
BASIC-PLUS-2

Reference Manual
Order Number: AA-JP30B-TK

May 1991

This manual provides reference information and examples on all
BASIC-PLUS-2 commands, directives, statements, and functions .

Revision/Update Information :

	

This manual is a revision .

Operating System and Version : RSX-11M Version 4 .6 or higher
RSX-IIM-PLUS Version 4.3 or higher
Micro/RSX Version 4 .3 or higher
RSTS/E Version 9.7 or higher

Software Version :

	

BASIC-PLUS-2 Version 2.7

Digital Equipment Corporation
Maynard, Massachusetts

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation . Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document .

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies .

Restricted Rights: Use, duplication, or disclosure by the U .S . Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252 .227-7013 .

© Digital Equipment Corporation 1987,1991 .

All Rights Reserved.
Printed in U .S .A .

The postpaid Reader's Comments forms at the end of this document request your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation : BASIC-PLUS, BASIC-PLUS-2,
DEC, DECnet, DECUS, Digital, Micro'RSX, PDP, PDP-11, RMS, RMS-11, RSTS, RSTS/E, RSX,
RSX-11M, RSX-11M-PLUS, RX50, TK50, UNIBUS, VAX, VAXcluster, VAXinfo, VMS, and the
Digital logo .

BASIC is a trademark of Dartmouth College .

This document was prepared using VAX DOCUMENT, Version 2 .0 .

Contents

III

Preface	 XUI

xviiSummary of Technical Changes	

1 Program Elements and Structure
1 .1 Components of Program Lines	 1-1
1 .1 .1 Line Numbers	 1-2
1 .1 .2 Labels	 1-2
1 .1 .3 Statements	 1-3
1 .1 .3 .1 Keywords	 1-4
1 .1 .3.2 Single-Statement Lines and Continued Statements	 1-5
1 .1 .3.3 Multi-Statement Lines	 1 -6
1 .1 .4 Compiler Directives	 1-8
1 .1 .5 Comments	 1-8
1 .1 .5 .1 Comment Field	 1 -9
1 .1 .5.2 REM Statements	 1-10
1 .1 .6 Line Terminators	 1-11
1 .1 .7 Lexical Order	 1-11
1 .2 BASIC-PLUS-2 Character Set	 1-11
1 .3 BASIC-PLUS-2 Data Types	 1-12
1 .3 .1 Implicit Data Typing	 1-15
1 .3.2 Explicit Data Typing	 1-16
1 .4 Variables	 1-16
1 .4 .1 Variable Names	 1-17
1 .4.2 Implicitly Declared Variables	 1-18
1 .4.3 Explicitly Declared Variables	 1-19
1 .4.4 Subscripted Variables and Arrays	 1-19
1 .4.5 Initialization of Variables	 1-21
1 .5 Constants	 1-22

iv

1 .5 .1

	

Numeric Constants	 1-23
1 .5.1 .1

	

Floating-Point Constants	 1-23
1 .5.1 .2

	

Integer Constants	 1-24
1 .5 .2

	

String Constants	 1-25
1 .5 .3

	

Named Constants	 1-27
1 .5 .3 .1

	

Naming Constants Within a Program Unit	1-27
1 .5 .3.2

	

Naming Constants External to a Program Unit	1-28
1 .5.4

	

Explicit Literal Notation	 1-29
1 .5.5

	

Predefined Constants	 1-32
1 .6

	

Expressions	 1-34
1 .6 .1

	

Numeric Expressions	 1-34
1 .6.2

	

String Expressions	 1-37
1 .6.3

	

Conditional Expressions	 1-37
1 .6.3 .1

	

Numeric Relational Expressions	 1-37
1 .6.3.2

	

String Relational Expressions	 1-39
1 .6.3.3

	

Logical Expressions	 1-41
1 .6.4

	

Evaluating Expressions	 1-45

2 Environment Commands
$ system-command	 2-2
APPEND	 2-4
BRLRES	 2-6
BUILD	 2-8
COMPILE	 2-14
DELETE	 2-21
DSKLIB	 2-23
EDIT	 2-25
EXIT	 2-28
EXTRACT	 2-29
HELP	 2-30
IDENTIFY	 2-32
INQUIRE	 2-33
LIBRARY	 2-34
LIST and LISTNH	 2-36
LOAD	 2-38
LOCK	 2-40
NEW	 2-41
ODLRMS	 2-43
OLD	 2-45

RENAME	 2-47
REPLACE	 2-49
RMSRES	 2-50
RUN	 2-52
SAVE	 2-58
SCALE	 2-59
SCRATCH	 2-61
SEQUENCE	 2-62
SET	 2-64
SHOW	 2-72
UNSAVE	 2-73

3 Compiler Directives
%ABORT	 3-2
%CROSS	 3-3
%IDENT	 3-4
%IF-%THEN-%ELSE-%END %IF	 3-6
%INCLUDE	 3-8
%LET	 3-10
%LIST	 3-11
%NOCROSS	 3-12
%NOLIST	 3-13
%PAGE	 3-14
%PRINT	 3-15
%SBTTL	 3-16
%TITLE	 3-18
%VARIANT	 3-20

4 Statements and Functions
4-2ABS	

ABS%	 4-3
ASCII	 4-4
ATN	 4-5
BUFSIZ	 4-6
CALL	 4-7
CAUSE ERROR	 4-12

V

vi

CCPOS	 4-13
CHAIN	 4-14
CHANGE	 4-16
CHR$	 4-18
CLOSE	 4-19
COMMON	 4-20
COMP%	 4-25
COS	 4-26
CTRLC	 4-27
CVT$$	 4-29
CVTxx	 4-30
DATA	 4-33
DATE$	 4-35
DECLARE	 4-37
DEF	 4-41
DEF*	 4-46
DELETE	 4-51
DET	 4-53
DIF$	 4-55
DIMENSION	 4-56
ECHO	 4-61
EDIT$	 4-62
END	 4-64
ERL	 4-67
ERN$	 4-68
ERR	 4-69
ERT$	 4-70
EXIT	 4-71
EXP	 4-73
EXTERNAL	 4-74
FIELD	 4-78
FIND	 4-80
FIX	 4-84
FNEND	 4-85
FNEXIT	 4-86
FOR	 4-87
FORMAT$	 4-91

FSP$	 4-92
FSS$	 4-94
FUNCTION	 4-95
FUNCTIONEND	 4-97
FUNCTIONEXIT	 4-98
GET	 4-99
GETRFA	 4-103
GOSUB	 4-104
GOTO	 4-105
IF	 4-106
INPUT	 4-109
INPUT LINE	 4-112
INSTR	 4-115
INT	 4-117
INTEGER	 4-118
ITERATE	 4-119
KILL	 4-120
LEFT$	 4-121
LEN	 4-122
LET	 4-123
LINPUT	 4-125
LOG	 4-128
LOG10	 4-129
LSET	 4-130
MAG	 4-131
MAGTAPE	 4-132
MAP	 4-134
MAP DYNAMIC	 4-137
MAT	 4-140
MAT INPUT	 4-144
MAT LINPUT	 4-146
MAT PRINT	 4-148
MAT READ	 4-150
MAX	 4-152
MID$	 4-153
MIN	 4-154
MOD	 4-155

vii

MOVE	 4-156
NAME . . . AS	 4-159
NEXT	 4-161
NOECHO	 4-162
NUM	 4-163
NUM2	 4-164
NUM$	 4-165
NUM1$	 4-167
ON ERROR GO BACK	 4-169
ON ERROR GOTO	 4-171
ON ERROR GOTO 0	 4-173
ON . . . GOSUB	 4-174
ON . . . GOTO	 4-176
ONECHR	 4-177
OPEN	 4-178
OPTION	 4-191
PLACE$	 4-194
POS	 4-197
PRINT	 4-199
PRINT USING	 4-203
PROD$	 4-209
PROGRAM	 4-211
PUT	 4-212
QUO$	 4-216
RAD$	 4-218
RANDOMIZE	 4-219
RCTRLC	 4-220
RCTRLO	 4-221
READ	 4-222
REAL	 4-224
RECOUNT	 4-225
REM	 4-227
REMAP	 4-229
RESET	 4-233
RESTORE	 4-234
RESUME	 4-236
RETURN	 4-238

RIGHT$	 4-239
RND	 4-240
RSET	 4-241
SCRATCH	 4-242
SEG$	 4-243
SELECT	 4-245
SET [NO] PROMPT	 4-248
SGN	 4-250
SIN	 4-251
SLEEP	 4-252
SPACE$	 4-253
SQR	 4-254
STATUS	 4-255
STOP	 4-258
STR$	 4-260
STRING$	 4-261
SUB	 4-262
SUBEND	 4-265
SUBEXIT	 4-266
SUM$	 4-267
SWAP%	 4-269
SYS	 4-270
TAB	 4-271
TAN	 4-272
TIME	 4-273
TIME$	 4-275
TRM$	 4-276
UNLESS	 4-277
UNLOCK	 4-278
UNTIL	 4-279
UPDATE	 4-281
VAL	 4-283
VAL%	 4-284
WAIT	 4-285
WHILE	 4-286
XLATE$	 4-288

ix

A BASIC-PLUS-2 Keywords

x

A.1

	

BASIC-PLUS-2 Reserved and Unreserved Keywords	 A-1
A .2

	

Reserved Keywords In VAX BASIC	 A-9

B Debugger Commands
BREAK	 B-2
CONTINUE	 B-4
CORE	 B-5
ERL	 B-6
ERN	 B-7
ERR	 B-8
EXIT	 B-9
FREE	 B-10
I/O BUFFER	 B-11
LET	 B-12
PRINT	 B-14
RECOUNT	 B-15
REDIRECT	 B-16
STATUS	 B-17
STEP	 B-19
STRING	 B-20
TRACE	 B-21
UNBREAK	 B-22
UNTRACE	 B-24

C Editing Mode Commands
DEFINE	 C-2
EXECUTE	 C-3
EXIT	 C-4
FIND	 C-5
INSERT	 C-6
SUBSTITUTE	 C-8

D Object Time System Routines

Index

Figures

Tables

1-1

	

Subscripted Variables	 1-21
1-2

	

Truth Tables	 1-43

1 -1

	

Keyword Space Requirements	 1-4
1 -2

	

BASIC-PLUS-2 Data Types	 1-14
1-3

	

Numbers in E Notation	 1-24
1-4

	

Predefined Constants	 1-32
1-5

	

Arithmetic Operators	 1-35
1-6

	

Result Data Types in BASIC-PLUS-2 Expressions	1-36
1-7

	

Numeric Relational Operators	 1-38
1-8

	

String Relational Operators	 1-40
1-9

	

Logical Operators	 1-42
1-10

	

Numeric Operator Precedence	 1-46
2-1

	

Overlay Description Files	 2-44
2-2

	

RMS-11 Libraries	 2-51
4-1

	

BASIC-PLUS-2 Parameter-Passing Mechanisms	4-8
4-2

	

FILL Item Formats and Storage Allocations	4-22
4-3

	

EDIT$ Values	 4-62
4-4

	

FSP$ Return Values and Corresponding RMS Fields	4-92
4-5

	

MAGTAPE Function Codes	 4-132
4-6

	

Rounding and Truncation of 123456.654321	4-195
4-7

	

RSX STATUS Values	 4-256
4-8

	

TIME Function Values	 4-273
D-1

	

Control, Matrix, and Miscellaneous Modules	D-1
D-2

	

Array Threads	 D-2
D-3

	

String Modules	 D-3
D-4

	

Common Math Modules	 D-4
D-5

	

FPU Math Modules	 D-6
D-6

	

Common I/O Modules	 D-7

xi

xii

D-7 RMS I/O Modules	 D-8
D-8 RSTS/E-Specific Modules	 D-9
D-9 RSX-Specific Modules	 D-11

Preface

Intended Audience
This manual provides detailed reference information on all BASIC-PLUS-2
commands, directives, statements, and functions . Readers are presumed to
have some previous knowledge of BASIC or another high-level programming
language. This manual should be used with the BASIC-PLUS-2 User's Guide .

Operating Systems and Versions
BASIC-PLUS-2 runs on the following operating systems and versions :

RSX-11M Version 4 .6 or higher
RSX-11M-PLUS Version 4 .3 or higher
Micro/RSX Version 4 .3 or higher
RSTS/E Version 9 .7 or higher

Associated Documents
This manual is one of two manuals that form the BASIC-PLUS-2
documentation set . The other manual in the documentation set, the
BASIC-PLUS-2 User's Guide, contains tutorial material on developing
BASIC-PLUS-2 programs; it describes BASIC-PLUS-2 programming concepts
and provides information on advanced programming techniques, including
program optimization . If you are unfamiliar with a topic, you may want to
read the information in the BASIC-PLUS-2 User's Guide before consulting
this manual .
If you are not an experienced BASIC programmer, you should read the
following manuals before using the BASIC-PLUS-2 document set :

•

	

Introduction to BASIC
•

	

BASIC for Beginners
•

	

More BASIC for Beginners

Structure of This Document
This manual consists of four chapters and four appendixes .

Chapter 1

	

Summarizes BASIC-PLUS-2 program elements and structure
Chapter 2

	

Describes BASIC-PLUS-2 environment commands
Chapter 3

	

Describes BASIC-PLUS-2 compiler directives
Chapter 4

	

Describes BASIC-PLUS-2 statements and functions
Appendix A

	

Lists the BASIC-PLUS-2 keywords
Appendix B

	

Describes BASIC-PLUS-2 debugger commands
Appendix C

	

Describes BASIC-PLUS-2 editing mode commands
Appendix D

	

Lists and describes the Object Time System (OTS) routines

Chapters 2, 3, and 4, and Appendixes B and C provide reference material on
each BASIC-PLUS-2 language element . The language elements are arranged
in alphabetical order within each chapter or appendix, and each language
element begins on a separate page . The language element descriptions contain
the following information :

Overview

	

An overview of what the statement or command does .
Format

	

The required syntax for the language element .
Syntax Rules

	

Any rules governing the use of parameters, separators, or other
syntax items, effect of the statement or command on program
execution, and any restrictions governing its use .

Remarks

	

Any additional information needed to use the language element
correctly.

Example

		

One or more examples of the statement in a partial program. Where
appropriate, explanatory text and program output are included .

Please use the Reader's Comment form in the back of this book to report
documentation errors, to comment on how information is presented, or to
provide suggestions for future publications .

Conventions Used in This Document
This manual uses case of text, symbols, and mnemonics in syntactical
diagrams. This symbology aids in providing more concise and exact
descriptions of syntactic variables, rules, and format .

xiv

Convention

	

Meaning

Color

	

Color in code examples denotes user input .
UPPERCASE letters

	

Uppercase letters in language syntax denote BASIC-PLUS-2
keywords and must be spelled exactly as shown ; you can
enter them in either upper or lower case in actual coding .

lowercase letters

	

Lowercase letters in language syntax denote mnemonics
representing user-supplied names or characters .

BOLD type

	

Bold type is used to denote a term (pertaining to the software)
that is being mentioned, defined, or explained for the first
time in the manual .

Italic type

	

Italic type is used to refer to the generic or mnemonic terms
that appear in syntax diagrams .

[i Brackets enclose an optional portion of a format . Brackets
around vertically stacked items indicate that you can select
one of the enclosed items . You must include all punctuation
as it appears in the brackets .

{}

	

Braces enclose a mandatory portion of a format . Braces
around vertically stacked items indicate that you must choose
one of the enclosed items . You must include all punctuation
as it appears in the braces .
A vertical ellipsis indicates that code, which would normally
be present, is not shown .

An ellipsis indicates that the immediately preceding item
can be repeated . An ellipsis following a format unit enclosed
in brackets or braces means that you can repeat the entire
unit. If repeated items or format units must be separated by
commas, the ellipsis is preceded by a comma (, . . .) .

Mnemonic

	

Meaning

The following mnemonics are used in the syntax diagrams :

angle

	

An angle in radians
array

	

An array; syntax rules specify whether the bounds or dimensions
can be specified

chnl-exp

	

An 1/O channel associated with a file
com

	

Specific to a COMMON block
cond

	

Conditional expression ; indicates that an expression can be either
logical or relational

xv

xvi

Mnemonic

	

Meaning

const

	

A constant value
data-type

	

A data type keyword
def

	

Specific to a DEF function
exp

	

An expression
file-spec

	

A file specification
func

	

Specific to a FUNCTION subprogram
int

	

An integer value
int-exp

	

An expression that represents an integer value
int-var

	

A variable that contains an integer value
label

	

An alphanumeric statement label
lex

	

Lexical; used to indicate a component of a compiler directive
line

	

A statement line ; may or may not be numbered
line-num

	

A statement line number
lit

	

A literal value, in quotation marks
log-exp

	

Logical expression
map

	

Specific to a MAP statement
matrix

	

A two-dimensional array
name

	

A name or identifier ; indicates the declaration of a name or the
name of a BASIC-PLUS-2 structure, such as a SUB subprogram

num

	

A numeric value
param-list

	

A parameter list, such as for a SUB subprogram
pass-mech

	

A valid BASIC-PLUS-2 passing mechanism
real

	

A floating-point value
rel-exp

	

Relational expression
str

	

A character string
str-exp

	

An expression that represents a character string
str-var

	

A variable that contains a character string
sub

	

Specific to a SUB subprogram
target

	

The target point of a branch statement ; either a line number or a
label

unsubs-var

	

Unsubscripted variable, as opposed to an array element
var

	

A variable

Summary of Technical Changes

The following is a list of the major changes for Version 2 .7 of BASIC-PLUS-2 :

• The BASIC-PLUS-2 compiler can now run in Instruction and Data (I & D)
memory space, thereby improving compilation performance . I & D support
is selected when the compiler is built and installed ; it does not impact the
language syntax .

•

	

The DCL compilation command BASIC has been expanded to allow you to
compile multiple BASIC-PLUS-2 programs from DCL .

•

	

A new qualifier, /[NOIBOUNDS, has been added to the environment
COMPILE command and to the DCL command BASIC . If you specify
/NOBOUNDS, the processing overhead of checking array boundaries on
arrays of one or two dimensions is eliminated .

•

	

Command line support has been expanded to allow longer command strings
than was previously allowed .

•

	

Several performance enhancements have been incorporated to allow faster
compilation and run time execution . These enhancements are primarily
internal and are not reflected in the language syntax ; therefore, they do
not require documentation in the user manuals .

Program Elements and Structure

The building blocks of a BASIC-PLUS-2 program are as follows :
•

	

Program lines and their components
•

	

The BASIC-PLUS-2 character set
•

	

BASIC-PLUS-2 data types
•

	

Variables and constants
•

	

Expressions
•

	

Program documentation
These building blocks are described in the following sections .

1 .1 Components of Program Lines
A BASIC-PLUS-2 program is a series of program lines. Each program line
can contain any or all of the following information :
•

	

Line numbers or labels
•

	

Statements and functions
•

	

Compiler directives
•

	

Comments
•

	

A line terminator (carriage return)
These components are discussed in the following sections .

1

Program Elements and Structure 1-1

1 .1 .1 Line Numbers
Every BASIC-PLUS-2 statement must be associated with a line number .
Thus, the first element in a BASIC-PLUS-2 program must be a line number .
A line number must be an integer from 1 through 32767, followed by a space
or a tab, and must be unique to that line . BASIC-PLUS-2 ignores leading
spaces, tabs, and zeros in line numbers . Embedded spaces, tabs, and commas
within line numbers cause BASIC-PLUS-2 to signal an error.
A line number followed by a carriage return does not constitute a
BASIC-PLUS-2 program line . A numbered program line must contain a
statement or a comment field. Comment fields are discussed in Section 1 .1.5 .1 .
A new line number terminates a BASIC-PLUS-2 program line .
A program line can contain any number of text lines ; however, a text line
cannot contain more than 255 characters on RSTS/E systems, or more than
132 characters on RSX systems .
BASIC-PLUS-2 uses line numbers to do the following :
•

	

Indicate the order of statement execution
•

	

Identify control points for branching
•

	

Help in debugging and updating programs
•

	

Find the location of run-time errors
•

	

Resume processing after an error has been handled

1 .1 .2 Labels
A label is a 1- to 31-character name that identifies a statement or block of
statements. It may immediately follow a line number. The label logically
identifies a statement or block of statements . The label name must begin with
a letter; the remaining characters, if any, can be any combination of letters,
digits, dollar signs ($), underscores (_), or periods (.) .
A label name must be separated from the statement it identifies with a colon
(:) . For example :
100 Yes routine : PRINT "Your answer is YES ."

