you want to display .
2 .

	

The PRINT command does not allow constants or expressions as arguments .
General Rules

Examples
#PRINT C
23

PRINT

1 .

	

You can display only one variable with each PRINT command . To display more than one
program variable, you must enter more than one PRINT command .

2 .

	

When executing a task-built program, you can access only those variables contained in
program modules that have been compiled with the /DEBUG qualifier .

3 .

	

You cannot access variables across program modules . That is, the variable you want to
display must exist in the current program module . If you try to display a variable in another
program module, BASIC signals "Illegal syntax in PRINT" .

BASIC Reference Manual

	

395

RECOUNT

12.0 RECOUNT (BASIC-PLUS-2)
Function
The RECOUNT command tells you how many characters were transferred by the last I /O operation .
Format

Syntax Rules
None.

General Rules

Examples
#RECOUNT
RECOUNT = 19
u

1 .

	

The RECOUNT command tells you how many characters, including blanks and termina-tors, were transferred by the last input or output statement .
2 .

	

If your program has open files and reaches the end of the file before closing open channelsor executing the END statement, the debugger signals "End-of-file on device" . If you thentry to continue program execution by typing the CONTINUE command, the debuggersignals "Can't CONTINUE or STEP" . When you then EXIT the debugger mode, files are not
closed, and data is not transferred . If you include an error handler to pass control to the
END statement, BASIC will close files and transfer data .

396

	

BASIC Reference Manual

13.0 REDIRECT (BASIC-PLUS-2)
Function
The REDIRECT command allows you to direct all debugging 1/0 operations to a specified terminal .

Format

REDIRECT term-nam

Syntax Rules
1 .

	

Term-nam specifies the name of an unattached terminal . It must be an unquoted string that
corresponds to a terminal name, or BASIC signals the error "Cannot open device" .

General Rules

Examples

1 .

	

After you type the REDIRECT command in response to the debugger prompt, all debugger
1/0 is directed to the terminal you specify . The program executes on the terminal that
issued the RUN command .

2 .

	

Use another REDIRECT command to direct debugger 1/0 back to the terminal on which
the program is executing.

3 .

	

You can use the REDIRECT command only when at least one program module has been
compiled with the /DEBUG qualifier .

4.

	

If the specified terminal is allocated, the debugger will signal "Cannot open device" on
RSTS/E systems . On RSX-11MIM-PLUS systems, the debugger stops executing until the
specified terminal is available and does not signal an error .

#REDIRECT K52 :

REDIRECT

BASIC Reference Manual

	

397

STATUS

14.0 STATUS (BASIC-PLUS-2)
Function
The STATUS command returns a word-length integer that contains information about the last opened
file .
Format

Syntax Rules
None .

General Rules
1 .

	

The debugger returns the last STATUS word .
2 .

	

Depending on the error, the STATUS word on RSX-11 MI M-PLUS systems displays a value
representing one of the following :
" The RMS-11 primary status field (STS) or the RMS secondary status field (STV) . See the
RMS-1 1 MACRO User's Guide for more information .

" The device characteristics after an RMS-11 OPEN file operation set by the DEV field of
the FAB . See the RMS-11 MACRO User's Guide for more information .

" In the event of a directive error, the Directive Status Word ($DSW) and its correspondingerror code . See the RSX-11 Ml M-PLUS Mini Reference for the error codes.
" The STATUS field of a QIO . See the RSX-11 Ml M-PLUS 1/0 Driver's Reference Manualfor more information .
" The first word of a GETLUN directive describing device characteristics . See theRSX-11 Ml M-PLUS Executive Reference Manual for more information .
" See BASIC on RSX-11 MIM-PLUS Systems for information on STATUS values set for anOPEN file operation with no errors .

3 .

	

Depending on the error, the STATUS word on RSTSIE systems displays a value representing
one of the following :
" The RMS-11 primary status field (STS) or the RMS secondary status field (STV) . See the
RMS-11 MACRO User's Guide for more information .

" The device characteristics after an RMS-11 OPEN file operation set by the DEV field of
the FAB . See the RMS-1 1 MACRO User's Guide for more information .

" For OPEN operations where no errors occur, the status word describes the device charac-teristics of the FIRQB and FQFLAG field . The first 7 bits describe the device, and bits 7through 15 describe characteristics of the OPEN statement . See the BASIC-PLUSLanguage Manual and the RSTS/E System Directives Manual for more information onSTATUS values .

398

	

BASIC Reference Manual

Examples

*STATUS
STATUS

= 31

STATUS

BASIC

Reference Manual	

399

STEP

15.0 STEP (BASIC-PLUS-2)
Function
The STEP command causes the program module to execute statement by statement, stopping after a
specified number of statements have executed .
Format

STEP I int-const I

Syntax Rules

General Rules

Examples

1 .

	

Int-const specifies the number of statements to be executed before the program stops . It
must be a positive integer from 1 to 32767 .

2 .

	

STEP with no int-const is the same as specifying STEP 1 . Only one statement executes and
the program then stops .

3 .

	

If you do not include a space between the command and the int-const, only one statement
executes .

1 .

	

When executing a task-built program, only statements in program modules compiled with
the /DEBUG qualifier in effect are counted . If a module not compiled with the /DEBUG
qualifier executes before a module compiled with the /DEBUG qualifier, the program doesnot stop until the specified number of statements in the module compiled with /DEBUG
have executed .

2 .

	

Typing a carriage return in response to the # prompt is the same as typing STEP 1 or STEP
with no int-const . The next statement executes and the program stops .

3 .

	

Typing a line feed in response to the # prompt has no effect . The debugger waits for a
carriage return and then signals an error .

BREAK at line 1050 statement 1
*STEP
*CON
STEP at line 1050 statement 3

400

	

BASIC Reference Manual

16.0 STRING (BASIC-PLUS-2)
Function
The STRING command tells you how many words are currently allocated for string storage . Use the
STRING command in conjunction with the CORE, 1/0 BUFFER, and FREE commands to determine
how memory is allocated for your task .
Format

STRING

Syntax Rules
None .

General Rules

u

2 .

Examples
#STRINGSTRING =

Knowing how much memory is allocated to string operations can help you control the size
of your program and optimize accordingly . See BASIC on RSX-11 Ml M-PLUS Systems or
BASIC on RSTS/E Systems for information on optimization .

2088

STRING

The STRING command tells you how many words are allocated for string operations for
your entire task, not just for the currently executing program module .

BASIC Reference Manual

	

401

TRACE

17.0 TRACE (BASIC-PLUS-2)
Function
The TRACE command displays line numbers and statement numbers as the program executes .
Format

Syntax Rules
None.

General Rules

Examples

1 .

	

The TRACE command does not affect program execution or breakpoints .
2 .

	

When executing a task-built program, you can use the TRACE command only in program
modules that have been compiled with the /DEBUG qualifier .

3 .

	

The TRACE command remains in effect until the program module finishes executing, until
you specify UNTRACE after a program breakpoint, or until BASIC reaches a module not
compiled with the /DEBUG qualifier . When BASIC returns to a module compiled with
DEBUG, tracing resumes .

*TRACE
*BREAK 300
*CONT
at line 100 statement 1
at line 100 statement 2
at line 200 statement 1
BREAK at line 300 statement 1
*BREAK 500
*CONT

402

	

BASIC Reference Manual

18.0 UNBREAK (BASIC-PLUS-2)
Function
The UNBREAK command disables previously set breakpoints in programs and subprograms .
Format

UNBREAK

UNBREAK

	

~ ON block
[ON] stmnt-break, . . .

CALL
block: DEF

LOOP

stmnt-break : lin-num [stmnt-num] [;mod-nam]

Syntax Rules
1 .

	

The ON keyword is required to disable block breakpoints .
2 .

	

UNBREAK with no parameters disables all previously specified stmnt-break breakpoints .
Block breakpoints are not disabled .

3 .

	

Stmnt-break specifies a particular line number or statement where execution is to stop .
" Lin-num specifies a program line .
" Stat-num specifies a particular statement associated with lin-num . The period (.) is re-
quired and must immediately follow the line number . BASIC signals an error if you
include a space between lin-num and stat-num . The listing file lists statements on multi-
statement lines by number .

" Mod-nam specifies that the preceding breakpoint is a breakpoint only in the named
program module . The semicolon (;) is required .

" You can disable more than one stmnt-break breakpoint with the UNBREAK command,
but you must separate them with commas .

" Mod-nam specifies a program module compiled with the /DEBUG qualifier in effect .
When mod-nam is specified, the line number specified is disabled as a breakpoint only
in the named program . If the breakpoint has not been previously set, BASIC signals an
error .

" If lin-num or stat-num do not exist, the debugger signals the error "Bad line spec in
(UN)BREAK" .

BASIC Reference Manual

	

403

UNBREAK

General Rules
None .

Examples
#UNBREAK ON LOOP
#UNBREAK 100 ;GAMES# 500 . 600 .2
#CON

404

	

BASIC Reference Manual

19.0 UNTRACE (BASIC-PLUS-2)
Function
The UNTRACE command disables the TRACE command .
Format

Syntax Rules
None .

General Rules

Examples
#UNTRACE
#CON

UNTRACE

1 .

	

Enter the UNTRACE command when the program stops executing after encountering a
specified breakpoint .

BASIC Reference Manual

	

405

Appendix A
Reserved BASIC Keywords

%ABORT BACK CTRLC ERT$
%CDD BASE CVT$$ ESC
%CROSS BEL CVT$% EXIT
%ELSE BINARY CVT$F EXP
%END BIT CVT%$ EXPLICIT%FROM BLOCK CVTF$ EXTEND%IDENT BLOCKSIZE DAT EXTENDSIZE%IF BS DAT$ EXTERNAL%INCLUDE BUCKETSIZE DATA FF%LET BUFFER DATE$ FIELD%LIST BUFSIZ DECIMAL FILE%NOCROSS BY DECLARE FILESIZE
%NOLIST BYTE DEF FILL%PAGE CALL DEFAULTNAME FILL$
%SBTTL CASE DEL FILL%
%THEN CCPOS DELETE FIND
%TITLE CHAIN DESC FIX
%VARIANT CHANGE DET FIXED
ABORT CHANGES DIF$ FLUSHABS CHECKING DIM FNAME$ABS% CHR$ DIMENSION FNEND
ACCESS CLK$ DOUBLE FNEXIT
ACCESS% CLOSE DOUBLEBUF FOR
ACTIVE CLUSTERSIZE DUPLICATES FORMAT$
ALIGNED COM DYNAMIC FORTRANALLOW COMMON ECHO FREEALTERNATE COMP% EDIT$ FROMAND CON ELSE FSP$ANY CONNECT END FSS$APPEND CONSTANT EQ FUNCTIONAS CONTIGUOUS EQV FUNCTIONENDASC COs ERL FUNCTIONEXITASCII COT ERN$ GEATN COUNT ERR GET
ATN2 CR ERROR GETRFA

A-2

	

Reserved BASIC Keywords

GFLOAT NEXT RETURN UNTIL
GO NOCHANGES RFA UPDATE
GOBACK NODATA RIGHT USAGE$
GOSUB NODUPLICATES RIGHT$ USEROPEN
GOTO NOECHO RND USING
GROUP NOEXTEND ROUNDING USR$
GT NOMARGIN RSET VAL
HFLOAT NONE SCALE VAL%
HT NOPAGE SCRATCH VALUE
IDN NOREWIND SEG$ VARIABLE
IF NOSPAN SELECT VARIANT
(FEND NOT SEQUENTIAL VFC
IFMORE NUL$ SETUP VIRTUAL
IMAGE NUM SGN VPS%
IMP NUM$ SI VT
INACTIVE NUM1$ SIN WAIT
INDEXED NUM2 SINGLE WHILE
INPUT ON SIZE WINDOWSIZE
INSTR ONECHR SLEEP WORD
INT ONERROR SO WRITE
INTEGER OPEN SP XLATE
INV OPTION SPACE$ XOR
INVALID OR SPAN ZER
ITERATE ORGANIZATION SPEC%
KEY OTHERWISE SQR
KILL OUTPUT SQRT
LEFT OVERFLOW STATUS
LEFT$ PAGE STEP
LEN PEEK STOP
LET PI STR$
LF PLACE$ STREAM
LINE POS STRING
LINO POS% STRING$
LINPUT PPS% SUB
LIST PRIMARY SUBEND
LOC PRINT SUBEXIT
LOCKED PROD$ SUBSCRIPT
LOG PUT SUM$
LOG10 QUO$ SWAP%
LONG RAD$ SYS
LSET RANDOM TAB
MAG RANDOMIZE TAN
MAGTAPE RCTRLC TEMPORARY
MAP RCTRLO TERMINAL
MAR READ THEN
MAR% REAL TIM
MARGIN RECORD TIME
MAT RECORDSIZE TIME$
MAX RECORDTYPE TO
MID RECOUNT TRM$
MID$ REF TRN
MIN REGARDLESS TYP
MOD RELATIVE TYPE
MOD% REM TYPE$
MODE REMAP UNALIGNED
MODIFY RESET UNDEFINED
MOVE RESTORE UNLESS
NAME RESUME UNLOCK

Appendix B
Program and Subprogram Coding Conventions

This appendix presents a suggested format for coding BASIC programs . The recommended program
order and documenting procedures clarify the program's history, purpose, and logical development .
This organization also helps the program to run faster and with fewer errors .
This format is by no means intended to represent the only way of coding BASIC programs . It is a
sample format that can be adapted and modified to suit individual applications .
10 %TITLE "<module-name> - <terse functional description%"%SBTTL "Overall description and modification history"%IDENT "\00 .00"

COPYRIGHT (c) 1982 BYDIGITAL EQUIPMENT CORPORATIONt MAYNARD# MASS .0! THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND! COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH! THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE . THIS SOFTWARE OR ANY! OTHER COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAIL-! ABLE TO ANY OTHER PERSON . N O TITLE TO AND OWNERSHIP OF THE SOFT-! WARE IS HEREBY TRANSFERRED .!! THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NO-! TICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIP-! MENT CORPORATION .!! DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF! ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL .

!! FACILITY :!
!

	

<Facility name>!
! ABSTRACT :!
!

	

A short 3-6 line abstract of the function of the module .

	

If a!

	

full functional specification can be given in 3-G lines# replace!

	

"ABSTRACT" above by "FUNCTIONAL DESCRIPTION ." and delete the!

	

"FUNCTIONAL DESCRIPTION" section below .!

	

[margins and tabs]

	

'
! ENVIRONMENT :!
!

	

[Pick one :]!

	

PDP-11 user mode [with <Operating system> dependencies]!

	

VAX-11 user mode .!

	

PDP-11 and VAX-11 user mode .!
! AUTHOR : <Your name> . CREATION DATE : <dd Mmmmmmmmm yyyy>
! MODIFIED BY :!!

	

<Your name>t <dd-Mmm-yy> : VERSION X00 .00! 000 - Original version of module .!
XSBTTL "Full description"
[Pick at most one of FUNCTION or SUB below . Include Parameters oneither . For main Programs omit FUNCTION or SUB statement andParameters .]FUNCTION <datatype> <name>

	

&SUB <name>

	

&(<datatype> <Param>t

	

! <Description>

	

&<datatype> <Param>)

	

! <Description>
i++!
! FUNCTIONAL DESCRIPTION :!!

	

A detailed functional description of the routine .

	

This should!

	

detail the steps of the Process . the use of external functions!

	

and subprograms (including system servicest RTL routinest SYSLIB!

	

routines) t and so forth .'

	

[margins and tabs]

	

'!
! FORMAL PARAMETERS :!
!

	

<name> .<access type><data type> .<arg mech><arg form>!

	

A description of the meaning bf the Parameter# its legalvaluest etc . Repeat for each Parameter . If a main Programrather than a function or subroutine, use the COMMANDSTRUCTURE section .<access type> is mt r# or w for modify . read . or write .<datatype> is b . d . g . ht 1t P . s . t . or w for BYTE# DOUBLE#GFLOAT, HFLOATt LONG . PacKed (DECIMAL)# SINGLE . text(STRING)# or WORD .<arg mech> is d . r . or v for BY DESC . BY REF . or BY VALUE .<arg form> is <null> or a for scalar or array .'

	

[margins and tabs]

B-2

	

Program and Subprogram Coding Conventions

IMPLICIT INPUTS :!!

	

Describe all uses of the values of global storage objects used
! by the routine .!

	

[margins and tabs]

	

'!
! IMPLICIT OUTPUTS :!!

	

Describe all modifications to the values of global storage ob-
jects used by the routine .[margins and tabs]

%SBTTL "Declarations"!! ENVIRONMENT SPECIFICATION :!OPTION<option clause>t<option clause>

!
! FUNCTION VALUE :! COMPLETION CODES :!!

	

If a functions describe the value returned . If the value re-
!

	

turned is a status indicators use COMPLETION CODE and delete
!

	

FUNCTION VALUE ; if the result of some computations use FUNCTION
!

	

VALUE and delete COMPLETION CODE .
If a SUBt delete FUNCTION VALUE and enter "None ."!

	

[margins and tabs]!
! SIDE EFFECTS :!
!

	

Describe all functional side effects that are not evident from
! the invocation interface . This includes changes in storage al
!

	

locations Process status t file operations (including the command
!

	

terminal)t errors signalledt etc .'

	

[margins and tabs]

Program and Subprogram Coding Conventions

	

B-3

!
! DATATYPE SPECIFICATION :!
RECORD <name> ! <Description>

<record declaration>
END RECORD!! INCLUDE FILES :!
'%,INCLUDE "<Filespec>"!! EQUATED SYMBOLS :!DECLARE <datatype> CONSTANT

<name> = < value>+ ! <Description> &
<name> = <value> ! <Description>!

! LOCAL STORAGE :
DECLARE &<datatype> &<name>+ ! <Description> &

<name>> ! <Description> &
<datatype :><name>+ ! <Description> &

<name> ! <Description>>

XSBTTL "Environment initialization"i+!

	

Set up global error handler
ON ERROR GO TO 31000[Alternately t local error handlers can be set up where needed .]XSBTTL "<Major section name>"<Major section name : :

! <Section description>
[Repeat once for each major section .]XSBTTL "Internal subroutine : <srmbolic name ::"[Access via GOSUB <symbolic name :]<s :mbolic name> :
!
! FUNCTIONAL DESCRIPTION :!
! IMPLICIT INPUTS :!

! IMPLICIT OUTPUTS :

B-4

	

Program and Subprogram Coding Conventions

! GLOBAL STORAGE :!
COMMON (<name>) ! <Description> &<datatype> &<name>> ! <Description :. &<name>> ! <Description> &<datatype> &{name>t ! <Description> &<name> ! <Description>MAP (<name>) ! :Description : &<datatype> &<name>> ! <Description> &<name>t ! <Description> &<datatype> &<name>t ! <Description : &<name> ! <Description>!! EXTERNAL REFERENCES :!EXTERNAL <datatype> CONSTANT &<name> ! <Description>EXTERNAL <datatype> &<name> ! <Description>EXTERNAL <datatype> FUNCTION &<name> ! <Function description> &(<datatvpe> BY <mech>t ! <Argument description :. &<datatype> BY <mech>) ! <Argument description>EXTERNAL SUB &<name> ! <Function description> &(<datatvpe> BY <mech>> ! <Argument description> &<datatype> BY <mech>) ! <Argument description>!

! INTERNAL REFERENCES :!
DECLARE <datatype> FUNCTION &<name> ! <Function description> &(<datatipe>t ! <ArSument description> &<datatipe>) ! <Argument description>

! SIDE EFFECTS :

RETURN%.SBTTL "Internal function - <name>"[Access via tname> (<Params>)]DEF <datatype> <name>

	

&
(Cdatatype> Gname>t

	

! <Description>

	

&CdatatvPe> <name>)

	

! <Description>

! FUNCTIONAL DESCRIPTION :!
! FORMAL PARAMETERS :!
! IMPLICIT INPUTS :!
! IMPLICIT OUTPUTS :!
! FUNCTION VALUE :
! SIDE EFFECTS :!
END DEF%SBTTL "RSTS/E CCL entry Point"[This section is for RSTS/E [CL's only]30000 !+!

	

CCL entry Point :
%SBTTL "Common error handling"31000 !+!

	

Common error handling :
%SBTTL "Module end"32767

	

END < FUNCT I ON t nulls o r SUB >

Program and Subprogram Coding Conventions

	

B-5

This index provides a complete cross-reference to the information in this manual . In the index the
following convention is used :
Example

	

Explanation
12t

	

A page number followed by a t indicates a table .

Index

For material not covered in this manual, see the Master Index in the back of the BASIC Reference
Manual . The Master Index contains a list of the major references to information throughout the BASIC
documentation set .

A

Abbreviations
debugger command, 382
qualifier, 83

%ABORT, 113
ABS, 293
ABS%, 294
Absolute value

ABS, 293
ABS%, 294
MAG, 331

ACCESS clause, 241, 258
APPEND, 241
MODIFY, 173, 191, 241
READ, 173, 191, 241
SCRATCH, 173, 241
WRITE, 241

Accessing
CDD record definitions, 263
RECORD items, 264, 265

ACTIVE clause, 249
Allocating storage

for arrays, 159
for FILL items, 141t, 227, 268
for RECORD structures, 264
for VARIANT fields, 265
with COMMON, 139, 142
with MAP, 210
with MAP DYNAMIC, 213
with REMAP, 268

February 1984

ALLOW clause, 241
MODIFY, 174, 192, 241
NONE, 174, 192, 241
READ, 174, 192, 241
WRITE, 241

Alphanumeric label, 2
See also Labels

ALTERNATE KEY clause, 240, 244
Ampersand (&)

as a continuation character, 4, 6, 7
in DATA statements, 143

AND, 38
ANSI Minimal BASIC Standard, 84
ANSI-STANDARD qualifier, 84
APPEND, 43 to 44
Arc tangent, 296
Arithmetic operators, 30, 30t
Arrays, 27 to 29

array elements, 27, 159
assigning values to, 206, 217, 219, 221,

225, 261
bounds, 159, 217, 219, 221, 223, 225
bounds checking, 84
converting with CHANGE, 136
creating with COMMON, 140
creating with DECLARE, 145
creating with DIM, 158
creating with MAP, 210
creating with MAT statements, 216, 219,

221, 223, 225
data type of, 158
definition of, 27

Index- 1

Arrays (Cont .)
dimensions of, 28, 158dynamic, 158, 159, 160element zero, 28, 159, 218, 220, 222, 224,226, 228
initialization of, 161, 217
inversion of, 218
matrix arithmetic, 217
naming, 29
redimensioning with MAT statements, 217,218, 219, 221, 225
size limits, 28static, 158, 159transposition of, 218virtual, 29, 147, 158, 159, 170ASCII
character set, 10characters, 24, 36, 299
conversion, 136, 295, 299
function, 295
stream files, 245

ASSIGN, 45Assigning logical names, 45Assigning string datawith LSET, 209with RSET, 274
Assigning values

to array elements, 206, 217, 219, 221, 225,261
to lexical constants, 121
with INPUT, 199
with INPUT LINE, 202with LET debugger command, 393with LET statement, 206with LINPUT, 207with LSET, 209with MAT INPUT, 219with MAT LINPUT, 221with MAT READ, 225with READ, 261
with RSET, 274

Asterisk (*)
in PRINT USING format field, 255with HELP, 69Asterisk-filled fieldin PRINT USING, 255ATN, 296

AUDIT qualifier, 84
B
Backslash 0

in continued lines, 6in multi-statement lines, 5

Index-2

Backslash 0 (Cont.)
in PRINT USING format field, 256statement separator, 5BASIC character set, 10BEL, 23Binary radix, 21Blank-if-zero fieldin PRINT USING, 255Block 1/0 files, 94finding records in, 174opening, 240
retrieving records sequentially in, 191writing records to, 258Block statements
ending, 162
exiting, 164

BLOCKSIZE clause, 243
Bounds, 27

default for implicit arrays, 159, 217, 219,221, 223, 225
maximum, 28

BOUNDS-CHECK qualifier, 84BREAK debugger command, 383 to 384BRLRES command, 46 to 47BUILD default, 48
BRLRES qualifier, 90
BS, 23
Buckets
BUCKETSIZE clause, 244
locking, 174, 192
unlocking, 174, 182, 192BUCKETSIZE clause, 244BUFFER clause, 243BUFSIZ, 297

BUILD, 48
BASIC-PLUS-2 qualifiers, 90tBY clauses
BY DESC, 131, 168, 185, 282BY REF, 131, 168, 185, 282BY VALUE, 131, 168BYTE data type, 1 1BYTE qualifier, 84, 90

C formatting characterin PRINT USING, 256CALL, 129 to 133as a debugger breakpoint, 383with SUB, 281
Calling subprograms, 129, 281Caret ()in PRINT USING format field, 255CASE clause, 276

February 1984

CASE ELSE clause, 277
CCPOS, 298
CD

in PRINT USING format field, 255
CDD

accessing definitions in, 263
including definitions from, 7, 84, 88, 119

Centered field
in PRINT USING, 256

CHAIN qualifier, 90, 134
CHAIN statement, 134 to 135
CHANGE, 136 to 137

with NOSETUP, 87
CHANGES clause, 244
CHARACTER data type, 23
Character position
CCPOS, 298
of substring, 322, 345

Character sets
ASCII, 10
BASIC, 10
translating with XLATE, 379

Characters
ASCII, 24, 36, 295, 299
data type suffix, 13
format in PRINT USING, 255 to 257
lowercase, 58, 64, 66, 256
nonprinting, 23
processing of, 10
uppercase, 58, 64, 66, 256
wildcard, 69

CHR$, 18, 299
Clauses
ACCESS, 173, 191, 241, 258
ACTIVE, 249
ALLOW, 174, 192, 241
ALTERNATE KEY, 240, 244
BLOCKSIZE, 243
BUCKETSIZE, 244
BUFFER, 243
BY, 131, 168, 185, 282
CASE, 276
CHANGES, 244
CLUSTERSIZE, 246
CONNECT, 245, 246
CONTIGUOUS, 242, 244,44,245COUNT, 258, 289
DEFAULTNAME, 240, 243
DUPLICATES, 244, 259
ELSE, 197
END IF, 197
EXTENDSIZE, 243, 245, 246
FILESIZE, 242
FOR INPUT, 240