The colon is not part of the label name . It informs BASIC-PLUS-2 that the
label is being defined rather than referenced. Consequently, the colon is not
allowed when you use a label to reference a statement. For example :
200

	

GOTO Yes routine

1-2 Program Elements and Structure

You can reference a label almost anywhere you can reference a line number .
However, there are the following exceptions :

•

	

You cannot compare a label with the value returned by the ERL function .

•

	

You cannot reference a label in an IF . . . THEN . . . ELSE statement
without using the keyword GOTO or GO TO . You can use the implied
GOTO form only to reference a line number . In the following example,
the GOTO keyword is not required in statement 100 because the reference
is to a line number. Because statement 200 references labels, the GOTO
keyword is required .
Example
100 IF A% = B%

THEN 1000
ELSE 1050

200 IF A$ _ "YES"
THEN GOTO Yes
ELSE GOTO No

1 .1 .3 Statements
A BASIC-PLUS-2 statement consists of a statement keyword and optional
operators and operands . For example, both of these statements are valid :
400 LET A% = 534% + (SUM% - DIF%)

PRINT A%

BASIC-PLUS-2 statements are either executable or nonexecutable :

•

	

Executable statements perform operations (for example, PRINT, GOTO,
and READ) .

• Nonexecutable statements provide information to the compiler (such as
characteristics and arrangement of data) and provide comments in the
source program (for example, DATA, DECLARE, and REM) .

BASIC-PLUS-2 can accept and process one statement on a line of text, several
statements on a line of text, multiple statements on multiple lines of text, and
single statements continued over several lines of text . Each line of program
text is associated with the most recently specified line number .

Program Elements and Structure 1-3

1 .1 .3.1 Keywords
Every BASIC-PLUS-2 statement except LET and empty statements must
begin with a keyword . A keyword is a reserved element of the BASIC-PLUS-2
language. Keywords are used to do the following :

•

	

Define data and user identifiers
•

	

Perform operations
•

	

Invoke built-in functions

Note

Keywords are reserved words and cannot be used as user identifiers,
such as variable names, labels, or names for MAP or COMMON areas .

Keywords cannot be used in any context other than as BASIC-PLUS-2
keywords. The assignment STRING$ = "YES", for example, is invalid because
STRING$ is a reserved BASIC-PLUS-2 keyword and therefore cannot be used
as a variable . Appendix A in this manual contains a list of BASIC-PLUS-2
reserved keywords .
A BASIC-PLUS-2 keyword cannot be split across lines of text . There must be
a space, tab, or special character such as a comma between the keyword and
any other variable or operator.
In general, keywords cannot include embedded spaces, but there are exceptions
in which spaces are optional or required . The exceptions are shown in
Table 1-1 .

1-4 Program Elements and Structure

(continued on next page)

Table 1-1 Keyword Space Requirements

Optional
Space Required Space No Space

GO TO BY DESC FNEND
GO SUB BY REF FNEXIT
ON ERROR BY VALUE FUNCTIONEND

END DEF FUNCTIONEXIT
END FUNCTION NOECHO

Table 1-1 (Cont.) Keyword Space Requirements

1 .1 .3.2 Single-Statement Lines and Continued Statements

A single-statement line consists of one statement on one numbered line, or one
statement continued over two or more text lines . For example :
30 PRINT B * C / 12

This single-statement line has a line number, a keyword (PRINT), the
operators (*, /), and the operands (B, C, 12) .

You can have a single statement span multiple text lines by entering an
ampersand (&) and the Return key . BASIC-PLUS-2 ignores spaces or tabs
between the ampersand and the carriage return . For example :
100 OPEN "SAMPLE .DAT" AS FILE 2%, &

SEQUENTIAL VARIABLE, &
MAP ABC

The ampersand continuation character may be used but is not required for
continued REM statements . The following example is valid :
REM This is a remark

And this is also a remark

Program Elements and Structure 1-5

Optional
Space Required Space No Space

END IF
END SELECT
END SUB
EXIT DEF
EXIT FUNCTION
EXIT SUB
INPUT LINE
MAP DYNAMIC
MAT INPUT
MAT LINPUT
MAT PRINT
MAT READ

SUBEND

You can continue any BASIC-PLUS-2 statement, but you cannot continue a
string literal or BASIC-PLUS-2 keyword . The following example generates
the error message "Unterminated string literal" .
200 PRINT "IF-THEN-ELSE-

	

&
END-IF"

This example is valid, although it prints two distinct strings :
200 PRINT "IF-THEN-ELSE-" ; &

"END-IF"

You can join two string literals by using the string concatenation operator (+) :
200 PRINT "IF-THEN-ELSE-"

	

&
+ "END-IF"

BASIC-PLUS-2 concatenates the two string literals at compilation and stores
them as one string . When the PRINT statement executes, BASIC-PLUS-2
displays the one concatenated string literal rather than two separate string
literals, thereby causing your program to execute faster and more efficiently .

Continued statements do not have program line numbers of their own,
although the compiler counts and numbers them as sublines .

1 .1 .3 .3 Multi-Statement Lines

Multi-statement lines contain several statements on one line of text, multiple
statements on separate lines of text, or some combination thereof . All the
statements on a multi-statement line are associated with a single line number .
Multiple statements on one line of text must be separated by backslashes (\) .
For example :
40 PRINT A \ PRINT V \ PRINT G

Because all statements are on the same program line, any reference to line
number 40 refers to all three statements . Execution begins with the first
statement on the line. BASIC-PLUS-2 cannot execute the second statement
without executing the first statement.
You can also write a multi-statement program line that associates all
statements with a single line number by placing each statement on a separate
line. This format requires only a space or tab at the beginning of each new
line of text. BASIC-PLUS-2 assumes that such an unnumbered line of text is
either a new statement or a clause in an IF-THEN-ELSE construct .
In the following example, each line of text contains a BASIC-PLUS-2
statement associated with program line number 400 .

1-6 Program Elements and Structure

Example
400 PRINT A

PRINT B
PRINT "FINISHED"

BASIC-PLUS-2 also recognizes IF . . . THEN . . . ELSE constructs segmented
over several lines of text and associates the THEN and ELSE keywords with
the preceding IF statement . For example :
Example
100 REM

	

Determine if the user's response
was YES or NO .

200 IF (A$ = "YES") OR (A$ = "Y")
THEN PRINT "You typed YES"
ELSE PRINT "You typed NO"

STOP
END IF

The BASIC-PLUS-2 compiler assigns listing line numbers to text lines as they
occur in the program. Blank text lines are assigned listing line numbers . Note
the difference between program line numbers (which you create in your source
program) and listing line numbers (which are assigned by the compiler) .
Example

You cannot use listing line numbers as targets of branch statements . The
target of a branch statement such as GOTO must be a program line number or
a label. See the BASIC-PLUS-2 User's Guide for more information on listing
file formats .
You can use any BASIC-PLUS-2 statement in a multi-statement line ; however,
a REM statement in a multi-statement line must be the last statement on that
line because the compiler ignores all text following a REM keyword until it
reaches a new program line number.
A DATA statement included on a multi-statement line must be the last
statement, because the compiler treats all text following a DATA statement
as data until it reaches a new program line .
Because a leading space or tab not followed by a line number implies a new
statement in a multi-statement line, compiler directives and immediate mode
statements cannot be preceded by a space or tab .

Program Elements and Structure 1-7

00001 100 REM Determine if the user's response
00002 was YES or NO .
00003 200 IF (A$ _ "YES") OR (A$ _ "Y")
00004 THEN PRINT "You typed YES"
00005 ELSE PRINT "You typed NO"
00006 STOP
00007 END IF

Compiler directives and immediate-mode statements cannot appear between
two text lines of a continued statement .

1 .1 .4 Compiler Directives
Compiler directives instruct the BASIC-PLUS-2 compiler to perform certain
operations during program compilation .
By including compiler directives in a program, you can :
•

	

Place program titles and subtitles in the header that appears on each page
of the listing file

•

	

Place a program version identification string in both the listing file and
object module

•

	

Start or stop the inclusion of listing information for selected parts of a
program

•

	

Start or stop the inclusion of cross reference information for selected parts
of a program

•

	

Include BASIC-PLUS-2 code from another source file
•

	

Conditionally compile parts of a program
•

	

Terminate compilation
•

	

Display messages during the compilation

Follow these rules when using compiler directives :
•

	

Compiler directives must begin with a percent sign .

•

	

Compiler directives must be the only text on the line (except for %IF-
%THEN-%ELSE-%END-%IF) .

•

	

Compiler directives cannot appear within a quoted string .

•

	

Compiler directives must be preceded by a space, tab, or line number .

See the BASIC-PLUS-2 User's Guide and Chapter 3 in this manual for more
information on compiler directives .

1 .1 .5 Comments
Documentation within a program clarifies and explains source program
structure. These explanations, or comments, can be combined with code
to create a more readable program without affecting program execution .
Comments can appear in two forms :
•

	

Comment fields (including empty statements)

1-8 Program Elements and Structure

• REM statements

1 .1 .5 .1 Comment Field
A comment field begins with an exclamation point (!) and ends with a carriage
return. You supply text after the exclamation point to document your program .
BASIC-PLUS-2 does not execute text in a comment field. For example :
Example
100 ! FOR loop to initialize list Q

FOR I = 1 TO 10
Q(I) = 0 ! This is a comment

NEXT I
! List now initialized

Here, BASIC-PLUS-2 executes only the FOR . . . NEXT loop. The comment
fields, preceded by exclamation points, are not executed .
Comment fields help make your program more readable and allow you to
format your program into readily visible logical blocks . They can also serve as
target lines for GOTO and GOSUB statements :
Example
10

! Square root program

INPUT 'Enter a number' ;A
PRINT 'SQR of ' ;A;'is ' ;SQR(A)

! More square roots?

INPUT 'Type "Y" to continue, press RETURN to quit' ;ANS$
GOTO 10 IF ANS$ = "Y"

99

	

END

You can also use an exclamation point to terminate a comment field, but
this practice is not recommended . You should make sure that there are
no exclamation points in the intended comment field itself; if there is,
BASIC-PLUS-2 treats the text remaining on the line as source code .

Note

Comment fields in DATA statements are invalid ; the BASIC-PLUS-2
compiler treats the exclamation point and following text as data .

Program Elements and Structure 1-9

An empty statement consists of a line number and an exclamation point .
Empty statements can make your program more legible by adding "white
space" and visually separating logical program segments . Note that you can
also include blank lines with neither a line number nor an exclamation point
to make your program more legible .
In the following example, lines 100 and 300 are empty statements .
Example
100

! FOR loop to initialize list Q

200 FOR I = 1 TO 10
Q(I) = 0 ! This is a comment

NEXT I
300

	

!
! List is now initialized

1 .1 .5.2 REM Statements
A REM statement begins with the REM keyword and ends when BASIC-PLUS-2
encounters a new line number. The text you supply between the REM keyword
and the next line number documents your program . Like comment fields,
REM statements do not affect program execution . BASIC-PLUS-2 ignores all
characters between the keyword REM and the next line number. Therefore,
the REM statement can be continued without the ampersand (&) continuation
character and should be the only statement on the line or the last of several
statements in a multi-statement line :
Example
10

	

REM This is an example
20

	

A=5
B=10
REM A equals 5

B equals 10
30

	

PRINT A, B

The REM statement is nonexecutable . When you transfer control to a REM
statement, BASIC-PLUS-2 executes the next executable statement that
lexically follows the referenced statement .

Note

The REM statement is supported primarily for compatibility with
programs that were originally written for other BASIC language
compilers . Because BASIC-PLUS-2 treats all text between the REM
statement and the next line number as commentary, REM should be

1-10 Program Elements and Structure

In the following example, the conditional GOTO statement in line 20 transfers
program control to line 10 . BASIC-PLUS-2 ignores the REM comment on line
10 and continues program execution at line 20 .

Example
10
20

40

avoided in programs that follow the implied continuation rules . It is
recommended that you use comment fields instead .

REM ** Square root program
INPUT 'Enter a number' ;A
PRINT 'SQR of ' ;A ;'is ' ;SQR(A)
INPUT 'Type "Y" to continue, press
GOTO 10 IF ANS$ = "Y"
END

RETURN to quit' ;ANS$

1 .1 .6 Line Terminators
In the BASIC environment, a program line ends with a carriage return/line
feed combination (the Return key) followed by an optional space or tab and a
new line number. An ampersand (&) followed by a carriage return ends a line
of text, but not the program line . All statements between the first line number
and the next line number are associated with the first line number .

1 .1 .7 Lexical Order
Lexical order refers to the order in which the statements in a program
are compiled . In general terms, BASIC-PLUS-2 compiles program lines in
sequential order: multiple statements on a line of text are processed from left
to right, and lines of text are processed from top to bottom .

Some BASIC-PLUS-2 statements, such as comments and MAP declarations,
are nonexecutable . If program control passes to a nonexecutable statement,
the BASIC-PLUS-2 compiler executes the first statement that lexically follows
the nonexecutable statement .

1 .2 BASIC-PLUS-2 Character Set
BASIC-PLUS-2 uses the full ASCII character set to define alphanumeric
and special characters that are used in string variables . This includes the
following :
•

	

The letters A through Z, both upper- and lowercase

•

	

The digits 0 through 9
•

	

Special characters

Program Elements and Structure 1-11

See the BASIC-PLUS-2 User's Guide for the full ASCII character set and
character values .
The BASIC-PLUS-2 compiler does not distinguish between upper- and
lowercase letters except in string literals or within a DATA statement . The
BASIC-PLUS-2 compiler does not process characters in REM statements or
comment fields, nor does it process nonprinting characters unless they are part
of a string literal .
In string literals, BASIC-PLUS-2 processes the following :
•

	

Lowercase letters as lowercase
•

	

Nonprinting characters
The ASCII character NUL (ASCII code 0) and line terminators cannot appear
in a string literal . Use the CHR$ function or explicit literal notation to use
these characters and terminators .
You can use nonprinting characters in your program, for example, in string
constants, but to do so you must use one of the following :
•

	

A predefined constant such as ESC or DEL
•

	

The CHR$ function to specify an ASCII value
•

	

Explicit literal notation
See Section 1.5.4 for more information on explicit literal notation .

1 .3 BASIC-PLUS-2 Data Types
Each unit of data in a BASIC-PLUS-2 program has a specific data type that
determines how that unit of data is to be interpreted and manipulated by the
BASIC-PLUS-2 compiler. This data type also determines how many storage
bits make up the unit of data .
BASIC-PLUS-2 recognizes four primary data types :
•

	

Integer
•

	

Floating-point
•

	

Character string
•

	

Record File Address (RFA)
Integer data is stored as binary values in a byte, word, or longword . These
storage formats correspond to the BASIC-PLUS-2 data type keywords BYTE,
WORD, and LONG; these are all subtypes of the type INTEGER .

1-12 Program Elements and Structure

Floating-point values are stored using a signed exponent and a binary fraction .
BASIC-PLUS-2 allows only single and double floating-point formats . These
storage formats correspond to the BASIC-PLUS-2 data-type keywords
SINGLE and DOUBLE; these are both subtypes of the type REAL .
Character data consists of strings of bytes containing ASCII codes . The first
character in the string is stored in the first byte, the second character is stored
in the second byte, and so on . BASIC-PLUS-2 allows up to 32767 characters
for a STRING data element .
In addition to this data type, BASIC-PLUS-2 also recognizes a special RFA
data type to provide information about a record's file address . An RFA uniquely
specifies a record in a file : you can access RMS files of any organization by the
record's file address . By specifying the disk address of a record, RMS retrieves
the record at that address . Accessing records by RFA is more efficient and
faster than other forms of random record access . The RFA data type can only
be used for the following :

•

	

RFA operations (the GETRFA function and the GET and FIND statements)
•

	

Assignments to other variables of the RFA data type
•

	

Comparisons with other variables of the RFA data type with the equal to
(=) and not equal to (<>) relational operators

•

	

Formal and actual parameters
•

	

DEF and function results
You cannot declare a constant of the RFA data type, nor can you use RFA
variables for any arithmetic operators .
The RFA data type requires six bytes of information. See the BASIC-PLUS-2
User's Guide for more information on Record File Addresses and the RFA data
type .
Table 1-2 lists BASIC-PLUS-2 data type keywords and summarizes
BASIC-PLUS-2 data types .

Program Elements and Structure 1-13

1-14 Program Elements and Structure

In Table 1-2, REAL and INTEGER are generic data type keywords that
specify floating-point and integer storage, respectively . If you use the REAL or
INTEGER keywords to type data, the actual data type (SINGLE, DOUBLE,
BYTE, WORD, or LONG) depends on the current default . If you do not
explicitly type one of the appropriate subtypes, BASIC-PLUS-2 uses the
current subtype defaults for REAL and INTEGER.

You can specify data type defaults with qualifiers in the BASIC command at
DCL level, with the SET and COMPILE commands in the BASIC environment,
or with the OPTION statement in a program module. You can also specify
whether program values are to be typed implicitly or explicitly. The following
sections discuss data type defaults and implicit and explicit data typing .

Table 1-2 BASIC-PLUS-2 Data Types

Data Type
Keyword

	

Size

	

Range
Precision
(Decimal Digits)

Integer

BYTE

	

8 bits

	

-128 to +127
WORD

	

16 bits

	

-32768 to +32767
LONG

	

32 bits

	

-2147483648 to
+2147483647

NA
NA
NA

Real

SINGLE

	

32 bits

	

.29 * 10 -38 to
1.7 * 1038

DOUBLE

	

64 bits

	

.29 * 10 -38 to
1.7 * 10 38

6

16

String

STRING

	

One

	

Max = 32767
character
per byte

NA

R FA

RFA

	

6 bytes

	

NA NA

1 .3.1 Implicit Data Typing
You can implicitly assign a data type to program values by adding a suffix to
the variable name or integer constant . If you do not specify any suffix, the
variable or integer constant is assigned the current default data type . The
following rules apply for implicit data typing :

•

	

A dollar sign suffix ($) specifies STRING storage .

•

	

A percent sign suffix (%) specifies INTEGER storage .

•

	

No special suffix character specifies storage of the default type, which can
be INTEGER or REAL .

With implicit data typing, the range and precision for program values are
determined by the corresponding default data sizes or subtypes :

•

	

BYTE, WORD, or LONG for INTEGER values

•

	

SINGLE, or DOUBLE for REAL values
The default data type is determined by one of the following :

•

	

The system default (REAL)
•

	

The default data type set by the BASIC command at DCL level
•

	

The data type set for the BASIC environment with the SET or COMPILE
compiler command

•

	

The data type set for the BASIC environment with the BASIC statement
OPTION

The BASIC-PLUS-2 qualifiers for the SET and COMPILE commands are
described in Chapter 2 of this manual .
Note that if you compile your program with the /TYPE DEFAULT=EXPLICIT
qualifier, you can still add the appropriate suffixes to your variable names or
constant values . The suffixes are useful because they identify the data type
of the variable or constant immediately ; the reader does not have to refer to
the declarations at the top of the program to see which data type applies to
a particular program value. However, with the /TYPE DEFAULT=EXPLICIT
qualifier you must still explicitly assign data types to all program values, or
BASIC-PLUS-2 signals an error .
It is considered good programming practice to use explicit data typing because
implicit data typing is dependent on compilation defaults . These defaults may
change, thereby affecting the precision of the program values .

Program Elements and Structure 1-15

1 .3.2 Explicit Data Typing
Explicit data typing means that you use a declarative statement to specify the
type, range, and precision of data values . Declarative statements associate
attributes such as data type and value with user identifiers .
In the following example, the first DECLARE statement associates the constant
value 03060 and the STRING data type with a constant named zip code . The
second DECLARE statement associates the STRING data type with emp_
name, the DOUBLE data type with with tax, and the SINGLE data type
with int rate . No constant values are associated with identifiers in the second
DECLARE statement because the keyword CONSTANT does not appear ; the
identifiers are variable names .
Example
100 DECLARE STRING CONSTANT zip code = "03060"

DECLARE STRING emp name, DOUBLE with-Lax, SINGLE int rate

With explicit data typing, each program variable within a program can have a
different range and precision . You can explicitly assign data types to variables,
constants, arrays, parameters, and functions ; otherwise, compilation defaults
apply.
Program values that you explicitly type as INTEGER will be compiled
as BYTE, WORD, or LONG, depending on the default set by compilation
qualifiers, the COMPILE or SET commands, or with the OPTIONS statement .
Similarly, program values that you explicitly type as REAL are compiled as
SINGLE or DOUBLE .
The /TYPE DEFAULT=EXPLICIT qualifier or OPTION TYPE=EXPLICIT
statement allows you to specify that all program data must be explicitly
typed. Compiling a program with /TYPE DEFAULT= EXPLICIT or specifying
OPTION TYPE=EXPLICIT means that any program value not explicitly
declared causes BASIC-PLUS-2 to signal an error .

It is recommended that you use the explicit data typing features of
BASIC-PLUS-2 for new applications . See the BASIC-PLUS-2 User's Guide
for more information .

1 .4 Variables
A variable is a named quantity whose value can change during program
execution. Each variable name refers to a location in the program's storage
area. Each location can hold only one value at a time. Variables of all data
types can have subscripts that indicate their position in an array . You can
declare variables implicitly or explicitly .

1-16 Program Elements and Structure

Depending on the program operations specified, the value of a variable can
change from statement to statement. BASIC-PLUS-2 uses the most recently
assigned value when performing calculations . This value remains in effect
until a new value is assigned to the variable .
BASIC-PLUS-2 accepts these general types of variables :
•

	

Floating-point
•

	

Integer
•

	

String
•

	

RFA
See the BASIC-PLUS-2 User's Guide for more information on RFA variables .

1 .4.1 Variable Names
The name given to a variable depends on whether the variable is internal or
external to the program and whether the variable is implicitly or explicitly
declared .
Variable names must conform to the following rules :
•

	

The first character of all variable names must be an upper- or lowercase
alphabetic character (A through Z) .

•

	

Variable names cannot contain embedded spaces .
•

	

Reserved BASIC-PLUS-2 keywords are not allowed as variable names .
•

	

Internal variable names must conform to the following rules :
Contain 1 to 31 characters

- Each character following the first can be an upper- or lower-case letter
(A through Z), a digit (0 through 9), a dollar sign ($), underscore (_), or
period (.)

- The last character can be a dollar sign ($) to denote a string variable or
a percent sign to denote an integer variable

•

	

External variable names must conform to the following rules :
Be explicitly declared
Contain 1 to 6 characters
Each character following the first can be an upper- or lower-case letter
(A through Z), a digit (0 through 9), a dollar sign ($), or period (.)

Program Elements and Structure 1-17

1 .4.2 Implicitly Declared Variables
BASIC-PLUS-2 accepts three types of implicitly declared variables :
•

	

Integer
•

	

String
•

	

Floating-point (or the default data type)
The name of an implicitly declared variable defines its data type . Integer
variables end with a percent sign (%), string variables end with a dollar
sign ($), and variables of the default type (usually floating-point) end with
any allowable character except a percent sign or dollar sign . All three types of
variables must conform to the rules listed in Section 1 .4.1 for naming variables .
The current data type default (INTEGER, or REAL) determines the data type
of implicitly declared variables that do not end in a percent sign or dollar sign .
A floating-point variable is a named location that stores a single-precision
floating-point value . The current default size for floating-point numbers
(SINGLE or DOUBLE) determines the data type of the floating-point variable .
The following are valid floating-point variable names :

If a numeric value of a different data type is assigned to a floating-point
variable, BASIC-PLUS-2 converts the value to a floating-point number.

An integer variable is a named location that stores a single integer value .
The current default size for integers (BYTE, WORD, or LONG) determines
the data type of an integer variable . The following are valid integer variable
names :

If the default data type is INTEGER, the percent suffix (%) is not necessary .
If you assign a floating-point value to an integer variable, BASIC-PLUS-2
truncates the fractional portion of the value . It does not round to the nearest
integer. For example :
100

	

B% = -5 .7

BASIC-PLUS-2 assigns the value -5, not -6, to the integer variable .

1-18 Program Elements and Structure

C L . . . 5 ID NUMBER
M1 BIG47 STORAGE LOCATION FOR XX
F67T J Z2 . STRESS VALUE

ABCDEFG% C_8% RECORD NUMBER%
B% D6E7% THE VALUE I WANT%

A string variable is a named location that stores strings . The following are
valid string variable names :

Strings have both value and length . BASIC-PLUS-2 sets all string variables
to a default length of zero before program execution begins, with the exception
of those variables in a COMMON, MAP, or virtual array. See the COMMON
statement and the MAP statement in Chapter 4 of this manual for information
on string length in COMMON and MAP areas . See the BASIC-PLUS-2 User's
Guide for information on default string length in virtual arrays .
During execution, the length of a character string associated with a string
variable can vary from zero (signifying a null or empty string) to 32767
characters .
Note that a program cannot have external, implicitly declared variable names
since all implicitly declared names except SUB subprogram names are internal
to the program .

1 .4.3 Explicitly Declared Variables
BASIC-PLUS-2 lets you explicitly assign a data type to a variable or an array.
For example :
100 DECLARE DOUBLE Interest rate

Data type keywords are described in Section 1 .1.3.1. For more information on
explicit declaration of variables, see the sections on the COMMON, DECLARE,
DIMENSION, DEF, FUNCTION, EXTERNAL, MAP, and SUB statements in
Chapter 4 of this manual . See also the BASIC-PLUS-2 User's Guide .

1 .4.4 Subscripted Variables and Arrays
A subscripted variable references an element of an array. Arrays can be of
any valid data type . Subscripted variables and arrays follow the same naming
conventions as unsubscripted variables . Subscripts follow the variable name in
parentheses and define the variable's position in the array. When you create an
array, you specify the maximum size of the array (the bounds) in parentheses
following the array name .
In the following example, the DECLARE statement sets the bounds of the
array emp name to 1000. Therefore, the maximum value for an emp name
subscript is 1000 . The bounds of the array define the maximum value for a
subscript of that array .

Program Elements and Structure 1-19

C1$ M$ EMPLOYEE NAME$
L-6$ F34G$ TARGET RECORD$
ABC1$ T.$ STORAGE-SHELF IDENTIFIER$

Example
100 DECLARE STRING emp name(1000)
200 FOR 1% = 0% TO 1000%

INPUT "Employee name" ;emp name(I%)
NEXT I%

Subscripts can be any positive WORD integer value from 0 through 32767 .

Note
By default, BASIC-PLUS-2 signals an error if a subscript is larger
than the allowable range . Note, however, that the amount of storage
the system can allocate depends on available memory . Therefore, very
large arrays may cause an internal allocation error even though the
subscript is still within the specified range .

An array is a set of data ordered in any number of dimensions . A one-
dimensional . array, like emp name(1000), is called a list or vector . A two-
dimensional array, like payroll data(5,5), is called a matrix. An array of more
than two dimensions, like big array(15,9,2), is called a tensor .

BASIC-PLUS-2 arrays are always zero based . The number of elements in
any dimension always includes element number zero . For example, the array
emp name contains 1001 elements, since BASIC-PLUS-2 allocates element
zero . Payroll data(5,5) contains 36 elements because BASIC-PLUS-2 allocates
row and column zero. For all arrays except virtual arrays, the total number of
array elements cannot exceed 32767 .
BASIC-PLUS-2 arrays can have up to eight dimensions . You can specify
the type of data the array contains with data type keywords . Table 1-2 lists
BASIC-PLUS-2 data types .
An element in a one-dimensional array has a variable name followed by one
subscript in parentheses . There can be a space between the array name and
the subscript. For example :
A(6%)

B (6%)

C$ (6%)

A(6%) refers to the seventh item in this list :
A(0%)

	

A(1%)

	

A(2%)

	

A(3%)

	

A(4%)

	

A(5%)

	

A(6%)

1-20 Program Elements and Structure

An element in a two-dimensional array has two subscripts, in parentheses,
following the variable name . The first subscript specifies the row number and
the second subscript specifies the column number. Use a comma to separate
the subscripts. You can include a space between the array name and the
subscripts if you like . For example :
A (7%,2%)

	

A%(4%,6%)

	

A$ (10%,100)

In the following figure, the arrow points to the element specified by the
subscripted variable A%(4%,6%) :

Figure 1-1 Subscripted Variables

COLUMNS

0 1 2 3 4 5 6

8 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
W 2 0000000
S 3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 04 A%(4%,6%)
NU-2242A-RA

An element in an array has as many subscripts as there are dimensions .

Although a program can contain a variable and an array with the same name,
this is poor programming practice . Variable A and the array A(3%,3%) are
separate entities and are stored in completely separate locations, so it is a good
idea to give them different names .
Note that a program cannot contain two arrays with the same name but a
different number of subscripts . For example, the arrays A(3%) and A(3%,3%)
are invalid in the same program .

BASIC-PLUS-2 arrays can be redimensioned at run time. See the
BASIC-PLUS-2 User's Guide for more information on arrays .

1 .4.5 Initialization of Variables
BASIC-PLUS-2 sets variables to zero or null values at the start of program
execution. Variables initialized by BASIC-PLUS-2 include the following :

•

	

Numeric variables and in-storage array elements (except those in MAP or
COMMON statements) .

•

	

String variables (except those in MAP or COMMON statements) .

Program Elements and Structure 1-21

• Variables in subprograms . Subprogram variables are initialized to zero or
the null string each time the subprogram is called .

BASIC-PLUS-2 does not initialize the following :
•

	

Virtual arrays
•

	

Variables in MAP and COMMON areas

Note

Variables in a MAP statement referenced in an OPEN statement are
initialized to zero or the null string when the file is opened . You can
also use MACRO-11 routines to initialize MAP and COMMON areas .
See the BASIC-PLUS-2 User's Guide for more information .

1 .5 Constants
A constant is a numeric or character literal that does not change during
program execution . A constant can also be named and associated with a data
type. BASIC-PLUS-2 allows the following types of constants :
•

	

Numeric :
- Floating-point
- Integer

•

	

String (ASCII characters enclosed in quotation marks)
A constant of any of these data types can be named with the DECLARE
CONSTANT statement . You can then refer to the constant by name in your
program. Refer to Section 1 .5 .3 for information on naming constants .
You can also use a special numeric literal notation to specify the value and data
type of a numeric literal. Numeric literal notation is discussed in Section 1 .5.4 .

If you do not specify a data type for a numeric constant with the DECLARE
CONSTANT statement or with numeric literal notation, the type and size of
the constant is determined by the default REAL, or INTEGER type set with
the SET or COMPILE commands, or with the OPTION statement .
To simplify the representation of certain ASCII characters and mathematical
values, BASIC-PLUS-2 also supplies some predefined constants .
The following sections discuss numeric and string constants, named constants,
numeric literal notation, and predefined constants .

1-22 Program Elements and Structure

1 .5.1 Numeric Constants
A numeric constant is a literal or named constant whose value never
changes. In BASIC-PLUS-2, a numeric constant can be either a floating-point
number or an integer. The type and size of a numeric constant is determined
by the following :
•

	

The system default values
•

	

The data type qualifiers specified with the COMPILE command
•

	

The defaults set by the SET command
•

	

The data type specified in a DECLARE CONSTANT or OPTION statement

•

	

Numeric literal notation
If you use a declarative statement to name and declare the data type of
a numeric constant, the constant is of the type and size specified in the
statement. For example :
30 DECLARE BYTE CONSTANT age = 12

This example associates the numeric literal 12 and the BYTE data type with
the identifier age . To specify a data type for an unnamed numeric constant,
you must use the numeric literal notation format described in Section 1 .5 .4 .

1 .5 .1 .1 Floating-Point Constants

A floating-point constant is a literal or named constant with one or more
decimal digits, either positive or negative, with an optional decimal point
and an optional exponent (E notation) . If the default data or constant type is
INTEGER, BASIC-PLUS-2 will treat the literal as an INTEGER, unless it
contains a decimal point or is in E notation .
The following are examples of floating-point literals if the default data type is
REAL:
-8 .738

	

239 .21E-6

	

.79

	

299

The following are examples of floating-point literals if the default data type is
INTEGER :
-8 .738

	

239 .21E-6

	

.79

	

299 .

Very large and very small numbers can be represented in E (exponential)
notation . If a positive number appears in E notation, it can be preceded by an
optional plus sign (+) . A negative number in E notation must be preceded by
a minus sign (-) . A number can be carried to a maximum of 6 decimal places
for SINGLE precision, and 16 decimal places for DOUBLE precision .

Program Elements and Structure 1-23

To indicate E notation, a number must be followed by the letter E . It also must
be followed by an exponent sign and an exponent . The exponent sign indicates
if the exponent is either positive or negative and is optional only if you are
specifying a positive exponent . The exponent is an integer constant (the power
of 10) .
Table 1-3 compares numbers in standard and E notation .

Table 1-3 Numbers in E Notation

The range and precision of floating-point constants are determined by the
current default data types or the explicit data type used in the DECLARE
CONSTANT statement . However, there are limits to the range allowed for
numeric data types . Table 1-2 lists BASIC-PLUS-2 data types and ranges .
BASIC-PLUS-2 signals the fatal error "Floating point error or overflow" when
your program attempts to specify a constant value outside of the allowable
range for a floating-point data type .

1 .5 .1 .2 Integer Constants

An integer constant is a literal or named constant, either positive or
negative, with no fractional digits and an optional trailing percent sign (%) .
The percent sign is required for integer literals and constants only if the
default type is not INTEGER .
The following are examples of integer constants if the default data type is
REAL:
812570

	

-3477%

	

79%

The following are examples of integer constants if the default data type is
INTEGER :
81257

	

-3477

	

79

1-24 Program Elements and Structure

Standard Notation E Notation

.0000001 .1E-06

1,000,000 .1E+07

-10,000,000 -.1E+08

100,000,000 .1E+09
1,000,000,000,000 .1E+13

The range of allowable values for integer constants is determined by either
the current default integer data type or the explicit data type used in the
DECLARE CONSTANT statement . Table 1-2 lists BASIC-PLUS-2 data types
and ranges . BASIC-PLUS-2 signals the error "Integer error or overflow" for
an integer constant outside the applicable range .
If you want BASIC-PLUS-2 to treat numeric literals as integer numbers, you
must do one of the following :
•

	

Set the default data type to INTEGER
•

	

Specify OPTION CONSTANT TYPE = INTEGER
•

	

Make sure the literal has a percent sign suffix

•

	

Use explicit literal notation
The BASIC-PLUS-2 compiler must convert numeric literals when assigning
them to integer variables if they have different data types . This means that
your program runs somewhat slower than it would if integer values were
explicitly declared . You can prevent this conversion step if you do the following :

•

	

Set the default data type to INTEGER

•

	

Specify OPTION CONSTANT TYPE = INTEGER

•

	

Use percent signs for integer constants

•

	

Use numeric literal notation

•

	

Use named integer constants

Note	
You cannot use percent signs in integer constants that appear in DATA
statements. An attempt to do so causes BASIC-PLUS-2 to signal the
error message "Data format error" (ERR=50) .

1 .5.2 String Constants
String constants are either string literals or named constants. A string
literal is a series of characters enclosed in string delimiters . Valid string
delimiters are as follows :
•

	

Double quotation marks (, -text-,)
•

	

Single quotation marks (, text')

Program Elements and Structure 1-25

You can embed double quotation marks within single quotation marks ('this
is a text" string') and vice versa (- , this is a 'text' string") . Note, however,
that BASIC-PLUS-2 does not accept incorrectly paired quotation marks and
that only the outer quotation marks must be paired . The following character
strings, for example, are valid :
"The record number does not exist ."
"I'm here!"
"The terminating 'condition' is equal to A$."
"REPORT 543"

The following strings are not valid :
"Quotation marks that do not match'
"No closing quotation mark

Characters in string constants can be letters, numbers, spaces, tabs, or any
ASCII character except a line terminator or the NUL character (ASCII code
0). If you need a string constant that contains a NUL, you should use the
NUL predefined constant, or explicit literal notation . See Section 1 .5 .4 in this
manual for information on explicit literal notation .
The BASIC-PLUS-2 compiler determines the value of the string constant by
scanning all its characters . For example, because of the number of spaces
between the delimiters and the characters, these two string constants are not
the same :

11

	

END-OF-FILE REACHED
"END-OF-FILE REACHED"

BASIC-PLUS-2 stores every character between delimiters exactly as you type
it into the source program, including the following :
•

	

Lowercase letters (a through z)
•

	

Leading, trailing, and embedded spaces
•

	

Tabs
•

	

Special characters
The delimiting quotation marks are not printed when the program is executing .
The value of the string constant does not include the delimiting quotation
marks .
Example
300 PRINT "END-OF-FILE REACHED"

END

1-26 Program Elements and Structure

Output
END-OF-FILE REACHED

Note, however, that BASIC-PLUS-2 prints double or single quotation marks
when they are enclosed in a second paired set :

Example
20 PRINT 'FAILURE CONDITION : "RECORD LENGTH"'

END

Output
FAILURE CONDITION : "RECORD LENGTH"

1 .5.3 Named Constants
BASIC-PLUS-2 allows you to name constants . You can assign a name to a
constant that is either internal or external to your program and refer to the
constant by name throughout the program. This naming feature is useful for
the following reasons :
•

	

If a commonly used constant must be changed, you need to make only one
change in your program .

•

	

A logically named constant makes your program easier to understand .
You can use named constants anywhere you can use a constant, for example, to
specify the number of elements in an array.
You cannot change the value of an explicitly named constant during program
execution. To change the value of a constant, you must change the program
statement that names the constant and declares its value, and then recompile
the program .

1 .5.3.1 Naming Constants Within a Program Unit
You name constants within a program unit with the DECLARE statement .

Example
20 DECLARE DOUBLE CONSTANT preferred-rate = .147

DECLARE SINGLE CONSTANT normal-rate = . 162
DECLARE DOUBLE CONSTANT risky_rate = .175

new bal = old bal * (1 + preferred_rate)^years_payment

When interest rates change, only three lines have to be changed rather than
every line that contains an interest rate constant .

Program Elements and Structure 1-27

Constant names must conform to the rules for naming internal, explicitly
declared variables listed in Section 1 .4.1. Note that constant names cannot
have embedded spaces .
The value associated with a named constant can be a compile-time expression
as well as a literal value, as shown in the following example :

Example
20 DECLARE STRING CONSTANT Congrats = &

"+

	

+" + LF + CR +

	

&
"I Congratulations! I" + CR + CR + &
"	

80 PRINT Congrats

100 PRINT Congrats

Named constants can save you programming time because you do not have to
retype the value every time you want to display it . Named constants can save
you execution time because the named constant is known at compilation time .
Valid operators in DECLARE CONSTANT expressions include all valid
arithmetic, relational, and logical operators except exponentiation . You cannot
use built-in functions in DECLARE CONSTANT expressions .
You can specify the value of a constant with an expression for STRING and
INTEGER data types, but not for floating-point constants . Only STRING and
INTEGER constants can be named as expressions in DECLARE CONSTANT
statements. The following example illustrates the concept of naming constants
as expressions :
50 DECLARE DOUBLE CONSTANT &

min_value = 0
max value = PI

You can specify only one data type in a DECLARE CONSTANT statement . To
declare a constant of a different data type, you must use a second DECLARE
CONSTANT statement.

1 .5 .3.2 Naming Constants External to a Program Unit
To declare constants outside the program unit, use the EXTERNAL statement .

1-28 Program Elements and Structure

Example
50 EXTERNAL WORD CONSTANT IE .SUC

This line declares IE .SUC, a success code, to be an external WORD constant .
BASIC-PLUS-2 allows only WORD constants . The task builder supplies the
values for the constants specified in EXTERNAL statements .
External constant names cannot exceed six characters and must conform to
the rules for naming external variables listed in Section 1 .4.1. No external
constant name can have embedded spaces . In BASIC-PLUS-2, the named
constant might be a a global constant declared in a MACRO-11 program or an
RMS-11 constant.

1 .5.4 Explicit Literal Notation
You can specify the value and data type of numeric literals by using a special
notation called explicit literal notation . The format of this notation is as
follows :
[radix] [sign] num-str-lit [data-type]
Radix specifies an optional base, which can be any of the following :

A ASCII
R RAD-50
•

	

Decimal (base 10)
•

	

Binary (base 2)
•

	

Octal (base 8)
•

	

Hexadecimal (base 16)
The BASIC-PLUS-2 default radix is decimal . Binary, octal, and hexadecimal
notation allow you to set or clear individual bits in the representation of an
integer. This feature is useful in forming conditional expressions and in using
logical operations . The ASCII radix causes BASIC-PLUS-2 to translate a
single ASCII character to its decimal equivalent . This decimal equivalent is an
INTEGER value ; you specify whether the INTEGER subtype should be BYTE,
WORD, or LONG .
Sign is required only when specifying a negative numeric string value. It must
be outside the quoted string.
Num-str-lit is a numeric string literal . It can be the digits 0 and 1 when the
radix is binary, the digits 0 through 7 when the radix is octal, the digits 0
through F when the radix is hexadecimal, and the digits 0 through 9 when the
radix is decimal. When the radix is ASCII, num-str-lit can be any valid ASCII
character. When the radix is RAD-50, num-str-lit must be exactly three valid

Program Elements and Structure 1-29

RAD-50 characters; if less than three characters are required, pad with spaces
on the left or right .