February 1984

Clauses (Cont.)
FOR OUTPUT, 240
GROUP, 264
KEY, 172, 190, 271MAP, 212, 243MODE, 246
NOREWIND, 243, 245, 247
NOSPAN, 243
ORGANIZATION, 240
OTHERWISE, 236, 237
PRIMARY KEY, 240, 244, 247
RECORD, 172, 190, 258, 259
RECORDSIZE, 212, 242, 258RECORDTYPE, 241
REGARDLESS, 174, 192
RFA, 172, 190
STEP, 179
TEMPORARY, 242
THEN, 197
UNLOCK EXPLICIT, 173, 175, 191, 245
UNTIL, 180
USEROPEN, 240, 243
VARIANT, 264
WHILE, 180
WINDOWSIZE, 242

CLOSE, 138
Closing files, 138

with END, 162
CLUSTER qualifier, 90
CLUSTERSIZE clause, 246
CMD file, 48Colon (:)

in labels, 2
Comma (,)

in DATA, 144
in DELETE command, 54
in INPUT, 199
in INPUT LINE, 202
in LINPUT, 207
in LIST, 75
in MAT PRINT, 224
in PRINT, 251
in PRINT USING format field, 255
command, 49 to 50Command qualifiers, 83 to 94BASIC-PLUS-2, 90t
VAX-11 BASIC, 84t

Comment
field, 8, 267
in DATA statements, 9, 143
processing of, 10
REM, 9, 267
transferring control to, 8

Index-3

COMMON, 139 to 142
size, 141
with FIELD, 170

Common Data Dictionary, 7See also CDD
COMP%, 300
Comparing

numeric strings, 300
strings, 36

Comparisons
EQ, 173, 191
GE, 173, 191GT, 173, 191Compilation
conditional, 117, 128
control of, 7, 108
control of listing, 114, 122, 123, 124, 125,126, 127
controlling with OPTION, 249
including from CDD, 7, 84, 88, 119
including source code, 7, 119
terminating with %ABORT, 113

Compilation qualifiers, 83 to 94
BASIC-PLUS-2, 90tVAX-11 BASIC, 84t

COMPILE, 51 to 52
BASIC-PLUS-2 qualifiers, 90tDEBUG qualifier, 381VAX-11 BASIC qualifiers, 84tCompiler directives, 7

Components, 264
CON, 217
Concatenation

of COMMON areas, 141
string, 5, 30, 34

Conditional branching
with IF, 197with ON-GOSUB, 236with ON-GOTO, 237with SELECT, 276

Conditional compilation, 7
%VARIANT, 128
with %IF, 117

Conditional expressions, 34 to 40
definition of, 34
in %LET, 121in FOR, 180in IF, 197
in UNLESS, 286in UNTIL, 288in WHILE, 292

Conditional loops, 179, 288, 292CONNECT clause, 245, 246

Index-4

Constants, 14 to 24declaring, 146
default data type, 15definition of, 14
external, 166
floating-point, 15
integer, 17
lexical, 117, 121
named, 19 to 21numeric, 15 to 18packed decimal, 17predefined, 23 to 24string, 18 to 19
types of, 14

CONTIGUOUS clause, 242, 244, 245Continuation characters
ampersand, 6
backslash, 6CONTINUE command, 53with RUN, 103CONTINUE debugger command, 385Continued
lines, 5
statements, 4, 5string literals, 5

Conversion
of array to string variable, 136of string variable to array, 136Conversion functions
CVT$%, 304CVT$F, 304CVT%$, 304CVTF$, 304
DECIMAL, 307
INTEGER, 325
NUM$, 339
NUM1$, 340
RAD$, 351
REAL, 354
STR$, 365VAL, 377VAL%, 378XLATE, 379Copying BASIC source text, 7, 119CORE debugger command, 386COS, 301

Cosine, 301
COUNT clause

with fixed-length records, 258, 289with variable-length records, 258, 289CPU time, 373CR, 24

February 1984

February 1984 Index-5

Creating Data types (Cont .)
arrays, 140, 145, 158, 159, 210, 216, 219, defining with RECORD, 263

221, 223, 225 DOUBLE, 11
object modules, 51, 87, 93 GFLOAT, 11
output listing, 86, 92 HFLOAT, 11
strings, 361, 366 in LET, 206

Credit-debit field in logical expressions, 37
in PRINT USING, 255 in numeric expressions, 31

%CROSS, 114 INTEGER, 11
Cross-reference table integer overflow checking, 87, 249
%CROSS, 114 keywords, 11, 12
CROSS-REFERENCE qualifier, 84, 90 LONG, 11
%NOCROSS, 123 numeric literal notation, 21

CROSS-REFERENCE qualifier, 84, 90 precision, 12
CTRL /C precision in PRINT, 252

resuming after, 302 precision in PRINT USING, 254
trapping, 302, 352 promotion rules, 31 to 34
with RECOUNT function, 355 range, 12
with RESUME, 272 REAL, 11

CTRL/Z, 68 results for DECIMAL data, 33t
editing command, 63 results for GFLOAT and HFLOAT, 32t
with INPUT, 201 results in expressions, 32t
with INPUT LINE, 203 RFA, 12
with LINPUT, 208 setting defaults with OPTION, 249

CTRLC, 302 SINGLE, 11
See also RCTRLC size, 12

Cursor position storage of, 11 , 12
CCPOS, 298 STRING, 11
TAB, 371 suffix characters, 13

CVT$$, 303 WORD, 11
See also EDIT$ Data typing

CVTxx explicit, 13, 14
CVT$%, 304 implicit, 13
CVT$F, 304 with declarative statements, 14
CVT%$, 304 with suffix characters, 13
CVTF$, 304 Data-type defaults, 13, 14
with FIELD, 169 BYTE qualifier, 84, 90

constants, 15
D DECIMAL-SIZE qualifier, 84

DOUBLE qualifier, 85, 91
DATA, 143 to 144 GFLOAT qualifier, 86

See also READ HFLOAT qualifier, 86
comment fields in, 9 LONG qualifier, 87, 92
in DEF functions, 151 SINGLE qualifier, 88, 94
in DEF* functions, 155 TYPE-DEFAULT qualifier, 89, 94
in multi-statement lines, 7 WORD qualifier, 89, 94
with MAT READ, 225 Data-type functions
with READ, 261 DECIMAL, 307
with RESTORE, 271 INTEGER, 325

Data types, 10 to 14 REAL, 354
BYTE, 11 Data-type keywords, 11
CHARACTER, 23 Date and time functions
DECIMAL, 11 DATE$, 306
decimal overflow checking, 87, 249 TIME, 373

Date and time functions (Cont .)
TIME$, 375

DATE$, 306
Debit-credit field

in PRINT USING, 255
DEBUG qualifier, 84, 91

with COMPILE, 381
with RUN, 103, 279, 381

DebuggerBASIC-PLUS-2 commands, 381 to 405
command abbreviations, 382
effect on task size, 382
prompt, 381

Debugging
changing variable values, 393
DEBUG qualifier, 84, 91disabling of TRACE, 405disabling program breakpoints, 384, 403
displaying program values, 395
redirecting 1/0 operations, 397
resuming execution, 385
setting program breakpoints, 383
TRACEBACK qualifier, 88
tracing statement execution, 402
with debugger commands, 103, 279

DECIMAL data type, 11
constants, 17
format of, 13
overflow checking, 87, 249
promotion rules, 32
rounding, 87, 249
storage of, 1 1

DECIMAL function, 307
Decimal radix, 21
DECIMAL-SIZE qualifier, 84
Declarative statements
COMMON, 140DECLARE, 145
EXTERNAL, 166
MAP, 210

DECLARE, 145 to 148
CONSTANT, 20, 24, 146, 147
FUNCTION, 146, 147

Declaring
constants, 20, 146
DEF functions, 146, 149
DEF* functions, 153
external constants, 166
external subprograms, 185
external subroutines, 166external variables, 166
RECORD structures, 264
variables, 145

Declining features, 85, 91

Index-6

DEF, 149 to 152
as a debugger breakpoint, 383
ending, 162
error handling in, 151, 163, 233, 234, 272
exiting, 164
multi-line, 150
parameters, 150, 151recursion in, 151transferring control into, 151, 236, 237with INPUT, 199with INPUT LINE, 202with LINPUT, 207
with NOSETUP, 87
with READ, 261

DEF*, 153 to 156
error handling in, 155, 163
multi-line, 154
parameters, 154, 155recursion in, 155transferring control into, 155DEFAULTNAME clause, 240, 243Defaults
BRLRES, 46
BUCKETSIZE clause, 244BUILD, 48
CLUSTERSIZE clause, 246
COMMON name, 140COMPILE, 51constants, 15
data type, 13, 14, 249
DEFAULTNAME clause, 243
displaying, 109
DSKLIB, 55
EDIT, 57
error handling, 233
file name, 79, 82, 95, 97, 102, 104, 111,

134,240
floating-point constants, 15
implicitly declared variables, 26, 27
integer constants, 17LIBRARY, 73listing file, 51, 84, 86, 90, 92LOAD, 77
numeric constants, 15
object module name, 51, 87, 93ODLRMS, 80
overriding with BUILD, 48
overriding with COMPILE, 51
overriding with RUN, 102
parameter passing mechanisms, 132t, 133t,

168, 185, 282radix, 21
RECORDSIZE clause, 242RESEQUENCE, 98

February 1984

February 1984 Index-7

Defaults (Cont .) Displaying (Copt.)
RMSRES, 100 program lines, 75
SCALE, 105 Documentation
scale factor, 249 on-line, 69
SEQUENCE, 107 program, 8 to 10
SET, 108 Dollar sign ($)
setting with BRLRES, 46 in DECLARE, 145, 146
setting with DSKLIB, 55 in DEF names, 149, 150
setting with LIBRARY, 73 in DEF* names, 153, 154
setting with ODLRMS, 80 in FUNCTION names, 184
setting with OPTION, 248 in MAP DYNAMIC variables, 213
setting with RMSRES, 100 in PRINT USING format field, 255
SHOW, 109 in SUB names, 281
WINDOWSIZE clause, 242 in variable names, 25, 26

DEFINE editing command, 61 suffix character, 13
Defining DOUBLE data type, 11
COMMON storage, 139 DOUBLE qualifier, 85, 91
data structures, 263 DSKLIB command, 55 to 56
labels, 2 BUILD default, 48
MAP DYNAMIC storage, 213 DSKLIB qualifier, 91
MAP storage, 210 DUMP qualifier, 91

DEL, 24 DUPLICATES clause, 244, 259
DELETE command, 54 Dynamic
DELETE statement, 157 arrays, 158, 159, 160

with UNLOCK, 287 mapping, 169, 213, 268
Deleting storage, 213, 268, 269

files, 111, 205, 242
program lines, 54 E
records, 157, 275

Delimiter E formatting character
EDIT, 57 in PRINT USING format field, 256
in DATA, 144 E mathematical constant, 316
string literal, 18 E notation, 16
SUBSTITUTE editing command, 66 field in PRINT USING, 255

Descriptors, 131, 168, 185, 282 in numeric literal notation, 21
DET, 308 in PRINT USING format field, 256
Determinant, 308 numbers in, 16t
DIF$, 309 with PRINT, 252
DIM, 158 to 161 with STR$, 365

executable, 159, 160 ECHO, 310
nonvirtual, nonexecutable, 159 See also NOECHO
used with MAT statements, 217, 218, 219, EDIT, 57 to 60

221,223 EDIT$, 311
virtual, 159 values, 31 1 t
with NOSETUP, 87 Editing

DIMENSION, 158 to 161 program lines, 57
See also DIM strings, 311, 376

Dimensions with a text editor, 58
of arrays, 28, 158 with editing commands, 58

Disk-resident libraries Editing commands, 60t
overriding defaults, 91 DEFINE, 61
setting defaults, 55 EXECUTE, 62

Displaying EXIT, 63
defaults, 109 FIND, 64

Editing commands (Cont .)
INSERT, 65
SUBSTITUTE, 66

ELSE clause, 197
END, 162 to 163

DEF, 150, 154, 162
FUNCTION, 162, 184
GROUP, 162
IF, 162, 197
RECORD, 162
SELECT, 162, 277
SUB, 162, 281
VARIANT, 162

Ending
multi-line DEF, 150, 162
multi-line DEF*, 154
programs, 162
statement blocks, 162
subprograms, 162, 184, 281

EQ, 173, 191
Equivalence name, 45
EQV, 38
ERL debugger command, 387
ERL function, 312

with labels, 2
with NOLINE qualifier, 86, 92
with RESEQUENCE, 99

ERN debugger command, 388
ERN$, 313
ERR debugger command, 389
ERR function, 314Error

number, 314
text, 315

Error handling
disabling, 235
ERL, 312
ERN$, 313
ERR, 314
ERT$, 315
in DEF functions, 151, 163, 233, 234
in DEF* functions, 155, 163
in FOR-NEXT loops, 272
in subprograms, 163, 164, 185, 233
in UNTIL loops, 272
in WHILE loops, 272
ON ERROR GO BACK, 233
ON ERROR GOTO, 234
ON ERROR GOTO 0, 235
recursion in, 234
RESUME, 272

Error handling functions
CTRLC, 302
ERL, 312

Index-8

Error handling functions (Copt.)
ERN$, 313
ERR, 314
ERT$, 315
RCTRLC, 352

ERT$, 315
ESC, 24
Evaluation

of expressions, 40 to 42of logical expressions, 38 to 40of numeric relational expressions, 35of operators, 40
of SELECT statements, 277
of string relational expressions, 36

Exclamation point (!)
in comment fields, 8
in PRINT USING format field, 256

Executable
DIM, 159statements, 3EXECUTE editing command, 62Execution
continuing, 53, 103, 385
of multi-statement lines, 5
of statements, 5
of system commands, 49
program, 102
stopping, 53, 103, 279, 383, 400
suspending, 278, 291

EXIT command, 68EXIT debugger command, 390EXIT editing command, 63EXIT statement, 164 to 165
DEF, 164
FUNCTION, 164
SUB, 164

Exiting
DEF functions, 164
loops, 164
statement blocks, 164
subprograms, 164EXP, 316Explicit
creation of arrays, 158
data typing, 13, 14, 89, 94, 248
declaration of variables, 27
literal notation, 21 to 23
loop iteration, 204
record locking, 157, 173, 174, 175, 191,

192,245
Exponential notation, 16, 252

in PRINT USING, 255
numbers in, 16t
with PRINT, 252

February 1984

February 1984 Index-9

Exponentiation, 316 Fields (Cont.)
Expressions, 30 to 42 exponential, 255

conditional, 34 to 40 extended, 256
conditional in %LET, 121 floating dollar sign, 255
definition of, 30 GROUP, 264
evaluation of, 40 to 42 left-justified, 256
lexical, 117, 121, 128 one-character, 256
logical, 37 to 40 right-justified, 256
mixed-mode, 31 to 34 trailing minus sign, 255
numeric, 30 to 34 VARIANT, 264
numeric relational, 35 zero-fill, 255operator precedence in, 40, 41t File attributes
parentheses in, 41 BLOCKSIZE clause, 243relational, 35 to 37 CLUSTERSIZE clause, 246
string, 34 CONTIGUOUS clause, 242
string relational, 36 EXTENDSIZE clause, 243
types of, 30 FILESIZE clause, 242

EXTEND qualifier, 91 magnetic tape, 243
Extended field MODE clause, 246

in PRINT USING, 256 File names
EXTENDSIZE clause, 243, 245, 246 BUILD default, 48
EXTERNAL, 166 to 168 CHAIN statement default, 134BASIC-PLUS-2 parameter passing COMPILE default, 51mechanisms, 133t LOAD default, 77CONSTANT, 20, 166 NEW default, 79FUNCTION, 166 OLD default, 82

parameters, 167 OPEN default, 240
SUB, 166 RENAME default, 95
VAX-11 BASIC parameter passing REPLACE default, 97

mechanisms, 132t RUN default, 102
with NOSETUP, 87 SAVE default, 104

External UNSAVE default, 111
constants, 20, 166 File-related functions
functions, 166 BUFSIZ, 297
subroutines, 166 CCPOS, 298variables, 26, 166 FSP$, 319Extracting substrings FSS$, 320
with LEFT$, 326 GETRFA, 321
with MID$, 335 MAGTAPE, 332
with RIGHT$, 356 MAR, 334
with SEG$, 358 ONECHR, 341

RECOUNT function, 355
F STATUS, 363Files
Features ASCII stream, 245

declining, 85, 91 block 1/0, 94, 174, 191, 240, 258
FF, 24 closing, 138
FIELD, 169 deleting, 111, 205, 242
Fields deleting records in, 157, 275asterisk-filled, 255 finding buffer size, 297blank-if-zero, 255 %INCLUDE, 98, 119, 120

centered, 256 indexed, 92, 157, 174, 191, 240, 243, 244,
comment, 8 258, 271, 290
credit or debit, 255 magnetic tape, 243, 271, 332

Files (Copt .)
opening, 238
relative, 93, 157, 173, 191, 240, 242, 244,

258, 290
renaming, 230restoring data, 271
RMS sequential stream, 245
sequential, 93, 173, 191, 240, 242, 243,

251, 258, 275, 289
terminal-format, 199, 202, 207, 215, 219,

221, 223, 232, 244, 251
virtual, 94, 242, 271

FILESIZE clause, 242
FILL, 139, 210, 227, 268
FILL items

formats and storage, 141t
in COMMON, 139in MAP, 210
in MOVE, 227
in REMAP, 268

FILL$, 139, 210, 227, 268
FILL%, 139, 210, 227, 268
FIND editing command, 64
FIND statement, 171 to 176

with PUT, 259
with UNLOCK, 287
with UPDATE, 289

Finding
records, 174
string length, 327
substrings, 322, 345
virtual address, 328

FIX, 317
compared with INT, 324

FLAG qualifier
BP2COMPATIBILITY, 85
DECLINING, 85, 91

Floating dollar sign field
in PRINT USING, 255

Floating-point
constants, 15
data types, 1 1
promotion rules, 31
variables, 26

FNEND, 177
See also END

FNEXIT, 178
See also EXIT

FOR clause
INPUT, 240
OUTPUT, 240

FOR statement, 179 to 181
FOR-NEXT loops, 179 to 181, 231

conditional, 179

Index- 1 0

FOR-NEXT loops (Cont.)
error handling in, 272
exiting, 164explicit iteration of, 204nested, 179
transferring control into, 180, 195, 196, 236,237
unconditional, 179

Format
characters in PRINT USING, 255
E, 16, 252
explicit literal notation, 21
exponential, 16, 252for SET qualifiers, 83of comment field, 8of compiler directives, 7of data, 11
of data in DATA statements, 144of DECIMAL data, 13of empty statements, 10of external constant name, 21
of external variable names, 26
of FILL items, 141t
of floating-point constants, 15
of implicitly declared variables, 26, 27
of integer constants, 17
of internal constant name, 19of internal variable names, 25of keywords, 3
of labels, 2
of line numbers, 1
of logical expressions, 37
of multi-line REM, 9, 267
of multi-statement lines, 6, 7
of numeric expressions, 30
of packed decimal constants, 17
of program lines, 1 to 8
of relational expressions, 35
of statements, 3
of string constants, 18of subscripted variables, 28Radix-50, 351

FORMAT$, 318
Formatting
MAT PRINT output, 224
numeric output, 255 to 256
PRINT output, 251, 253
storage with LSET, 209
storage with RSET, 274
string output, 256 to 257
with FORMAT$, 318with PRINT USING, 254 to 257FREE debugger command, 391FREE statement, 182

February 1984

FSP$, 319
FSS$, 320
FUNCTION, 183 to 186
BASIC-PLUS-2 parameter passing

mechanisms, 133t
parameters, 184
VAX-11 BASIC parameter passing

mechanisms, 132t
Function codes
MAGTAPE, 332t

FUNCTIONEND, 187
See also END

FUNCTIONEXIT, 188
See also EXIT

Functions
declaring, 146, 149, 153
external, 166
initialization of, 151, 155
invocation of, 151, 155
lexical, 89, 94, 117, 121, 128
naming, 149, 153
parameters, 150, 154
user-defined, 149, 153

G
GE, 173, 191
GET, 189 to 194

with PUT, 259
with UNLOCK, 287
with UPDATE, 289

GETRFA, 321
GFLOAT data type, 11
GFLOAT qualifier, 86
GOSUB, 195

with RETURN, 273
GOTO, 196
GROUP clause, 264
GT, 173, 191

H
Halting program execution, 53, 279, 383, 400
HELP, 69 to 70
Hexadecimal radix, 21
HFLOAT data type, 11
HFLOAT qualifier, 86
HT, 23
Hyphen (-)

in DELETE command, 54
in LIST command, 75

February 1984

I/O
characters transferred, 355closing files, 138, 162
deleting records, 157
dynamic mapping, 268
finding records, 173
getting records, 191
I/O BUFFER debugger command, 392
locking records, 173, 174, 191, 192, 245
matrix, 337, 338
moving data, 227
opening files, 238RECOUNT debugger command, 396retrieving records, 191
STATUS debugger command, 398
unlocking records, 182, 245, 287
updating records, 289
with CHAIN, 135
writing records, 258

I /O BUFFER debugger command, 392
%IDENT, 115 to 116IDENTIFY, 71
Identifying module version, 115
Identity matrix, 217
IDN, 217
%IF-%THEN-%ELSE-%END %IF, 117 to 118

with RESEQUENCE, 98
IF-THEN-ELSE, 197 to 198

labels in, 2
multi-line format, 6Immediate mode, 53, 103IMP, 38Implicit
continuation of lines, 6
creation of arrays, 159, 217, 219, 221, 223,

225
data typing, 13, 147
declaration of variables, 26 to 27

%INCLUDE, 119 to 120
with RESEQUENCE, 98

IND qualifier, 92Indexed filesALTERNATE KEY clause, 244BUCKETSIZE clause, 244
CHANGES clause, 244
deleting records in, 157
DUPLICATES clause, 244
finding records in, 174
IND qualifier, 92
MAP clause, 243
opening, 240
PRIMARY KEY clause, 244

Index-1 1

Indexed files (Cont.)
restoring data in, 271
retrieving records sequentially in, 191
segmented keys in, 244
updating, 290
writing records to, 258

Initialization
in subprograms, 185, 282
of arrays, 217
of DEF functions, 151
of DEF* functions, 155
of dynamic arrays, 161
of variables, 29, 147
of variables in COMMON, 142
of variables in MAP, 212
of virtual arrays, 160

INPUT, 199 to 201INPUT LINE, 202 to 203Inputting dataONECHR, 341
with INPUT, 199
with INPUT LINE, 202
with LINPUT, 207

INQUIRE, 72
See also HELP

INSERT editing command, 65
Instance, 264
RECORD, 264

INSTR, 322 to 323
See also POS

INT, 324
Integer

constants, 17
data types, 11
overflow checking, 87, 249
promotion rules, 31
suffix character, 13
variables, 27

INTEGER data type, 11
INTEGER function, 325
INV, 218
Inverting arrays, 218, 308
ITERATE, 204
Iteration

of FOR loops, 180
of loops, 204
of UNTIL loops, 288
of WHILE loops, 292

J
justifying strings

with LSET, 209
with RSET, 274

Index- 1 2

K
KEY clauses
ALTERNATE, 240, 244
in FIND, 172
in GET, 190
in RESTORE, 271
PRIMARY, 240, 244, 247
segmented keys, 244

Keywordsdata-type, 11
definition of, 3
function of, 3
in RECORD, 264
restrictions, 3
spacing requirements, 4, 4t

KILL, 205
L
L formatting characterin PRINT USING, 256Labels

defining, 2
format of, 2
function of, 2
referencing, 2
transferring control to, 195, 196, 236, 237
with ITERATE, 204LEFT$, 326See also SEG$Left-justification
PRINT USING format field, 256with LSET, 209

LEN, 327
Length

label, 2
of STRING data, 12
variable names, 25

%LET, 121LET debugger command, 393 to 394LET statement, 206
Letters

lowercase, 10, 58, 64, 66, 256uppercase, 10, 58, 64, 66, 256Lexical
constants, 117, 121
expressions, 117, 121, 128
functions, 89, 94, 117, 121, 128
operators, 117, 121
order, 8LF, 24

Librariesclustering, 90

February 1984

February 1984 Index-1 3

Libraries (Cont.) Listing file (Cont .)disk-resident, 55 setting page size, 93
memory-resident, 46, 73 setting width, 94
RMS, 100, 101 t subtitle, 126
setting defaults with BRLRES, 46 %TITLE, 127
setting defaults with DSKLIB, 55 title, 127
setting defaults with LIBRARY, 73 version identification, 115

LIBRARY command, 73 to 74 LISTNH, 75
BUILD default, 48 See also LIST

LIBRARY qualifier, 92 Literal
Line numbers explicit notation, 21automatic sequencing, 107 numeric, 15

format of, 1 string, 5, 10, 18, 37, 255, 257
function of, 2 LOAD, 77
in %INCLUDE file, 98, 119 with RUN, 103
in object modules, 86, 92 with SCRATCH, 106
in RESEQUENCE, 98 LOC, 328
range of, 1 Local copy, 131

LINE qualifier, 86, 92, 134 Locating records
with debugger commands, 387, 388 by KEY, 172, 174, 190, 192with ERL, 312 by RECORD number, 172, 190Line terminator, 1, 7, 10 by RFA, 172, 174, 190, 192with DATA statements, 143 sequentially, 172, 173, 190, 191
with INPUT, 200 with FIND, 171
with INPUT LINE, 203 with GET, 189
with LINPUT, 208 LOCK, 78

Lines See also SET
continued, 5 Lock checking
deleting, 54 REGARDLESS clause, 174, 192
displaying, 75 Locking records, 245
editing, 57 with FIND, 173, 174, 175
elements of, 1 with GET, 191, 192
format of, 1 to 8 LOG, 329length of, 1 LOG10, 330multi-statement, 5 to 7 Logarithms
order of, 8, 98 common, 330
single-statement, 4 natural, 329
terminating, 1, 7, 10 Logical expressions, 37 to 40

LINPUT, 207 to 208 compared with relational, 40
%LIST, 122 data types in, 37
LIST command, 75 to 76 definition of, 34
LIST qualifier, 86, 92 evaluation of, 38 to 40Listing file format of, 37control of, 7, 88, 114, 122, 123, 124, 125 logical operators, 38tcreating, 86, 92 truth tables, 38t%CROSS, 114 truth tests, 38CROSS-REFERENCE qualifier, 84, 90 Logical name, 45

defaults, 51, 84, 86, 90, 92 Logical operators, 38t
included code, 119 LONG data type, 11
%LIST, 122 LONG qualifier, 87, 92
%NOCROSS, 123 Loops
%NOLIST, 124 as debugger breakpoints, 383
%PAGE, 125 conditional, 179%SBTTL, 126 exiting, 164

Loops (Cont.)
FOR-NEXT, 179
iteration of, 180, 204, 288, 292
nested FOR-NEXT, 179
unconditional, 179
UNTIL, 288WHILE, 292

Lowercase letters
in EDIT, 58
in FIND editing command, 64
in PRINT USING, 256
in SUBSTITUTE editing command, 66
processing of, 10

LSET, 209
M
MACHINE-CODE qualifier, 87
MACRO qualifier, 92
MAG, 331
Magnetic tape files
BLOCKSIZE clause, 243
MAGTAPE, 332
NOREWIND clause, 243RESTORE, 271

MAGTAPE, 332 to 333function codes, 332t
performing functions in VAX-11 BASIC,333t

MAP clause, 212, 243
MAP DYNAMIC, 213 to 214

with REMAP, 268, 269
MAP qualifier, 93
MAP statement, 210 to 212FILL item formats and storage, 141twith FIELD, 170

with MAP DYNAMIC, 214
with REMAP, 268

Mapping
dynamic, 169, 213, 268
static, 210

MAR, 334
MAR%, 334
MARGIN, 215

See also NOMARGIN
with PRINT, 251

Margin
width, 215, 232, 251, 334MAT, 216 to 218
with DET, 308
with FIELD, 170
with NOSETUP, 87

MAT INPUT, 219 to 220
with NOSETUP, 87

Index- 1 4

MAT LINPUT, 221 to 222
with NOSETUP, 87MAT PRINT, 223 to 224with NOSETUP, 87MAT READ, 225 to 226
with NOSETUP, 87

Matrix, 28
identity, 217

Matrix functions
DET, 308
NUM, 337NUM2, 338Matrix operations
arithmetic, 217
assigning values, 219, 221, 225I/O, 337, 338
inversion, 218, 308
printing, 223
redimensioning, 219, 221, 223, 225
scalar multiplication, 218
transposition, 218Memory
allocation, 386, 391, 392, 401clearing with SCRATCH, 106DUMP qualifier, 91
effect of debugger on, 382

Memory-resident libraries
clustering, 90
overriding defaults, 90, 92
setting defaults with BRLRES, 46setting defaults with LIBRARY, 73Merging programs, 43MID$, 335
See also SEG$

Minus sign (-)
in numeric literal notation, 21
in PRINT USING format field, 255

Mixed-mode expressions, 31 to 34
MODE clause, 246
Modifiable parameters, 131Modifiers

FOR, 179
IF, 197, 198
UNLESS, 286
UNTIL, 288
WHILE, 292

MOVE, 227 to 229
FILL item formats and storage, 141t
with FIELD, 170
with NOSETUP, 87

Multi-line
DEF, 149, 150DEF* , 153, 154

February 1984

February 1984 Index-1 5

Multi-statement lines, 5 to 7 Nonexecutable statements (Cont.)backslash in, 5 DATA, 143
branching to, 6 DECLARE, 147
execution of, 5 DIM, 159
format of, 6, 7 EXTERNAL, 168
implicit continuation, 6 MAP, 211
transferring control to, 5 MAP DYNAMIC, 214

REM, 267
N with UNLESS, 286

Nonmodifiable parameters, 131
NAME AS, 230 Nonprinting characters
Named constants, 19 to 21 processing of, 10
changing, 19 using, 10
external, 20, 166 Nonvirtual DIM, 159
internal, 19, 146 NOREWIND clause, 243, 245, 247

Naming NOSPAN clause, 243
arrays, 29 NOT, 38
COMMON areas, 140 evaluation of, 41
constants, 15, 19, 146 Notation
DEF functions, 149 E, 16, 16t, 252, 255, 256
DEF* functions, 153 explicit literal, 21 to 23
external constants, 20, 166 exponential, 16, 252
external functions, 166 NU L, 10, 18
external subroutines, 166 NUL$, 217
external variables, 26, 166 NUM, 337
FUNCTION subprograms, 184 after MAT INPUT, 220
functions, 146 after MAT LINPUT, 221internal constants, 19, 146 after MAT READ, 225internal variables, 25 NUM$, 339
lexical constants, 121 NUM1$, 340
MAP areas, 210 compared with STR$, 365
programs, 79, 95 NUM2, 338
SUB subprograms, 281 after MAT INPUT, 220
subprograms, 130 after MAT LINPUT, 222
variables, 145 after MAT READ, 226

Nesting NumbersFOR-NEXT loops, 179 random, 260, 357
IF, 197 sign of, 359SELECT, 277 Numbers in E notation, 16tNEW, 79 Numeric constants, 15 to 18NEXT, 231 Numeric conversion, 136
with FOR, 180 Numeric expressions, 30 to 34
with UNTIL, 288 format of, 30
with WHILE, 292 promotion rules, 31 to 34

%NOCROSS, 123 result data types, 32t
NOECHO, 336 results for DECIMAL data, 33t
See also ECHO results for GFLOAT and HFLOAT, 32t

NOLINE qualifier, 279 Numeric functions, 304
%NOLIST, 124 ABS, 293
NOMARGIN, 232 ABS%, 294
See also MARGIN DECIMAL, 307Nonexecutable DIM, 159 FIX, 317

Nonexecutable statements, 3, 8 INT, 324
COMMON, 141 LOG, 329

Index- 1 6 February 1984

Numeric functions (Cont.) ODLRMS command, 80 to 81
LOG10, 330 BUILD default, 48
MAG, 331 ODLRMS qualifier, 93
RND, 357 OLD, 82
SGN, 359 with RUN, 103
SQR, 362 ON ERROR GO BACK, 233
SWAP%, 368 with END, 162

Numeric literal notation, 21 to 23 with NOSETUP, 87
Numeric operator precedence, 41t ON ERROR GOTO, 234
Numeric precision with END, 162

with PRINT, 252 with NOSETUP, 87with PRINT USING, 254 ON ERROR GOTO 0, 233, 235
Numeric relational expressions with END, 162

evaluation of, 35 with NOSETUP, 87
operators, 35t, 35 ON-GOSUB-OTHERWISE, 236

Numeric string functions with RETURN, 273
CHR$, 299 ON-GOTO-OTHERWISE, 237
COMP%, 300 On-line documentation, 69
DECIMAL, 307 One-character
DIF$, 309 input, 341FORMAT$, 318 PRINT USING format field, 256INTEGER, 325 ONECHR, 341
NUM$, 339 OPEN, 238 to 247
NUM1$, 340 with STATUS, 363
PLACE$, 342 Opening files, 238 to 247
PROD$, 347 with USEROPEN clause, 243
QUO$, 349 Operator precedence, 30, 40, 41t
REAL, 354 Operators
STR$, 365 arithmetic, 30, 30t
SUM$, 367 evaluation of, 40VAL, 377 lexical, 117, 121
VAL%, 378 logical, 38t

Numeric strings numeric operator precedence, 41t
comparing, 300 numeric relational, 35t
precision, 309, 342, 347, 349, 367 precedence of, 30, 40, 41t
rounding, 342, 347, 349 string relational, 37t
rounding and truncation values, 344t OPTION, 248 to 250
truncating, 342, 347, 349 OR, 38

Order
lexical, 8

ORGANIZATION clause, 240
Object module OTHERWISE clause, 236, 237creating, 51, 87, 93 Output

default name, 51, 87, 93 formatting with FORMAT$, 318
line numbers in, 86, 92 formatting with PRINT USING, 254 to 256
loading, 77 Output listing
version identification, 115 creating, 86, 92

OBJECT qualifier, 87, 93 cross-reference table, 84, 90, 114, 123
Object Time System (OTS), 55 default, 51, 84, 90
Octal radix, 21 %LIST, 122
ODL file, 48, 81t %NOLIST, 124

overriding defaults, 93 %PAGE, 125
RMS libraries,] Ol t %SBTTL, 126
setting defaults, 80 setting page size, 93

February 1984 Index- 1 7

Output listing (Cont .) Parentheses (Cont.)
setting width, 94 in expressions, 30, 40
%TITLE, 127 Percent sign (%)

Overflow checking, 87, 249 in DATA statements, 17, 143
OVERFLOW qualifier in DECLARE, 145, 146

DECIMAL, 87 in DEF names, 150
INTEGER, 87 in DEF* names, 154

Overlay description file, 80 in FUNCTION names, 184
See also ODL file in MAP DYNAMIC variables, 213

Overlaying in PRINT USING format field, 255
COMMON areas, 142 in SUB names, 281
MAP areas, 211 in variable names, 25, 26

Overriding defaults suffix character, 13
with BRLRES qualifier, 90 Period (.)
with BUILD, 48 in PRINT USING format field, 255
with COMPILE, 51 in variable names, 25
with DECLARE, 145, 148 PI, 24
with DSKLIB qualifier, 91 PLACE$, 342 to 344
with EXTERNAL, 166 rounding and truncation values, 344t
with LIBRARY qualifier, 92 Plus sign ()
with ODLRMS qualifier, 93 in string concatenation, 34
with RMSRES qualifier, 93 POS, 345 to 346
with RUN, 102 Pound sign ()

debugger prompt, 381
P in PRINT USING format field, 255

Precedence
Packed decimal, 11 numeric operator, 41t
See also DECIMAL data type operator, 30, 40

Padding Precision
in string relational expressions, 36 in PRINT, 252
in virtual arrays, 160 in PRINT USING, 254

%PAGE, 125 NUM$, 339
PAGE-SIZE qualifier, 93 NUM1$, 340
Parameter passing mechanisms of data types, 12
BASIC-PLUS-2, 133t of numeric strings, 309, 342, 347, 349, 367
CALL, 131 Predefined constants, 23 to 24
DEF, 151 function of, 23
DEF*, 155 PRIMARY KEY clause, 240, 244, 247
EXTERNAL, 168 PRINT debugger command, 395
FUNCTION, 185 PRINT statement, 251 to 253
SUB, 282 with TAB, 371
VAX-11 BASIC, 132t PRINT USING, 254 to 257

Parameters Print zones
CALL, 131 in MAT PRINT, 224
DEF, 150, 151 in PRINT, 251
DEF*, 154, 155 Printing
EXTERNAL, 167 to a terminal, 251
function, 150, 154 to a terminal-format file, 251
FUNCTION subprograms, 184 Processing
modifiable, 131 INPUT data, 200
nonmodifiable, 131 INPUT LINE data, 203
SUB subprograms, 281 LINPUT data, 208

Parentheses multiple record streams, 245
in array names, 27 of comments, 10

Index-1 8 February 1984

Processing (Cont .) Programs
of lowercase letters, 10 compiling, 51
of nonprinting characters, 10 continuing, 53, 103
of statements, 8 debugging, 84, 91, 103
of string constants, 18 deleting, 111
of string literals, 10 editing, 57
of uppercase letters, 10 ending, 162
records, 189, 258, 289 executing, 102PROD$, 347 to 348 halting, 53, 103, 279rounding and truncation values, 344t merging, 43Program control statements naming, 79
END, 162 optimizing, 87
EXIT, 164 renaming, 95
FOR, 179 saving, 97, 104
GOSUB, 195 stopping, 53, 103, 279
GOTO, 196 Promotion rules
IF, 197 data type, 31 to 34
ITERATE, 204 DECIMAL, 32
ON-GOSUB, 236 floating-point, 31
ON-GOTO, 237 integer, 31
RESUME, 272 PromptRETURN, 273 after STOP, 279SELECT, 276 debugger, 381SLEEP, 278 INPUT, 199STOP, 279 INPUT LINE, 202UNTIL, 288 LINPUT, 207
WAIT, 291 MAT INPUT, 219
WHILE, 292 MAT LINPUT, 221

Program documentation, 8 to 10 PSECT, 139, 210
Program elements, 1 to 42 PUT, 258 to 259
Program executioncontinuing, 53, 103, 385 Qinitiating with RUN, 102

stopping, 53, 103, 279, 383, 400 Qualifiers, 83 to 94suspending, 278 abbreviated form, 83waiting for input, 291 ANSI-STANDARD, 84Program input AUDIT, 84
INPUT, 199 BASIC-PLUS-2 command, 90tINPUT LINE, 202 BOUNDS-CHECK, 84
LINPUT, 207 BRLRES, 90
waiting for, 291 BYTE, 84, 90

Program lines CHAIN, 90, 134
automatic sequencing, 107 CLUSTER, 90deleting, 54 CROSS-REFERENCE, 84, 90displaying, 75 DEBUG, 84, 91, 103, 381editing, 57 DECIMAL-SIZE, 84elements of, 1 DOUBLE, 85, 91
format of, 1 to 8 DSKLIB, 91
length of, 1 DUMP, 91
numbering, 1 EXTEND, 91
order of, 8, 98 FLAG, 85, 91
resequencing, 98 GFLOAT, 86
terminating, 1, 7, 10 HFLOAT, 86

IND, 92

Qualifiers (Cont.)
LIBRARY, 92
LINE, 86, 92, 134, 387, 388
LIST, 86
LONG, 87, 92
MACHINE-CODE, 87
MACRO, 92
MAP, 93NOLINE, 279
OBJECT, 87, 93
ODLRMS, 93
OVERFLOW, 87
PAGE-SIZE, 93
REL, 93
RMSRES, 93
ROUND, 87
SEQ, 93
SETUP, 87
SHOW, 88, 120
SINGLE, 88, 94
SYNTAX-CHECK, 88, 94
TRACEBACK, 88
TYPE-DEFAULT, 89, 94
VARIANT, 89, 94, 128
VAX-11 BASIC command, 84t
VIR, 94WARNINGS, 89
WIDTH, 94
WORD, 89, 94

QUO$, 349 to 350
rounding and truncation values, 344t

Quotation marks
in string literals, 18

R
R formatting character

in PRINT USING, 256
RAD$, 351
Radix

binary, 21
decimal, 21
hexadecimal, 21
in explicit literal notation, 21
octal, 21

Radix-50, 351
Random numbers, 260, 357
RANDOMIZE, 260
See also RND

Range
of data types, 12
of subscripts, 28

RCTRLC, 352
See also CTRLC

February 1984

RCTRLO,353READ, 261 to 262
See also DATA
with DATA, 143, 144
with NOSETUP, 88

REAL data type, 11
REAL function, 354
Receiving parameters
FUNCTION subprograms, 184
SUB subprograms, 281

Record attributes
MAP clause, 243
RECORDSIZE clause, 242, 243
RECORDTYPE clause, 241

Record buffers
DATA pointers, 271
MAP DYNAMIC pointers, 214, 269
moving data, 227
REMAP pointers, 268, 269
setting size, 243

RECORD clause, 172, 190, 258, 259
Record File Address, 12, 172, 190, 321
Record Management Services, 80
See also RMS

Record pointers
after FIND, 173, 174
after GET, 191, 192
after PUT, 259
after UPDATE, 289
REMAP, 269
RESTORE, 271
WINDOWSIZE clause, 242

RECORD statement, 263 to 266
Records

deleting with DELETE, 157
deleting with SCRATCH, 275
finding RFA of, 172, 190
locating randomly, 174
locating sequentially, 173
locating with FIND, 171
locking, 173, 174, 191, 192, 245
processing of, 245
retrieving by KEY, 190, 192
retrieving by RECORD number, 190
retrieving by RFA, 190, 192
retrieving randomly, 192
retrieving sequentially, 190, 191
retrieving with GET, 189
size of, 258
unlocking, 157, 174, 182, 192, 245, 287
writing with PRINT, 251
writing with PUT, 258
writing with UPDATE, 289

RECORDSIZE clause, 212, 242, 258

Index- 1 9

Index-20 February 1984

RECORDTYPE clause REMAP (Cont.)ANY, 241 with MAP DYNAMIC, 214FORTRAN, 241 with NOSETUP, 88
LIST, 241 RENAME, 95 to 96
NONE, 241 Renaming

RECOUNT debugger command, 396 files, 230
RECOUNT function, 355 programs, 95

after GET, 192 REPLACE, 97
after INPUT, 200 with RENAME, 95after INPUT LINE, 203 RESEQUENCE, 98 to 99after LINPUT, 208 Reserved words, 3Recursion RESET, 271
in DEF functions, 151 See also RESTORE
in DEF` functions, 155 RESTORE, 271
in error handlers, 234 Restoring
in subprograms, 132, 282 data, 271

Redimensioning arrays files, 271
dynamic, 160 Result data types
with executable DIM, 159 for DECIMAL data, 33t
with MAT statements, 217, 218, 219, 221, GFLOAT and HFLOAT, 32t225 mixed-mode expressions, 32tREDIRECT debugger command, 397 RESUME, 272Referencing labels, 2 after CTRL/C, 272REGARDLESS clause to INPUT, 200
with FIND, 174 to INPUT LINE, 203
with GET, 192 to LINPUT, 208

REL qualifier, 93 with CTRLC, 302
Relational expressions, 35 to 37 with END, 162
compared with logical, 40 with ERL, 312
definition of, 34 with ERN$, 313format of, 35 with ERR, 314in SELECT, 276, 277 with labels, 2
numeric, 35 with NOLINE qualifier, 86, 92string, 36 with NOSETUP, 88
truth tests, 35, 36 Retrieving records

Relational operators randomly by KEY, 190, 192
numeric, 35t randomly by RECORD number, 190
string, 37t randomly by RFA, 190, 192

Relative files sequentially, 190, 191
BUCKETSIZE clause, 244 with GET, 189
deleting records in, 157 RETURN, 273finding records in, 173 RFA clause, 172, 190opening, 240 RFA data typerecord size in, 242 allowable operations, 12REL qualifier, 93 storage of, 12retrieving records sequentially in, 191 RIGHT$, 356updating, 290 See also SEG$writing records to, 258 Right-justification

REM, 267 PRINT USING format field, 256in multi-statement lines, 7 with RSET, 274
multi-line format, 9, 267 RMS
transferring control to, 9 files, 238

REMAP, 268 to 270 libraries, 93, 100,] Ol tFILL item formats and storage, 141t ODL files, 80, 81t

February 1984 Index-21

RMSRES command, 100 to 101 Sequential files (Cont.)
BUILD default, 48 retrieving records in, 191

RMSRES qualifier, 93 SEQ qualifier, 93
RND, 357 updating, 289
See also RANDOMIZE writing records to, 251, 258

ROUND qualifier, 87 SET, 108
Rounding BASIC-PLUS-2 qualifiers, 90t

controlling with OPTION, 249 BUILD default, 48
controlling with SCALE, 105 qualifier format, 83
DECIMAL values, 87, 249 VAX-11 BASIC qualifiers, 84t
in numeric strings, 342, 344t, 347, 349 Setting defaults
NUM$, 339 for data types, 13
with PRINT, 252 with BRLRES, 46
with PRINT USING, 255 with DSKLIB, 55

RSET, 274 with LIBRARY, 73
RSTS/E SYS calls, 369 with ODLRMS, 80
RUN, 102 to 103 with OPTION, 248
BASIC-PLUS-2 qualifiers, 90t with RMSRES, 100
DEBUG qualifier, 381 with SCALE, 105

Run-Time Library, 87 with SET, 108
RUNNH, 102 SETUP qualifier, 87

See also RUN SGN, 359
SHOW, 109 to 110
SHOW qualifier
CDD-DEFINITIONS, 88, 120

SAVE, 104 ENVIRONMENT, 88
with RENAME, 95 INCLUDE, 88, 120

Saving programs MAP, 88
with REPLACE, 97 OVERRIDE, 88
with SAVE, 104 SI, 24

%SBTTL, 126 SIN, 360
SCALE, 105 Sine, 360
Scale factor SINGLE data type, 11

setting with OPTION, 249 SINGLE qualifier, 88, 94
setting with SCALE, 105 Single-line

SCRATCH, 106, 275 DEF, 149
SEG$, 358 DEF* , 153
Segmented keys, 244 loops, 179, 288, 292
SELECT, 276 to 277 statements, 4

transferring control into, 236, 237 Single-statement lines, 4
Semicolon (;) Size

in INPUT, 199 of numeric data, 12
in INPUT LINE, 202 of STRING data, 11
in LINPUT, 207 SLEEP, 278
in MAT PRINT, 224 SO, 24
in PRINT, 251 SP, 24

SEQ qualifier, 93 SPACE$, 361
SEQUENCE, 107 Spacing in keywords, 4
Sequential files SQR, 362

deleting records in, 275 SQRT, 362
finding records in, 173 Square roots, 362
NOSPAN clause, 243 Statement modifiers
opening, 240 FOR, 179
record size in, 242 IF, 197, 198

Statement modifiers (Cont.)
UNLESS, 286
UNTIL, 288
WHILE, 292

Statements
backslash separator, 5
block, 162, 164, 179, 197, 264, 277
BP2 compatible, 85
components of, 3
continued, 4, 5
data typing, 14
declarative, 145
declining, 85, 91
empty, 10
executable, 3
execution of, 5
format of, 3
labelling of, 2
multi-statement lines, 5 to 7
nonexecutable, 3, 8, 141, 143, 147, 159,

168, 211, 214, 267
order of, 8, 98
processing of, 8
single-line, 4

Static
arrays, 158, 159
mapping, 210
storage, 139, 210, 269

STATUS debugger command, 398 to 399
STATUS function, 363 to 364
VAX-11 BASIC STATUS bits, 364t

STEP clause, 179
STEP debugger command, 400
STOP, 279

See also CONTINUE command
with RUN, 103

Stopping program execution, 53, 279, 383,
400

Storage
allocating with REMAP, 268
COMMON and MAP, 141, 211
dynamic, 213, 268, 269
for arrays, 159
for FILL items, 141t, 227, 268
for RECORD structures, 264
for VARIANT fields, 265in COMMON, 142
in MAP, 211
of data, 12
of DECIMAL data, 11
of RFA data, 12
of STRING data, 11
shared, 139, 210
static, 139, 210, 269

Index-2 2

STR$, 365
String arithmetic functions

DIF$, 309
PLACE$, 342
PROD$, 347
QUO$, 349
SUM$, 367

String constants, 18 to 19
STRING data type, 11length, 12storage of, 1 1
STRING debugger command, 401String expressions, 34

relational, 36, 37
String functions, 304

ASCII, 295
EDIT$, 311
INSTR, 322LEFT$, 326LEN, 327MID$, 335
POS, 345
RIGHT$, 356
SEG$, 358
SPACE$, 361
STRING$, 366
TRM$, 376
with NOSETUP, 87
XLATE, 379

String literals, 37
continuing, 5
delimiter, 18
in PRINT USING format field, 257
processing of, 10
quotations marks in, 18String relational expressions
evaluation of, 36operators, 37t, 37String variables, 27
formatting storage, 209, 274
in INPUT, 200
in INPUT LINE, 203
in LET, 206
in LINPUT, 208
with NOSETUP, 87

STRING$, 366Strings
comparing, 36, 300concatenating, 5, 30, 34, 88converting, 136
creating, 361, 366
editing, 311, 376
extracting substrings, 326, 335, 356, 358
finding length, 327

February 1984

Strings (Cont.)
finding substrings, 322, 345
justifying with FORMAT$, 318
justifying with LSET, 209
justifying with PRINT USING, 256
justifying with RSET, 274
numeric, 300, 309, 325, 342, 347, 349,

354, 367, 377, 378
suffix character, 13

SUB, 280 to 283
BASIC-PLUS-2 parameter passing

mechanisms, 133t
parameters, 281VAX-11 BASIC parameter passing

mechanisms, 132t
SUBEND, 284

See also END
SUBEXIT, 285
See also EXIT

Subprograms
calling, 129
declaring, 166
ending, 162, 184, 281
error handling in, 163, 164, 185, 233
exiting, 164
FUNCTION, 183
naming, 130, 281
recursion in, 132, 282
returning from, 273
SUB, 280

Subroutines
external, 166
GOSUB, 195
RETURN, 273

Subscripted variables, 27 to 29
format of, 28
range checking, 84, 249
subscript range, 28

Subscripts, 27
range of, 28

SUBSTITUTE editing command, 66 to 67
Substri ngs

extracting, 326, 335, 356, 358
finding, 322, 345

Suffix characters
integer, 13
string, 13

SUM$, 367
Suspending program execution, 278
SWAP%, 368
SYNTAX-CHECK qualifier, 88, 94
SYS, 369 to 370
VAX-11 BASIC subset, 369t

System command, 49

February 1984

T
TAB, 371
TAN, 372
Tangent, 372
Template, 264
TEMPORARY clause, 242
Tensor, 28Terminal

printing to, 251
Terminal control functions
ECHO, 310
NOECHO, 336
RCTRLO,353
TAB, 371

Terminal-format files, 244
input from, 199, 202, 207, 219, 221
margin, 215, 232
writing records to, 223, 251

Terminating
automatic sequencing, 107comment fields, 8compilation, 113
DATA statements, 143
program lines, 1, 7, 10
REM statements, 9, 267

THEN clause, 197
TIME, 373 to 374

function values, 374t
TIME$, 375
%TITLE, 127
TRACE debugger command, 402
TRACEBACK qualifier, 88
Trailing minus sign field

in PRINT USING format field, 255
Transferring control

into DEF functions, 151, 236, 237
into DEF * functions, 155
into FOR-NEXT loops, 180, 195, 196, 236,