Data-type is an optional single letter that corresponds to a data type keyword,
excluding INTEGER and REAL :

B BYTE
W WORD
L LONG
F SINGLE
D DOUBLE
C CHARACTER

For example :

R" $"B

	

Specifies a BYTE decimal constant with a value of 27
R"ABC"W Specifies a WORD decimal constant with a value of 1683
D ,, 255 " L

	

Specifies a LONG decimal constant with a value of 255
"4000"F

	

Specifies a SINGLE decimal constant with a value of 4000
-" 125"B

	

Specifies a BYTE decimal constant with a value of -125
A"M"L

	

Specifies a LONG integer constant with a value of 77
A"m"B

	

Specifies a BYTE integer constant with a value of 109

If you specify a binary, octal, or hexadecimal radix, data-type must be an
integer. If you do not specify a data type, BASIC-PLUS-2 uses the default
integer data type. For example :

B ,, 11111111 " B

	

Specifies a BYTE binary constant with a value of -1
B " 11111111 " W

	

Specifies a WORD binary constant with a value of 255
B ,, 11111111 "

	

Specifies a binary constant of the default data type (BYTE, WORD,
or LONG)

B° 11111111"F

	

Is illegal because F is not an integer data type
X"FF"B

	

Specifies a BYTE hexadecimal constant with a value of-1
X"FF"W

	

Specifies a WORD hexadecimal constant with a value of 255
X' , FF' , D

	

Is illegal because D is not an integer data type
0,,377,,B

	

Specifies a BYTE octal constant with a value of -1
O " 377 " W

	

Specifies a WORD octal constant with a value of 255

When you specify a radix other than decimal, overflow checking is performed
as if the numeric string were an unsigned integer. However, when this value is
assigned to a variable or used in an expression, the BASIC-PLUS-2 compiler
treats it as a signed integer .

1-30 Program Elements and Structure

In the following example, BASIC-PLUS-2 sets all eight bits in storage location
A. Because A is a BYTE integer, it has only eight bits of storage. Because the
8-bit two's complement of 1 is 11111111, its value is -1 . If the data type were
W (WORD), BASIC-PLUS-2 would set the bits to 0000000011111111, and its
value would be 255 .

Example
50 DECLARE BYTE A

A = B"11111111"B
PRINT A

Output
-1

Note

In BASIC-PLUS-2, the letter D can appear in both the radix position
and the data type position . A letter D in the radix position specifies
that the numeric string is to be treated as a decimal number (base 10) .
A letter D in the data type position specifies that the value is to be
treated as a double-precision, floating-point constant .

You can use explicit literal notation to represent a single-character string in
terms of its 8-bit ASCII value. For example :

[radix] num-str-lit C
The lette. C is an abbreviation for CHARACTER . The value of the numeric
string must be from 0 through 255 . This feature lets you create your own
compile-time string constants containing nonprinting characters .

The following example declares a string constant named control' (ASCII
decimal value 7) . When BASIC-PLUS-2 executes the PRINT statement, the
terminal bell sounds .

Example
30 DECLARE STRING CONSTANT control_g = "7"C

PRINT control_g

Program Elements and Structure 1-31

1 .5.5 Predefined Constants

Predefined constants are symbolic representations of either ASCII
characters or mathematical values . They are also called compile-time constants
because their value is known at compilation rather than at run time .

Predefined constants help you do the following :

Format program output to improve readability

Make source code easier to understand

Table 1-4 lists the predefined constants supplied by BASIC-PLUS-2, their
ASCII values, and their functions .

Table 1-4 Predefined Constants

1-32 Program Elements and Structure

(continued on next page)

Constant
Decimal
ASCII Value Function

BEL (Bell) 7 Sounds the terminal bell
BS (Backspace) 8 Moves the cursor one position to the left
HT (Horizontal Tab) 9 Moves the cursor to the next horizontal

tab stop
LF (Line Feed) 10 Moves the cursor to the next line
VT (Vertical Tab) 11 Moves the cursor to the next vertical tab

stop
FF (Form Feed) 12 Moves the cursor to the start of the next

page
CR (Carriage Return) 13 Moves the cursor to the beginning of the

current line
SO (Shift Out) 14 Shifts out for communications

networking, screen formatting, and
alternate graphics

SI (Shift In) 15 Shifts in for communications network-
ing, screen formatting, and alternate
graphics

Table 1-4 (Cont.) Predefined Constants

Decimal
Constant

	

ASCII Value

	

Function

ESC (Escape)

	

27

	

Marks the beginning of an escape
sequence

SP (Space)

	

32

	

Inserts one blank space in program
output

DEL (Delete)

	

127

	

Deletes the last character entered
PI None Represents the number PI with the

precision of the default floating-point
data type

You can use predefined constants in many ways. For instance, the following
example shows how to print and underline a word on a hardcopy terminal .

Example
400 PRINT "NAME :" + BS + BS + BS + BS + BS +	"

END

Output
NAME :

The following example shows how to print and underline a word on a VT100
terminal screen :

Example
400 PRINT ESC + "[4mNAME :" + ESC + "[[m"

END

Output
NAME :

Note that the m in the above example must be lowercase .

You can also create your own predefined constants with the DECLARE
CONSTANT statement .

In the following example, the first DECLARE statement defines
underlined name as a string constant . The second DECLARE statement
defines D PI as a DOUBLE constant equal to the predefined constant PI . If the
default REAL data size is SINGLE, the program can use both single-precision
PI and double-precision DPI.

Program Elements and Structure 1-33

Example
40 DECLARE STRING CONSTANT underlined name = ESC + "[4mNAME :" + ESC + "[0m"

DECLARE DOUBLE CONSTANT DPI = PI
PRINT underlined-name
PRINT D_PI„PI

1 .6 Expressions
BASIC-PLUS-2 expressions consist of operands (numbers, strings, constants,
variables, functions, and array elements) separated by arithmetic, string,
relational, and logical operators .
Almost all BASIC-PLUS-2 expressions yield numeric values . The only
exceptions are string concatenation expressions and invocations of string-
valued functions . By using different combinations of numeric operators and
operands, and by using the resulting values, you can produce the following :

•

	

Numeric expressions
•

	

String expressions
•

	

Conditional expressions
BASIC-PLUS-2 evaluates expressions according to operator precedence and
uses the results in program execution . Parentheses can be used to group
operands and operators, thus controlling the order of evaluation .
BASIC-PLUS-2 does not detect integer or floating-point overflow when
evaluating expressions . You must make sure that your calculations do not
overflow ; otherwise, the results will be unpredictable .
The following sections explain the types of expressions you can create and the
way BASIC-PLUS-2 evaluates expressions .

1 .6.1 Numeric Expressions
Numeric expressions consist of floating-point or integer operands separated by
arithmetic operators and optionally grouped by parentheses . Table 1-5 shows
how numeric operators work in numeric expressions .

1-34 Program Elements and Structure

Table 1-5 Arithmetic Operators

In general, two arithmetic operators cannot occur consecutively in the same
expression. Exceptions are the unary plus and unary minus . The following
expressions are valid :
A * + B

A * - B

A * (-B)

A * + - + - B

The following expression is not valid :
A

	

* B

An operation on two numeric operands of the same data type yields a result of
that type. For example :

A% + B%

	

Yields an integer value of the default type
G3 * M5

	

Yields a floating-point value if the default type is REAL
It is possible to assign a value of one data type to a variable of a different data
type. When this occurs, the data type of the variable overrides the data type of
the assigned value . The following example assigns the value 32 to the integer
variable A% even though the floating-point value of the expression is 32 .13 .
200 A% = 5 .1 * 6 .3

When an expression contains operands with different data types, the data type
of the result is determined by BASIC-PLUS-2's data type promotion rules :

•

	

With one exception, BASIC-PLUS-2 promotes operands with different data
types to the lowest common data type that can hold the largest or most
precise possible value of either operand's data type . BASIC-PLUS-2 then
performs the operation using that data type, and yields a result of that
data type .

Program Elements and Structure 1-35

Operator Example Use

+ A+B Add Bto A
A-B Subtract B from A
A * B Multiply A by B

/ A / B Divide A by B
A AAB Raise A to the power B
** A**B Raise A to the power B

• The exception is that when an operation involves SINGLE and LONG data
types, BASIC-PLUS-2 promotes the LONG data type to SINGLE rather
than DOUBLE, performs the operation, and yields a result of the SINGLE
data type .

Note that BASIC-PLUS-2 does sign extension when converting BYTE and
WORD integers to a higher INTEGER data type (WORD or LONG) . The
high-order bit (the sign bit) determines how the additional bits are set when
the BYTE or WORD is converted to WORD or LONG . If the high-order bit is
zero (positive), all higher-order bits in the converted BYTE or WORD are set to
zero. If the high-order bit is 1 (negative), all higher-order bits in the converted
BYTE or WORD are set to 1 .

Table 1-6 lists the data type results possible in numeric expressions that
combine BYTE, WORD, LONG, SINGLE, and DOUBLE data .

Table 1-6 Result Data Types in BASIC-PLUS-2 Expressions

For example, if one operand is SINGLE and one operand is DOUBLE,
BASIC-PLUS-2 promotes the SINGLE value to DOUBLE, performs the
specified operation, and returns the result as a DOUBLE value . This
promotion is necessary because the SINGLE data type has less precision
than the DOUBLE value, whereas the DOUBLE data type can represent all
possible SINGLE values. If BASIC-PLUS-2 did not promote the SINGLE
value and the operation yielded a result outside of the SINGLE range, loss of
precision and significance would occur .

The data types BYTE, WORD, LONG, SINGLE, and DOUBLE form a simple
hierarchy: if all operands in an expression are of these data types, the result
of the expression is the highest data type used in the expression .

1-36 Program Elements and Structure

BYTE WORD LONG SINGLE DOUBLE

BYTE
WORD
LONG
SINGLE
DOUBLE

BYTE
WORD
LONG
SINGLE
DOUBLE

WORD
WORD
LONG
SINGLE
DOUBLE

LONG
LONG
LONG
SINGLE
DOUBLE

SINGLE
SINGLE
SINGLE
SINGLE
DOUBLE

DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE

1 .6.2 String Expressions
String expressions are string entities separated by the plus sign (+) . When
used in a string expression, the plus sign concatenates strings .

Example
80 INPUT "Type two words to be combined" ;A$, B$

C$ = A$ + B$
PRINT C$
END

Output
Type two words to be combined? rattle
? brained

rattlebrained
BASIC2

1 .6.3 Conditional Expressions
Conditional expressions can be either relational or logical expressions .
Numeric relational expressions compare numeric operands to determine
whether the expression is true or false . String relational expressions compare
string operands to determine which string expression occurs first in the ASCII
collating sequence .
Logical expressions contain integer operands and logical operators .
BASIC-PLUS-2 determines whether the specified logical expression is true or
false by testing the numeric result of the expression . Note that in conditional
expressions, as in any numeric expression, when BYTE and WORD operands
are converted to WORD and LONG, the specified operation is performed in
the higher data type, and the result returned is also of the higher data type .
When one of the operands is a negative value, this conversion will produce
accurate but perhaps confusing results, because BASIC-PLUS-2 performs a
sign extension when converting BYTE and WORD integers to a higher integer
data type. See Section 1 .6.1 for information on integer conversion rules .

1 .6.3 .1 Numeric Relational Expressions
Operators in numeric relational expressions compare the values of two
operands and return either a -1 if the relation is true or a zero if the relation
is false. The data type of the result is the default integer type .

Program Elements and Structure 1-37

Example 1
10 A = 10

B = 15
X% = (A <> B)

20 IF X% = -1%
THEN PRINT 'Relationship is true'
ELSE PRINT 'Relationship is false'

END IF

Output 1
Relationship is true

Example 2
10 A = 10

B = 15
X% =A=B

20 IF X% = -1%
THEN PRINT 'Relationship is true'
ELSE PRINT 'Relationship is false'

END IF

Output 2
Relationship is false

1-38 Program Elements and Structure

Table 1-7 shows how numeric operators work in numeric relational
expressions .

Table 1-7 Numeric Relational Operators

Operator Example Meaning

A=B A is equal to B .
< A < B A is less than B .
> A > B A is greater than B .
<= or =< A <= B A is less than or equal to B .
>= or => A >= B A is greater than or equal to B .
<> or >< A <> B A is not equal to B .
_= A == B A and B will print the same because they are equal to six

significant digits .

1 .6.3.2 String Relational Expressions
Operators in string relational expressions determine how BASIC-PLUS-2
compares strings . The BASIC-PLUS-2 compiler determines the value of
each character in the string by converting it to its ASCII value . See the
BASIC-PLUS-2 User's Guide for a list of ASCII values . BASIC-PLUS-2
compares the strings character by character, left to right, until it finds a
difference in ASCII value .
In the following example, BASIC-PLUS-2 compares A$ and B$ character by
character. The strings are identical up to the third character . Because the
ASCII value of Z (90) is greater than the ASCII value of C (67), A$ is less than
B$. BASIC-PLUS-2 evaluates the expression A$ < B$ as true (-1) and prints
"ABC comes before ABZ ."
Example
10 A$ = 'ABC'

B$ = 'ABZ'
20 IF A$ < B$

THEN PRINT 'ABC comes before ABZ'
ELSE IF A$ == B$

THEN PRINT 'The strings are identical'
ELSE IF A$ > B$

THEN PRINT 'ABC comes after ABZ'
ELSE PRINT 'Strings are equal but not identical'

END IF
END IF

END IF
END

If two strings of differing lengths are identical up to the last character in the
shorter string, BASIC-PLUS-2 pads the shorter string with spaces (ASCII
value 32) to generate strings of equal length, unless the operator is the double
equal sign (= =). If the operator is the double equal sign, BASIC-PLUS-2 does
not pad the shorter string .
In the following program, BASIC-PLUS-2 compares "ABCDE" to "ABC " to
determine which string comes first in the collating sequence . "ABC" comes
before "ABCDE" because the ASCII value for space (32) is lower than the
ASCII value of D (68) . Then BASIC-PLUS-2 compares "ABC " with "ABC"
using the double equal sign and determines that the strings do not match
exactly without padding. The third comparison uses the single equal sign .
BASIC-PLUS-2 pads "ABC" with spaces and determines that the two strings
match with padding .

Program Elements and Structure 1-39

Example
10 A$ = 'ABCDE'

B$ = 'ABC'
PRINT 'B$ comes before A$' IF B$ < A$
PRINT 'A$ comes before B$' IF A$ < B$
C$ = 'ABC '

IF B$ == C$
THEN PRINT 'B$ exactly matches C$'
ELSE PRINT 'B$ does not exactly match C$'

END IF

IF B$ = C$
THEN PRINT 'B$ matches C$ with padding'
ELSE PRINT 'B$ does not match C$'

END IF

Output
B$ comes before A$
B$ does not exactly match C$
B$ matches C$ with padding

Table 1-8 shows how numeric operators work in string relational expressions .

Table 1-8 String Relational Operators

Operator

	

Example

	

Meaning

A$ = B$ Strings A$ and B$ are identical after the shorter string
has been padded with spaces to equal the length of the
longer string.

<

	

A$ < B$

	

String A$ occurs before string B$ in ASCII sequence .
>

	

A$ > B$

	

String A$ occurs after string B$ in ASCII sequence .
<= or =<

	

A$ <= B$

	

String A$ is identical to or precedes string B$ in ASCII
sequence .

>= or =>

	

A$ >= B$

	

String A$ is identical to or follows string B$ in ASCII
sequence .

<> or ><

	

A$ <> B$

	

String A$ is not identical to string B$.
_=

	

A$ == B$

	

Strings A$ and B$ are identical in composition and
length, without padding .

1-40 Program Elements and Structure

BASIC-PLUS-2 treats unquoted strings typed in response to the INPUT
statement differently from quoted strings ; it does so by ignoring leading and
trailing spaces and tabs . For example, it evaluates the quoted strings "ABC"
and "ABC " as equal but not identical because the = = operator does not pad the
shorter string with spaces . When you input those same strings as unquoted
strings in response to the INPUT prompt, BASIC-PLUS-2 evaluates them

as equal and identical because it ignores the trailing spaces . The LINPUT
statement, on the other hand, treats unquoted strings as string literals, so
the trailing spaces are part of the string, and BASIC-PLUS-2 evaluates the
strings as equal but not identical .

1 .6 .3.3 Logical Expressions
A logical expression can have one of the following formats :

•

	

A unary logical operator and one integer operand
•

	

Two integer operands separated by a binary logical operator

•

	

One integer operand
Logical expressions are valid only when the operands are integers . If the
expression contains two integer operands of differing data types, the resulting
integer has the same data type as that of the higher integer operand. For
instance, the result of an expression that contains a BYTE integer and a
WORD integer would be a WORD integer . Table 1-6 shows how integer data
types interact with each other in expressions .
BASIC-PLUS-2 determines whether the condition is true or false by testing
the result of the logical expression to see whether any bits are set . If no
bits are set, the value of the expression is zero and it is evaluated as
false; if any bits are set, the value of the expression is nonzero and the
expression is evaluated as true . BASIC-PLUS-2 generally accepts any nonzero
value in logical expressions as true . However, logical operators can return
unanticipated results unless -1 is specified for true values and zero for false .
Table 1-9 lists the logical operators .

Note

It is recommended that you use logical operators on the results of
relational expressions to avoid obtaining unanticipated results .

Program Elements and Structure 1-41

Table 1-9 Logical Operators
Operator

	

Example

	

Meaning

NOT

	

NOT A%

	

The bit-by-bit complement of A% . If A% is true (-1),
NOT A% is false (0) .

AND

	

A% AND B%

	

The logical product of A% and B% . A% AND B% is true
only if both A% and B% are true .

OR A% OR B% The logical sum of A% and B% . A% OR B% is false only
if both A% and B% are false ; otherwise, A% OR B% is
true .

XOR

	

A% XOR B%

	

The logical exclusive OR of A% and B% . A% XOR B% is
true if either A% or B% is true but not if both are true .

EQV

	

A% EQV B%

	

The logical equivalence of A% and B% . A% EQV B%
is true if A% and B% are both true or both false ;
otherwise, the value is false .

IMP A% IMP B% The logical implication of A% and B% . A% IMP B% is
false only if A% is true and B% is false ; otherwise, the
value is true .

The truth tables in Figure 1-2 summarize the results of these logical
operations. Zero is false ; -1 is true .

1-42 Program Elements and Structure

Figure 1-2 Truth Tables

NU-2200A-RA

The operators XOR and EQV are logical complements .
In logical expressions any nonzero value is evaluated as true, while in
relational expressions a -1 is generated as a true value . Logical operators
set bits in the result of the expression ; any bit set is a nonzero value and is
evaluated as true. For this reason, it is important to use logical operators
on the results of relational expressions (the values of -1 and zero) to avoid
unanticipated results . In the following example, the values of A% and B% both
test as true because they are nonzero values . However, the logical AND of
these two variables returns an unanticipated result of false .