237
into SELECT blocks, 236, 237
into UNTIL loops, 195, 196, 236, 237
into WHILE loops, 195, 196, 236, 237
to a label, 195, 196, 236, 237
to comment fields, 8
to multi-statement lines, 5
to REM, 9
with CALL, 129
with CHAIN, 134
with GOSUB, 195
with GOTO, 196
with IF, 197
with ON-GOSUB, 236
with ON-GOTO, 237

Index-23

Transferring control (Cont .)
with RESUME, 203, 208, 272
with RETURN, 273

Transferring data
with MOVE, 227

Translating character sets, 379
Transposing arrays, 218
Trigonometric functions
ATN, 296
COS, 301
SIN, 360
TAN, 372

TRM$, 376TRN, 218
Truncation

in numeric strings, 342, 344t, 347, 349
in PRINT USING, 256
with FIX, 317

Truth tables, 38t
Truth tests

in logical expressions, 38
in relational expressions, 35
in string relational expressions, 36

TYPE-DEFAULT qualifier, 89, 94

UNBREAK debugger command, 403 to 404
Unconditional branching

with GOSUB, 195
with GOTO, 196

Unconditional loops, 179
Underscore (_)

in PRINT USING format field, 255
in variable names, 25

UNLESS, 286
UNLOCK, 287
UNLOCK EXPLICIT clause, 173, 175, 191,

245
Unlocking records, 245

with FREE, 182
with UNLOCK, 287

UNSAVE, 111
UNTIL clause, 180
UNTIL loops, 231

error handling in, 272
exiting, 164
explicit iteration of, 204
transferring control into, 195, 196, 236, 237

UNTIL statement, 288
UNTRACE debugger command, 405
UPDATE, 289 to 290

with UNLOCK, 287
Updating records, 289

Index-24

Uppercase letters
in EDIT, 58in FIND editing command, 64in PRINT USING, 256in SUBSTITUTE editing command, 66processing of, 10User-defined functions, 149, 153USEROPEN clause, 240, 243

V
VAL, 377
VAL%, 378
Variable namesin COMMON, 142
inMAP, 211,212in MAP DYNAMIC, 213in REMAP, 268rules for, 25 to 26Variables, 25 to 29assigning values to, 199, 202, 206, 207,261, 393
declaring, 145
definition of, 25
explicitly declared, 27
external, 166
floating-point, 26
implicitly declared, 26 to 27in MOVE, 228in SUB subprograms, 282initialization of, 29, 142, 147, 212integer, 27
loop, 179
naming, 25 to 26
string, 27, 200, 203, 206, 208
subscripted, 27 to 29

%VARIANT, 128
in %IF, 117
in %LET, 121

Variant, 264VARIANT clause, 264VARIANT qualifier, 89, 94, 128VAX-11 BASIC STATUS bits, 364tVAX-1 1 BASIC subset of RSTS/E SYS calls,369t
Vector, 28
Version identification, 115
VIR qualifier, 94
Virtual address

finding, 328
Virtual arrays, 147, 158, 159

initialization of, 29, 160
padding in, 160
with FIELD, 170

February 1984

Virtual arrays (Cont .)
with NOSETUP, 88

Virtual files
record size, 242
VIR qualifier, 94
with RESTORE, 271

VT, 24
W
WAIT, 291WARNINGS qualifier, 89
WHILE clause, 180
WHILE loops, 231

error handling in, 272
exiting, 164
explicit iteration of, 204
transferring control into, 195, 196, 236, 237

WHILE statement, 292
Width

margin, 215, 232, 251, 334
of listing file, 94

WIDTH qualifier, 94
WINDOWSIZE clause, 242

February 1984

WORD data type, 11
WORD qualifier, 89, 94
Writing records

by RECORD number, 258
sequentially, 258
with PRINT, 251
with PUT, 258
with UPDATE, 289

X
XLATE, 379
XOR, 38
Z
ZER, 217
Zeroarray element, 28, 159, 218, 220, 222, 224,

226, 228
blank-if-zero field, 255
in PRINT USING format field, 255

Zero-fill field
in PRINT USING, 255

Index-2 5

Index

The Master Index contains a list of the major references to subjects in the BASIC Reference Manual, the
BASIC User's Guide, and the system-specific manuals . The index uses the following conventions :

Example

	

Explanation
1-8t

	

A page number followed by a t indicates a table .
4-36f

	

A page number followed by an f indicates a figure .
Entries in the Master Index are also preceded by an acronym indicating which manual the page number
refers to :
Acronym

	

Title
LM

	

BASIC Reference Manual
UG

	

BASIC User's Guide
RSTS

	

BASIC on RSTS/E Systems
RSX

	

BASIC on RSX Systems
VMS

	

BASIC on VAX/VMS Systems
Where a subject references more than one manual, references to the BASIC Reference Manual appear
first, the BASIC User's Guide second, and the system-specific manuals appear last in alphabetical order .
For a more complete list of references, see the individual indexes in the back of each manual .

Accessing (Cont .)
the Resequencer, RSTS 7-1, RSX 7-1

Abbreviations

	

Accounts, VMS 1-2
for debugger commands, LM 382

	

ACTIVE clause, LM 249
for qualifiers, LM 83

	

Actual parameters, RSTS 4-6
%ABORT, LM 113, UG 10-9

	

Adding records, RSTS 3-9
example of, UG 10-10

	

ADDRESS qualifier for debugger commands,
ABS, LM 293, UG 6-2

	

VMS 4-15
ABS%, LM 294

	

Addresses
Absolute value

	

evaluating with debugger, VMS 4-12
ABS, LM 293, UG 6-2

	

examining with debugger, VMS 4-10
ABS%, LM 294

	

modifying with debugger, VMS 4-11
MAG, LM 331

	

symbolic, VMS 4-13
ACCESS APPEND, RSTS 3-9

	

AFTER qualifier for SET BREAK command,
ACCESS clause, LM 241, 258

	

VMS 4-6
Accessing

	

ALLOCATE, RSTS 3-3, 3-14, RSX 3-4
CDD record definitions, LM 263

	

Allocating record buffers, RSTS 3-7 to 3-8
RECORD items, LM 264, 265

	

Allocating storage
remote files, VMS 8-14

	

for arrays, LM 159
subprograms, RSTS 4-5 to 4-6, 4-22

	

for FILL items, LM 141t, 227, 268
the BASIC environment, RSTS 1-2, RSX 1-3

	

for RECORD structures, LM 264
the Dump Analyzer, RSTS 7-5

	

for VARIANT fields, LM 265

Allocating storage (Cont.)
with COMMON, LM 139,142
with MAP, LM 210
with MAP DYNAMIC, LM 213
with REMAP, LM 268

ALLOW clause, LM 174, 192, 241, VMS 8-17
Alphanumeric label, LM 2

(See also Labels)
ALTERNATE KEY, LM 240, 244, UG 9-10
Ampersand (&), LM 4, 6, 7, 143, UG 1-2
AND, LM 38
ANSI D format, VMS 8-3
ANSI F format, VMS 8-3
ANSI format magnetic tapes, RSTS 3-4, 3-5,

VMS 8-4
ANSI Minimal BASIC, VMS 7-1 to 7-6

arrays in, VMS 7-4
built-in functions allowed, VMS 7-3
DEF functions, VMS 7-3
extensions to, VMS 7-2
implementation-defined features, VMS 7-4
input prompt, VMS 7-5
machine infinitesimal, VMS 7-5
machine infinity, VMS 7-5
margin for output line, VMS 7-5
numeric constants, VMS 7-2
OPTION BASE statement, VMS 7-4
precision, VMS 7-6
print zone length, VMS 7-6
program format, VMS 7-4
random numbers, VMS 7-6
required statements, VMS 7-2
string length, VMS 7-5
variable initialization, VMS 7-5
variable names, VMS 7-2

ANSI-STANDARD, LM 84, VMS 2-20, 2-21,
7-1

APPEND, LM 43 to 44, RSTS 2-5, RSX 2-8,
VMS 2-4

Arc cosine, VMS 5-20
Arc tangent, LM 296, UG 6-6
Argument lists, RSTS 4-23 to 4-24, 4-27, RSX

4-23, VMS 3-8
(See also Parameters)
format of, RSTS 4-24f, RSX 4-24f

Arithmetic operators, LM 30, 30t, UG 1-13,
1-13t

Array output, UG 7-14 to 7-17
Arrays, LM 27 to 29, UG 7-1 to 7-20

array elements, LM 159
as parameters, RSTS 4-9 to 4-10, 4-27,

VMS 3-11
assigning values to, LM 206, 217, 219, 221,

225, 261, UG 7-9

Arrays (Cont.)
bounds checking, LM 84
bounds of, LM 159, 217, 219, 221, 223,

225, UG 7-2
converting to strings, LM 136, UG 4-18
creating, LM 140, 145, 158, 159, 210, 216,

219, 221, 223, 225
creating by reference, UG 7-7
creating explicitly, UG 7-1 to 7-6
creating implicitly, UG 7-6
data type of, LM 158
dimensions of, LM 28, 158
dynamic, LM 158
element zero, LM 218, 220, 222, 224, 226,

228
explicit, UG 7-1 to 7-6
finding the determinant, UG 7-20
implicit, UG 7-6
in CDD, VMS 9-13
in MOVE statement, UG 9-18
initialization of, LM 161, 217, UG 7-2
inverting, LM 218, UG 7-20
naming conventions, UG 7-3
redimensioning, LM 217, 218, 219, 221,

225, UG 7-5, 7-7
sharing among program modules, UG 7-5
size limits, UG 7-2
static, LM 158
transposing, LM 218, UG 7-19
virtual, LM 29, 147, 158, 170, UG 9-3,

9-30
ASCII, UG 6-9character set, LM 10, UG 1-3

characters, LM 24, 36, 299
conversion, LM 136, 295, 299
function, LM 295
stream files, LM 245

(See also Native mode files)
values, UG 5-10

ASN, RSX 3-3
Assembling MACRO subprograms, RSTS 4-26,

4-33
ASSIGN, LM 45, RSTS 3-2, RSX 3-2, VMS

2-5
Assigning logical names, LM 45, RSTS 3-2 to

3-3
Assigning RECORD values, VMS 6-7
Assigning string data

with LET, UG 4-4
with LSET, LM 209, UG 4-5
with RSET, LM 274, UG 4-5

Assigning values
to array elements, LM 217, 219, 221, 225,

261

Assigning values (Cont .)
to lexical constants, LM 121, UG 10-8
to string variables, UG 2-2 to 2-3, 4-2 to

4-6
with INPUT, LM 199
with INPUT LINE, LM 202
with LET debugger command, LM 393
with LET statement, LM 206
with LINPUT, LM 207
with LSET, LM 209
with MAT INPUT, LM 219
with MAT LINPUT, LM 221
with MAT READ, LM 225
with READ, LM 261
with READ and DATA, UG 2-3
with RSET, LM 274

Assignment of matrixes, UG 7-17
Asterisk (*)

in PRINT USING, LM 255
with HELP, LM 69

Asterisk-filled fields, UG 8-7
in PRINT USING, LM 255

ATN, LM 296, UG 6-6
AUDIT, LM 84, VMS 2-21, 9-2
B
B2R, RSTS 7-1, RSX 7-1
B2RESQ, RSTS 7-1, RSX 7-1
Backslash (% LM 5, 6, UG 1-2

in PRINT USING format field, LM 257
BASE attribute in CDD, VMS 9-8
BASIC
DCL command, VMS 1-10
qualifiers to DCL command, VMS 1-11
using from DCL command level, VMS 2-19

BASIC character set, LM 10, UG 1-3
BASIC compiler commands, RSTS 2-4t, RSX

2-8 to 2-25, VMS 2-3t
functions of, RSTS 2-3, RSX 2-6

BASIC Dump Analyzer Utility, RSTS 7-5
BASIC environment, RSTS 1-2 to 1-6, RSX

1-3 to 1-9, VMS 1-2 to 1-7, 2-1, 2-3
BASIC program lines, RSX 1-4
creating BASIC programs in, RSTS 1-3, RSX

1
debugging in, RSTS 5-4 to 5-5, RSX 5-5
defaults, RSX 2-1
entering, RSTS 1-2, RSX 1-3
executing BASIC programs in, RSTS 1-4,

RSX 1-5
exiting, RSTS 1-6, 2-12 to 2-13, RSX 1-9
immediate mode statements in, RSTS 1-4 to

1-5, RSX 1-7

-4

BASIC environment commands (See Compiler
commands)

BASIC error handler, UG 11-1, 11-15
returning control to, UG 11-6

BASIC features that substitute for system
features, RSX 8--2t

BASIC Object Time System, RSTS 6-1, 6-3,
6-4, RSX 6-1

BASIC programs
elements of, UG 1-1 to 1-20

BASIC Resequence Utility, RSTS 7-1 to 7-3
accessing, RSX 7-1
commands, RSX 7-3t
error messages, RSX 7-3 to 7-5

BASIC utilities
Dump Analyzer, RSTS 7-5
Resequencer, RSTS 7-1 to 7-3, RSX 7-1

BASIC$LIB, VMS 10-2
BEL, LM 23
Binary radix, LM 21, UG 5-9BIT data type in CDD, VMS 9-12Blank-if-zero field in PRINT USING, LM 255
Block I/0 files, LM 94

finding records in, LM 174
GET, UG 9-17 to 9-20opening, LM 240, UG 9-11
PUT, UG 9-25
reading records from, UG 9-17 to 9-20retrieving records sequentially in, LM 191
writing records to, LM 258, UG 9-25

Block of statements, UG 1-3
ending, LM 162
exiting, LM 164

BLOCKSIZE, LM 243, RSTS 3-8, VMS 8-3,
8-5

BOUNDS, VMS 2-6
with /CHECK, VMS 2-20, 2-22

Bounds
checking, LM 84
default for implicit arrays, LM 159, 217, 219,

221, 223, 225
maximum, LM 28
of an array, LM 27, UG 7-2

BOUNDS-CHECK, LM 84
BP2, RSTS 1-2
BP2COMPATIBILITY

in /FLAG qualifier, VMS 2-20
BP2DA, RSTS 7-5
BP20TS, RSTS 6-4, 6-10, RSX 6-5

(See also BASIC Object Time System)BP2RES library, RSTS 6-2 to 6-4, RSX 6-2BP2SML library, RSTS 6-2 to 6-4, RSX 6-2Branching
conditional, UG 3-11

Branching (Cont.)
unconditional, UG 3-10

BREAK debugger command, LM 383 to 384,
RSTS 5-2, RSX 5-2

BREAK ON debugger command, RSTS 5-3,
RSX 5-3

Breakpoints
cancelling, VMS 4-6
setting, VMS 4-6
showing, VMS 4-6

BRLRES, LM 46 to 47, RSTS 2-5, 6-3, RSX
6-4

qualifier, LM 90, RSTS 2-6, 6-4, RSX 2-10,
6-5

BS, LM 23
BUCKETSIZE, LM 244, UG 9-33
BUFFER, LM 243, UG 9-39
Buffers

1/0, UG 9-6, 9-17
record, UG 9-6
redefining at run-time, UG 5-20

BUFSIZ, LM 297
BUILD, LM 48, RSTS 1-10, 2-6 to 2-7, 6-5,

RSX 2-9
BUILD qualifiers, LM 90t, RSTS 2-6t, RSX

2-1 Ot, 2-10 to 2-11
Built-in functions, UG 6-1 to 6-21
BY DESC, LM 131, 168, 185, 282, RSTS 4-20

to 4-21, 4-28, RSX 4-20, VMS 3-6
BY REF, LM 131, 168, 185, 282, RSTS 4-20

to 4-21, 4-24 to 4-25, RSX 4-20, VMS
3-6

BY VALUE, LM 131, 168, RSTS 4-20 to 4-21,
RSX 4-20, VMS 3-6

BYE, RSTS 1-2
BYTE

data type, LM 11
qualifier, LM 84, 90, RSTS 2-7, RSX 2-12,

VMS 2-6

C formatting character in PRINT USING, LM
257

Calculator mode, VMS 1-4
CALL, LM 129 to 133, RSTS 4-5 to 4-6, 4-22,

VMS 3-4
as a debugger breakpoint, LM 383
with SUB, LM 281

Calling subprograms, LM 129, 281, RSTS 4-5
to 4-6, 4-22, VMS 3-4

CANCEL BREAK debugger command, VMS
4-5

CANCEL SCOPE debugger command, VMS
4-4

CANCEL TRACE debugger command, VMS
4-6

CANCEL WATCH debugger command, VMS
4-7

Card reader
I/O from, VMS 8-7

Caret (^) in PRINT USING, LM 255
CASE clause, LM 276, UG 3-15
CASE ELSE clause, LM 277
CCL commands, RSTS 1-11
CCPOS, LM 298, UG 9-32
CD in PRINT USING, LM 255, UG 8-10
CDD, VMS 9-1 to 9-13

accessing definitions in, LM 263
arrays in, VMS 9-13
BASE attribute, VMS 9-8
DIGITS attribute, VMS 9-8
FRACTION attribute, VMS 9-8
including definitions from, LM 7, 84, 88,

119
OCCURS clause, VMS 9-13
OCCURS DEPENDING clause, VMS 9-13
SIGNED integers, VMS 9-8
SIZE attribute, VMS 9-8
UNSIGNED integers, VMS 9-8

CDD$DEFAULT, VMS 9-2
CDD-DEFINITIONS

in /SHOW qualifier, VMS 2-21
CDDL, VMS 9-3
Centered fields in PRINT USING, LM 257, UG

8-12
CHAIN, LM 134 to 135

qualifier, LM 90, RSTS 2-7, RSX 2-12
CHANGE, LM 136 to 137, UG 4-18

with NOSETUP, LM 87
CHANGES clause, LM 244, UG 9-10
Changing compiler defaults, RSX 2-24
CHARACTER data type, LM 23
Character set

ASCII, LM 10, UG 1-3
BASIC, LM 10, UG 1-3
translating with XLATE, LM 379

Characters
ASCII, LM 24, 36, 295, 299
data type suffix, LM 13
format in PRINT USING, LM 255 to 257
nonprinting, LM 23, UG 1-3, 1-9
processing of, LM 10
translating with XLATE, UG 6-9
wildcard, LM 69

CHECK, VMS 2-20, 2-22
CHR$, LM 18, 299, UG 6-9

Clearing memory, RSX 2-23
CLOSE, LM 138, UG 9-31, RSTS 3-12, 3-16,VMS 8-6
Closing files, LM 138, UG 9-31, RSTS 3-16with END, LM 162
CLUSTERSIZE clause, LM 246
CMD files, LM 48, RSTS 1-10, 6-6
Comma (,) in PRINT USING, LM 255
$ command, LM 49 to 50, RSTS 2-7, RSX

2-11
Command files (See CMD files)Command line interpretersDCL, RSX 1-1
MCR, RSX 1-1

Command qualifiers, LM 83 to 94BASIC-PLUS-2, LM 90tVAX-11 BASIC, LM 84tCommands, compiler, RSTS 2-4 to 2-21, RSX2-8 to 2-25, VMS 2-3 to 2-18Commas
in numeric output, UG 8-7in PRINT, UG 2-8

Comment
field, LM 8, 267, UG 1-6
in DATA statements, LM 9, 143processing of, LM 10REM, LM 9, 267
transferring control to, LM 8COMMON, LM 139 to 142, UG 5-14creating arrays with, UG 7-5
in MACRO subprograms, RSTS 4-29 to4-32
in subprograms, UG 5-19, RSTS 4-11
initializing with MACRO subprograms, RSTS4-32, RSX 4-32
multiply defined, RSTS 4-11
with FIELD, LM 170

Common Data Dictionlry, LM 7, VMS 9-1 to9-13
(See also CDD)

Communication, task-to-task, VMS 8-14
COMP%, LM 300
Comparing

numeric strings, LM 300
strings, LM 36

Comparison of static and dynamic storage,
RSX 8-7f

ComparisonsEQ, LM 173, 191GE, LM 173, 191GT, LM 173, 191
Compilation

conditional, LM 117, 128, UG 10-9
control of, LM 7

Compilation (Cont .)control of listing, LM 114, 122, 123, 124,125, 126, 127
controlling with OPTION, LM 249including from CDD, LM 84, 88, 119including source code, LM 119terminating with %ABORT, LM 113Compilation qualifiers, LM 83 to 94BASIC-PLUS-2, LM 90t
VAX-11 BASIC, LM 84t

COMPILE, LM 51 to 52, RSTS 1-9, 2-1, 2-7to 2-8, RSX 2-12, VMS 1-4, 2-5
COMPILE qualifiers, LM 84t, 90t, RSTS 2-7t,RSX 2-12t, 2-12 to 2-14, VMS 2-6t, 2-6to 2-7Compiler commands, RSTS 2-4t, 2-4 to 2-21,RSX 2-7t, 2-8 to 2-25, VMS 2-3 to 2-18functions of, RSTS 2-3, RSX 2-6
Compiler defaults. , RSTS 2-1 to 2-3, RSX 2-1to 2-5

changing, RSX 2-5displaying, RSX 2-2 to 2-4Compiler directives, LM 7, UG 10-1 to 10-10compilation control, UG 10-7 to 10-10listing control, UG 10-2 to 10-6Compiling subprograms, VMS 3-13Complex numbers in CDD, VMS 9-9CON, LM 217, UG 7-10Concatenation
of COMMON areas, LM 141, UG 5-15of strings, UG 1-14, 4-2string, LM 5, 30, 34Conditional branching, UG 3-11with IF, LM 197
with ON-GOSUB, LM 236with ON-GOTO, LM 237with SELECT, LM 276

Conditional compilation, LM 7, UG 10-9%VARIANT, LM 128
with %IF, LM 117

Conditional expressions, LM 34 to 40, UG1-14, 3-14
in %LET,LM121
in FOR, LM 180
in IF, LM 197
in UNLESS, LM 286
in UNTIL, LM 288
in WHILE, LM 292

Conditional loops, LM 179, 288, 292CONNECT, LM 245, 246, UG 9-38Constants, LM 14 to 24, UG 1-6 to 1-10declaring, LM 146, UG 5-7
default data type, LM 15
external, LM 166, UG 5-8

Constants (Cont .)
floating-point, LM 15, UG 1-6
integer, LM 17, UG 1-7
lexical, LM 117, 121, UG 10-8
named, LM 19 to 21, UG 5-7
numeric, LM 15 to 18
numeric literals, UG 5-8
packed decimal, LM 17
predefined, LM 23t, 23 to 24, UG 1-9
string, LM 18 to 19, UG 1-8
symbolic, VMS 5-2

CONTIGUOUS, LM 242, 244, 245, UG 9-37
Continuation characters, LM 6, UG 1-2
CONTINUE, LM 53, RSTS 2-9, RSX 2-14,

VMS 2-7
debugger command, LM 385, RSTS 5-2,

5-3, RSX 5-3
Continued

lines, LM 5, UG 1-2, RSX 1-4
statements, LM 4, 5, UG 1-2
string literals, LM 5

Control variable, UG 3-2
in ON-GOTO-OTHERWISE, UG 3-11

Conversion
of array to string variable, LM 136
of string variable to array, LM 136

Conversion functions, UG 6-8 to 6-13
DECIMAL, LM 307
INTEGER, LM 325
NUM$, LM 339
NUM1$, LM 340
RAD$, LM 351
REAL, LM 354
STR$, LM 365
VAL, LM 377
VAL%, LM 378
XLATE, LM 379

Converting
arrays to strings, UG 4-18
numbers to strings, UG 6-8 to 6-13
strings to numbers, UG 6-8 to 6-13

Copying BASIC source text, LM 7, 119
CORE debugger command, LM 386, RSTS 5-3,

RSX 5-3
COS, LM 301, UG 6-4
Cosine, LM 301, UG 6-4
COUNT clause, LM 258, 289

in PUT, UG 9-24
CPU time, LM 373
CR, LM 24
Creating

arrays, LM 140, 145, 158, 159, 210, 216,
219, 221, 223, 225

cross-reference lists, VMS 2-22

Creating (Cont .)
executable images, VMS 1-11
files with EDT, VMS 1-8
listing files, LM 86
object modules, LM 51, 87, 92
output listings, LM 92
strings, LM 361, 366

Creating programs, RSX 2-20, VMS 2-1 to
2-18

from DCL level, RSTS 1-8
in the BASIC environment, RSTS 1-3

Credit-debit field in PRINT USING, LM 255
CRFSHR .EXE, VMS 10-3
%CROSS, LM 114, UG 10-5
CROSS, RSTS 2-8, VMS 2-6, 2-20, 2-22
CROSS-REFERENCE, LM 84, 90, RSX 2-12
CTRL/C

resuming after, LM 302
trapping, LM 302, 352, UG 6-19, 11-13
with RECOUNT function, LM 355
with RESUME, LM 272

CTRL/Y debugger command, VMS 4-10
CTRL/Z, LM 63, 68
CTRLC, LM 302, UG 6-19, 11-13

(See also RCTRLC)
Currency symbol in PRINT USING, UG 8-8
Current record pointer, UG 9-4, RSTS 3-9
Cursor position
CCPOS, LM 298
TAB, LM 371

CVT$$, LM 303
(See also EDIT$)

CVT$%, LM 304
CVT$F, LM 304
CVT%$, LM 304
CVTF$, LM 304
D
DATA, LM 143 to 144, UG 2-4

(See also READ)
comment fields in, LM 9
in DEF functions, LM 151
in DEF* functions, LM 155
in function definitions, UG 6-23
in multi-statement lines, LM 7
with MAT READ, LM 225
with READ, LM 261
with RESTORE, LM 271

Data definition, UG 5-1 to 5-22
Data Definition Language Utility (CDDL), VMS

9-3
Data sharing between program modules, RSTS

4-10 to 4-15

Data structures, VMS 6-1
Data types, LM 10 to 14, 12t, UG 5-1

BIT in CDD, VMS 9-12
DATE in CDD, VMS 9-12
decimal overflow checking, LM 87, 249
decimal string in CDD, VMS 9-11
declaring, RSTS 4-21
default, UG 5-3
defining with RECORD, LM 263
floating-point, UG 5-3
floating-point in CDD, VMS 9-9
in debugger, VMS 4-15
in LET, LM 206
in logical expressions, LM 37
in numeric expressions, LM 31
integer, UG 5-3
integer overflow checking, LM 87, 249
integers in CDD, VMS 9-7
keywords, LM 11, 23, UG 5-2t
multiple, UG 5-11 to 5-13
numeric literal notation, LM 21
packed decimal, UG 5-12
precision in PRINT, LM 252
precision in PRINT USING, LM 254
promotion of, LM 31 to 34, UG 5-11 to

5-13
real, UG 5-3
results for DECIMAL data, LM 33t
results for GFLOAT and HFLOAT, LM 32t
results in expressions, LM 32t
setting default, VMS 2-24, 2-25
setting defaults with OPTION, LM 249
storage of, LM 11
suffix characters, LM 13
VIRTUAL in CDR, VMS 9-12

Data typing
explicit, LM 13
implicit, LM 13

Data-type defaults, LM 13, 14
BYTE, LM 84, 90
constants, LM 15
DECIMAL-SIZE, LM 84
DOUBLE, LM 85, 90
GFLOAT, LM 86
HFLOAT, LM 86
LONG, LM 86, 92
SINGLE, LM 88, 93
TYPE-DEFAULT, LM 88, 93
WORD, LM 89, 94

Data-type functions
DECIMAL, LM 307
INTEGER, LM 325
REAL, LM 354

Data-type keywords, LM 11

Date and time functions, UG 6-17 to 6-19DATE$, LM 306
TIME, LM 373
TIME$, LM 375

DATE data type in CDD, VMS 9-12
DATE$, LM 306, UG 6-17
DCL command language, RSTS 1-2
DCL command level, using BASIC from, VMS

2-19
DCL commands
ALLOCATE, RSTS 3-3
ASSIGN, RSTS 3-2, VMS 8-2
BASIC, VMS 1-10
REALLOCATE, RSTS 3-12
DEASSIGN, RSTS 3-2
DELETE, RSTS 1-8, VMS 1-10
DIRECT, RSTS 1-7
DIRECTORY, VMS 1-9
from the BASIC environment, RSTS 2-7,

VMS 2-5
HELLO, RSTS 1-2INITIALIZE, RSTS 3-4
LINK, VMS 1-12
MOUNT, RSTS 3-5PRINT, RSTS 1-7, VMS 1-10
RUN, RSTS 1-11
TYPE, RSTS 1-7, VMS 1-9

REALLOCATE, RSTS 3-12, RSX 3-19
Deallocating magnetic tape, RSTS 3-12DEASSIGN, RSTS 3-2, RSX 3-3
Debit-credit field in PRINT USING, LM 255
DEBUG qualifier, LM 84, 90, 381, RSTS 2-8,

5-1, RSX 2-12, 5-1
of COMPILE command, VMS 2-6, 4-1
of DCL BASIC command, VMS 2-20, 2-23,

4-1
of DCL LINK command, VMS 4-1
with RUN, LM 103

Debugger, RSTS 5-1, RSX 5-1, VMS 4-1 to
4-16

accessing, RSX 5-1
calling subprograms from, VMS 4-14
command qualifiers, VMS 4-14, 4-15t
commands, LM 381 to 405, RSTS 5-2t, RSX

5-2t, VMS 4-2terror messages, RSTS 5-14t, 5-14 to 5-15,
RSX 5-16 to 5-17executing program statements, RSX 5-4

halting execution, RSTS 5-2, RSX 5-2, 5-3keywords, VMS 4-2
prompt, RSX 5-2
restrictions, RSTS 5-4, RSX 5-5
resuming program execution, RSTS 5-3, RSX

5-3

Debugger (Cont .)
symbol table, VMS 4-2
using at system command level, RSX 5-6
using in the BASIC environment, RSTS 5-4

to 5-5, RSX 5-5
Debugging
example programs, RSTS 5-5 to 5-9
in immediate mode, VMS 1-6
multiple program modules, RSTS 5-2, RSX

5-2
TRACEBACK, LM 88
with DEBUG, LM 84, 90, 103, 279
with symbolic debugger, VMS 4-1 to 4-15

DECIMAL data type, LM 11, UG 5-12
constants, LM 17
format of, LM 13
overflow checking, LM 87, 249
promotion rules, LM 32, 33t
rounding, LM 87, 249
storage of, LM 11

DECIMAL function, LM 307
Decimal radix, LM 21, UG 5-9
Decimal string data types, VMS 9-11
DECIMAL-SIZE, LM 84, VMS 2-20, 2-23
Declarative statements, UG 5-1
COMMON, LM 140
DECLARE, LM 145
EXTERNAL, LM 166
MAP, LM 210

DECLARE, LM 145 to 148
CONSTANT, LM 20, 24, 146, 147
constants, UG 5-7
creating arrays with, UG 7-2
DEF functions, UG 5-6
FUNCTION, LM 146, 147
variables, UG 5-5

Declaring
constants, LM 20, 146
DEF functions, LM 146, 149, UG 6-24
DEF* functions, LM 153
external constants, LM 166
external subprograms, LM 185
external variables, LM 166
RECORD structures, LM 264
subprograms, RSTS 4-4 to 4-5, 4-21, VMS

3-3
symbolic constants, VMS 5-5
system services, VMS 5-4
variables, LM 145

Declining features, LM 85, 91
DECLINING in /FLAG qualifier, VMS 2-20
DEF, LM 149 to 152, UG 6-21 to 6-26, RSTS

4-2
declaring, UG 5-6, 6-24

DEF (Cont .)
ending, LM 162error handling in, LM 163, 233, 234, 272,

UG 6-25, 11-11
exiting, LM 164
multi-line, UG 6-23
single-line, UG 6-21
transfer of control, LM 236, 237, UG 6-25
with INPUT, LM 199
with INPUT LINE, LM 202
with LINPUT, LM 207
with NOSETUP, LM 87
with READ, LM 261

DEF*, LM 153 to 156
error handling in, LM 163

Default
data type, UG 5-3
name for COMMON, UG 5-14
name for MAP, UG 5-14
record buffer size, RSTS 3-8

DEFAULTNAME, LM 240, 243, UG 9-44
Defaults
BUCKETSIZE clause, LM 244
CLUSTERSIZE clause, LM 246
COMMON name, LM 140
compiler options, RSTS 2-1 to 2-3, 2-20,

VMS 2-28
constants, LM 15
data-type, LM 13, 14
DEFAULTNAME clause, LM 243displaying, LM 109error handling, LM 233
file name, LM 79, 82, 95, 97, 102, 104,

111, 134, 240
floating-point constants, LM 15
implicitly declared variables, LM 26, 27
in file specifications, RSTS 1-7t, VMS 1-8
integer constants, LM 17
listing file, LM 51, 84, 86, 90, 92
numeric constants, LM 15
object module name, LM 51, 87, 92
overriding with BUILD, LM 48
overriding with COMPILE, LM 51
parameter-passing mechanisms, LM 132t,

133t, 168, 185, 282
radix, LM 21
RECORDSIZE clause, LM 242
resident libraries, RSTS 6-3
setting data type, VMS 2-24, 2-25
setting with BRLRES, LM 46
setting with DSKLIB, LM 55
setting with LIBRARY, LM 73
setting with ODLRMS, LM 80
setting with OPTION, LM 248, 249

Defaults (Cont .)
setting with RMSRES, LM 100
to the BASIC RUN command, RSTS 2-18
WINDOWSIZE clause, LM 242

DEFINE, LM 61, RSTS 2-11, RSX 2-16
Defining
COMMON storage, LM 139
data structures, LM 263
file structures, RSX 3-1, 3-20
labels, LM 2
MAP DYNAMIC storage, LM 213
MAP storage, LM 210
record buffers, RSTS 3-7 to 3-8

Definition of data, UG 5-1 to 5-22
DEL, LM 24
DELETE, UG 9-25
BASIC command, LM 54, RSTS 2-9, RSX

2-14, VMS 2-8
DCL command, RSTS 1-8

DELETE statement, LM 157
with UNLOCK, LM 287

Deleting
files, LM 111, 205, 242, UG 9-31, RSTS

1-8, 2-21, RSX 2-25, VMS 1-10
program lines, LM 54, RSTS 2-9, VMS 2-8
records, LM 157, 275, UG 9-25

Delimiter
EDIT, LM 57
in DATA, LM 144
string literal, LM 18
SUBSTITUTE editing command, LM 66

Density, RSTS 3-13, 3-15
DEPOSIT debugger command, VMS 4-11
Depositing values with debugger, VMS 4-11
Descriptor blocks, RSTS 4-27 to 4-29, RSX

4-27
DET, LM 308, UG 7-20
Determinant, LM 308

of a matrix, UG 7-20
Device, VMS 1-8

unit record, VMS 8-7
Device-specific I/O, RSTS 3-1, 3-13 to 3-22,

VMS 8-7 to 8-12
closing magnetic tape files, VMS 8-10
opening disk files, VMS 8-11
opening magnetic tapes, VMS 8-8
reading from disk files, VMS 8-12
reading from magnetic tapes, VMS 8-9
RESTORE, VMS 8-10
to disks, VMS 8-10 to 8-12
to magnetic tape, VMS 8-7 to 8-10
writing to disk files, VMS 8-12
writing to magnetic tapes, VMS 8-9

DEVICES, RSX 3-4

Devices
allocating, RSX 3-4
assigning logical names to, RSTS 3-2, RSX

3-2
disk, RSX 3-1
for storing files, RSTS 3-2
in file specifications, RSTS 1-6
magnetic tape, RSX 3-1

DIF$, LM 309, UG 6-13, 6-16
DIGITAL Command Language, RSX 1-1

(See also DCL)
DIGITS attribute in CDD, VMS 9-8
DIM, LM 158 to 161

used with MAT statements, LM 217, 218,
219, 221, 223

with NOSETUP, LM 87
DIMENSION, LM 158 to 161, UG 7-3

(See also DIM)
declarative, UG 7-4
executable, UG 7-4
for virtual arrays, UG 9-30

Dimensions of arrays, LM 28, 158
DIRECT, RSTS 1-7
Directory, VMS 1-8

displaying, RSTS 1-7, RSX 1-12
Disk-resident libraries, RSTS 6-4, RSX 6-1

overriding defaults, LM 91
setting defaults, LM 55

Disks
adding records to, RSX 3-34
deleting records on, RSX 3-36
device-specific I/O, RSX 3-32
dismounting, RSX 3-36
locating records on, RSX 3-36
opening device-specific files, RSX 3-33
reading records from, RSX 3-34
writing records to, RSX 3-33

DISMOUNT, RSX 3-7, 3-19
Dismounting magnetic tape, RSTS 3-12
Displaying

defaults, LM 109
files, RSTS 1-7, VMS 1-9
program lines, LM 75, RSTS 2-14, RSX

2-18
DMO, RSX 3-7, 3-19
DO qualifier for SET BREAK command, VMS

4-6
Documentation

of a program, LM 8 to 10, UG 1-5
on-line, LM 69

Dollar sign ($)
executing system commands, LM 49 to 50,

RSTS 2-7, RSX 2-11
in DECLARE, LM 145

Dollar sign ($) (Copt .)
in DEF names, LM 149
in DEF* names, LM 153
in FUNCTION names, LM 184
in MAP DYNAMIC variables, LM 213
in PRINT USING, LM 255
in SUB names, LM 281
in variable names, LM 25, 26
suffix character, LM 13

DOUBLE, VMS 2-20
data type, LM 11
qualifier, LM 85, 90, RSTS 2-8, RSX 2-13,

VMS 2-6
DSKLIB, LM 55 to 56, RSTS 2-9 to 2-10,

6-10, RSX 6-14
qualifier, LM 91, RSTS 2-6, 6-11, RSX

2-10, 6-15
DUMP, LM 91, RSTS 2-6, RSX 2-10
Dump Analyzer, RSTS 7-1, 7-5
DUPLICATES, LM 244, 259, UG 9-10
Dynamic

arrays, LM 158
mapping, LM 213, 268, UG 5-20
storage, LM 213, 268, 269
strings, UG 4-1 to 4-2

E
E format in PRINT USING, LM 257, UG 8-9
E mathematical constant, LM 316, UG 6-5,

6-6
E notation, LM 16, UG 1-7

in numeric literal notation, LM 21
in PRINT USING, LM 255, 256
numbers in, LM 16t
with PRINT, LM 252
with STR$, LM 365

ECHO, LM 310, UG 6-20
(See also NOECHO

EDIT, LM 57 to 60, RSTS 2-10 to 2-12, RSX
2-15, VMS 2-8

EDIT subcommands, RSX 2-16t
EDIT$, LM 311, UG 4-15

options, UG 4-15t
values, LM 311 t

EDIT/EDT, RSTS 1-8
Editing
commands, LM 60t
from DCL level, RSTS 1-8
program lines, LM 57
strings, LM 311, 376
with a text editor, LM 58
with editing commands, LM 58

Index- 1 0

EDT, RSTS 1-8
creating files with, VMS 1-8
sample session, VMS 1-9

Elementary RECORD component, VMS 6-2
Elliptical references, VMS 6-6

rules for, VMS 6-6
ELSE clause, LM 197, UG 3-13
END, LM 162 to 163, UG 3-21
END DEF, LM 150, 154, 162, UG 6-23
END FUNCTION, LM 162, 184, UG 6-26,

RSTS 4-4, VMS 3-12
END GROUP, LM 162, VMS 6-2
END IF, LM 162, 197, UG 3-13
End of file marks, RSTS 3-9, 3-12, 3-14

writing, RSTS 3-17, RSX 3-23
END RECORD, LM 162, VMS 6-1
END SELECT, LM 162, 277
END SUB, LM 162, 281, RSTS 4-3, VMS 3-9
END VARIANT, LM 162
Endingmulti-line DEF, LM 150

multi-line DEF*, LM 154
Entering the BASIC environment, RSTS 1-2,

RSX 1-3, VMS 1-3
Entry points, RSTS 4-23

to subroutines, UG 3-17
ENVIRONMENT in /SHOW qualifier, VMS

2-21
EOF (end-of-file), RSTS 3-9
EQ, LM 173, 191
Equivalence name, LM 45
EQV, LM 38
Erasing magnetic tape, RSTS 3-4
ERL, LM 312, UG 11-4

debugger command, LM 387, RSTS 5-3,
RSX 5-3

ERN debugger command, LM 388, RSTS 5-3,
RSX 5-3

ERN$, LM 313, UG 11-6
ERR, LM 314, UG 11-4

debugger command, LM 389, RSTS 5-3,
RSX 5-3

Error
fatal, UG 11-1, 11-4
in PRINT USING, UG 8-13
line, UG 11-4
messages, UG 11-6
module, UG 11-6
non-BASIC, UG 11-4, 11-17
number, LM 314, UG 11-4
severity level, UG 11-1
text, LM 315
untrappable, UG 11-4
warning, UG 11-1

Error handlers, UG 11-1 to 11-17
BASIC, UG 11-1, 11-15
exiting from, UG 11-7 to 11-10
functions performed by, UG 11-1
in DEFs, UG 6-25, 11-11
in subprograms, UG 11-11
transferring control to, UG 11-3
trapping CTRL/C, UG 11-13
user-supplied, UG 11-2

Error handling, UG 11-1 to 11-17
ERL, LM 312
ERN$, LM 313
ERR, LM 314
ERT$, LM 315
functions, UG 11-4 to 11-6
in DEF functions, LM 151, 163
in DEF* functions, LM 155, 163
in loops, LM 272
in MACRO subprograms, RSTS 4-35
in subprograms, LM 163, 164, 185
ON ERROR GO BACK, LM 233
ON ERROR GOTO, LM 234
ON ERROR GOTO 0, LM 235RESUME, LM 272

Error handling functions
CTRLC, LM 302
ERL, LM 312
ERN$, LM 313
ERR, LM 314
ERT$, LM 315
RCTRLC, LM 352

ERT$, LM 315, UG 11-6
ESC, LM 24
EVALUATE debugger command, VMS 4-12
Evaluating

addresses with debugger, VMS 4-12
expressions, UG 1-19
expressions with debugger, VMS 4-12
locations with debugger, VMS 4-12

Evaluation
of expressions, LM 40 to 42
of logical expressions, LM 38 to 40
of numeric relational expressions, LM 35
of operators, LM 40
of SELECT statements, LM 277
of string relational expressions, LM 36

EXAMINE debugger command, VMS 4-10
Examining

addresses with debugger, VMS 4-10locations with debugger, VMS 4-10
Exclamation point (!)

in comment fields, LM 8
in PRINT USING format field, LM 257

Executable
DIM, LM 159
statements, LM 3

Executable images, creating, RSTS 1-9, RSX1-14, VMS 1-11
EXECUTE, LM 62, RSTS 2-11, RSX 2-16Executing BASIC programs, RSX 2-21from DCL level, RSTS 1-11in the BASIC environment, RSTS 1-4, 2-18,4-18 to 4-19Executing statements conditionally, UG 3-21to 3-24
Execution

continuing, LM 53, 103, 385halting, UG 3-20
of multi-statement lines, LM 5
of statements, LM 5
of system commands, LM 49
program, LM 102
stopping, LM 53, 103, 279, 383, 400
suspending, LM 278, 291, UG 3-19

EXIT
BASIC command, LM 68, RSTS 1-6, 2-12

to 2-13, RSX 2-17, VMS 2-9
debugger command, LM 390, RSTS 5-3,RSX 5-3, VMS 4-10
EDIT subcommand, LM 63, RSTS 2-11, RSX

2-16EDT command, RSTS 1-8
statement, LM 164 to 165, UG 3-8EXIT DEF, LM 164, UG 6-23EXIT FUNCTION, LM 164, UG 6-26, RSTS4-4, VMS 3-12EXIT SUB, LM 164, RSTS 4-3, VMS 3-9Exiting the BASIC environment, RSTS 1-6,2-12 to 2-13, RSX 2-17

EXP, LM 316, UG 6-6
Explicit

creation of arrays, LM 158
data typing, LM 13, 14, 88, 93, 248declaration of variables, LM 27, RSTS 2-8
literal notation, LM 21 to 23, UG 5-8
loop iteration, LM 204
record locking, LM 157, 173, 174, 175, 191,

192, 245, VMS 8-17
EXPLICIT with ITYPE,DEFAULT, VMS 2-21
Exponential notation, LM 16, UG 1-7

in PRINT USING, LM 255
numbers in, LM 16t
with PRINT, LM 252Exponentiation, LM 316, UG 6-6Expressions, LM 30 to 42, UG 1-13 to 1-20conditional, LM 34 to 40, UG 1-14, 3-14conditional in %LET, LM 121

Index- 1 1

Expressions (Cont.)
evaluating with debugger, VMS 4-12
evaluation of, LM 40 to 42, UG 1-19
evaluation of in PRINT, UG 2-6
lexical, LM 117, 121, 128, UG 10-8
logical, LM 37 to 40, UG 1-17
mixed-mode, LM 31 to 34, UG 5-11 to

5-13
multiple data types, UG 5-11 to 5-13
numeric, LM 30 to 34, UG 1-13numeric relational, LM 35, UG 1-15
operator precedence in, LM 40, 41t
parentheses in, LM 41
relational, LM 35 to 37, UG 3-14
string, LM 34, UG 1-14
string relational, LM 36, UG 1-16

EXTEND, LM 91, RSTS 2-6, RSX 2-10
Extended field in PRINT USING, LM 257, UG

8-13
EXTENDSIZE, LM 243, 245, 246, UG 9-38
EXTERNAL, LM 166 to 168, UG 5-8, 6-27 to

6-28, RSTS 4-4 to 4-5, 4-21, VMS 3-3
BASIC-PLUS-2 parameter-passing

mechanisms, LM 133t
CONSTANT, LM 20, 166
declaring symbolic constants, VMS 5-4
declaring system services, VMS 5-4
FUNCTION, LM 166
SUB, LM 166
VAX-11 BASIC parameter-passing

mechanisms, LM 132t
with NOSETUP, LM 87

External
constants, LM 20, 166
functions, LM 166, UG 6-26 to 6-28
subroutines, LM 166
symbols, RSTS 6-1
variables, LM 26, 166Extracting substrings, UG 4-9 to 4-15
with LEFT$, LM 326, UG 4-12
with MID$, LM 335, UG 4-11
with RIGHT$, LM 356, UG 4-13
with SEG$, LM 358, UG 4-9

Features, declining, LM 91
FF, LM 24FIELD, LM 169
Fields

asterisk-filled, LM 255, UG 8-7
blank-if-zero, LM 255, UG 8-10
centered, LM 257, UG 8-12
comment, LM 8, UG 1-6

Index-1 2

Fields (Cont.)
credit or debit, LM 255
exponential, LM 255
extended, LM 257, UG 8-13
floating dollar sign, LM 255, UG 8-8
left-justified, LM 256, UG 8-11
one-character, LM 257
right-justified, LM 257, UG 8-12
trailing minus sign, LM 255, UG 8-8
zero-fill, LM 255

File attributesBLOCKSIZE clause, LM 243CLUSTERSIZE clause, LM 246CONTIGUOUS clause, LM 242EXTENDSIZE clause, LM 243
FILESIZE clause, LM 242
magnetic tape, LM 243
MODE clause, LM 246

File name, RSTS 1-6, VMS 1-8
scan, RSTS 3-23 to 3-28, RSX 3-37 to

3-42
File name string, RSTS 3-24t, 3-25t, 3-26t,

RSX 3-38t, 3-39t, 3-40t
interpreting file attributes, RSX 3-38

File names
BUILD default, LM 48
CHAIN statement default, LM 134
COMPILE default, LM 51
LOAD default, LM 77
NEW default, LM 79
OLD default, LM 82
OPEN default, LM 240
RENAME default, LM 95
REPLACE default, LM 97
RUN default, LM 102
SAVE default, LM 104
UNSAVE default, LM 111

File operations, UG 9-30 to 9-31
File organization, UG 9-2File sharing, VMS 8-16File specifications, RSX 1-9, VMS 1-7

defaults, RSTS 1-7t, RSX 1-10, VMS 1-8t
using logical names, VMS 8-2

File type, RSTS 1-6, VMS 1-8
File-related functions, UG 9-32 to 9-33

BUFSIZ, LM 297
CCPOS, LM 298
FSP$, LM 319
FSS$, LM 320
GETRFA, LM 321
MAGTAPE, LM 332
MAR, LM 334
ONECHR, LM 341
RECOUNT function, LM 355

File-related functions (Cont.)
STATUS, LM 363

Files, UG 9-1 to 9-44, RSTS 1-6 to 1-8
adding records to, RSTS 3-9
ASCII stream, LM 245
attributes, RSTS 5-3
block I/O, UG 9-3
closing, LM 138, UG 9-31, RSTS 3-12,

3-16
CMD, RSX 1-16
creating, RSTS 1-8, RSX 1-10
defaults, RSX 1-10
deleting, LM 111, 205, 242, UG 9-31,

RSTS 1-8, 2-21, RSX 1-14, VMS 1-10
deleting records in, LM 157, 275
device-specific, RSTS 3-1
displaying, RSTS 1-7, RSX 1-13, VMS 1-9
editing, RSX 1-12
finding buffer size, LM 297
%INCLUDE, LM 98, 119, 120
indexed, UG 9-2
interpreting file attributes, RSTS 3-22 to

3-23, RSX 3-37
naming, RSX 1-9
native mode, RSTS 3-1
non-structured, RSTS 3-1, 3-13
object module, RSX 1-15
ODL, RSX 1-16
on disk, RSX 3-32
on magnetic tape, RSX 3-8
opening, LM 238, UG 9-6 to 9-12
opening on magnetic tape, RSTS 3-6 to 3-8,

3-14 to 3-15
preextending, UG 9-37
printing, RSTS 1-7, RSX 1-13, VMS 1-10
reading from magnetic tape, RSTS 3-10,

3-21
relative, UG 9-2
renaming, LM 230, UG 9-30
restoring, LM 271, UG 9-28
RMS sequential stream, LM 245
RMS-11, RSTS 3-1
sequential, UG 9-2
shared between program modules, RSTS

4-14 to 4-15
specifying, VMS 1-7
storage devices for, RSTS 3-2, RSX 3-1
structured, RSTS 3-1
task image, RSX 1-15
temporary, UG 9-37
terminal-format, UG 2-11 to 2-12, 9-3,

RSTS 3-1
truncating, UG 9-29

Files (Cont.)undefined, UG 9-3, RSTS 3-22 to 3-23,
RSX 3-37

version number, VMS 1-10
virtual arrays, UG 9-3
writing to magnetic tape, RSTS 3-8 to 3-10,

3-19 to 3-20
FILESIZE, LM 242, UG 9-37
FILL, UG 5-18

formats and storage, LM 141t
in COMMON, LM 139
in MAP, LM 210
in MOVE, LM 227
in REMAP, LM 268

FILL$, LM 139, 210, 227, 268, UG 5-18
FILL%, LM 139, 210, 227, 268, UG 5-18
FIND, LM 171 to 176, UG 9-13, RSTS 3-11

EDIT subcommand, LM 64, RSTS 2-12, RSX
2-16

random access, UG 9-13
RFA clause, UG 9-22
sequential access, UG 9-13
with ALLOW clause, VMS 8-17
with PUT, LM 259
with UNLOCK, LM 287
with UPDATE, LM 289

Finding
records, LM 174
string length, LM 327
substrings, LM 322, 345
virtual address, LM 328

FIX, LM 317, UG 6-3
compared with INT, LM 324

FIXED, VMS 8-3
Fixed-length strings, UG 4-1, 4-3
Fixed-point data types in CDD, VMS 9-7
FLAG, LM 85, VMS 2-20, 2-24
FLAG :DECLINING, LM 91, RSTS 2-8, RSX

2-12
Floating dollar sign field in PRINT USING, LM

255
Floating-point

constants, LM 15, UG 1-6
data types, LM 11, UG 5-3
data types in CDD, VMS 9-9
promotion rules, LM 31
variables, LM 26, UG 1-10

FNEND, LM 177, UG 6-23
(See also END)