Example

A% = 2%
B%o = 4%o

IF A% THEN PRINT 'A% IS TRUE'
IF B% THEN PRINT 'B% IS TRUE'
IF A% AND B% THEN PRINT 'A% AND B% IS TRUE'

ELSE PRINT 'A% AND B% IS FALSE'
END

Program Elements and Structure 1-43

A% NOT A% A% B% A0/6 OR B%

0 -1 0 0 0
-1 0 0 -1 -1

-1 0 -1
-1 -1 -1

A% B% AO/6 AND B% A0/6 130/6 AO/6 EQV B%

0 0 0 0 0 -1
0 -1 0 0 -1 0

-1 0 0 -1 0 0
-1 -1 -1 -1 -1 -1

A% B% A0/6 XOR B% A0/6 130/6 A% IMP B%

0 0 0 0 0 -1
0 -1 -1 0 -1 -1

-1 0 -1 -1 0 0
-1 -1 0 -1 -1 -1

Output
A% IS TRUE
B% IS TRUE
A% AND B% IS FALSE

The program returns this seemingly contradictory result because logical
operators work on the individual bits of the operands . The 8-bit binary
representation of 2% is as follows :
0 0 0 0 0 0 1 0

The 8-bit binary representation of 4% is as follows :
0 0 0 0 0 1 0 0

Each value tests as true because it is nonzero . However, the AND operation on
these two values sets a bit in the result only if the corresponding bit is set in
both operands . Therefore, the result of the AND operation on 4% and 2% is as
follows :
0 0 0 0 0 0 0 0

No bits are set in the result, so the value tests as false (zero) .
If the value of B% is changed to 6%, the resulting value tests as true (nonzero)
because both 6% and 2% have the second bit set. Therefore, BASIC-PLUS-2
sets the second bit in the result and the value tests as nonzero and true .
The 8-bit binary representation of -1 is as follows :
1 1 1 1 1 1 1 1

The result of -1% AND -1% is -1% because BASIC-PLUS-2 sets bits in the
result for each corresponding bit that is set in the operands . The result tests
as true because it is a nonzero value .
Example
10 A% = -1%

B%o=- %
20 IF A% THEN PRINT 'A% IS TRUE'

IF B% THEN PRINT 'B% IS TRUE'
IF A% AND B% THEN PRINT 'A% AND B% IS TRUE'

ELSE PRINT 'A% AND B% IS FALSE'
END

1-44 Program Elements and Structure

Output
A% IS TRUE
B% IS TRUE
A% AND B% IS TRUE

Your program may also return unanticipated results if you use the NOT
operator with a nonzero operand that is not -1 .
In the following example, BASIC-PLUS-2 evaluates both A% and B% as true
because they are nonzero . NOTA% is evaluated as false (zero) because the
binary complement of -1 is zero . NOT B% is evaluated as true because the
binary complement of 2 has bits set and is therefore a nonzero value .

Example
10 A%=-1%

B%=2
IF A% THEN PRINT 'A% IS TRUE'

ELSE PRINT 'A% IS FALSE'
END IF
IF B% THEN PRINT 'B% IS TRUE'

ELSE PRINT 'B% IS FALSE'
END IF
IF NOT A% THEN PRINT 'NOT A% IS TRUE'

ELSE PRINT 'NOT A% IS FALSE'
END IF
IF NOT B% THEN PRINT 'NOT B% IS TRUE'

ELSE PRINT 'NOT B% IS FALSE'
END IF
END

Output
A% IS TRUE
B% IS TRUE
NOT A% IS FALSE
NOT B% IS TRUE

1 .6.4 Evaluating Expressions
BASIC-PLUS-2 evaluates expressions according to operator precedence . Each
arithmetic, relational, and string operator in an expression has a position in
the hierarchy of operators. The operator's position informs BASIC-PLUS-2 of
the order in which to perform the operation . Parentheses can change the order
of precedence .
Table 1-10 lists all operators as BASIC-PLUS-2 evaluates them . Note the
following :
•

	

Operators with equal precedence are evaluated logically from left to right .

Program Elements and Structure 1-45

• BASIC-PLUS-2 evaluates expressions enclosed in parentheses first, even
when the operator in parentheses has a lower precedence than that outside
the parentheses .

•

	

The addition (+) and multiplication (*) operators are evaluated in
algebraic order.

For example, BASIC-PLUS-2 evaluates the expression A = 15^2 + 12A2-(35
* 8) in five steps :

There is one exception to this order of precedence : When an operator that
does not require operands on either side of it (such as NOT) immediately
follows an operator that does require operands on both sides (such as the
addition operator (+)), BASIC-PLUS-2 evaluates the second operator first .
For example :
A% + NOT B% + C%

1-46 Program Elements and Structure

Table 1-10 Numeric Operator Precedence

Operator Precedence
** or A 1
- (unary minus) or + (unary plus) 2
*or/ 3
+or- 4
+ (concatenation) 5
all relational operators 6
NOT 7
AND 8
OR, XOR 9
IMP 10
EQV 11

1 . 15A2 = 225 Exponentiation (leftmost expression)
2 . 12^2 = 144 Exponentiation
3 . 225 + 144 = 369 Addition
4. (35 * 8) = 280 Multiplication
5 . 369-280 = 89 Subtraction

This expression is evaluated as follows :
(A% + (NOT B%)) + Ca

BASIC-PLUS-2 evaluates the expression NOT B before it evaluates the
expression A + NOT B . When the NOT expression does not follow the addition
(+) expression, the normal order of precedence is followed :
NOT A%+B%+C%

This expression is evaluated as follows :
NOT ((A% + B%) + C %)

BASIC-PLUS-2 evaluates the two expressions (A% + B%) and ((A% + B%) +
C%) because the + operator has a higher precedence than the NOT operator .

BASIC-PLUS-2 evaluates nested parenthetical expressions from the inside
out .
In the following program, BASIC-PLUS-2 evaluates the parenthetical
expression A quite differently from expression B. For expression A,
BASIC-PLUS-2 evaluates the innermost parenthetical expression (25 + 5)
first, then the second inner expression (30 / 5), then (6 * 7), and finally (42 + 3) .
For expression B, BASIC-PLUS-2 evaluates (5 / 5) first, then (1 * 7), then
(25 + 7 + 3) to obtain a different value .

Example
100

	

A = ((((25 + 5) / 5) * 7) + 3)
PRINT A
B = 25 + 5 / 5* 7 + 3
PRINT B

Output
45
35

Program Elements and Structure 1-47

2
Environment Commands

BASIC-PLUS-2 environment commands are commands that you can use while
in the BASIC-PLUS-2 environment. With environment commands, you can
display, edit, and merge BASIC-PLUS-2 programs, set compiler defaults, move
BASIC-PLUS-2 source programs to and from storage, and execute programs .
This chapter lists alphabetically all of the compiler commands that you can use
within the BASIC-PLUS-2 environment . For information on immediate mode
statements, see the BASIC-PLUS-2 User's Guide .

Environment Commands 2-1

$ system-command

$ system-command

Format

Syntax Rules
None .

Remarks
1 . BASIC-PLUS-2 passes the system-command directly to the operating

system without checking for validity .
2 . Your terminal displays any error messages or output that the command

generates .
3 . On RSX systems, control returns to the BASIC-PLUS-2 environment after

the command executes. The context (source file status, loaded modules,
and so on) of the BASIC-PLUS-2 environment and the program currently
in memory do not change unless the command causes the operating system
to abort BASIC-PLUS-2 or log you out .

4 . On RSTS/E systems, the context of the environment and the program
currently in memory are lost. After the system command executes, control
passes to monitor level, not to BASIC-PLUS-2 .

5 . If you have made changes to the program currently in memory and enter a
system command without first entering either the SCRATCH or REPLACE
command, BASIC-PLUS-2 displays the message "Unsaved change has
been made-type EXIT or CTRL/Z to exit ."

You can execute a system command while in the BASIC-PLUS-2 environment
by typing a dollar sign ($) before the command . BASIC-PLUS-2 passes the
command to the operating system for execution. On RSX systems, the context
of the BASIC-PLUS-2 environment and the program currently in memory do
not change. On RSTS/E systems, the system command executes and control
returns to the default run-time system, not to BASIC-PLUS-2 .

$ system-command

2-2 Environment Commands

Example

BASIC2

$ DIR STOCK .B2S
%Unsaved change has been made

	

type EXIT or CTRL/Z to exit .

BASIC2

REPLACE

BASIC2

$ DIR STOCK .B2S

$ system-command

Environment Commands 2-3

APPEND

APPEND

Format

The APPEND command merges an existing BASIC-PLUS-2 source program
with the program currently in memory .

APPEND [file-spec]

Syntax Rules

File-spec is the file specification of the BASIC-PLUS-2 program you want to
merge with the program currently in memory. If you do not supply a file type,
the default is B2S .

Remarks

1 . If you type APPEND without specifying a file name, BASIC-PLUS-2
displays the following prompt :
Append file name--

If you do not supply a file name in response to this prompt, BASIC-PLUS-2
searches for the file NONAME .B2S . If NONAME.B2S does not exist,
BASIC-PLUS-2 signals the error "Can't find file or account ."

2. You can append the contents of file-spec to a source program that is either
called into memory with the OLD command or created in the BASIC
environment. If there is no program in memory, BASIC-PLUS-2 appends
the file to an empty program with the default file name NONAME .

3 . Iffile-spec contains a BASIC-PLUS-2 line with the same line number as
a line of the program in memory, the line in the appended file replaces
the line of the program in memory and BASIC-PLUS-2 signals the
warning "%Duplicate line number n encountered ." If no line numbers are
duplicates, BASIC-PLUS-2 inserts the appended lines into the program in
memory in sequential, ascending line number order.

4. The APPEND command does not change the name of the program in
memory.

5 . If you do not save the appended version of the program and attempt to
exit from the BASIC-PLUS-2 environment, BASIC-PLUS-2 signals the
warning message "Unsaved change has been made, CTRL/Z or EXIT to
exit ."

2-4 Environment Commands

Example

BASIC2

New FIRST TRY .B2S

BASIC2
10 PRINT "First program"

APPEND NEW PROG .B2S

BASIC2

LISTNH

10 PRINT "First Program"

20 PRINT "This section has been appended"

APPEND

Environment Commands 2-5

BRLRES

BRLRES

Format

The BRLRES command allows you to specify a memory-resident or user-
created library to be used when you task-build a program . When you use the
BUILD command, BASIC-PLUS-2 includes the specified library in the Task
Builder command file . Your system manager selects the default library for the
BRLRES command when installing BASIC-PLUS-2 .

BRLRES [lib-param]

lib-param :

	

I
file-spec l

l NONE 1

Syntax Rules
1 . File-spec is the library file specification . The file specification can either be

a library supplied by BASIC-PLUS-2 or a user-created library .

2 . NONE tells the Task Builder not to link your task to the default memory-
resident library. Therefore, the Task Builder links your task to the
BASIC-PLUS-2 object module library, BP2OTS.OLB .

3 . If you do not supply a lib-param, BASIC-PLUS-2 displays the following
prompt :
File spec [NONE]--

If you press the Return key in response to this prompt, NONE is the
default. NONE indicates that the Task Builder will not link your task to
the default memory-resident library.

Remarks
1. BASIC-PLUS-2 supplies the following memory-resident libraries :

•

	

BP2RES
•

	

BP2SML
These BASIC-PLUS-2 memory-resident libraries are optional . Your
system manager decides whether to install them during installation . For
information about the memory-resident libraries available on your system,
see your system manager.

2-6 Environment Commands

Examples

2. The BUILD command includes the library you specify with the BRLRES
command in the Task Builder command file. Therefore, you must specify
the BRLRES command before you specify the BUILD command so the
new library specification is entered into the Task Builder command file .
Otherwise, the Task Builder command file remains unchanged and the
existing library in the command file is used .

3 . The BRLRES library you specify remains in effect until you either specify a
new library with the BRLRES command or exit from the BASIC-PLUS-2
environment. Once you exit from the BASIC-PLUS-2 environment, the
default memory-resident library is used .

4. You can override a library specified with the BRLRES command by using
the /BRLRES qualifier to the BUILD command . The library you specify
remains in effect only for that particular build operation .

5 . If you specify a memory-resident library that is not available, the Task
Builder signals an error message .

6. For more information on BASIC-PLUS-2 memory-resident libraries, see
the BASIC-PLUS-2 User's Guide .

1. 1 On RSX-11M/M-PLUS Systems

BRLRES LB :[1,1]BP2RES

2 . ! On RSTS/E Systems

BRLRES LB :BASIC2

BRLRES

Environment Commands 2-7

BUILD

BUILD

Format

The BUILD command generates a command (CMD) file and an overlay
description language (ODL) file for the Task Builder . The CMD file contains
instructions that enable the Task Builder to link your program module or
modules with libraries and other routines. The ODL file specifies how program
segments should be organized in memory during program execution .

BUILD [prog-nam [,sub-nam,

Command Qualifiers

/BRLRES sep lib-param
/[NO]CLUSTER[sep lib-param]
/DSKLIB sep file-spec
/[NO]DUMP
/EXTEND sep int-const
/[NO]IDS
/[NO]INDEX
/LIBRARY sep lib-param
/[NO]MAP
/ODLRMS sep odl-param
/[NO]RELATIVE
/RMSRES sep lib-param
/[NO]SEQUENTIAL
/[NO]VIRTUAL

2-8 Environment Commands

. .]] [/qualifier] . .

Defaults

See text .
/NOCLUSTER
See text .
/NODUMP
/EXTEND=512
/NOIDS
/NOINDEX
See text .
/NOMAP
See text .
/NORELATIVE
See text .
/NOSEQUENTIAL
/NOVIRTUAL

Syntax Rules
1 . Prog-nam is the name of the program you want to build . If you do not

specify a program, BASIC-PLUS-2 creates CMD and ODL files for the
current program in memory, or for NONAME .B2S if there is no current
program in memory.

2 . Sub-nam is the name of the subprogram you want to link to the main
program .

3 . If you specify a subprogram name you must also specify a program name .
4. The BUILD command line must fit on a single 80-character line .

Remarks
1 . The BUILD command does not change the current context of the

BASIC-PLUS-2 environment .
2. The BUILD command generates the CMD and ODL files . It does not cause

the Task Builder to begin operation .
•

	

The BUILD command generates a CMD file with the same name as the
program and a file type of CMD .

•

	

The BUILD command generates an ODL file with the same name as
the program and a file type of ODL .

3 . If you do not specify any BUILD command qualifiers, the BUILD command
accepts defaults from previously specified BRLRES, DSKLIB, ODLRMS,
RMSRES, LIBRARY, and SET commands .

4. The qualifiers to the BUILD command tell the Task Builder to perform
special operations on object modules when you task-build the program .
You can abbreviate all qualifiers to the first three letters of the qualifier
keyword .

5. When you exit from the BASIC-PLUS-2 environment, all options set with
qualifiers return to the system default values . Use the SHOW command to
display your system defaults before setting any qualifiers .

6. BASIC-PLUS-2 will not cluster a BASIC-PLUS-2 memory-resident
library when using Instruction and Data space (I- and D-Space) . If you
attempt to use I- and D-Space and use the BASIC-PLUS-2 memory-
resident library, BASIC-PLUS-2 does not use the library and does not
signal an error.

BUILD

Command Qualifiers

/BRLRES {

	

} {
NONE ec J

The /BRLRES qualifier lets you specify a memory-resident library to be linked
to your task . File-spec can be either a library supplied by BASIC-PLUS-2
or a user-created library . NONE tells the Task Builder not to link your task
to the default memory-resident library . Instead, the Task Builder links your
task to BASIC-PLUS-2 object module library BP2OTS .OLB. If you do not
specify the /BRLRES qualifier, the Task Builder links your task to the current
default memory-resident library by default . See the description of the BRLRES
command for more information .

Environment Commands 2-9

BUILD

/[NO]CLUSTER file-spec]
NONE

The /CLUSTER qualifer causes the Task Builder to cluster memory-resident
libraries to increase the space available for your task . Before you use the
/CLUSTER qualifier, at least two memory-resident libraries must be linked
to the task: the BASIC-PLUS-2 memory-resident library, and one other
memory-resident library.
•

	

File-spec specifies the memory-resident library to be clustered . The
specified library must be in the account LB : on RSTS/E systems or the
account LB:[1,1] on RSX systems .

•

	

NONE specifies that only the BASIC-PLUS-2 and RMS-11 libraries are
clustered .

• /CLUSTER with no argument causes the Task Builder to cluster the
default memory-resident library . If there is no default cluster library,
/CLUSTER with no argument acts the same as /CLUSTER :NONE .

The /NOCLUSTER qualifier tells the Task Builder not to cluster memory-
resident libraries to increase the space available for your task. /NOCLUSTER
is the default. See the BASIC-PLUS-2 User's Guide for more information on
using RMS-11 libraries .

/DSKLIB {

	

} { NONE ec }
The /DSKLIB qualifier lets you specify a disk-resident object module library
to be linked to your program . File-spec can be either a library supplied by
BASIC-PLUS-2 or a user-created library. NONE tells the Task Builder not
to link your task to the default object module library . If you do not specify
the /DSKLIB qualifier, BASIC-PLUS-2 links your task to the current default
disk-resident library. See the description of the DSKLIB command for more
information .

/[NO]DUMP
If your program aborts with a fatal error, the /DUMP qualifier causes the Task
Builder to generate a memory dump . The /NODUMP qualifier causes the Task
Builder not to generate a memory dump when the program aborts . The default
is /NODUMP.

/EXTEND {

	

} int-const

The /EXTEND qualifier specifies the amount of space to be added to the initial
task size when the task is started . The Task Builder rounds the extension up

2-10 Environment Commands

BUILD

to the nearest 32-word boundary . The maximum allowed extension is 32000 .
The default is /EXTEND=512 .

/[NO]IDS
The /IDS qualifier causes the Task Builder to build your task with I- and
D-space support . I- and D-space provides a faster program execution time and
also allows you to execute larger programs than usual . It is recommended
that you do not use the BASIC-PLUS-2 memory-resident library in an I- and
D-space task . By default, when you specify the /IDS qualifier, BASIC-PLUS-2
removes all references to the BASIC-PLUS-2 memory-resident library from
the Task Builder command file . The /NOIDS qualifier tells the Task Builder
not to build the task with I- and D-space support . /VOIDS is the default . See
the BASIC-PLUS-2 User's Guide for more information on enabling I- and
D-space for program execution .

[NO]INDEX
The /INDEX qualifier causes the Task Builder to include the code needed for
indexed file operations . BASIC-PLUS-2 enables this qualifier automatically
for programs containing an OPEN statement with the ORGANIZATION
INDEXED clause . If you specify /NOINDEX, the Task Builder does not include
the code needed for indexed file operations . The default is /NOINDEX .

lib-name
/LIBRARY {

	

} file-spec
NONE

The /LIBRARY qualifier lets you specify a memory-resident library to be linked
to your program . File-spec and lib-name can be either a library supplied with
BASIC-PLUS-2 or a user-created library. If you specify a lib-name with no
device, BASIC-PLUS-2 assumes LB: on RSTS/E systems and LB :[1,1] on RSX
systems . NONE tells the Task Builder not to link your task to the default
memory-resident library. Therefore, the Task Builder links to BASIC-PLUS-2
disk-resident object module library BP2OTS.OLB. If you do not specify the
/LIBRARY qualifier, the Task Builder links your task to the current default
memory-resident library. See the description of the LIBRARY command for
more information .

/[NO]MAP
The /MAP qualifier causes the Task Builder to generate an allocation map. The
/NOMAP qualifier causes the Task Builder to not generate an allocation map .
/NOMAP is the default .

Environment Commands 2-11

BUILD

/ODLRMS { } { NONEec 1
The /ODLRMS qualifier lets you specify an Overlay Description Language
(ODL) file for the Task Builder to use when task-building your program . The
ODL file describes how the Task Builder should overlay the task in memory .
When BASIC-PLUS-2 executes the BUILD command, the ODL file is included
in the Task Builder command file . File-spec can be either an ODL file supplied
by RMS or a user-created file . NONE tells the Task Builder not to link your
task to the default ODL file . If you do not specify the /ODLRMS qualifier, the
Task Builder uses the current default ODL file to task-build your program . See
the description of the ODLRMS command for more information .

/[NO]RELATIVE
The /RELATIVE qualifier causes the Task Builder to include the code needed
for relative file operations . BASIC-PLUS-2 sets this qualifier automatically
for programs containing an OPEN statement with the ORGANIZATION
RELATIVE clause . If you specify /NORELATIVE, the Task Builder does not
include the code necessary for relative file operations . /NORELATIVE is the
default .

/RMSRES { } { NONEec }

The /RMSRES qualifier lets you specify an RMS memory-resident library to be
linked to your program . The RMS library supplies RMS code for file and record
operations . File-spec can be either a library supplied by RMS or a user-created
library. NONE tells the Task Builder not to link your task to the default RMS
library. Therefore the Task Builder links your task to the RMS object module
library RMSLIB.OLB . If you do not specify the !RMSRES qualifier, the Task
Builder links your task to the current default memory-resident library . See the
description of the RMSRES command for more information .

/[NO]SEQUENTIAL
The /SEQUENTIAL qualifier causes the Task Builder to include the RMS-11
code needed for sequential file operations. BASIC-PLUS-2 sets this
qualifier automatically for programs containing an OPEN statement with
the ORGANIZATION SEQUENTIAL clause . If you specify /NOSEQUENTIAL,
the Task Builder does not include the RMS-11 code necessary for sequential
file operations . /NOSEQUENTIAL is the default .