FNEXIT, LM 178, UG 6-23
(See also EXIT)

FOR clause
INPUT, LM 240, UG 9-8
OUTPUT, LM 240, UG 9-8

Index- 1 3

FOR statement modifier, LM 179 to 181, UG
3-22

FOR-NEXT loops, LM 179 to 181, UG 3-2 to
3-5ending, LM 231

error handling in, LM 272exiting, LM 164
explicit iteration of, LM 204transferring control into, LM 180, 195, 196,

236, 237
FOREIGN format, RSTS 3-4, 3-14FOREIGN qualifier, RSX 3-5Formal parameters, RSTS 4-6
Format characters

for numeric fields, UG 8-6t
for string fields, UG 8-11 t
in PRINT USING, UG 8-11

Format of records, UG 9-1
Format reversion, UG 8-3
Format string

definition of, UG 8-2
in PRINT USING, UG 8-2 to 8-3
reusing, UG 8-3

FORMAT$, LM 318, UG 6-10
Formatting, UG 2-7
MAT PRINT output, LM 224
numeric output, LM 255 to 256
PRINT output, LM 251, 253
storage with LSET, LM 209
storage with RSET, LM 274string output, LM 256 to 257with FORMAT$, LM 318with PRINT USING, LM 254 to 257, UG8-1 to 8-15

FRACTION attribute in CDD, VMS 9-8
FREE, UG 9-29
debugger command, LM 391, RSTS 5-3,RSX 5-3
statement, LM 182

FSP$, LM 319, UG 9-11, RSTS 3-23, RSX
3-37

FSS$, LM 320, RSTS 3-23 to 3-28, RSX 3-38
FUNCTION, LM 183 to 186, UG 6-26, RSTS

4-4, 4-6, VMS 3-12
BASIC-PLUS-2 parameter-passing

mechanisms, LM 133t
parameters, LM 184
VAX-11 BASIC parameter-passing

mechanisms, LM 132t
Function codes, MAGTAPE, LM 332t
FUNCTION subprograms, RSTS 4-4, RSX 4-4

accessing, RSTS 4-5, RSX 4-5
declaring, RSTS 4-4 to 4-5
ending, VMS 3-12

Index-1 4

FUNCTION subprograms (Cont.)exiting, VMS 3-12FUNCTIONEND, LM 187, UG 6-26, RSTS4-4
(See also END)

FUNCTIONEXIT, LM 188, UG 6-26, RSTS4-4
(See also EXIT)

Functions, UG 6-1 to 6-28
built-in, UG 6-1 to 6-21
conversion, UG 6-8 to 6-13
date, UG 6-17 to 6-19
declaring, LM 146, 149, 153
error handling, UG 11-4 to 11-6
external, LM 166, UG 6-26 to 6-28
file-related, UG 9-32 to 9-33
initializing, LM 151, 155
invoking, LM 151, 155
lexical, LM 89, 93, 117, 121, 128
naming, LM 149, 153
numeric, UG 6-2 to 6-8
parameters, LM 150, 154recursive, UG 6-25string, UG 4-6 to 4-16string arithmetic, UG 6-13 to 6-17terminal control, UG 6-19 to 6-21time, UG 6-17 to 6-19trigonometric, UG 6-4
user-defined, LM 149, 153, UG 6-21 to6-28

G
GE, LM 173, 191
GET, LM 189 to 194, UG 9-15 to 9-23, RSTS

3-10
for block I/O files, UG 9-17 to 9-20
for indexed files, UG 9-20
for relative files, UG 9-16for sequential files, UG 9-15RFA clause, UG 9-22with ALLOW clause, VMS 8-17with ANSI format magnetic tapes, VMS 8-5with PUT, LM 259with REGARDLESS clause, VMS 8-17with UNLOCK, LM 287with UPDATE, LM 289GETRFA, LM 321, UG 9-22GFLOAT
data type, LM 11
qualifier, LM 86, VMS 2-6Global entry point, RSTS 4-23Global symbols, RSTS 6-1GO debugger command, VMS 4-8

GOSUB, LM 195, UG 3-17, RSTS 4-2
with RETURN, LM 273

GOTO, LM 196, UG 3-10
GROUP, LM 264, VMS 6-2

block, VMS 6-2
Grouping RECORD components, VMS 6-2
GT, LM 173, 191
H
Halting program execution, LM 53, 279, 383,

400, UG 3-20
Handling errors, UG 11-1 to 11-17
HELLO, RSTS 1-2
HELP, LM 69 to 70, RSTS 2-13, RSX 2-17,

VMS 2-9
HEX qualifier for debugger commands, VMS

4-15
Hexadecimal radix, LM 21, UG 5-9
HFLOAT, LM 86

data type, LM 11
qualifier, VMS 2-6

HT, LM 23

I/O
buffers, UG 9-6, 9-17, 9-39
characters transferred, LM 355
closing files, LM 138, 162
debugger command, RSX 5-3
deleting records, LM 157
device-specific, VMS 8-7 to 8-12
dynamic mapping, LM 268
finding records, LM 173
from card reader, VMS 8-7
locking records, LM 173, 174, 191, 192,

245
matrix, LM 337, 338
moving data, LM 227
network, VMS 8-14
on VAXNMS, VMS 8-2 to 8-23
opening files, LM 238
optimization, UG 9-33 to 9-44
queueing requests, VMS 5-10
RECOUNT debugger command, LM 396
retrieving records, LM 191
simple, UG 2-1 to 2-12
statements and record context, UG 9-5t
STATUS debugger command, LM 398
to arrays, UG 7-7 to 7-17
to magnetic tape, VMS 8-2
to mailboxes, VMS 8-13
unlocking records, LM 182, 245, 287

I/O (Cont.)
updating records, LM 289
with CHAIN, LM 135
writing records, LM 258

I/O BUFFER debugger command, LM 392,
RSTS 5-3

%IDENT, LM 115 to 116, UG 10-3
IDENTIFY, LM 71, RSTS 2-13, RSX 2-18,

VMS 2-11
Identifying module version, LM 115
Identity matrix, LM 217
IDN, LM 217IF statement modifier, UG 3-22%IF-%THEN-%ELSE-%END-%IF, LM 117 to118, UG 10-9with RESEQUENCE, LM 98IF-THEN-ELSE, LM 197 to 198, UG 3-13labels in, LM 2

multi-line format, LM 6
Images, shareable, VMS 10-4 to 10-5Immediate mode, LM 53, 103, RSTS 1-4 to

1-5, RSX 1-8, VMS 1-4
debugging in, VMS 1-6
invalid statements, RSX 1-8

IMP, LM 38
Implicit

continuation of lines, LM 6
creation of arrays, LM 159, 217, 219, 221,

223, 225
data typing, LM 13, 147
declaration of variables, LM 26 to 27, UG

1-10
%INCLUDE, LM 119 to 120, UG 5-20, 10-6

with RESEQUENCE, LM 98
%INCLUDE %FROM %CDD, VMS 9-2
INCLUDE in /SHOW qualifier, VMS 2-21
IND, LM 91, UG 7-10, RSTS 2-6, RSX 2-10
Indexed files
ALTERNATE KEY clause, LM 244
BUCKETSIZE clause, LM 244
CHANGES clause, LM 244
deleting records in, LM 157DUPLICATES clause, LM 244
finding records in, LM 174
GET, UG 9-20
IND, LM 91
keys, UG 9-10
MAP clause, LM 243
opening, LM 240, UG 9-9PRIMARY KEY, LM 244
PUT, UG 9-25
reading records from, UG 9-20
restoring data in, LM 271
retrieving records sequentially in, LM 191

Index-1 5

Indexed files (Cont .)
segmented keys in, LM 244UPDATE, UG 9-28updating, LM 290, UG 9-28writing records to, LM 258, UG 9-25INITIALIZE, RSTS 3-4, RSX 3-6Initializing
arrays, LM 161, 217, UG 7-2DEF functions, LM 151
DEF* functions, LM 155in subprograms, LM 185, 282magnetic tape, RSTS 3-4MAPS and COMMONS, RSTS 4-32variables, LM 29, 142, 147, 212, UG 1-12virtual arrays, LM 160

INITVOLUME, RSX 3-6
INPUT, LM 199 to 201, UG 2-1 to 2-2
Input, UG 2-1 to 2-6
from source program, UG 2-3
interactive, UG 2-1null, UG 2-1INPUT LINE, LM 202 to 203, UG 2-2 to 2-3Inputting dataONECHR, LM 341with INPUT, LM 199with INPUT LINE, LM 202with LINPUT, LM 207INQUIRE, LM 72, RSTS 2-14, RSX 2-18(See also HELP)

INSERT
EDIT subcommand, LM 65, RSTS 2-12, RSX2-16
EDT command, RSTS 1-8

INSTR, LM 322 to 323, UG 4-7 to 4-9(See also POS)
INT, LM 324, UG 6-3Integer

constants, LM 17, UG 1-7data types, LM 11, UG 5-3overflow checking, LM 87, 249promotion rules, LM 31
suffix character, LM 13
variables, LM 27, UG 1-11

INTEGER data type, LM 11
in CDD, VMS 9-7

INTEGER function, LM 325
INTEGER-SIZE, VMS 2-20, 2-24
Integers
SIGNED in CDD, VMS 9-8
UNSIGNED in CDD, VMS 9-8

Interactive input, UG 2-1Internal symbols, RSTS 6-1Interpreting file attributes, RSTS 3-22 to 3-23file name string, RSTS 3-24t, 3-25t, 3-26t

Index-1 6

INV, LM 218, UG 7-20
Inverting

arrays, LM 218, 308
matrixes, UG 7-20

Invoking
subprograms, RSTS 4-5 to 4-6, 4-22
the BASIC environment, RSTS 1-2, RSX 1-3,VMS 1-3the Resequencer, RSTS 7-1ITERATE, LM 204, UG 3-8Iteration
of FOR-NEXT loops, LM 180of loops, LM 204
of UNTIL loops, LM 288of WHILE loops, LM 292

J
Job information, VMS 5-12Justifying strings

with LSET, LM 209with RSET, LM 274
K
KEY clause
ALTERNATE, LM 240, 244
in FIND, LM 172, UG 9-14in GET, LM 190, UG 9-20
in RESTORE, LM 271, UG 9-28PRIMARY, LM 240, 244, 247
segmented keys, LM 244

Keyboard monitor, RSTS 1-2
Keys
changing, UG 9-10
duplicates, UG 9-10in indexed files, UG 9-10

Keywords, LM 3, UG 1-4
cross-reference, RSTS 2-8
data-type, LM 11, 12in RECORD, LM 264spacing requirements, LM 4, 4t, UG l-4tKILL, LM 205, UG 9-31

L
L formatting character in PRINT USING, LM256
Labels, LM 2, UG 1-3transferring control to, LM 195, 196, 236,237
with ITERATE, LM 204

LBR, RSTS 6-8 to 6-9, RSX 6-11LBRSHR.EXE, VMS 10-3

Left justification
with LSET, LM 209
with PRINT USING, LM 256, UG 8-11

LEFT OVERPUNCHED NUMERIC, VMS 9-11
LEFT SEPARATE NUMERIC, VMS 9-11
LEFT$, LM 326, UG 4-12

(See also SEG$)
LEN, LM 327, UG 4-7
Length

label, LM 2
of string data, LM 12, UG 4-7
variable names, LM 25

%LET, LM 121, UG 10-8
LET, LM 206
debugger command, LM 393 to 394, RSTS

5-3, RSX 5-3
Lexical

constants, LM 117, 121, UG 10-8
expressions, LM 117, 121, 128, UG 10-8
functions, LM 89, 93, 117, 121, 128
operators, LM 117, 121
order, LM 8

LF, LM 24
LIB$FREE-LUN, VMS 5-18
LIB$FREE-TIMER, VMS 5-16
LIB$GET-LUN, VMS 5-18
LIB$INIT-TIMER, VMS 5-16
LIB$STAT-TIMER, VMS 5-16
Librarian Utility Program, RSX 6-11

qualifiers, RSTS 6-9t
Libraries, VMS 10-1 to 10-5
comparison of, RSTS 6-2, RSX 6-2
creating, RSX 6-11
defaults, RSTS 6-3
disk-resident, LM 55, RSTS 6-1 to 6-2, 6-4,

6-8 to 6-11
memory-resident, LM 46, 73, RSTS 6-2 to

6-4, RSX 6-1
object module, RSX 6-1
resident, RSX 6-1
RMS, LM 100, 101t
RMS-11 disk-resident, RSTS 6-6 to 6-7
RMS-11 memory-resident, RSTS 3-13, 6-4

to 6-5
searched by BASIC, VMS 10-2
searched by VAX-11 Linker, VMS 10-2
selecting, RSTS 6-3 to 6-4, 6-5, 6-10
setting defaults with BRLRES, LM 46
setting defaults with DSKLIB, LM 55
setting defaults with LIBRARY, LM 73
system, VMS 10-3
user-created, RSTS 6-8 to 6-10, VMS 10-1

LIBRARY, LM 73 to 74, RSTS 2-14, 6-3, RSX
6-4

qualifier, LM 91, RSTS 2-6, 6-4, RSX 2-10,
6-5

%LINE, VMS 4-6, 4-7
LINE, LM 86, 92, RSTS 2-8, RSX 2-13

with debugger commands, LM 387, 388
with ERL, LM 312

Line numbers, LM 1, 2, UG 1-1
automatic sequencing, LM 107
in %INCLUDE file, LM 119
in object modules, LM 86, 92
in RESEQUENCE, LM 98
renumbering, RSX 2-23

Line terminator, LM 1, 7, 10
with DATA statements, LM 143
with INPUT, LM 200
with INPUT LINE, LM 203
with LINPUT, LM 208

LINES, VMS 2-6, 2-20, 2-24
Lines

continued, LM 5, UG 1-2
deleting, LM 54
displaying, LM 75
editing, LM 57
format of, LM 1 to 8
multi-statement, LM 5 to 7, UG 1-2
order of, LM 8, 98
single-statement, LM 4

LINK, RSTS 1-10
Linking, RSTS 1-1, 1-9, 1-10 to 1-11, 6-1,

VMS 1-11
MACRO subprograms, RSTS 4-33 to 4-34
program modules, RSTS 4-16 to 4-18
with user-supplied libraries, VMS 10-1

LINPUT, LM 207 to 208, UG 2-2 to 2-3
%LIST, LM 122, UG 10-4
LIST, LM 75 to 76, 86, 92, RSTS 2-14, RSX

2-18, VMS 2-11, 2-20, 2-24
qualifier, RSTS 2-8, RSX 2-13, VMS 2-7

Listing file, VMS 2-22
control of, LM 7, 88, 114, 122, 123, 124,

125
creating, LM 86, 92, VMS 2-24
CROSS-REFERENCE, LM 84, 90
defaults, LM 51, 84, 86, 90, 92
included code, LM 119
setting page size, LM 92
setting width, LM 94
subtitle, LM 126
title, LM 127
version identification, LM 115

LISTNH, LM 75, RSX 2-18, VMS 2-11
(See also LIST)

Index-1 7

Lists, traceback, VMS 4-1
Literalscharacter, UG 5-10explicit notation, LM 21

numeric, LM 15
numeric constant, UG 5-8string, LM 5, 10, 18, 37, 255, 257, UG 1-8LOAD, LM 77, RSTS 2-15, 4-18, RSX 2-18,
VMS 2-11

with RUN, LM 103with SCRATCH, LM 106LOC, LM 328
Local copy, VMS 3-8

of parameters, RSTS 4-7, 4-20
Local subroutines, UG 3-17
Locating records, UG 9-13, RSTS 3-11by KEY, LM 172

by RECORD, LM 172
by RFA, LM 172
randomly, LM 174
sequentially, LM 173
with FIND, LM 171
with GET, LM 189

Locations
evaluating with debugger, VMS 4-12
examining with debugger, VMS 4-10
modifying with debugger, VMS 4-11

LOCK, LM 78, RSTS 2-15, RSX 2-19, VMS
2-12(See also SET)

Locking records, LM 245
explicitly, VMS 8-17
with FIND, LM 173, 174
with GET, LM 191, 192

LOG, LM 329, UG 6-5
LOG 10, LM 330, UG 6-5
Logarithm
common, LM 330, UG 6-5natural, LM 329, UG 6-5Logging in, RSTS 1-2, RSX 1-2, VMS 1-2

Logging out, RSTS 1-2, RSX 1-3
Logical expressions, LM 37 to 40, UG 1-17,

3-14
compared with relational, LM 40
evaluation of, LM 38 to 40
truth tables, LM 38t

Logical names, LM 45, RSTS 3-2 to 3-3, RSX
3-2 to 3-3, VMS 8-2

in the OPEN statement, RSTS 3-3
translating, VMS 5-6

Logical operators, LM 38t, UG 1-15, 1-17t
Logical unit numbers, VMS 5-18
LONG, VMS 2-20

data type, LM 11

Index-1 8

LONG (Cont.)
qualifier, LM 86, 92, RSTS 2-8, RSX 2-13,

VMS 2-7
Loops, UG 3-1 to 3-9

as debugger breakpoints, LM 383conditional, LM 179
controlling explicitly, UG 3-8exiting, LM 164
FOR-NEXT, LM 179, UG 3-2 to 3-5iteration of, LM 180, 204, 288, 292nested, UG 3-7
single-line, UG 3-22 to 3-24unconditional, LM 179
UNTIL-NEXT, LM 288, UG 3-6 to 3-7WHILE-NEXT, LM 292, UG 3-5 to 3-6Lowercase letters
in EDIT, LM 58
in FIND editing command, LM 64in PRINT USING, LM 256
in SUBSTITUTE editing command, LM 66processing of, LM 10LSET, LM 209, UG 4-5LUN, VMS 5-18

M
MACHINE, VMS 2-7, 2-20, 2-25in /SHOW qualifier, VMS 2-21MACHINE-CODE, LM 87MACRO, LM 92, RSTS 2-8, RSX 2-13MACRO subprograms, RSTS 4-19, 4-22 to4-34

assembling, RSTS 4-26, 4-33, RSX 4-33calling, RSTS 4-22 to 4-23, RSX 4-22error handling, RSTS 4-35, RSX 4-35initializing COMMONS, RSX 4-32initializing MAPS, RSX 4-32
overlay structures, RSTS 4-33 to 4-34, RSX4-34
passing parameters to, RSTS 4-23 to 4-29,RSX 4-23
PSECTs, RSX 4-32
restrictions, RSX 4-19

MAG, LM 331
Magnetic tape, RSTS 3-2, RSX 3-4, VMS 8-2adding records to, RSX 3-13, 3-27

allocating for device-specific I/O, VMS 8-7ANSI D format, VMS 8-3
ANSI F format, VMS 8-3
ANSI format, VMS 8-4block size, VMS 8-3closing files, RSX 3-19
deallocating, RSTS 3-12deleting records from, RSTS 3-22

Magnetic tape (Cont.)
device-specific I/O, RSX 3-20, VMS 8-7 to

8-10
dismounting, RSTS 3-12, RSX 3-19
formats, RSTS 3-4, 3-5
initializing, RSTS 3-4, RSX 3-5 to 3-7
locating records on, RSTS 3-11, RSX 3-16,

3-29
MAGTAPE function, RSX 3-23
mounting, RSTS 3-4 to 3-5, VMS 8-2
opening files on, RSTS 3-6 to 3-8, 3-14 to

3-15
opening FOR INPUT, VMS 8-3
opening FOR OUTPUT, VMS 8-3
positioning, RSTS 3-11, VMS 8-4
reading from ANSI format, VMS 8-5
reading records from, RSTS 3-10, 3-21,

RSX 3-14, 3-28
rewinding, VMS 8-6
truncating files on, RSX 3-17
truncating records on, RSX 3-31
using RMS-11, RSX 3-7
writing records to, RSTS 3-8 to 3-10, 3-19

to 3-20, RSX 3-12, 3-25
writing to ANSI format, VMS 8-4

Magnetic tape files
BLOCKSIZE clause, LM 243
MAGTAPE, LM 332
NOREWIND clause, LM 243
RESTORE, LM 271

MAGTAPE, LM 332 to 333, RSTS 3-16 to
3-19, RSX 3-23 to 3-25

function codes, LM 332t, RSTS 3-17t, RSX
3-23t

performing functions in VAX-11 BASIC, LM
333t

tape status word, RSTS 3-18t
Mailboxes, VMS 5-5, 8-13
MAP, LM 210 to 212, UG 5-15, 9-6

creating arrays with, UG 7-6
defining record buffer, RSTS 3-7
FILL item formats and storage, LM 141t
in /SHOW qualifier, VMS 2-21
in MACRO subprograms, RSTS 4-29 to

4-32
in subprograms, UG 5-19, RSTS 4-12 to

4-14
initializing with MACRO subprograms, RSTS

4-32, RSX 4-32
multiply defined, UG 4-16, 5-17, RSTS

4-11
overlaid, UG 4-16, 5-17
qualifier, LM 92, RSTS 2-6, RSX 2-10
single, UG 5-16

MAP (Cont.)
used in string manipulation, UG 4-16
with FIELD, LM 170
with MAP DYNAMIC, LM 214
with REMAP, LM 268

MAP clause, LM 243
MAP DYNAMIC, LM 213 to 214, UG 5-21,

9-6
with REMAP, LM 268, 269

Mapping
dynamic, LM 213, 268, UG 5-20
static, LM 210MAR, LM 334MAR%, LM 334, UG 9-33

MARGIN, LM 215
(See also NOMARGIN)
with PRINT, LM 251

Margin width, LM 215, 232, 251, 334
Masks, VMS 5-3
MAT, LM 216 to 218, UG 7-7 to 7-20

with DET, LM 308
with FIELD, LM 170
with NOSETUP, LM 87

MAT INPUT, LM 219 to 220, UG 7-8, 7-12,
7-14

MAT LINPUT, LM 221 to 222, UG 7-8, 7-13,
7-14

MAT PRINT, LM 223 to 224, UG 7-8, 7-15,
7-16

MAT READ, LM 225 to 226, UG 7-8, 7-11
MAT statements, UG 7-8t

keywords, UG 7-10t
Matrix, LM 28

addition, UG 7-18
assignment, UG 7-17
finding the determinant of, UG 7-20
I/O functions, UG 7-16
identity, LM 217
inverting, UG 7-20
multiplication, UG 7-18
operations, LM 217 to 218, 219, 221, 223,

225, 308, 337, 338
operators, UG 7-17 to 7-19
subtraction, UG 7-18
transposing, UG 7-20

Matrix functions, UG 7-19 to 7-20
DET, LM 308
NUM, LM 337
NUM2, LM 338

Measuring performance, VMS 5-16
Memory

allocation, LM 386, 391, 392, 401
clearing with SCRATCH, LM 106
DUMP, LM 91

Index-1 9

Memory (Cont .)
effect of debugger on, LM 382

Memory requirements for overlay structures,
RSTS 4-17f

Memory-resident libraries, RSTS 6-2 to 6-4,
RSX 6-1

overriding defaults, LM 90, 91
setting defaults with BRLRES, LM 46
setting defaults with LIBRARY, LM 73

Merging programs, LM 43
MID$, LM 335, UG 4-11

(See also SEG$)
Minus sign (-)

in numeric literal notation, LM 21
in PRINT USING, LM 255

Mixed-mode expressions, LM 31 to 34, UG
5-11 to 5-13

results, UG 5-13f
MODE, LM 246, RSTS 3-15
MODE values, RSX 3-22t
Modifiable parameters, LM 131, RSTS 4-7,

RSX 4-7, 4-27, VMS 3-8
Modifiers, UG 3-21 to 3-24
FOR, LM 179, UG 3-22
IF, LM 197, 198, UG 3-22
nested, UG 3-24
UNLESS, LM 286, UG 3-22
UNTIL, LM 288, UG 3-23
WHILE, LM 292, UG 3-23

Modifying
addresses with debugger, VMS 4-11
locations with debugger, VMS 4-11

Module
cancelling with debugger, VMS 4-4
setting with debugger, VMS 4-3
showing with debugger, VMS 4-3

Monitor Console Routine, RSX 1-1
MOUNT, RSTS 3-5, 3-14, RSX 3-5
Mounting magnetic tape, RSTS 3-4 to 3-5
MOVE, LM 227 to 229, UG 9-6, 9-18 to

9-20
FILL item formats and storage, LM 141t
used with arrays, UG 9-18
with FIELD, LM 170
with NOSETUP, LM 87

MTH$ACOS, VMS 5-20
Multi-line

DEF, LM 149, 150, UG 6-23
DEF*, LM 153, 154
statements, UG 1-2

Multi-statement lines, LM 5 to 7, UG 1-2
Multiple data types, UG 5-11 to 5-13
Multiple MAPS, UG 4-16, 5-17

Index-20

Multiple program units
debugging, VMS 2-29
running, VMS 2-29

N
NAME AS, LM 230, UG 9-30Named constants, LM 19 to 21, UG 5-7external, LM 166

internal, LM 146
Naming

arrays, LM 29
COMMON areas, LM 140
constants, LM 15, 19, 20, 146
DEF functions, LM 149
DEF* functions, LM 153
external constants, LM 166
external functions, LM 166
external variables, LM 26, 166
FUNCTION subprograms, LM 134
functions, LM 146
internal constants, LM 146
internal variables, LM 25
lexical constants, LM 121
MAP areas, LM 210
programs, LM 79, 95
SUB subprograms, LM 281
subprograms, LM 130
variables, LM 145

Native mode files, RSTS 3-1
Nested

loops, UG 3-7
modifiers, UG 3-24

NestingFOR-NEXT loops, LM 179
IF, LM 197
SELECT, LM 277

Network I/O, VMS 8-14
NEW, LM 79, RSTS 1-3, 2-16, RSX 2-20,

VMS 2-12
NEXT, LM 231
with FOR, LM 180
with UNTIL, LM 288
with WHILE, LM 292

Next record pointer, UG 9-4
%NOCROSS, LM 123, UG 10-5
Node, VMS 1-8
NOECHO, LM 336, UG 6-20

(See also ECHO)
%NOLIST, LM 124, UG 10-4
NOMARGIN, LM 232
(See also MARGIN)