2-12 Environment Commands

Example

BUILD

/[NO]VIRTUAL
The /VIRTUAL qualifier causes BASIC-PLUS-2 to include the RMS code
needed for virtual array and block I/O file operations. BASIC-PLUS-2 sets
this qualifier automatically when you compile a program containing an
OPEN statement with an ORGANIZATION VIRTUAL clause . If you specify
/NOVIRTUAL, BASIC-PLUS-2 does not include the RMS code necessary for
virtual array and block I/O file operations . /NOVIRTUAL is the default.

BUILD MAIN,SUBI,SUB2/DUMP/REL

Environment Commands 2-13

COMPILE

COMPILE

Format

The COMPILE command converts a BASIC-PLUS-2 source program to an
object module and writes the object file to disk .

COMPILE [file-spec] [/qualifier] . . .

Command Qualifiers

/[NO]BOUND
/BYTE
/[NO]CHAIN
/[NO]CROSS_REFERENCE [sep [NO]KEYWORDS]
/[NO]DEBUG
/DOUBLE
/[NO]FLAG sep [[NO]DECLINING]
/[NO]LINE
/[NO]LIST
/LONG
/[NO]MACRO
/[NO]OBJECT
/PAGE SIZE sep int-const
/[NO]SCALE sep const
/SINGLE
/[NO]SYNTAX CHECK
/TYPE_DEFAULT sep default-clause
NARIANT sep int-const
/[NO]WARNINGS
/WIDTH sep int-const
/WORD

Syntax Rules
1 . File-spec is the file specification of an output file or files .

2 . If you do not provide a file specification, the BASIC-PLUS-2 compiler
uses the name of the program currently in memory for the file name, a
default file type of OBJ for the object file, and a default file type of LST
for the listing file, if a listing file is requested . If a macro file is requested,
BASIC-PLUS-2 uses a default file type of MAC for the macro source code
file .

Defaults

/BOUND
/WORD
See text .
/NOCROSS_REFERENCE
/NODEBUG
/SINGLE
/FLAG=DECLINING
/LINE
/NOLIST
/WORD
/NOMACRO
/OBJECT
/PAG E_S IZE=60
/NOSCALE
/SINGLE
/NOSYNTAX_CHECK
ITYPE_DEFAULT=REAL
NARIANT=O
/WARNINGS
/WIDTH=132
/WORD

2-14 Environment Commands

COMPILE

3 . You should not specify both a file name and file type . For example, if you
enter the following command line, BASIC-PLUS-2 creates only the object
file and names it NEWOBJ .FIL :
COMPILE NEWOBJ .FIL/LIS/OBJ

4. File-spec must precede all qualifiers .

5. /Qualifier specifies a qualifier keyword that sets a BASIC-PLUS-2 default .

6 . You can abbreviate all positive qualifiers to the first three letters of the
qualifier keyword. You can abbreviate a negative qualifier to NO and the
first three letters of the qualifier keyword .

7 . You cannot specify the /OBJECT and /MACRO qualifiers together .

Remarks
1 . If you specify an invalid qualifier, BASIC-PLUS-2 signals the error

"Illegal switch," and the program does not compile . When qualifiers
conflict, BASIC-PLUS-2 compiles the program using the last specified
conflicting qualifier. For example, the following command line causes
BASIC-PLUS-2 to compile the program currently in memory but does not
cause BASIC-PLUS-2 to create an OBJ file .
COMPILE/OBJ/NOOBJ

2 . If there is no program in memory, or the COMPILE command does not
execute, BASIC-PLUS-2 does not signal an error or warning .

3 . On RSX systems, if an object file for the program already exists in your
directory, BASIC-PLUS-2 creates a new version of the OBJ file . On
RSTS/E systems BASIC-PLUS-2 overwrites it with the new object file .

4 . Use the COMPILE/NOOBJECT command to check your program for errors
without producing an object file .

5 . When you exit from the BASIC-PLUS-2 environment, all options set with
qualifiers return to the system default values. Use the SHOW command to
display your system defaults before setting any qualifiers .

Command Qualifiers
/[NO]BOUND
The /NOBOUND qualifier eliminates the overhead of checking array
boundaries when referencing memory-resident arrays of one or two dimensions .
This can improve run time performance . Specifying or defaulting the /BOUND
qualifier results in full array boundary checking .

Environment Commands 2-15

COMPILE

Warning

When you specify /NOBOUND, the compiler generates array threads
that omit boundary checking . If you incorrectly index beyond array
limits, the OTS does not trap your errors . The consequences of such
misuse are unpredictable. The user is responsible for ensuring the
array handling integrity of the program before taking advantage of the
/NOBOUND compilation option .

/BYTE
The /BYTE qualifier causes BASIC-PLUS-2 to allocate 8 bits of storage as
the default for all integer data not explicitly typed in the program . Untyped
integer values are treated as BYTE values and must be in the BYTE range or
BASIC-PLUS-2 signals the error "Integer error or overflow ." Table 1-2 in this
manual lists BASIC-PLUS-2 data types and ranges . The default is /WORD .

/[NO]CHAIN
The /CHAIN qualifer can be used on RSTS/E systems only. The /CHAIN
qualifier enables other programs to CHAIN into the program using the LINE
clause of the CHAIN statement . If the program has more than 200 line
numbers, the /NOCHAIN qualifier reduces the memory needs of the output
program by disabling storage of line numbers in memory . You cannot chain
from one DECNET node to another. The default is determined at installation .

/[NO]CROSS-REFERENCE[{ } [NO]KEYWORDS]

If you use the /CROSS_ REFERENCE qualifier with the /LIST qualifier
when you compile your program, the BASIC-PLUS-2 compiler includes
cross-reference information in the program listing file . If you specify
/CROSS REFERENCE=KEYWORDS, BASIC-PLUS-2 also cross-
references BASIC-PLUS-2 keywords used in the program . If you specify
/NOCROSS REFERENCE, BASIC-PLUS-2 does not include a cross reference
section in the compiler listing . The default is /NOCROSS_REFERENCE .

/[NO]DEBUG
The /DEBUG qualifier appends to the object file information on symbolic
references and line numbers . This information is used by the BASIC-PLUS-2
Debugger to debug your program . You must specify the /LINE qualifier when
you specify the /DEBUG qualifier on the COMPILE command ; otherwise,
BASIC-PLUS-2 signals an error.

2-16 Environment Commands

When you specify /DEBUG, control is passed to the debugger when the
program is executed in the BASIC-PLUS-2 environment . If you specify
/NODEBUG, information on program symbols and line numbers is not included
in the object file and control is not passed to the debugger when the program
executes. The default is /NODEBUG .

See the BASIC-PLUS-2 User's Guide for more information on using the
BASIC-PLUS-2 Debugger.

/DOUBLE
The /DOUBLE qualifier causes BASIC-PLUS-2 to allocate 64 bits of storage as
the default size for all floating-point data not explicitly typed in the program .
Untyped floating-point values are treated as DOUBLE values and must be in
the DOUBLE range or BASIC-PLUS-2 signals the error "Floating-point error
or overflow." Table 1-2 in this manual lists BASIC-PLUS-2 data types and
ranges. The default is /SINGLE .

/[NO]FLAG {

	

} [NO]DECLINING

The /FLAG qualifier causes BASIC-PLUS-2 to provide compile-time
information about program elements that are not recommended for new
program development. For example, if you specify the DECLINING clause,
BASIC-PLUS-2 flags the following source code as declining :

•

	

CVT$$ (use EDIT$)
•

	

CVT$%, CVT$F, CVT%$, CVTF$, AND SWAP% (use multiple MAP
statements)

•

	

DEF* functions (use DEF functions)
•

	

FIELD statements (use MAP DYNAMIC and REMAP)

•

	

GOTO line-num% (do not use the integer suffix with a line number)

The default is /FLAG=DECLINING .

/[NO]LINE
The /LINE qualifier includes line number information in object modules . If you
specify /NOLINE, BASIC-PLUS-2 does not include line number information in
object modules . If you specify /NOLINE in a program containing the run-time
ERL function, BASIC-PLUS-2 issues a warning that the /NOLINE qualifier
has been overridden . The default is /LINE .

COMPILE

Environment Commands 2-17

COMPILE

/[NO]LIST
The /LIST qualifier causes BASIC-PLUS-2 to produce a compiler listing file .
The name of the listing file is the same as the name of the first program
module specified, or the name of the program currently in memory if no file
specification is provided . The listing file has a default file type of LST. If
you specify /NOLIST, BASIC-PLUS-2 does not generate a compiler listing .
/NOLIST is the default .

/LONG
The /LONG qualifier causes BASIC-PLUS-2 to allocate 32 bits of storage
as the default size for all integer data not explicitly typed in the program .
Untyped integer values are treated as LONG values and must be in the LONG
range or BASIC-PLUS-2 signals the error "Integer error or overflow ." Table
1-2 in this manual lists BASIC-PLUS-2 data types and ranges . /WORD is the
default .

/[NO]MACRO
The /MACRO qualifier converts the program into MACRO-11 source code and
saves it in a file with the same name as that of the program and a file type
of MAC. A MACRO-11 file can be assembled . If you specify /NOMACRO, a
MACRO-11 source code file is not generated. You cannot specify the /OBJECT
qualifier with the /MACRO qualifier. The default is /NOMACRO .

/[NO]OBJECT
The /OBJECT qualifier generates an object module with the same file name
as that of the program and a default file type of OBJ . The /NOOBJECT
qualifier allows you to check your program for errors without creating an object
file . If your program contains one or more fatal errors, an object module is
not generated . You cannot specify the /MACRO qualifier with the /OBJECT
qualifier. /OBJECT is the default .

/PAGE SIZE {

	

} int-const

The /PAGE SIZE qualifier sets the page size of the listing file . Int-const must
be greater than zero or BASIC-PLUS-2 signals the warning message "Listing
length out of range-ignored." The default is /PAGE SIZE=60 .

/[NO]SCALE {

	

} const

The /SCALE qualifier allows control of accumulated round-off errors when
double-precision numbers (values typed DOUBLE) are used . Numbers are
stored as multiples of 10 by setting const (the scale factor) from 0 through 6 . A
scale factor larger than 6 causes BASIC-PLUS-2 to signal the error message
"Scale factor out of range-ignored ." /NOSCALE is the default .

2-18 Environment Commands

/SINGLE
The /SINGLE qualifier causes BASIC-PLUS-2 to allocate 32 bits of storage as
the default size for all floating-point data not explicitly typed in the program .
Untyped floating-point values are treated as SINGLE values and must be in
the SINGLE range or BASIC-PLUS-2 signals the error "Floating-point error
or overflow." Table 1-2 in this manual lists BASIC-PLUS-2 data types and
ranges. The default is /SINGLE .

/[NO]SYNTAX CHECK
The /SYNTAX_ CHECK qualifier causes BASIC-PLUS-2 to perform syntax
checking after each program line is typed . If you specify /NOSYNTAX_CHECK,
BASIC-PLUS-2 does not perform syntax checking. The default is
/NOSYNTAX CHECK.

REAL
/TYPE-DEFAULT { } INTEGER

EXPLICIT
The /TYPE DEFAULT qualifier sets the default data type (REAL or INTEGER)
for all data not explicitly typed in your program or specifies that all data must
be explicitly typed (EXPLICIT) .

•

	

REAL specifies that all data not explicitly typed is floating-point data of
the default size (SINGLE or DOUBLE) .

•

	

INTEGER specifies that all data not explicitly typed is integer data of the
default size (BYTE, WORD, or LONG) .

•

	

EXPLICIT specifies that all data in a program must be explicitly typed .
Implicitly declared variables cause BASIC-PLUS-2 to signal an error.

The default is TYPE DEFAULT=REAL .

NARIANT {

	

} int-const

The /VARIANT qualifier establishes int-const as a value to be used in compiler
directives. The variant value can be referenced in a lexical expression with the
lexical function %VARIANT . Int-const always has a data type of WORD . The
default is /VARIANT=O .

/[NO]WARNINGS
The /WARNINGS qualifier causes BASIC-PLUS-2 to display warning
messages during program compilation . The /NOWARNINGS qualifier causes
BASIC-PLUS-2 to disable warning messages during program compilation .
The default is /WARNINGS .

COMPILE

Environment Commands 2-19

COMPILE

Example

/WIDTH {

	

} int-const

The /WIDTH qualifier sets the width of the listing file . Int-const must be an
integer from 72 through 132, or BASIC-PLUS-2 signals the message "Listing
width out of range-ignored ." The default is /WIDTH=132 .

/WORD
The /WORD qualifier causes BASIC-PLUS-2 to allocate 16 bits of storage as
the default for all integer data not explicitly typed in the program . Untyped
integer values are treated as WORD values and must be in the range -32768 to
32767 or BASIC-PLUS-2 signals the error message "Integer error or overflow."
Table 1-2 in this manual lists BASIC-PLUS-2 data types and ranges . The
default is WORD .

COMPILE LETSGO/DOUBLE/LIST

2-20 Environment Commands

DELETE

Format

DELETE

The DELETE command removes a specified line or range of lines from the
program currently in memory.

DELETE line-num [{

	

} line-num . . .]

Syntax Rules
1. The separator characters (comma or hyphen) allow you to delete individual

lines or a block of lines .
2 . If you separate line numbers with a comma (,), BASIC-PLUS-2 deletes

each specified line number .

3 . If you separate line numbers with a hyphen (-), BASIC-PLUS-2 deletes
the inclusive range of lines . The lower line number must be specified first .
If it is not specified first, BASIC-PLUS-2 signals an error : "BAD LINE
NUMBER PAIR" .

4 . You can combine individual line numbers and line ranges in a single
DELETE command. Note, however, that a line number range must be
followed by a comma and not another hyphen, or BASIC-PLUS-2 signals
an error. The following example deletes lines 70 through 80, line 110, and
line 124 :
DELETE 70-80, 110, 124

Remarks
1 . If you do not specify a line number, BASIC-PLUS-2 signals the error

"Illegal Delete command."

2 . BASIC-PLUS-2 signals an error if there are no lines in the specified range
or if you specify an illegal line number .

Environment Commands 2-21

DELETE

Examples

2-22 Environment Commands

1 . DELETE 50

2 . DELETE 50,60,90-110

DSKLIB

Format

The DSKLIB command lets you select a disk-resident, object module library to
be used when you build your program . When you use the BUILD command,
BASIC-PLUS-2 includes the specified library in the Task Builder command
file .

DSKLIB [file-spec]

DSKLIB

Syntax Rules
1 . File-spec can be a disk-resident, object module library supplied with

BASIC-PLUS-2 or a user-created library.
2 . If you specify the DSKLIB command without a file-spec, BASIC-PLUS-2

prompts for one and displays the name of the current default disk-resident
library. If you press the Return key without specifying a library file
specification, the current default disk-resident library is used .

Remarks
1 . The disk-resident object module libraries supplied by BASIC-PLUS-2 are

as follows :
•

	

LB:[1,1]BP2OTS.OLB (on RSX systems)
• LB:BP2OTS.OLB (on RSTS/E systems)
Here, LB: is a RSTS/E logical name for the library account on disk .
The BASIC-PLUS-2 object module libraries contain the Object Time
System (OTS) files. If your system does not have memory-resident
libraries, the Task Builder extracts all BASIC-PLUS-2 routines from
the disk-resident object module libraries by default .

2 . The library you specify with the DISKLIB command is included in all
Task Builder command files until you either specify a new library with the
DSKLIB command or exit from the BASIC-PLUS-2 environment . Once
you exit from the BASIC-PLUS-2 environment, the default object module
library set at installation is restored as the default disk-resident library .

3. To include the specified library in the Task Builder command file, you must
use the DSKLIB command before you use the BUILD command .

Environment Commands 2-23

DSKLIB

Examples

4 . You can override the DSKLIB command with the /DSKLIB qualifier to the
BUILD command. The library you specify remains in effect for only that
particular build operation .

5 . If you specify a disk-resident library that is not available, the Task Builder
signals an error message .

6 . See your system manager for more information about the BASIC-PLUS-2
disk-resident libraries available on your system .

7 . See the BASIC-PLUS-2 User's Guide for more information on object
module libraries .

1. 1 On RSX-11M/M-PLUS Systems

DSKLIB LB :[1,1]BP20TS

2 .

	

! On RSTS/E Systems

DSKLIB LB :BP20TS

2-24 Environment Commands

EDIT

EDIT

The EDIT command allows you to edit individual program lines while in
the BASIC-PLUS-2 environment by invoking an editor . EDIT with no
parameters places you in the BASIC-PLUS-2 editing mode, where you can
enter BASIC-PLUS-2 editing mode commands. The BASIC-PLUS-2 editing
mode commands are described in C .

Format
EDIT [[line-num [-line-num]] search-clause [replace-clause]]

search-clause :

	

delim unq-strl delim

replace-clause : [unq-str2] delim [int-const]

Syntax Rules
1 . Line-num specifies the number of the line to be edited .
2 . Search-clause specifies the text you want to remove or replace . Unq-strl is

the search string you want to remove or replace .
3 . Replace-clause specifies the replacement text and the occurrence of the

search string you want to replace .
•

	

Unq-str2 is the replacement string .
• Int-const specifies the occurrence of unq-strl you want to replace. If

you do not specify an occurrence, BASIC-PLUS-2 replaces the first
occurrence of unq-strl .

4. Delim can be any printing character not used in unq-strl or unq-str2 . The
examples in this and the following sections use the slash (I) as a delimiter .

5 . The delim characters in search-clause must match, or BASIC-PLUS-2
signals an error message .

6. The delim character you use to signal the end of replace-clause must match
the delim you use in the search-clause, or BASIC-PLUS-2 does not signal
an error and treats the end delimiter as part of unq-str2 .

7 . BASIC-PLUS-2 replaces or removes text in a program line as follows :
•

	

If unq-strl is found, BASIC-PLUS-2 replaces it with unq-str2 .
•

	

If unq-strl is not found, BASIC-PLUS-2 signals an error .

Environment Commands 2-25

EDIT

•

	

If unq-strl is null, BASIC-PLUS-2 replaces the first character of the
last edited line with unq-str2 and does not signal an error .

•

	

If unq-str2 is null, BASIC-PLUS-2 deletes unq-strl .
•

	

BASIC-PLUS-2 matches and replaces strings exactly as you type
them. If unq-strl is uppercase, BASIC-PLUS-2 searches for an
uppercase string. If it is lowercase, BASIC-PLUS-2 searches for a
lowercase string .

8 . If you enter the EDIT command without an argument, BASIC-PLUS-2
places you in editing mode, where you can enter editing mode commands .
The BASIC-PLUS-2 editing mode commands are as follows :
•

	

DEFINE
•

	

EXECUTE
•

	

EXIT or Ctrl/Z
•

	

FIND
•

	

INSERT
•

	

SUBSTITUTE
See C for a description of the BASIC-PLUS-2 editing mode commands .

9 . BASIC-PLUS-2 sets a specified line number as the current edit line, even
when the editing operation fails . That line number remains set as the
curent edit line until you specify another line number or exit from the
BASIC-PLUS-2 environment .

10. You can edit a range of lines by separating two line numbers with a hyphen
(-) . BASIC-PLUS-2 signals an error and does not edit the specified range
if there are spaces between the hyphen and the line numbers .

11 . If you specify a range of lines and an occurence, BASIC-PLUS-2 replaces
each occurrence of unq-strl in each line of the range beginning with the
specified occurrence . For example :
10 PRINT DISPLAY$, DISPLAY$, DISPLAY$
20 PRINT DISPLAY$, DISPLAY$, DISPLAY$
EDIT 10-20 /DISPLAY$/NEW$/2

10 PRINT DISPLAY$, NEW$, NEW$
20 PRINT DISPLAY$, NEW$, NEW$

'DISPLAY$" replaced by "NEW$" .
4 substitutions

2-26 Environment Commands

Remarks
1. BASIC-PLUS-2 displays the edited line or lines with changes after the

EDIT command successfully executes . It also displays a message showing
the search string, replacement string, and number of replacements made .

2. If you want to edit a range of numbers, you must specify both the beginning
and the end of the range . BASIC-PLUS-2 does not default to the last
edited line or to the last line number in the program .

3 . When you specify a line number with no text parameters, BASIC-PLUS-2
displays the message "Current edit line is x," where x is the specified line
number.

4. When you type EDIT with no parameters, BASIC-PLUS-2 checks the last
edited line number to make sure that it still exists in the current program .
If it has been deleted, BASIC-PLUS-2 displays the error "?No current
line ."

Example

LIST 100

100 NEW STRING$ = LEFT$(STRING$,12)

EDIT 100 /LEFT$/RIGHT$/3

100 NEW_ STRING$ = RIGHT$(STRING$,12)

EDIT

Environment Commands 2-27

EXIT

EXIT

Format

Syntax Rules
None .

Remarks
If you forget to save or replace your program before attempting to exit from the
BASIC-PLUS-2 environment, BASIC-PLUS-2 signals the warning "Unsaved
change has been made, CTRL/Z or EXIT to exit ." This message warns you
that your program will be lost if you do not use either the SAVE or REPLACE
command before exiting. If you do not save or replace the program and exit
from the BASIC-PLUS-2 environment, the program changes are lost .

Example

EXIT
%Unsaved change has been made, CTRL/Z or EXIT to exit

BASIC2

The EXIT command or Ctrl/Z clears memory and returns control to the
operating system .

EXIT

2-28 Environment Commands

EXTRACT

Format

EXTRACT line-num [{

	

} line-num . . .]

EXTRACT

The EXTRACT command extracts a specified line or range of lines from the
program currently in memory and deletes the remaining program lines .

Syntax Rules
1. The separator characters (comma or hyphen) allow you to extract

individual lines or a range of lines while deleting all others . All extracted
lines remain in memory.

2 . If you separate line numbers with a comma (,), BASIC-PLUS-2 extracts
each specified line number .

3. If you separate line numbers with a hyphen (-), BASIC-PLUS-2 extracts
the inclusive range of lines . The lower line number must be specified first
or the EXTRACT command has no effect .

4. You can combine individual line numbers and line ranges in a single
EXTRACT command . Note, however, that a line number range must be
followed by a comma and not another hyphen, or BASIC-PLUS-2 signals
an error. The following example extracts lines 70 through 80, line 110, and
line 124, and deletes the rest of the program .
EXTRACT 70-80, 110, 124

Remarks
1 . If you do not specify a line number, BASIC-PLUS-2 signals an error .

2 . BASIC-PLUS-2 signals an error if there are no lines in the specified range
or if you specify an illegal line number .

Example

EXTRACT 300 - 1000

Environment Commands 2-29

HELP

HELP

Format

The HELP command displays online documentation for BASIC-PLUS-2
commands, qualifiers, statements, functions, and conventions .

HELP [unq-str] . . .

Syntax Rules
1 . Unq-str is a BASIC-PLUS-2 topic, qualifier, command, statement, function,

or convention .
2 . The first unq-str must be one of the topics described in the HELP file .

3 . You can specify a subtopic after the topic . Separate one unq-str from
another with a space .

4. You can use the asterisk (*) wildcard character in unq-str . BASIC-PLUS-2
then matches any portion of the specified topic .

5 . If you type HELP with no parameters, BASIC-PLUS-2 displays a list of
topics for you to choose from .

Remarks
1 . If the unq-str you specify is not a unique topic or subtopic, BASIC-PLUS-2

displays information on all topics or subtopics beginning with unq-str .

2. An asterisk (*) indicates that you want to display information that
matches any portion of the topic you specify . For example, if you type
"Help statements GO*," BASIC-PLUS-2 displays information on the
GOSUB statement and the GOTO statement.

3. When information on a particular topic or subtopic is not available,
BASIC-PLUS-2 signals the message "Sorry, no help on that subject ."

4. To exit from HELP, press the Return key until you get the BASIC2 prompt .

2-30 Environment Commands

Example

BASIC2

Help statements GO* RET

STATEMENTS

GO SUB

The GOSUB statement transfers control to a specified line number or
label and stores the location of the GOSUB statement for eventual
return from the subroutine .

Format

{ GO SUB }
{ GOSUB } target

Example

200 GOSUB 1100

STATEMENTS

Press RETURN for more . . .

GOTO

The GOTO statement transfers control to a specified line number or
label .

Format

{ GO TO }
{ GOTO } target

Example

20 GOTO 200

Topic?

BASIC2

IRETI

HELP

Environment Commands 2-31

IDENTIFY

IDENTIFY

Format

Syntax Rules
None .

Remarks
The message displayed by the IDENTIFY command includes the name of the
BASIC-PLUS-2 compiler and the version number.

Example

IDENTIFY
PDP-11 BASIC-PLUS-2 V2 .7-00

BASIC2

The IDENTIFY command displays an identification header on the con-
trolling terminal . The header contains the name and version number of
BASIC-PLUS-2 .

IDENTIFY

2-32 Environment Commands

INQUIRE

INQUIRE

The INQUIRE command is a synonym for the HELP command . See the HELP
command for more information .

Environment Commands 2-33

LIBRARY

LIBRARY

Format

The LIBRARY command allows you to specify a BASIC-PLUS-2 memory-
resident or user-created library to be used when you task-build the program .
When you use the BUILD command, BASIC-PLUS-2 includes the specified
library in the Task Builder command file . Your system manager selects the
default library for the LIBRARY command when installing BASIC-PLUS-2 .

LIBRARY [lib-param]

file-spec
lib-param :

	

lib-nam
NONE

Syntax Rules

1. Lib-nam and file-spec can be a memory-resident library supplied by
BASIC-PLUS-2 or a user-created library.

2 . If you specify a lib-nam with no device, the default device is LB: on RSTS/E
systems and LB :[1,11 on RSX systems .

3. NONE tells the Task Builder not to link your task to the default memory-
resident library. Therefore, the Task Builder links your task to the
BASIC-PLUS-2 disk-resident object module library. The BASIC-PLUS-2
object module library is BP2OTS.OLB.

4 . If you specify the LIBRARY command without a lib-param, BASIC-PLUS-2
prompts for one and displays the name of the current default memory-
resident library. If you press the Return key in response to this prompt,
the current default memory-resident library is used .

Remarks

1. The memory-resident libraries supplied by BASIC-PLUS-2 are as follows :

•

	

BP2RES
•

	

BP2SML

2-34 Environment Commands

Example

Because memory-resident libraries are optional, your system manager can
select none, one, or both during the BASIC-PLUS-2 installation . See the
BASIC-PLUS-2 User's Guide for information on using BASIC-PLUS-2
memory-resident libraries . See your system manager for information on
the memory-resident libraries available on your system .

2 . On RSTS/E systems, the LIBRARY command does not require the LB :
logical name. BASIC-PLUS-2 automatically searches this account for the
memory-resident library symbol table .

3 . On RSX systems, the LIBRARY command automatically references
libraries on LB :[1,1] unless you specify another device and directory .

4. To include the specified library in the Task Builder command file, you must
use the LIBRARY command before you use the BUILD command .

5. The library you specify is included in all the Task Builder command
files until you either specify a new library with the LIBRARY command
or exit from the BASIC-PLUS-2 environment . When you exit from
the BASIC-PLUS-2 environment, the memory-resident library set at
installation is restored as the default .

6. You can override the LIBRARY command with the /LIBRARY qualifier to
the BUILD command. The library you specify remains in effect for only
that particular build operation .

7 . If the specified library is not available, the Task Builder signals an error
message .

LIBRARY BP2RES

LIBRARY

Environment Commands 2-35

LIST and LISTNH

LIST and LISTNH

Format

The LIST command displays the program lines of the program currently
in memory. Line numbers are sequenced in ascending order . The LISTNH
command displays program lines without the program header .

LIST[NH] [[-] line-num [{

	

} line-num . . .]]

Syntax Rules
1 . Line-num specifies a line number.
2. A hyphen (-) between the LIST command and the line-num displays

all lines from the beginning of the program up to and including the line
number you specify.

3. The separator characters (comma or hyphen) allow you to display
individual lines or a block of lines .
•

	

A line number followed by a comma (,) or hyphen (-) and a carriage
return, displays only the specified line .

•

	

If you separate line numbers with commas, BASIC-PLUS-2 displays
each specified line number .

• If you separate line numbers with hyphens, BASIC-PLUS-2 displays
the inclusive range of lines . The lower line number must come first . If
it does not, LIST has no effect .

•

	

If there are no lines in the specified range, BASIC-PLUS-2 signals an
error.

•

	

You can combine individual line numbers and line ranges in a single
LIST command . Note, however, that a line number range must be
followed by a comma and not another hyphen, or BASIC-PLUS-2
signals an error.

2-36 Environment Commands

LIST and LISTNH

Remarks
1 . The LIST command without parameters displays the entire program .

2 . The LIST command displays program lines, along with a header containing
the program name, the current time, and the date . To suppress the
program header, type LISTNH .

3. BASIC-PLUS-2 displays the source program lines in the order you specify
in the command line . BASIC-PLUS-2 displays line 100 before line 10 if
you type LIST 100,10 .

Example

LIST 200-300

200 %IF %VARIANT = 2% %THEN %ABORT
250 %END %IF
300 PRINT A

Environment Commands 2-37

LOAD

LOAD

Format

The LOAD command makes a previously created object module or modules
available for execution with the RUN command .

LOAD file-spec [+ file-spec] . . .

Syntax Rules
File-spec must be the file specification of a BASIC-PLUS-2 object module or
BASIC-PLUS-2 signals an error . OBJ is the default file type . If you specify
only the file name, BASIC-PLUS-2 searches for an OBJ file in the current
default directory.

Remarks
1 . Each device and directory specification applies to all following file

specifications until you specify a new directory or device .
2. The LOAD command accepts multiple device, directory, and file

specifications .
3 . BASIC-PLUS-2 does not process the loaded object files until you issue the

RUN command. Consequently, errors in the loaded modules may not be
detected until you execute them .

4 . BASIC-PLUS-2 signals an error in the following cases :

•

	

If the file is not found
•

	

If the file specification is not valid
•

	

If the file is not a BASIC-PLUS-2 object module

•

	

If run-time memory is exceeded
Errors do not change the program currently in memory .

5 . The LOAD command clears all previously loaded object modules from
memory.

6 . Entering the LOAD command does not change the program currently in
memory.

2-38 Environment Commands

Example

LOAD PROGA + PROGB + PROGC

LOAD

Environment Commands 2-39

LOCK

LOCK

The LOCK command changes default values for COMPILE command qualifiers .
It is a synonym for the SET command . See the SET command for more
information .

2-40 Environment Commands

NEW

Format
NEW [prog-name I

NEW

The NEW command clears BASIC-PLUS-2 memory and allows you to assign a
name to a new program .

Syntax Rules
1 . Prog-name is the name of the program you want to create .

2 . BASIC-PLUS-2 on RSX systems allows program names to contain a
maximum of nine characters . If the program name exceeds nine characters,
BASIC-PLUS-2 truncates the program name to nine characters and does
not signal an error .

3. BASIC-PLUS-2 on RSTS/E systems allows program names to contain a
maximum of six characters . If the program name exceeds six characters,
BASIC-PLUS-2 truncates the program name to six characters and does
not signal an error .

4 . If you specify a file type with the program name, BASIC-PLUS-2 ignores
the file type but does not signal an error .

Remarks
1. If you do not specify a prog-name, BASIC-PLUS-2 displays the following

prompt :
New file name--

Enter a program name and press Return .

2 . If you do not provide a program name BASIC-PLUS-2 assigns the file
name NONAME to your program by default .

Environment Commands 2-41

NEW

Example

3. When you enter the NEW command, the program currently in memory
is cleared. Program modules loaded with the LOAD command remain
unchanged .

NEW PROG1

2-42 Environment Commands

ODLRMS

Format

The ODLRMS command lets you specify an overlay description (ODL) file
for the Task Builder to use when task-building your program . The ODL file
describes how the Task Builder should overlay your task in memory . When you
use the BUILD command, BASIC-PLUS-2 includes the specified ODL file in
the Task Builder command file . Your system manager selects the default ODL
file for your system during installation .

ODLRMS [odl-param]

odl-param :

	

I
file-spec 1

l NONE J

ODLRMS

Syntax Rules
1 . File-spec can be an ODL file supplied by RMS or a user-created file .

Table 2-1 lists and describes the RMS ODL files .

2 . NONE tells the Task Builder not to link your task to any RMS ODL file .

3 . If you specify the ODLRMS command without an odl-param,
BASIC-PLUS-2 prompts you for one and displays the name of the current
default ODL file . If you press the Return key without specifying an ODL
file, the current default ODL file is used .

Remarks
1 . Because new versions of RMS can change ODL file names, consult the RMS

distribution kit for current ODL names .

2 . The default BASIC-PLUS-2 ODL files are usually located in the account
LB:[1,1] on RSX systems and LB : on RSTS/E systems. (On RSTS/E
systems, LB : is a logical name for the library account on disk .) See your
system manager for more information .

3 . The ODL file you specify is included in all Task Builder command files
until you either specify a new ODLRMS command or exit from the
BASIC-PLUS-2 environment . When you exit from the BASIC-PLUS-2
environment, the ODL file set during installation is restored as the default .

Environment Commands 2-43

ODLRMS

Examples

1. ! On RSX-11M/M-PLUS Systems

ODLRMS LB :[1,1]RMSRLX .ODL

2. ! On RSTS/E Systems

ODLRMS LB :RMSRLX .ODL

4 . You can override the ODLRMS command with the /ODL qualifier to the
BUILD command. When you use this qualifier, the ODL file you specify
remains in effect for only that particular build operation .

5 . See the description of the RMSRES command to see which ODL files are
required for each RMS library.

6 . If the ODL file you specify is unavailable, the Task Builder signals an error
message .

7 . See the BASIC-PLUS-2 User's Guide for more information on using the
RMS libraries .

2-44 Environment Commands

Table 2-1 Overlay Description Files

ODL
File Organization Type of Overlay

File Name Sequential Relative Indexed Library Segments

DAP11X Yes Yes Yes Disk 16
DAPRLX Yes Yes Yes Memory None
RMS11S Yes Yes No Disk 11
RMS12S Yes Yes No Disk 5
RMS11X Yes Yes Yes Disk 35
RMS12X Yes Yes Yes Disk 13
RMSRLX Yes Yes Yes Memory None

OLD

Format

The OLD command brings a previously created BASIC-PLUS-2 program into
memory.

OLD [file-spec]

OLD

Syntax Rules

1 . File-spec is the file specification of the program .

2. If you do not supply a file specification, BASIC-PLUS-2 prompts for
one. If you do not enter a file specification in response to the prompt,
BASIC-PLUS-2 searches for a file named NONAME.B2S in the current
default directory.

3 . If you do not specify a file type, the default file type is B2S .

Remarks

1 . If the BASIC-PLUS-2 compiler cannot find the file you specify,
BASIC-PLUS-2 signals the error "Can't find file or account ."

2. When the specified file is found, it is placed in memory and any program
currently in memory is erased. If BASIC-PLUS-2 does not find the
specified file, the program currently in memory does not change .

3. If you specify a file that does not begin with a line number, BASIC-PLUS-2
discards all text up to the first line number, brings the file into memory,
and signals the error "Illegal line format or missing continuation at line n ."
BASIC-PLUS-2 also signals this error if program text begins in column
one without a line number .

4. If a file contains two lines with the same line number, BASIC-PLUS-2
signals the error "%Duplicate line number n encountered."

5. If a file contains program lines that are numbered out of sequential order,
BASIC-PLUS-2 signals the warning error "%Line number n follows line
number n." BASIC-PLUS-2 includes the line, but places it in ascending
numeric order.

6 . If a program contains more than 32767 characters associated with a single
line number, BASIC-PLUS-2 signals the error "?Line too long ."

Environment Commands 2-45

OLD

Example

7 . On RSX systems, if a program contains more than 132 characters on a
single line, BASIC-PLUS-2 signals the error "?Line too long ."

8 . On RSTS/E systems, if a program contains more than 256 characters on a
single line, BASIC-PLUS-2 signals the error "?Line too long or invalid file
format."

9. A source file you bring into memory with the OLD command must be a
RSTS/E native-mode file or BASIC-PLUS-2 signals the error "Line too
long or invalid file format ." If the file you want to bring into memory is an
RMS file, you can convert it before bringing it into memory by using the
PIP command with the /RMS qualifier .

OLD CHECK

BASIC2

2-46 Environment Commands

RENAME

Format

The RENAME command allows you to assign a new name to the program
currently in memory. BASIC-PLUS-2 does not write the renamed program to
a file until you save the program with the REPLACE or SAVE command .

RENAME [prog-name]

RENAME

Syntax Rules
1 . Prog-name specifies the new program name .

2 . BASIC-PLUS-2 on RSX systems allows program names to contain a
maximum of nine characters. If the program name exceeds nine characters,
BASIC-PLUS-2 truncates the program name to nine characters and does
not signal an error.

3 . BASIC-PLUS-2 on RSTS/E systems allows program names to contain a
maximum of six characters . If the program name exceeds six characters,
BASIC-PLUS-2 truncates the program name to six characters and does
not signal an error.

4 . If you do not specify a new program name with the RENAME command,
BASIC-PLUS-2 prompts you for one . If you do not specify a program
name in response to the prompt, the name of the program currently in
memory remains unchanged .

5 . If you specify a file type, BASIC-PLUS-2 ignores the file type, does not
signal an error, and assigns the B2S file type to the file when you save it .

Remarks
1 . You must enter SAVE or REPLACE to write the renamed program to a file .

If you do not enter SAVE or REPLACE, BASIC-PLUS-2 does not save the
renamed program .

2 . The RENAME command does not affect the original saved version of the
program .

Environment Commands 2-47

RENAME

Example

OLD TEST
BASIC2

RENAME NEWTEST
BASIC2

L=ST
NEWTEST

	

29-APR-1991 13 :50
PRINT "This program is a simple test"

BASIC2

SAVE

BASIC2

2-48 Environment Commands

REPLACE

Format

The REPLACE command writes the current program to a storage medium .

REPLACE [file-spec]

REPLACE

Syntax Rules
1 . File-spec is the file specification of the program .

2. If you do not supply a file-spec, BASIC-PLUS-2 writes the program to the
default disk with the file name of the program currently in memory.

•

	

BASIC-PLUS-2 on RSX systems creates and saves a new version of
the file, incrementing the version number by one . Previous versions of
the file remain unchanged .

•

	

BASIC-PLUS-2 on RSTS/E systems overwrites the original version of
the file with the new version .

Remarks
1 . If you specify a file specification, it does not have to match the file

specification of the program currently in memory. You can differentiate
a changed program from the original version by specifying a new file
specification .

2. The program currently in memory does not change .

Example

REPLACE PROGA .NEW

Environment Commands 2-49

RMSRES

RMSRES

Format

The RMSRES command allows you to specify an RMS memory-resident library
for the Task Builder to use when task-building your program . An RMS library
supplies RMS code for file and record operations . When you use the BUILD
command, BASIC-PLUS-2 includes the specified library in the Task Builder
command file. Your system manager selects the default RMS library for your
system during installation .

RMSRES lib-param

lib-param :

	

I
file-spec l

l NONE 1

Syntax Rules
1 . File-spec can either be an RMS memory-resident library or a user-created

resident library. Table 2-2 lists the RMS libraries .

2 . NONE tells the Task Builder not to link your task to the default RMS
resident library. Therefore the Task Builder links your task to the RMS
object module library RMSLIB .OLB .

3 . If you do not supply a lib-param, BASIC-PLUS-2 prompts for one and
displays the name of the current default RMS library . If you press the
Return key in response to this prompt, the current default memory-resident
library is used .

Remarks
1 . On RSX systems, the RMS libraries are usually located in LB:[1,1] . On

RSTS/E systems, the RMS libraries are usually located on device LB : . LB :
is a logical name for the library account on disk . See your system manager
for more information on the location of the RMS libraries .

2 . To include the specified library in the Task Builder command file, you must
use the RMSRES command before you use the BUILD command .

3 . If you use an RMS library other than the default, you must specify one of
the RMS ODL files listed in Table 2-2 . See the description of the ODLRMS
command for more information .

2-50 Environment Commands

RMSRES Yes

	

Yes

	

Yes

	

Memory RMSRLX.ODL

Examples

4 . The RMSRES library you specify is included in all the Task Builder
command files until you either specify a new RMSRES library with the
RMSRES command or exit from the BASIC-PLUS-2 environment . When
you exit from the BASIC-PLUS-2 environment, the RMS library set at
installation is restored as the default .

5. You can override the RMSRES command with the /RMSRES qualifier to
the BUILD command. The specified library remains in effect for only that
particular build operation.

6 . If the specified library is not available, the Task Builder signals an error
message .

7 . See the BASIC-PLUS-2 User's Guide for more information on using RMS
libraries .

Table 2-2 RMS-11 Libraries

1 .

	

! On RSX-11M/M-PLUS Systems

RMSRES LB :[1,1]RMSRES

2 .