Non-BASIC subprograms, RSTS 4-19 to 4-35,
RSX 4-19 to 4-35

declaring, RSTS 4-21, RSX 4-21
invoking, RSTS 4-22
MACRO, RSX 4-19
passing parameters to, RSTS 4-19 to 4-21

Nonexecutable DIM, LM 159
Nonexecutable statements, LM 3, 8, 141, 143,

146, 159, 168, 211, 214, 286
Nonmodifiable parameters, LM 131, RSTS 4-7,

RSX 4-7, 4-27
Nonmodifiable statements, UG 3-21
Nonprinting characters, LM 10, 23, UG 1-3,

1-9
Nonvirtual DIM, LM 159
NOREWIND, LM 243, 245, 247, RSTS 3-7,

RSX 3-9, VMS 8-4
NOSPAN, LM 243, UG 9-37
NOT, LM 38
Notation

E, LM 16, 16t, 252, 255, 256
explicit literal, LM 21 to 23
exponential, LM 16, 252, UG 1-7
scientific, UG 1-7

NOTRACE, VMS 4-1
NUL, LM 10, 18
NUL$, LM 217, UG 7-10
Null input, UG 2-1
Null parameters, VMS 3-8
Nulls, trailing, UG 4-20
NUM, LM 337, UG 7-16

after MAT INPUT, LM 220
after MAT LINPUT, LM 221
after MAT READ, LM 225

NUM$, LM 339, UG 6-11
NUM1$, LM 340, UG 6-11
compared with STR$, LM 365

NUM2, LM 338, UG 7-16
after MAT INPUT, LM 220
after MAT LINPUT, LM 222
after MAT READ, LM 226

Number notations, UG 1-7t
Numbers
complex, in CDD, VMS 9-9
converting to string, UG 6-8 to 6-13
in E notation, LM 16t
printing, UG 2-10
printing with PRINT USING, UG 8-4 to

8-10
random, LM 260, 357, UG 6-7 to 6-8
sign of, LM 359

Numeric constants, LM 15 to 18
Numeric conversion, LM 136

Numeric expressions, LM 30 to 34, UG 1-13
format of, LM 30
promotion rules, LM 31 to 34
result data types, LM 32t
results for DECIMAL data, LM 33t
results for GFLOAT and HFLOAT, LM 32t

Numeric functions, UG 6-2 to 6-8
ABS, LM 293
ABS%, LM 294
DECIMAL, LM 307
FIX, LM 317
INT, LM 324
LOG, LM 329
LOG10, LM 330
MAG, LM 331
RND, LM 357
SGN, LM 359
SQR, LM 362
SWAP%, LM 368

Numeric literal notation, LM 21 to 23
Numeric literals, UG 5-8
Numeric operator precedence, LM 41t, UG

1-20t
Numeric output, UG 2-10
with PRINT USING, UG 8-4 to 8-10

Numeric precision
with PRINT, LM 252
with PRINT USING, LM 254

Numeric relational expressions, UG 1-16t
evaluation of, LM 35
operators, LM 35t, 35

Numeric string functions
CHR$, LM 299
COMP%, LM 300
DECIMAL, LM 307
DIF$, LM 309
FORMAT$, LM 318
INTEGER, LM 325
NUM$, LM 339
NUM1$, LM 340
PLACE$, LM 342
PROD$, LM 347
QUO$, LM 349
REAL, LM 354
STR$, LM 365
SUM$, LM 367
VAL, LM 377
VAL%, LM 378

Numeric strings, UG 6-10 to 6-17
adding, UG 6-16
comparing, LM 300
dividing, UG 6-16
multiplying, UG 6-16
precision, LM 309, 342, 347, 349, 367

Index-21

Numeric strings (Cont .)
rounding, LM 342, 347, 349
rounding and truncation values, LM 344t
subtracting, UG 6-16
truncating, LM 342, 347, 349

OB) files, RSTS 1-9
OBJECT, LM 87, 92, RSTS 2-8, RSX 2-13,

VMS 2-7, 2-20, 2-25
Object module libraries, RSTS 6-2, 6-4, 6-8

to 6-11, RSX 6-1
(See also Libraries, disk-resident)
BASIC, RSX 6-5
creating, RSX 6-11
selecting, RSX 6-14

Object modules, RSTS 1-9
creating, LM 51, 87, 92
default name, LM 51, 87, 92
line numbers in, LM 86, 92
loading, LM 77, VMS 2-11
version identification, LM 115

Object Time System (See BASIC Object Time
System)

OCCURS clause in CDD, VMS 9-13
OCCURS DEPENDING clause in CDD, VMS

9-13
OCT qualifier for debugger commands, VMS

4-15
Octal radix, LM 21, UG 5-9
ODL files, LM 48, 80, 81t, RSTS 1-10, 4-15

to 4-18
default, RSTS 6-5
editing, RSTS 4-18, 6-9 to 6-10
overriding defaults, LM 92
RMS libraries, LM 101t
RMS-11, RSTS 6-5 to 6-8
RMS-11 default, RSX 6-7
selecting, RSTS 6-7 to 6-8
setting defaults, LM 80

ODLRMS, LM 80 to 81, RSTS 2-16, 6-6, 6-7,
RSX 6-8

qualifier, LM 92, RSTS 2-7, 6-6, 6-8, RSX
2-10, 6-9, 6-10

OLD, LM 82, RSTS 2-17, RSX 2-20, VMS
1-4, 2-13

ON ERROR GO BACK, LM 233, UG 11-11
with END, LM 162
with NOSETUP, LM 87

ON ERROR GOTO, LM 234, UG 11-3
with END, LM 162
with NOSETUP, LM 87

ON ERROR GOTO 0, LM 235, UG 11-6
with END, LM 162
with NOSETUP, LM 87

ON-GOSUB-OTHERWISE, LM 236, UG 3-18
with RETURN, LM 273

ON-GOTO-OTHERWISE, LM 237, UG 3-11
On-line documentation, LM 69, RSTS 2-13
One-character

input, LM 341
PRINT USING format field, LM 257

ONECHR, LM 341
OPEN, LM 238 to 247, UG 9-6 to 9-12,

VMS 8-3
for block I/O files, UG 9-11
for indexed files, UG 9-9
for relative files, UG 9-9
for sequential files, UG 9-8
for terminal-format files, UG 9-11
for undefined files, UG 9-11
NOREWIND clause, RSX 3-9
with STATUS, LM 363Opening files, LM 238 to 247, UG 9-6 to
9-12in subprograms, RSTS 4-14 to 4-15

on magnetic tape, RSTS 3-6 to 3-8, 3-14 to
3-15

with USEROPEN clause, LM 243
Operator precedence, LM 30, 40, 41 t, UG

1-20
Operators

arithmetic, LM 30, 30t, UG 1-13
evaluation of, LM 40
lexical, LM 117, 121
logical, LM 38t, UG 1-15
matrix, UG 7-17 to 7-19
numeric operator precedence, LM 41t
numeric relational, LM 35t
precedence of, LM 30, 40, 41t, UG 1-20
relational, UG 1-15
string relational, LM 37t, UG 1-17

Optimization techniques
compiler options, RSX 8-3
computation, RSX 8-3
control structures, RSX 8-4 to 8-6
data conversion, RSX 8-4
file I/O, RSX 8-2
libraries, RSX 8-6
MAP DYNAMIC, RSX 8-3
memory allocation, RSX 8-7memory extension, RSX 8-7variable assignment, RSX 8-3

Optimizing I/O, UG 9-33 to 9-44
OPTION, LM 248 to 250, UG 5-4
OPTION BASE, VMS 7-4

OR, LM 38ORGANIZATION clause, LM 240
OTHERWISE clause, LM 236, 237, UG 3-11,

3-18
OTS (See BASIC Object Time System)
Outputformatting, UG 2-7

formatting with FORMAT$, LM 318
formatting with PRINT USING, LM 254 to

256
numeric, UG 2-10
numeric, with PRINT USING, UG 8-4 to

8-10
strings, with PRINT USING, UG 8-10 to

8-15
Output listing

control of, LM 114, 122, 123, 124, 125
creating, LM 86, 92
cross-reference table, LM 84, 90
default, LM 51, 84, 90
setting page size, LM 92
setting width, LM 94

OVERFLOW, LM 87, VMS 2-7
with /CHECK, VMS 2-20, 2-22

Overflow checking, LM 87, 249
Overlaid MAPS, UG 4-16, 5-17
Overlay descriptor files (See ODL files)
Overlay structures, RSTS 4-16f, 4-17f, RSX

4-16,4-34
OverlayingCOMMON areas, LM 142
MAP areas, LM 211
subprograms, RSTS 4-16 to 4-18, 4-33 to

4-34
OVERRIDE

in /SHOW qualifier, VMS 2-21
Overriding defaults, LM 48, 51, 90, 91, 92,

93, 145, 148, 166

P
Packed decimal, LM 11

(See also DECIMAL data type)
Packed decimal numbers, UG 5-12
PACKED NUMERIC, VMS 9-11
Padding

in string relational expressions, LM 36
in string virtual arrays, UG 4-20
in virtual arrays, LM 160

%PAGE, LM 125, UG 10-4
PAGE-SIZE, LM 92, RSTS 2-8, RSX 2-13

Parameter-passing mechanisms, RSTS 4-19 to
4-21, 4-20t, 4-23 to 4-29, RSX 4-20t,
4-20 to 4-22, VMS 3-6

BASIC-PLUS-2, LM 133t
CALL, LM 131
DEF, LM 151
DEF*, LM 155
defaults, RSTS 4-20t
EXTERNAL, LM 168
FUNCTION, LM 185
SUB, LM 282
VAX-11 BASIC, LM 132t

Parameters, RSTS 4-6 to 4-10, 4-23 to 4-29,
RSX 4-6 to 4-10, 4-23 to 4-32

actual, UG 6-21, RSTS 4-6
argument lists, RSTS 4-24f, VMS 3-8
array elements, RSX 4-7
arrays, RSX 4-9, VMS 3-11
CALL, LM 131
DEF, LM 150, 151
DEF*, LM 154, 155
EXTERNAL, LM 167
formal, UG 6-21, RSTS 4-6
FUNCTION subprograms, LM 184
local copy, RSX 4-20, 4-27
modifiable, LM 131, RSTS 4-7, RSX 4-7,

4-27, VMS 3-8
nonmodifiable, LM 131, RSTS 4-7, RSX 4-7,

4-27
null, VMS 3-8
passing mechanisms, VMS 3-6
passing to MACRO subprograms, RSX 4-23
SUB subprograms, LM 281

Parentheses
in array names, LM 27
in expressions, LM 30, 40

Parity, RSTS 3-13, 3-15
PARTITION, RSX 6-3, 6-6
Passing mechanisms for parameters (See

Parameter-passing mechanisms)
Password, RSTS 1-2, VMS 1-2
Path name RECORD component, VMS 6-4
Percent sign (%)

in DATA statements, LM 17, 143
in DECLARE, LM 145
in DEF names, LM 150
in DEF* names, LM 154
in FUNCTION names, LM 184
in MAP DYNAMIC variables, LM 213
in PRINT USING, LM 255
in SUB names, LM 281
in variable names, LM 25, 26
suffix character, LM 13

Performance measuring, VMS 5-16

Index-23

Period (.)
in PRINT USING, LM 255
in variable names, LM 25

PI, LM 24
PLACE$, LM 342 to 344, UG 6-13, 6-15

rounding and truncation values, LM 344t
PMDUMP, RSTS 7-5
POS, LM 345 to 346, UG 4-7 to 4-9
Pound sign (#)
debugger prompt, LM 381
in PRINT USING, LM 255

PPN, RSTS 1-2, 1-6
Precedencenumeric operator, LM 41t

of operators, UG 1-20
operator, LM 30, 40

Precision
in PRINT, LM 252
in PRINT USING, LM 254
NUM$, LM 339NUM1$, LM 340
of data types, LM 12
of numeric strings, LM 309, 342, 347, 349,

367
of string arithmetic functions, UG 6-14t

Predefined constants, LM 23t, 23 to 24, UG
1-9t, 1-9

PRIMARY KEY, LM 240, 244, 247, UG 9-10
PRINT, LM 251 to 253, UG 2-6, RSTS 1-7
debugger command, LM 395, RSTS 5-3,

RSX 5-3
used with arrays, UG 7-15
with TAB, LM 371

PRINT format characters
comma, UG 2-8
semicolon, UG 2-8

PRINT USING, LM 254 to 257, UG 8-1 to
8-15

asterisk in format field, UG 8-7
caret in format field, UG 8-6, 8-9
CD in format field, UG 8-6
commas in format field, UG 8-6
credits, UG 8-10
debits, UG 8-10
dollar sign in format field, UG 8-6, 8-8
errors, UG 8-13
format characters, UG 8-6
leading zero fields, UG 8-9
minus sign in format field, UG 8-6, 8-8
percent sign in format field, UG 8-6
reserving places for digits, UG 8-4
special symbols, UG 8-6
specifying decimal point location, UG 8-5
underscore in format field, UG 8-6

Index-24

PRINT USING (Cont.)
zero in format field, UG 8-6, 8-9

Print zones, UG 2-7
in MAT PRINT, LM 224
in PRINT, LM 251

Printing files, RSTS 1-7, VMS 1-10
Printing numbers, UG 2-10

with PRINT USING, UG 8-4 to 8-10
Printing strings, UG 2-10

with PRINT USING, UG 8-10 to 8-15
Process information, VMS 5-12
PROD$, LM 347 to 348, UG 6-13, 6-16rounding and truncation values, LM 344tProgram control, UG 3-1 to 3-24
END, LM 162
EXIT, LM 164FOR, LM 179
GOSUB, LM 195
GOTO, LM 196
IF, LM 197
ITERATE, LM 204
ON-GOSUB, LM 236
ON-GOTO, LM 237RESUME, LM 272
RETURN, LM 273
SELECT, LM 276
SLEEP, LM 278
STOP, LM 279
UNTIL, LM 288
WAIT, LM 291
WHILE, LM 292

Program development, RSTS 1-1 to 1-2, RSX
1-4, VMS 2-1

methods, VMS 1-1
Program documentation, LM 8 to 10, UG 1-5
Program elements, LM 1 to 42
Program execution

continuing, LM 53, 103, 385, VMS 2-7
controlling with debugger, VMS 4-5
halting, UG 3-20
initiating with RUN, LM 102
stopping, LM 53, 103, 279, 383, 400
suspending, LM 278, UG 3-19
waiting for input, LM 291

Program input, UG 2-1 to 2-6
INPUT, LM 199
INPUT LINE, LM 202
LINPUT, LM 207
waiting for, LM 291

Program lines, RSTS 1-3
automatic sequencing, LM 107
continuing, RSX 1-4deleting, LM 54, RSTS 2-9, VMS 2-8displaying, LM 75, RSTS 2-14

Program lines (Cont.)
editing, LM 57
elements of, UG 1-1
format of, LM 1 to 8
order of, LM 98
resequencing, LM 98
terminating, LM 10

Program listing
creating, VMS 2-24
cross-reference, VMS 2-22

Program modules, RSTS 4-1 to 4-2
definition of, RSX 4-2
executing, RSTS 2-15, 4-15 to 4-19

Program output, UG 2-6 to 2-11
Program segmentation, RSTS 4-1, RSX 4-1 to

4-2, VMS 3-1 to 3-16
Programscompiling, LM 51, RSX 1-15

continuing, LM 53, 103
creating executable images, RSX 1-14
creating from the system command level,

RSX 1-11
debugging, LM 84, 90, 103, RSX 5-1, VMS

4-1 to 4-16
deleting, LM 111
editing, LM 57
editing from the system command level, RSX

1-12
ending, LM 162
executing, LM 102
halting, LM 53, 103, 279
linking, RSX 1-16
merging, LM 43
naming, LM 79
optimization techniques, RSX 8-2
optimizing, LM 87
renaming, LM 95
saving, LM 97, 104
stopping, LM 53, 103, 279
transportable, RSX 8-1

Project number, RSTS 1-2
Promotion of data types, UG 5-11 to 5-13
Promotion rules, LM 31 to 34
Prompts, UG 2-1
PSECT, LM 139, 210, UG 5-13, RSTS 4-10,

4-30 to 4-32
PUT, LM 258 to 259, UG 9-23 to 9-25, RSTS

3-8
COUNT clause, UG 9-24
for block I/O files, UG 9-25
for indexed files, UG 9-25
for relative files, UG 9-24
for sequential files, UG 9-24
to ANSI format magnetic tapes, VMS 8-4

Qualifiers, LM 83 to 94, VMS 2-19 to 2-28
default, VMS 2-28
to BASIC-PLUS-2 commands, LM 90t
to debugger commands, VMS 4-14
to the BUILD command, RSTS 2-6t
to the COMPILE command, RSTS 2-1, 2-7t,

VMS 2-6 to 2-7
to the DCL BASIC command, VMS 1-11,

2-19 to 2-28, 2-20t
to the LOCK command, RSTS 2-15
to the SET command, RSTS 2-20
to the VAX-11 BASIC command, LM 84t

Qualifying RECORD components, VMS 6-4
QUO$, LM 349 to 350, UG 6-13, 6-16

rounding and truncation values, LM 344t
Quotation marks in string literals, LM 18
R
R formatting character in PRINT USING, LM

257
RAD$, LM 351
Radixbinary, LM 21, UG 5-9

decimal, LM 21, UG 5-9
hexadecimal, LM 21, UG 5-9
in explicit literal notation, LM 21
octal, LM 21, UG 5-9

Radix-50, LM 351
Random numbers, LM 260, 357, UG 6-7 to

6-8
RANDOMIZE, LM 260, UG 6-7

(See also RND)
Range

of data types, LM 12
of subscripts, LM 28

RCTRLC, LM 352, UG 6-19, 11-13
(See also CTRLC)

RCTRLO, LM 353
READ, LM 261 to 262, UG 2-3

(See also DATA)
with DATA, LM 143, 144
with NOSETUP, LM 87

Reading records, UG 9-15 to 9-23
from block I/O files, UG 9-17 to 9-20
from magnetic tape, RSTS 3-10, 3-21

REAL data type, LM 11, UG 5-3
REAL function, LM 354
REAL-SIZE, VMS 2-20, 2-25
Receiving parameters
FUNCTION subprograms, LM 184
SUB subprograms, LM 281

Index-25

RECORD, LM 263 to 266
accessing components, VMS 6-6
ambiguous references, VMS 6-4
assignment, VMS 6-7
block, VMS 6-2
elementary components, VMS 6-2
fully qualified components, VMS 6-4
grouping components, VMS 6-2
instance, VMS 6-2
template, VMS 6-2
used with CDD, VMS 9-3
variants, VMS 6-5

Record access, UG 9-3
random-by-key, UG 9-3
random-by-RFA, UG 9-3
sequential, UG 9-3

Record attributes
MAP clause, LM 243
RECORDSIZE clause, LM 242, 243
RECORDTYPE clause, LM 241

Record buffers, RSTS 4-12, 5-3
allocating, RSX 3-11
allocating with MAP, RSTS 3-7
allocating with RECORDSIZE, RSTS 3-8
default size, RSTS 3-8
MAP DYNAMIC pointers, LM 214, 269
moving data, LM 227
REMAP pointers, LM 268, 269
setting size, LM 243

RECORD clause, LM 172, 190, 258, 259
in FIND, UG 9-13
in PUT, UG 9-24, 9-25

Record context, UG 9-3
current record pointer, UG 9-4
next record pointer, UG 9-4

Record File Address, LM 12, 172, 190, 321
Record format, UG 9-1
Record locking, VMS 8-16
Record Management Services, LM 80, UG 9-1

(See also RMS)
Record operations, UG 9-12 to 9-30
Record pointers, RSTS 3-9, RSX 3-16

after FIND, LM 173, 174
after GET, LM 191, 192
after PUT, LM 259
after UPDATE, LM 289
REMAP, LM 269
RESTORE, LM 271
WINDOWSIZE clause, LM 242

RECORD statement, VMS 6-1 to 6-8
Records, UG 2-11

adding, RSTS 3-9
blocking on magnetic tape, VMS 8-6
deleting, UG 9-25, RSTS 3-22

Index-26

Records (Cont.)
deleting with DELETE, LM 157
deleting with SCRATCH, LM 275finding RFA of, LM 172, 190fixed-length, UG 9-1
locating, UG 9-13, RSTS 3-11
locating randomly, LM 172, 174
locating sequentially, LM 172, 173
locating with FIND, LM 171
locking, LM 173, 174, 191, 192, 245locking explicitly, VMS 8-17processing of, LM 245
reading, UG 9-15 to 9-23, RSTS 3-10,

3-21
retrieving by KEY, LM 190, 192
retrieving by RECORD, LM 190
retrieving by RFA, LM 190, 192
retrieving randomly, LM 190
retrieving sequentially, LM 190, 191
retrieving with GET, LM 189
size of, LM 258
unlocking, LM 157, 174, 182, 192, 245,

287, UG 9-29
updating, UG 9-26 to 9-28
variable-length, UG 9-1
writing, UG 9-23 to 9-25, RSTS 3-8 to

3-10, 3-19 to 3-20
writing with PRINT, LM 251
writing with PUT, LM 258
writing with UPDATE, LM 289

RECORDSIZE, LM 242, 258, UG 9-6, RSTS
3-7 to 3-8, VMS 8-5RECORDTYPE, LM 241, UG 9-40

RECOUNT, UG 9-32
debugger command, LM 396, RSTS 5-3,

RSX 5-3RECOUNT function, LM 355after GET, LM 192
after INPUT, LM 200after INPUT LINE, LM 203
after LINPUT, LM 208

Recursion, UG 6-25
in DEF functions, LM 151
in DEF* functions, LM 155
in error handlers, LM 234
in subprograms, LM 132, 282

Redefining buffers, UG 5-20
Redimensioning arrays
dynamic, LM 160
with executable DIM, LM 159
with MAT statements, LM 217, 218, 219,

221, 225
REDIRECT debugger command, LM 397, RSTS

5-3, RSX 5-3

References, elliptical, VMS 6-6
REGARDLESS clause, LM 174, 192, VMS

8-17
REL, LM 92, RSTS 2-7, RSX 2-10
Relational expressions, LM 35 to 37, UG 3-14
compared with logical, LM 40
format of, LM 35
in SELECT, LM 276, 277
numeric, LM 35, UG 1-15
string, LM 36, UG 1-16
truth tests, LM 35, 36

Relational operators, UG 1-15
numeric, LM 35t
string, LM 37t

Relative files
BUCKETSIZE clause, LM 244
deleting records in, LM 157
finding records in, LM 173
GET, UG 9-16
opening, LM 240, UG 9-9
PUT, UG 9-24
reading records from, UG 9-16
record size in, LM 242
REL, LM 92
retrieving records sequentially in, LM 191
UPDATE, UG 9-27
updating, LM 290, UG 9-27
writing records to, LM 258, UG 9-24

REM, LM 267, UG 1-5
in multi-statement lines, LM 7
multi-line format, LM 9
transferring control to, LM 9

REMAP, LM 268 to 270, UG 5-21, 9-6
FILL item formats and storage, LM 141t
with MAP DYNAMIC, LM 214
with NOSETUP, LM 87

Remote file access, VMS 8-14
RENAME, LM 95 to 96, RSTS 2-17, RSX 2-21,

VMS 2-13
Renaming

files, LM 230
programs, LM 95

Renumbering program lines, RSX 2-23
REPLACE, LM 97, RSTS 2-17, RSX 2-21, VMS

2-13
with RENAME, LM 95

RESEQUENCE, LM 98 to 99, VMS 2-14
Resequencer, RSTS 7-1 to 7-3, RSX 7-1 to

7-5commands, RSTS 7-2 to 7-3, 7-3t
error messages, RSTS 7-3 to 7-5

Reserved words, LM 3
RESET, LM 271

(See also RESTORE)

Resident libraries, RSTS 6-1, RSX 6-1
(See also Libraries, memory-resident)
BASIC, RSX 6-2
creating, RSX 6-11
RMS-1 1, RSX 6-5

Resolving symbols, RSTS 6-1
(See also Linking)

RESTORE, LM 271, UG 2-5, 9-28, RSTS
4-14

for magnetic tape files, VMS 8-6
Restoring data and files, LM 271
Result data types, UG 5-1I t

for DECIMAL data, LM 33t
GFLOAT and HFLOAT, LM 32t
mixed-mode expressions, LM 32t

RESUME, LM 272, UG 11-7 to 11-10, 11-14
with NOSETUP, LM 87

Resuming execution
after a STOP statement, RSTS 2-9
in the debugger, RSTS 5-3

Retrieving records, LM 189
by KEY, LM 190, 192
by RECORD, LM 190
by RFA, LM 190, 192
randomly, LM 190
sequentially, LM 190, 191

RETURN, LM 273, UG 3-17, RSTS 4-2
Return status, VMS 5-2
Returning from subroutines, UG 3-17
Rewinding magnetic tapes, VMS 8-6
RFA, UG 9-3

definition of, UG 9-21
RFA clause, LM 172, 190

in GET and FIND, UG 9-22
RFA data type, LM 12
Right justification

with PRINT USING, LM 257, UG 8-12
with RSET, LM 274

RIGHT OVERPUNCHED NUMERIC, VMS
9-11

RIGHT SEPARATE NUMERIC, VMS 9-11
RIGHT$, LM 356, UG 4-13

(See also SEG$)
RMS, UG 9-1

files, LM 238
libraries, LM 93, 100, 101t
ODL files, LM 80, 81t

RMS-11, RSX 3-1file attributes, RSTS 3-23, 5-3
file structure, RSTS 3-1, 3-6 to 3-12
libraries, RSTS 6-4 to 6-8
magnetic tape, RSX 3-7
ODL files, RSTS 6-5, 6-5 to 6-8

Index-27

RMS-11 libraries, RSX 6-5accessing, RSX 6-9
RMS-11 ODL files, RSX 6-8default, RSX 6-7selecting, RSX 6-8RMS-11 resident librariesdefault, RSX 6-6displaying installed libraries, RSX 6-6selecting, RSX 6-6
RMS11S ODL file, RSTS 6-7, RSX 6-9RMS11 X ODL file, RSTS 6-7, RSX 6-9RMS12X ODL file, RSTS 6-7, RSX 6-9RMSLIB library, RSTS 6-4RMSRES, LM 100 to 101, RSTS 2-18, 6-5,

RSX 6-6
qualifier, LM 93, RSTS 2-7, 6-5, RSX 2-11,

6-7
RMSRES library, RSTS 6-4 to 6-5, RSX 6-5RMSRES ODL file, RSTS 6-6, RSX 6-8
RMSRLX ODL file, RSTS 6-6, RSX 6-8
RMSSEQ library, RSTS 6-4 to 6-5, RSX 6-5
RND, LM 357, UG 6-7

(See also RANDOMIZE)
ROUND, LM 87, VMS 2-7, 2-26
Rounding

controlling with OPTION, LM 249
controlling with SCALE, LM 105
DECIMAL values, LM 87, 249
in numeric strings, LM 342, 344t, 347, 349
NUM$, LM 339
with PRINT, LM 252
with PRINT USING, LM 255RSET, LM 274

RSTS/E systems
keyboard monitor, RSTS 1-2librarian utility, RSTS 6-8 to 6-9logging in, RSTS 1-2
logging out, RSTS 1-2native mode files, RSTS 3-1operating system, RSTS 1-1
PMDUMP utility, RSTS 7-5
SYS calls, LM 369

RSX-11 M/M-PLUS systems
Command Line Interpreters, RSX 1-1
creating files, RSX 1-10
deleting files, RSX 1-14
displaying files, RSX 1-12
executing BASIC programs, RSX 1-14
file specification defaults, RSX 1-10
file specifications, RSX 1-9
logging in, RSX 1-2
logging out, RSX 1-3
naming files, RSX 1-9
printing files, RSX 1-13

Index-28

RSX-11 M/M-PLUS systems (Cont.)Queue Manager, RSX 1-14Task Builder, RSX 1-16text editors, RSX 1-10
RTL routines, VMS 5-14 to 5-20RUN, LM 102 to 103, RSX 2-21, VMS 1-4,2-14
BASIC command, RSTS 1-1, 1-4, 2-18BASIC-PLUS-2 qualifiers, LM 90tDCL command, RSTS 1-11
DEBUG qualifier, LM 381

RUN $SWITCH, RSTS 1-3
Run-Time Library, LM 87, VMS 5-14 to 5-20RUN/DEBUG, RSTS 5-1, 5-4, RSX 5-1
RUNNH, LM 102, RSX 2-21, VMS 2-14

(See also RUN)

SAVE, LM 104, RSTS 1-4, 2-19, RSX 2-22,
VMS 2-15

with RENAME, LM 95
Saving programs, LM 97, 104%SBTTL, LM 126, UG 10-2
SCALE, LM 105, RSTS 2-19, RSX 2-23, VMS

2-15, 2-21, 2-26
Scale factor, RSX 2-23

setting with OPTION, LM 249
setting with SCALE, LM 105

Scanning a file name, RSTS 3-23 to 3-28,
RSX 3-37 to 3-42Scope

cancelling with debugger, VMS 4-4setting with debugger, VMS 4-4showing with debugger, VMS 4-4SCOPE, specifying, VMS 4-13SCRATCH, LM 106, 275, UG 9-29, RSTS2-19, RSX 2-23, VMS 2-15SCRSHR.EXE, VMS 10-3Searching strings, UG 4-7
SEG$, LM 358, UG 4-9 to 4-11
Segmented keys, LM 244
SELECT, LM 276 to 277

transferring control into, LM 236, 237
SELECT-CASE, UG 3-15 to 3-17
Semicolon (;), UG 2-8
SEQ, LM 93, RSTS 2-7, RSX 2-11
SEQUENCE, LM 107, RSTS 2-20, RSX 2-23,

VMS 2-15
Sequential files

deleting records in, LM 275
finding records in, LM 173
GET, UG 9-15
NOSPAN clause, LM 243

Sequential files (Cont.)
opening, LM 240, UG 9-8
PUT, UG 9-24
reading records from, UG 9-15
record size in, LM 242
retrieving records in, LM 191
SEQ, LM 93
UPDATE, UG 9-26
updating, LM 289, UG 9-26writing records to, LM 251, 258, UG 9-24SET, LM 108, RSTS 2-20, RSX 2-24, VMS2-16
BASIC-PLUS-2 qualifiers, LM 90t
debugger command, VMS 4-8
qualifier format, LM 83
VAX-11 BASIC qualifiers, LM 84t

SET BREAK debugger command, VMS 4-5
SET SCOPE debugger command, VMS 4-4
SET TRACE debugger command, VMS 4-6
SET WATCH debugger command, VMS 4-7
Setting defaults

for data types, LM 13
with BRLRES, LM 46
with DSKLIB, LM 55
with LIBRARY, LM 73
with ODLRMS, LM 80
with OPTION, LM 248
with RMSRES, LM 100
with SCALE, LM 105
with SET, LM 108

SETUP, LM 87, VMS 2-7
SGN, LM 359, UG 6-2
Shareable images, VMS 10-4 to 10-5

accessing, VMS 10-4
creating, VMS 10-4

Sharing data, RSTS 4-2
among subprograms, VMS 3-10
between program modules, RSTS 4-10 to

4-15
Sharing files, VMS 8-16
SHOW, LM 88, 109 to 110, 120, RSTS 2-1 to2-2, 2-20, 6-5, RSX 2-25, VMS 2-16,

2-21, 2-26
SHOW BREAK debugger command, VMS 4-5
SHOW CALLS debugger command, VMS 4-8
SHOW COMMON, RSX 6-3, 6-6
SHOW debugger command, VMS 4-8
SHOW DEVICES, RSX 3-4
SHOW qualifier, CDD-DEFINITIONS, VMS9-1
SHOW SCOPE debugger command, VMS 4-4
SHOW TRACE debugger command, VMS 4-6
SHOW WATCH debugger command, VMS

4-7

SI, LM 24
SIGNED integers, VMS 9-8SIGNED NUMERIC, VMS 9-11SIN, LM 360, UG 6-4
Sine, LM 360, UG 6-4
SINGLE, VMS 2-21

data type, LM 11
qualifier, LM 88, 93, RSTS 2-8, RSX 2-13,

VMS 2-7
Single MAP, UG 5-16
Single-line

DEF, LM 149, UG 6-21
DEF*, LM 153
loops, LM 179, 288, 292, UG 3-22 to 3-24
statements, LM 4

Size
of numeric data, LM 12
of STRING data, LM 11

SIZE attribute in CDD, VMS 9-8
SLEEP, LM 278, UG 3-19
SO, LM 24
SOURCE in /SHOW qualifier, VMS 2-21SP, LM 24
SPACE$, LM 361, UG 4-14Spaces, creating with SPACE$, UG 4-14SQR, LM 362, UG 6-8SQRT, LM 362Square roots, LM 362, UG 6-8STARLET.MLB, VMS 10-3STARLET.OLB, VMS 10-3Statement modifiers
FOR, LM 179
IF, LM 197, 198
in immediate mode, RSTS 1-5
UNLESS, LM 286
UNTIL, LM 288
WHILE, LM 292

Statements
block, LM 162, 264, UG 1-3
BP2 compatible, LM 85
continued, LM 4, 5, UG 1-2
data typing, LM 14
declarative, LM 145, UG 5-1
declining, LM 85, 91
executable, LM 3
executing, LM 5
labelling, LM 2
multi-line, UG 1-2
multi-statement lines, LM 5 to 7
nonexecutable, LM 3, 8, 141, 143, 146,

159, 168, 211, 214
nonmodifiable, UG 3-21
order of, LM 8, 98
processing, LM 8

Index-29

Statements (Cont.)
single-line, LM 4

Static
arrays, LM 158
mapping, LM 210
storage, LM 139, 210, 269, UG 5-13

Status codes for system services, VMS 5-2
STATUS debugger command, LM 398 to 399,

RSTS 5-3, RSX 5-3
STATUS function, LM 363 to 364, UG 9-33
VAX-11 BASIC STATUS bits, LM 364t

STEP, LM 179, UG 3-2
debugger command, LM 400, RSTS 5-3,

RSX 5-4, VMS 4-8
STOP, LM 279, UG 3-20

(See also CONTINUE)
Stopping program execution, LM 53, 279, 383,

400
Storageallocating with REMAP, LM 268
COMMON and MAP, LM 141, 211
devices, RSTS 3-2
dynamic, LM 213, 268, 269, RSX 8-7
for arrays, LM 159
for FILL items, LM 141t, 227, 268
for RECORD structures, LM 264
for VARIANT fields, LM 265
in COMMON, LM 142
in MAP, LM 211
of data, LM 12
of DECIMAL data, LM 11
of RFA data, LM 12
of STRING data, LM 11
shared, LM 139, 210
static, LM 139, 210, 269, UG 5-13, RSX

8-7
STR$, LM 365, UG 6-12
String arithmetic, UG 6-13 to 6-17
String arithmetic functions, UG 6-13t, 6-13 to

6-17DIF$, LM 309
PLACE$, LM 342
PROD$, LM 347
QUO$, LM 349
SUM$, LM 367

String concatenation, UG 1-14, 4-2
String constants, LM 18 to 19, UG 1-8
STRING data type, LM 11

length, LM 12
storage of, LM 11

STRING debugger command, LM 401, RSTS
5-3, RSX 5-4

String expressions, LM 34, UG 1-14
relational, LM 36, 37

Index-30

String functions, UG 4-6 to 4-16
ASCII, LM 295
EDIT$, LM 311
INSTR, LM 322
LEFT$, LM 326
LEN, LM 327
MID$, LM 335
POS, LM 345
RIGHT$, LM 356
SEG$, LM 358SPACE$, LM 361
STRING$, LM 366
TRM$, LM 376
XLATE, LM 379

String literals, LM 37, UG 1-8
continuing, LM 5
delimiter, LM 18
in PRINT USING format field, LM 257
processing of, LM 10
quotations marks in, LM 18

String modification, UG 4-2t
String relational expressions, LM 36, 37, UG

1-16
String relational operators, UG 1-17t
String variables, LM 27, UG 1-11

assigning values to, UG 2-2
formatting storage, LM 209, 274
in INPUT, LM 200
in INPUT LINE, LM 203
in LET, LM 206
in LINPUT, LM 208
with NOSETUP, LM 87

String virtual arrays, UG 4-19
STRING$, LM 366, UG 4-13
Strings, UG 4-1 to 4-20

comparing, LM 36, 300
concatenating, LM 5, 30, 34, 87
converting, LM 136
converting to arrays, UG 4-18
converting to numbers, UG 6-8 to 6-13
creating, LM 361, 366
creating with STRING$, UG 4-13
editing, LM 311, 376
editing with EDIT$, UG 4-15
editing with TRM$, UG 4-14
extracting substrings, LM 326, 335, 356,

358
finding length of, LM 327
finding substrings in, LM 322, 345
fixed-length, UG 4-3
in virtual arrays, UG 4-19
justifying with FORMAT$, LM 318
justifying with LSET, LM 209
justifying with PRINT USING, LM 256

Strings (Cont .)
justifying with RSET, LM 274
leftjustifying, UG 4-5
numeric, LM 300, 309, 325, 342, 347, 349,

354, 367, 377, 378
printing, UG 2-10
printing with PRINT USING, UG 8-10 to

8-15
right-justifying, UG 4-5
suffix character, LM 13
truncating, UG 4-4

SUB, LM 280 to 283, RSTS 4-3, VMS 3-9
BASIC-PLUS-2 parameter-passing

mechanisms, LM 133t
parameters, LM 281
VAX-11 BASIC parameter-passing

mechanisms, LM 132t
SUB subprograms, RSTS 4-3, RSX 4-3

accessing, RSX 4-5
declaring, RSTS 4-4 to 4-5, 4-21
invoking, RSTS 4-5 to 4-6, 4-22

SUBEND, LM 284, RSTS 4-3
(See also END)

SUBEXIT, LM 285, RSTS 4-3
(See also EXIT)

Subprogram overlay structure, RSTS 4-16f,
4-17f

Subprograms, RSTS 4-2, VMS 3-1 to 3-16
BASIC, RSTS 4-2 to 4-15, RSX 4-2 to 4-19,

VMS 3-8 to 3-16
called by other languages, VMS 3-15
calling, LM 129, RSX 4-5, VMS 3-4
calling from debugger, VMS 4-14
COMMONS in, UG 5-19
compiling, VMS 3-13
declaring, LM 166, RSTS 4-4 to 4-5, 4-21,

VMS 3-3
ending, LM 162, 184, 281
ending SUBS, VMS 3-9
error handling in, LM 163, 164, 185, 233,

UG 11-11
exiting, LM 164, VMS 3-9
FUNCTION, LM 183, RSX 4-2, VMS 3-12

to 3-16
invoking, RSTS 4-5 to 4-6, 4-22
MACRO, RSTS 4-22 to 4-34, RSX 4-19
MAPS in, UG 5-19
naming, LM 130, 281
non-BASIC, RSTS 4-19 to 4-35, RSX 4-19

to 4-35, VMS 3-14
overlaying, RSTS 4-16 to 4-18, RSX 4-16
passing arrays to, VMS 3-11
recursion in, LM 132, 282
returning from, LM 273

Subprograms (Cont.)
sharing data, RSX 4-10 to 4-15, VMS 3-10
SUB, LM 280, RSX 4-2, VMS 3-9 to 3-12

Subroutine entry points, UG 3-17
Subroutines, UG 3-17, RSTS 4-2external, LM 166
GOSUB, LM 195RETURN, LM 273

Subscripted variables, LM 27 to 29, UG 1-12range checking, LM 84, 249SUBSTITUTE, LM 66 to 67, RSTS 2-12, RSX2-16
Substrings

extracting, LM 326, 335, 356, 358, UG 4-9
to 4-15

finding, LM 322, 345
searching for, UG 4-7

Suffix characters, LM 13
SUM$, LM 367, UG 6-13, 6-16
Suspending program execution, LM 278, UG

3-19
SWAP%, LM 368
Symbol resolution, RSTS 6-1

(See also Linking)
Symbol table, debugger, VMS 4-2
Symbolic addresses, VMS 4-13
Symbolic constants, VMS 5-2

declaring, VMS 5-5
Symbolic debugger, VMS 4-1 to 4-15
Symbols, RSTS 6-1
SYMBOLS with /DEBUG, VMS 2-20, 2-23
Syntax checking, line-by-line, VMS 2-27
SYNTAX-CHECK, LM 88, 93, VMS 2-7, 2-21,

2-27
SYS, LM 369 to 370VAX-11 BASIC subset, LM 369t
SYS$CREMBX, VMS 5-5, 8-13
SYS$GETJPI, VMS 5-12
SYS$GETMSG, VMS 5-7
SYS$QIOW, VMS 5-10SYS$TRNLOG, VMS 5-6SYSTAT/L, RSTS 6-3, 6-4
System command, LM 49
System services, VMS 5-2 to 5-14

declaring, VMS 5-4
examples of, VMS 5-4 to 5-14
status codes, VMS 5-2

T
TAB, LM 371, UG 6-20
TAN, LM 372, UG 6-4
Tangent, LM 372, UG 6-4
Tape (See Magnetic tape)

Index-31

Tape status word, RSTS 3-18t, RSX 3-25t
Target, UG 3-11
Task Builder, RSTS 1-10, 4-16 to 4-18
command files, RSX 1-16
Overlay Descriptor Language files, RSX 1-16

Task-building (See Linking)
Task-to-task communication, VMS 8-14
TEMPORARY, LM 242, UG 9-37
Terminal control functions, UG 6-19 to 6-21
ECHO, LM 310
NOECHO, LM 336
RCTRLO, LM 353
TAB, LM 371

Terminal-format files, LM 244, UG 2-11 to
2-12, 9-3, RSTS 3-1

input from, LM 199, 202, 207, 219, 221
margin, LM 215, 232
opening, UG 9-11
used with arrays, UG 7-13
writing records to, LM 223, 251

Terminating
automatic sequencing, LM 107
comment fields, LM 8
compilation, LM 113
DATA statements, LM 143
program lines, LM 1, 7, 10
REM statements, LM 9, 267

Text editors
EDI, RSX 1-10
EDT, RSTS 1-8, RSX 1-10, VMS 1-8

THEN clause, LM 197, UG 3-13
Threaded code, RSTS 6-1
Threads, RSTS 1-9, 6-1
TIME, LM 373 to 374, UG 6-18

function values, LM 374t
Time functions, UG 6-17 to 6-19
TIME$, LM 375, UG 6-18
%TITLE, LM 127, UG 10-2
TKB, RSTS 1-11
TRACE debugger command, LM 402, RSTS

5-3, RSX 5-4
TRACEBACK, LM 88, VMS 2-7

with /DEBUG, VMS 2-20, 2-23
Traceback lists, VMS 4-1
Tracepoints

cancelling, VMS 4-7
setting, VMS 4-7
showing, VMS 4-7

Trailing minus sign field in PRINT USING, LM
255

Transferring control
into DEF functions, LM 151
into DEF* functions, LM 155
into loops, LM 180

Index-32

Transferring control (Cont.)
to comment fields, LM 8
to multi-statement lines, LM 5
to REM, LM 9
with CALL, LM 129
with CHAIN, LM 134
with GOSUB, LM 195
with GOTO, LM 196
with IF, LM 197
with ON-GOSUB, LM 236
with ON-GOTO, LM 237
with RESUME, LM 203, 208, 272
with RETURN, LM 273

Translating
character sets, LM 379
logical names, VMS 5-6

Transposing
arrays, LM 218
matrixes, UG 7-20

Trapping CTRL/C, UG 6-19
Trigonometric functions, UG 6-4
ATN, LM 296
COS, LM 301
SIN, LM 360
TAN, LM 372

TRM$, LM 376, UG 4-14
TRN, LM 218, UG 7-19
Truncating

a number, UG 6-3
numeric strings, LM 342, 344t, 347, 349
with FIX, LM 317
with PRINT USING, LM 256, 257

Truth tables, LM 38t, UG 1-18t
Truth tests, UG 1-18

in logical expressions, LM 38
in relational expressions, LM 35
in string relational expressions, LM 36

TYPE
DCL command, RSTS 1-7
qualifier, RSTS 2-8

TYPE-DEFAULT, LM 88, 93, RSX 2-13, VMS
2-21, 2-27

U
UNBREAK debugger command, LM 403 to

404, RSTS 5-3, RSX 5-4
UNBREAK ON debugger command, RSTS 5-3,

RSX 5-4
Unconditional

branching, LM 195, 196, UG 3-10
loops, LM 179

Undefined files, RSTS 3-22 to 3-23
opening, UG 9-11

Underscore (-)
in PRINT USING format field, LM 255
in variable names, LM 25

Unit record devices, VMS 8-7
UNLESS, LM 286

as statement modifier, UG 3-22
UNLOCK, LM 287, UG 9-29
UNLOCK EXPLICIT clause, LM 173, 175, 191,

245, VMS 8-17
Unlocking records, LM 182, 245, 287
UNSAVE, LM 111, RSTS 2-21, RSX 2-25,

VMS 2-18
(See also DELETE)

UNSIGNED integers, VMS 9-8
UNSIGNED NUMERIC, VMS 9-11
UNTIL clause, LM 180
UNTIL loops, UG 3-6 to 3-7

ending, LM 231
error handling in, LM 272
exiting, LM 164
explicit iteration of, LM 204
transferring control into, LM 195, 196, 236,

237
UNTIL statement modifier, LM 288, UG 3-23
UNTRACE debugger command, LM 405, RSTS

5-3, RSX 5-4
UPDATE, LM 289 to 290, UG 9-26 to 9-28

for indexed files, UG 9-28for relative files, UG 9-27for sequential files, UG 9-26
with UNLOCK, LM 287

Updating records, LM 289, UG 9-26 to 9-28
Uppercase letters

in EDIT, LM 58
in FIND editing command, LM 64
in PRINT USING, LM 256
in SUBSTITUTE editing command, LM 66
processing of, LM 10

User-created libraries, RSTS 6-8 to 6-10, RSX
6-11

accessing, RSX 6-13
User-defined file structure, RSTS 3-13 to

3-22
User-defined functions, LM 149, 153, UG

6-21 to 6-28
Username, VMS 1-2
USEROPEN, LM 240, UG 9-40USEROPEN clause, LM 243
Utilities
BASIC Dump Analyzer, RSTS 7-5
BASIC Resequencer, RSTS 7-1, RSX 7-1

V
VAL, LM 377, UG 6-12
VAL%, LM 378, UG 6-12
Values, depositing with debugger, VMS 4-11
Variable names

in COMMON, LM 142
in MAP, LM 211, 212
in MAP DYNAMIC, LM 213
in REMAP, LM 268
rules for, LM 25 to 26

Variable-length records, RSTS 3-8
Variables, LM 25 to 29, UG 1-10 to 1-13

assigning values to, LM 199, 202, 206, 207,
261, 393

control, UG 3-2
cross-reference, RSTS 2-8
declaring, LM 145
default data type, RSTS 2-2
explicitly declared, LM 27, UG 5-5, RSTS

2-8external, LM 166floating-point, UG 1-10implicitly declared, LM 26 to 27, UG 1-10in MOVE, LM 228in SUB subprograms, LM 282initialization of, LM 29, 142, 147, 212, UG
1-12

integer, UG 1-11
loop, LM 179
naming, LM 25 to 26
string, LM 200, 203, 206, 208, UG 1-11
subscripted, LM 27 to 29, UG 1-12

%VARIANT, LM 128, UG 10-8, RSTS 2-8
example of, UG 10-10
in %IF, LM 117
in %LET, LM 121

VARIANT, VMS 2-7, 2-21, 2-27
VARIANT clause, LM 264
VARIANT qualifier, LM 89, 93, 128, RSTS 2-8,

RSX 2-13
Version identification, LM 115
Version number, VMS 1-8, 1-10
VIR, LM 94, RSX 2-11
Virtual addresses, RSTS 6-1

finding, LM 328
Virtual array files, UG 9-3
Virtual arrays, LM 147, 158, 159, UG 9-30

as parameters, RSTS 4-10, 4-23
DIMENSION, UG 9-30
initialization of, LM 29, 160
padding in, LM 160
string, UG 4-19
with FIELD, LM 170

Index-33

Virtual arrays (Cont .)with NOSETUP, LM 87VIRTUAL data typein CDD, VMS 9-12Virtual files, RSTS 4-10record size, LM 242VIR, LM 94with RESTORE, LM 271VMSRTL.EXE, VMS 10-3
VT, LM 24
W
WAIT, LM 291, UG 3-20WARNINGS, LM 89, VMS 2-7, 2-27Watchpointscancelling, VMS 4-8setting, VMS 4-8showing, VMS 4-8WHILE clause, LM 180WHILE loops, UG 3-5 to 3-6ending, LM 231error handling in, LM 272

exiting, LM 164
explicit iteration of, LM 204transferring control into, LM 195, 196, 236,

237WHILE statement modifier, LM 292, UG 3-23WIDTH, LM 94, RSX 2-14Widthmargin, LM 215, 232, 251, 334of listing file, LM 94WINDOWSIZE, LM 242, UG 9-39

WORD, VMS 2-21data type, LM 11qualifier, LM 89, 94, RSTS 2-8, RSX 2-14,
VMS 2-7Writing end of file marks, RSTS 3-17Writing programsfrom DCL level, RSTS 1-8in the BASIC environment, RSTS 1-3Writing records, UG 9-23 to 9-25by RECORD number, LM 258sequentially, LM 258to magnetic tape, RSTS 3-8 to 3-10, 3-19to 3-20to sequential files, UG 9-24with PRINT, LM 251with PUT, LM 258with UPDATE, LM 289

X
XLATE, LM 379, UG 6-9XOR, LM 38
Z
ZER, LM 217, UG 7-10Zeroarray element, LM 28, 159, 218, 220, 222,

224, 226, 228blank-if-zero field, LM 255in PRINT USING, LM 255Zero-fill fieldin PRINT USING, LM 255

HOW TO ORDER ADDITIONAL DOCUMENTATION

DIRECT TELEPHONE ORDERS
In Continental USA

	

In Canada

	

In New Hampshire,and Puerto Rico

	

call 800-267-6146

	

Alaska or Hawaiicall 800-258-1710

	

call 603-884-6660

DIRECT MAIL ORDERS (U .S. and Puerto Rico*)
DIGITAL EQUIPMENT CORPORATION

P .O . Box CS2008
Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.
940 Belfast Road

Ottawa, Ontario, Canada K1 G 4C2
Attn : A&SG Business Manager

INTERNATIONAL]

DIGITAL EQUIPMENT CORPORATION
A&SG Business Manager

c/o Digital's local subsidiary
or approved distributor

Internal orders should be placed through the Software Distribution Center (SDC), Digital
Equipment Corporation, Northboro, Massachusetts 01532

'Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary :

809-754-7575

Note : This form is for document comments only . Digital will use comments submitted on this form at the
company's discretion . If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form .

Did you find this manual understandable, usable, and well-organized? Please make suggestions for
improvement .

Reader's Comments

Did you find errors in this manual? If so, specify the error and the page number .

Please indicate the type of user/reader that you most nearly represent .

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer
Other (please specify)

Name
Organization
Stree t
City

	

State

Date

BASIC
Reference Manual

AA-L334A-TK
AD-L334A-T1

Zip CodeorCountry

-------Do

Not Tear - Fold Here and Tape -------------------------------------~

d
B9

POSTAGE

WILL BE PAID BY ADDRESSEE

ATTN:

BSSG Publications ZKO1-3/J35

DIGITAL

EQUIPMENT CORPORATION

110

SPIT BROOK ROAD

NASHUA,

N

.H .

03062

BUSINESS

REPLY MAIL

FIRST

CLASS PERMIT NO

.33

MAYNARD MASS

.

No

Postage

Necessary
if

Mailed in the

United

States

-------Do

Not Tear - Fold Here and Tape -------------------------------------