	

! On RSTS/E Systems

RMSRES LB :RMSRES

RMSRES

Environment Commands 2-51

Library
Name

File Organization
Type of

	

ODL File
Library

	

RequiredSequential Relative Indexed

DAPRES Yes Yes Yes Memory DAPRLX.ODL
RMSLIB Yes Yes Yes Disk ' RMS11S.ODL

RMS12S.ODL
RMS11X.ODL

}RMS 12X.ODL
DAP11X.ODL

RUN

RUN

Format

The RUN command allows you to execute a program from the BASIC-PLUS-2
environment without first invoking the PDP-11 Task Builder to construct an
executable image . Support for the RUN command is an installation option .
Use the SHOW command to see whether your system supports the RUN
command. The RUNNH command is identical to RUN, except that it does not
display the program header, current date, and time .

RUN[NH] [file-spec] [/qualifier] . . .

Command Qualifiers

/BYTE
/[NO]CHAIN
/[NO]DEBUG
/DOUBLE
/[NO]FLAG [sep [NO]DECLINING]
/[NO]LINE
/LONG
/[NO]SCALE sep const
/SINGLE
/[NO]SYNTAX CHECK
/TYPE_DEFAULT sep default-clause
/VARIANT sep int-const
/WORD

Defaults

/WORD
See text .
/NODEBUG
/SINGLE
/FLAG=DECLINING
/LINE
/WORD
/NOSCALE
/SINGLE
/NOSYNTAX_CHECK
/TYPE_DEFAULT=REAL
/VARIANT=O
/WORD

Syntax Rules

1 . File-spec is the file specification of the program you want to execute .

2 . If you do not supply a file-spec, BASIC-PLUS-2 executes the program
currently in memory.

3 . If you specify only a file name, BASIC-PLUS-2 searches for a file with a
B2S file type in the current default directory.

4 . /Qualifier specifies a qualifier that sets a BASIC-PLUS-2 default .

2-52 Environment Commands

RUN

Remarks

1 . BASIC-PLUS-2 signals the warning message "No main program" if you do
not have a main program in memory or do not specify the file specification
of a main program with the RUN command .

2 . When you specify a file specification with the RUN command,
BASIC-PLUS-2 brings the program into memory and then executes it .
You do not have to bring a program into memory with the OLD command
to run it . After program execution is complete, the program remains in
memory.

3 . If your program calls a subprogram, the subprogram must be compiled
and placed in memory with the LOAD command . If your program calls
a subprogram that has not been compiled and loaded, BASIC-PLUS-2
signals an error.

4. The RUN command does not create an object module file or a list file .

5. The RUN command executes a program starting at the lowest line number.

6. When BASIC-PLUS-2 encounters a STOP statement, the program stops
executing .
•

	

If you used the RUN command to execute the program, BASIC-PLUS-2
displays a number sign (#) prompt . You can then either enter the
debugger command CONTINUE to resume program execution, or EXIT
to end the program .

•

	

If you used the RUN command with the /DEBUG qualifier to execute
the program, control passes to the BASIC-PLUS-2 debugger . You
can then use the BASIC-PLUS-2 debugger commands to display
and change program values and to analyze your program . When you
are finished debugging your program, enter the debugger command
CONTINUE to resume program execution . See B for a description of
the BASIC-PLUS-2 debugger commands .

7 . When you exit from the BASIC-PLUS-2 environment, all options set with
qualifiers return to the system default values. Use the SHOW command to
display your system defaults before setting any qualifiers .

Command Qualifiers

/BYTE
The /BYTE qualifier causes BASIC-PLUS-2 to allocate eight bits of storage as
the default for all integer data not explicitly typed in the program . Untyped
integer values are treated as BYTE values and must be in the BYTE range or

Environment Commands 2-53

RUN

BASIC-PLUS-2 signals the error "Integer error or overflow ." Table 1-2 in this
manual lists BASIC-PLUS-2 data types and ranges . The default is /WORD .

/[NO]CHAIN
The /CHAIN qualifer can be used on RSTS/E systems only. The /CHAIN
qualifier enables other programs to CHAIN into the program using the LINE
clause of the CHAIN statement . If the program has more than 200 line
numbers, the /NOCHAIN qualifier reduces the memory needs of the output
program by disabling storage of line numbers in memory . You cannot chain
from one DECNET node to another. The default is determined at installation .

/[NO]DEBUG
The /DEBUG qualifier appends to the object file information on symbolic
references and line numbers . This information is used by the BASIC-PLUS-2
Debugger to debug your program . You must specify the /LINE qualifier when
you specify the /DEBUG qualifier on the COMPILE command ; otherwise,
BASIC-PLUS-2 signals an error .
When you specify /DEBUG, control is passed to the debugger when the
program is executed in the BASIC-PLUS-2 environment . If you specify
/NODEBUG, information on program symbols and line numbers is not included
in the object file and control is not passed to the debugger when the program
executes. The default is /NODEBUG .
See the BASIC-PLUS-2 User's Guide for more information on using the
BASIC-PLUS-2 Debugger.

/DOUBLE
The /DOUBLE qualifier causes BASIC-PLUS-2 to allocate 64 bits of storage as
the default size for all floating-point data not explicitly typed in the program .
Untyped floating-point values are treated as DOUBLE values and must be in
the DOUBLE range or BASIC-PLUS-2 signals the error "Floating-point error
or overflow." Table 1-2 in this manual lists BASIC-PLUS-2 data types and
ranges. The default is /SINGLE .

/[NO]FLAG { I[NO]DECLINING

The /FLAG qualifier causes BASIC-PLUS-2 to provide compile-time
information about program elements that are not recommended for new
program development .
For example, if you specify the DECLINING clause, BASIC-PLUS-2 flags the
following source code as declining :
•

	

CVT$$ (use EDIT$)

2-54 Environment Commands

• CVT$%, CVT$F, CVT%$, CVTF$, AND SWAP% (use multiple MAP
statements)

•

	

DEF* functions (use DEF functions)
•

	

FIELD statements (use MAP DYNAMIC and REMAP)
•

	

GOTO line-num% (do not use the integer suffix with a line number)
The default is /FLAG=DECLINING .

/[NO]LINE
The /LINE qualifier includes line number information in object modules . If you
specify /NOLINE, BASIC-PLUS-2 does not include line number information in
object modules . If you specify /NOLINE in a program containing the run-time
ERL function, BASIC-PLUS-2 issues a warning that the /NOLINE qualifier
has been overridden . The default is /LINE .

/LONG
The /LONG qualifier causes BASIC-PLUS-2 to allocate 32 bits of storage
as the default size for all integer data not explicitly typed in the program .
Untyped integer values are treated as LONG values and must be in the LONG
range or BASIC-PLUS-2 signals the error "Integer error or overflow ." Table
1-2 in this manual lists BASIC-PLUS-2 data types and ranges . /LONG is the
default .

/[NO]SCALE {

	

} const

The /SCALE qualifier allows control of accumulated round-off errors when
double-precision numbers (values typed DOUBLE) are used . Numbers are
stored as multiples of 10 by setting const (the scale factor) from 0 through 6 . A
scale factor larger than 6 causes BASIC-PLUS-2 to signal the error message
"Scale factor out of range-ignored ." /NOSCALE is the default .

/SINGLE
The /SINGLE qualifier causes BASIC-PLUS-2 to allocate 32 bits of storage as
the default size for all floating-point data not explicitly typed in the program .
Untyped floating-point values are treated as SINGLE values and must be in
the SINGLE range or BASIC-PLUS-2 signals the error "Floating-point error
or overflow." Table 1-2 in this manual lists BASIC-PLUS-2 data types and
ranges. The default is /SINGLE .

RUN

Environment Commands 2-55

RUN

/[NO)SYNTAX CHECK
The /SYNTAX-CHECK qualifier causes BASIC-PLUS-2 to perform
syntax checking after each program line is entered . If you specify
/NOSYNTAX_CHECK, BASIC-PLUS-2 does not perform syntax checking .
The default is /NOSYNTAX CHECK .

REAL
[TYPE-DEFAULT { } INTEGER

EXPLICIT
The /TYPE DEFAULT qualifier sets the default data type (REAL or INTEGER)
for all data not explicitly typed in your program or specifies that all data must
be explicitly typed (EXPLICIT) .
•

	

REAL specifies that all data not explicitly typed is floating-point data of
the default size (SINGLE or DOUBLE) .

•

	

INTEGER specifies that all data not explicitly typed is integer data of the
default size (BYTE, WORD, or LONG) .

•

	

EXPLICIT specifies that all data in a program must be explicitly typed .
Implicitly declared variables cause BASIC-PLUS-2 to signal an error .

The default is TYPE DEFAULT=REAL.

NARIANT {

	

} int-const

The /VARIANT qualifier establishes int-const as a value to be used in compiler
directives. The variant value can be referenced in a lexical expression with the
lexical function %VARIANT. Int-const always has a data type of WORD . The
default is /VARIANT=O .

/WORD
The /WORD qualifier causes BASIC-PLUS-2 to allocate 16 bits of storage as
the default for all integer data not explicitly typed in the program . Untyped
integer values are treated as WORD values and must be in the range -32768 to
32767 or BASIC-PLUS-2 signals the error message "Integer error or overflow ."
Table 1-2 in this manual lists BASIC-PLUS-2 data types and ranges . The
default is WORD .

2-56 Environment Commands

Example

RUN PROG1
PROG1

	

29-APR-1991 13 :52

1
3
b
10

BASIC2

RUNNH PROG1
1
3
6
10

BASIC2

Environment Commands 2-57

SAVE

SAVE

Format

The SAVE command writes the BASIC-PLUS-2 source program currently in
memory to a file on the default or specified device .

SAVE [file-spec]

Syntax Rules
1 . File-spec is the file specification of the program you want to save .
2 . If you do not supply a file specification, BASIC-PLUS-2 saves the file with

the name of the program currently in memory and a file type of B2S .
3 . If you specify only the file name, BASIC-PLUS-2 saves the program with

the default file type in the current default directory.

Remarks
1. If you specify a file specification and the file already exists, BASIC-PLUS-2

signals the warning "File exists-rename or replace ."
2 . BASIC-PLUS-2 stores the sorted program in ascending line number order .
3. You can store the program on a specified device . For example :

SAVE DB1 :[4,5]NEWTEST .PRO

BASIC-PLUS-2 saves the file NEWTEST.PRO in DB1 :[4,5] .

Example

SAVE PROG SAMP .B2S

2-58 Environment Commands

SCALE

Format

The SCALE command allows you to control accumulated round-off errors
by multiplying DOUBLE numeric values by 10 raised to the scale factor,
truncating them to an INTEGER value and then storing them .

SCALE int-const

Syntax Rules
1 . Int-const specifies the power of 10 you want to use as the scaling factor .

2 . Int-const can be an integer from 0 through 6 .

3 . If the specified value is greater than 6, BASIC-PLUS-2 signals the error
"Scale factor of n is out of range," where n is the specified value .

4 . If you do not supply an int-const, BASIC-PLUS-2 signals the error "Illegal
number."

Remarks
1 . SCALE affects only values of the data type DOUBLE .

2 . BASIC-PLUS-2 multiplies values using the scale factor you specify and
then truncates the value at the decimal point. For example :
10 DECLARE DOUBLE X

X = "2 .488888"
PRINT USING "# .#######" ;X

The value 2 .488888 is rounded as follows :

Scale

	

Value Produced for 2.488888

0

	

2.488888
1

	

2.4
2

	

2.48
3

	

2.488

SCALE

Environment Commands 2-59

SCALE

Example

3 . The SCALE command does not improve accuracy ; however, it does provide
near exact accuracy for the number of digits specified .

4. The SCALE command influences the representation of DOUBLE numeric
values in output files that were written using MOVE statements, MAP
/COMMON statements, or virtual arrays . If a program compiled without
SCALE (or a different SCALE factor) accesses such data written by a
SCALE-set program, the data values will be skewed by the power of 10
specified as the scaling factor . You must use consistent scaling amoung
programs that share scaled data .

SCALE 2

Scale

	

Value Produced for 2.488888

4 2 .4888
5 2.48888
6

	

2.488888

2-60 Environment Commands

SCRATCH

Format

Syntax Rules
None .

Remarks
None.

Example

SCRATCH

SCRATCH

SCRATCH

The SCRATCH command clears any program currently in memory, removes
any object files loaded with the LOAD command, and resets the program name
to NONAME .

Environment Commands 2-61

SEQUENCE

SEQUENCE

Format

The SEQUENCE command causes BASIC-PLUS-2 to automatically generate
line numbers for your program text . BASIC-PLUS-2 supplies line numbers for
your text until you end the procedure or reach the maximum line number of
32767 .

SEQUENCE [line-num] [, int-const]

Syntax Rules
1 . Line-num specifies the line number where sequencing begins .
2 . If you do not specify a line number, the default is line number 100 .

3 . Int-const specifies the line number increment for your program . If you do
not specify an increment, the default is 10 .

Remarks
1 . If you specify a line number that already contains a statement, or if the

sequencing operation generates a line number that already contains a
statement, BASIC-PLUS-2 signals the error "Attempt to sequence over
existing statement," and returns to normal input mode .

2 . Enter your program text in response to the line number prompt ; the
carriage return ends each line and causes BASIC-PLUS-2 to generate a
new line number.

3. If you press Ctrl/Z in response to the line number prompt, BASIC-PLUS-2
terminates the sequencing operation and prompts for another command .

4. When the maximum line number of 32767 is reached, BASIC-PLUS-2
terminates the sequencing process and returns to normal input mode .

5. BASIC-PLUS-2 does not check syntax during the sequencing process .

2-62 Environment Commands

Example

BASIC2

SEQUENCE 100,10
100 INPUT "Enter a numeric value" ;A%
110

	

IF A% = 20

SEQUENCE

Environment Commands 2-63

SET

SET

Format

Defaults

/WORD
See text .
/NOCLUSTER
/NOCROSS_REFERENCE
/NODEBUG
/SINGLE
/NODUMP
/EXTEND=512
/FLAG=DECLINING
/NOIDS
/NOINDEX
/LINE
/NOLIST
/WORD
/NOMACRO
/OBJECT
/PAG E_S IZE=60
/NORELATIVE
/NOSEQUENTIAL
/SINGLE
/NOSYNTAX_CHECK
/TYPE_DEFAULT=REAL
NARIANT=O
/NOVIRTUAL
/WARNINGS
/WIDTH=132
/WORD

The SET command allows you to specify BASIC-PLUS-2 defaults for all
BASIC-PLUS-2 qualifiers . Qualifiers control the compilation process and the
run-time environment . The defaults you set remain in effect for all subsequent
operations until they are reset or until you exit from the compiler .

SET [/qualifier] . . .

Command Qualifiers

/BYTE
/[NO]CHAIN
/[NO]CLUSTER[sep lib-param]
/[NO]CROSS-REFERENCE [sep [NO]KEYWORDS]
/[NO]DEBUG
/DOUBLE
/[NO]DUMP
/EXTEND sep int-const
/[NO]FLAG sep [NO]DECLINING
/[NO]IDS
/[NO]INDEX
/[NO]LINE
/[NO]LIST
/LONG
/[NO]MACRO
/[NO]OBJECT
/PAGE SIZE sep int-const
/[NO]RELATIVE
/[NO]SEQUENTIAL
/SINGLE
/[NO]SYNTAX CHECK
/TYPE-DEFAULT sep default-clause
NARIANT sep int-const
/[NO]VIRTUAL
/[NO]WARNINGS
/WIDTH sep int-const
/WORD

2-64 Environment Commands

Syntax Rules
1 . /Qualifier specifies a qualifier keyword that sets a BASIC-PLUS-2 default .

2 . BASIC-PLUS-2 signals the error "Illegal switch" if you do not separate
multiple qualifiers with commas (,) or slashes (/) . The same error is
signaled if you separate qualifiers with a slash but do not prefix the first
qualifier with a slash .

Remarks
If you do not specify any qualifiers, BASIC-PLUS-2 resets all qualifiers except
those set with the BRLRES, /DSKLIB, /LIBRARY, /ODLRMS, /RMSRES, or
/EXTEND qualifiers to the installation defaults . The SCALE value set with
the SCALE command is also not reset to the installation default .

Command Qualifiers
/BYTE
The BYTE qualifier causes BASIC-PLUS-2 to allocate eight bits of storage as
the default for all integer data not explicitly typed in the program . Untyped
integer values are treated as BYTE values and must be in the BYTE range or
BASIC-PLUS-2 signals the error "Integer error or overflow ." Table 1-2 in this
manual lists BASIC-PLUS-2 data types and ranges . The default is /WORD .

/[NO]CHAIN
The /CHAIN qualifer can be used on RSTS/E systems only. The /CHAIN
qualifier enables other programs to CHAIN into the program using the LINE
clause of the CHAIN statement . If the program has more than 200 line
numbers, the /NOCHAIN qualifier reduces the memory needs of the output
program by disabling storage of line numbers in memory . You cannot chain
from one DECNET node to another. The default is determined at installation .

/[NO]CLUSTER [

	

file-spec]
NONE

The /CLUSTER qualifer causes the Task Builder to cluster memory-resident
libraries to increase the space available for your task . Before you use the
/CLUSTER qualifier, at least two memory-resident libraries must be linked
to the task: the BASIC-PLUS-2 memory-resident library, and one other
memory-resident library.
•

	

File-spec specifies the memory-resident library to be clustered . The
specified library must be in the account LB : on RSTS/E systems or the
account LB :[1,11 on RSX systems .

SET

Environment Commands 2-65

SET

•

	

NONE specifies that only the BASIC-PLUS-2 and RMS-11 libraries are
clustered .

• /CLUSTER with no argument causes the Task Builder to cluster the
default memory-resident library . If there is no default cluster library,
/CLUSTER with no argument acts the same as /CLUSTER :NONE .

The /NOCLUSTER qualifier tells the Task Builder not to cluster memory-
resident libraries to increase the space available for your task. /NOCLUSTER
is the default. See the BASIC-PLUS-2 User's Guide for more information on
using RMS-11 libraries .

/[NO]CROSS-REFERENCE[{ } [NO]KEYWORDS]

If you use the /CROSS-REFERENCE qualifier with the /LIST qualifier
when you compile your program, the BASIC-PLUS-2 compiler includes
cross-reference information in the program listing file . If you specify
/CROSS-REFERENCE =KEYWORDS, BASIC-PLUS-2 also cross-references
BASIC-PLUS-2 keywords used in the program . If you specify /NOCROSS_
REFERENCE, BASIC-PLUS-2 does not include a cross reference section in
the compiler listing. The default is /NOCROSS REFERENCE .

/[NO]DEBUG
The /DEBUG qualifier appends to the object file information on symbolic
references and line numbers . This information is used by the BASIC-PLUS-2
Debugger to debug your program . You must specify the /LINE qualifier when
you specify the /DEBUG qualifier on the COMPILE command ; otherwise,
BASIC-PLUS-2 signals an error.
When you specify /DEBUG, control is passed to the debugger when the
program is executed in the BASIC-PLUS-2 environment . If you specify
/NODEBUG, information on program symbols and line numbers is not included
in the object file and control is not passed to the debugger when the program
executes. The default is /NODEBUG .
See the BASIC-PLUS-2 User's Guide for more information on using the
BASIC-PLUS-2 Debugger.

/DOUBLE
The /DOUBLE qualifier causes BASIC-PLUS-2 to allocate 64 bits of storage as
the default size for all floating-point data not explicitly typed in the program .
Untyped floating-point values are treated as DOUBLE values and must be in
the DOUBLE range or BASIC-PLUS-2 signals the error "Floating-point error
or overflow." Table 1-2 in this manual lists BASIC-PLUS-2 data types and
ranges. The default is /SINGLE .

2-66 Environment Commands

/[NO]DUMP
If your program aborts with a fatal error, the /DUMP qualifier causes the Task
Builder to generate a memory dump . The /NODUMP qualifier causes the Task
Builder not to generate a memory dump when the program aborts . The default
is /NODUMP.

/EXTEND {

	

} int-const

The /EXTEND qualifier specifies the amount of space to be added to the initial
task size when the task is started . The Task Builder rounds the extension up
to the nearest 32-word boundary. The maximum allowed extension is 32000 .
The default is /EXTEND=512 .

/[NO]FLAG { I[NO]DECLINING

The /FLAG qualifier causes BASIC-PLUS-2 to provide compile-time
information about program elements that are not recommended for new
program development.
For example, if you specify the DECLINING clause, BASIC-PLUS-2 flags the
following source code as declining :

•

	

CVT$$ (use EDIT$)
•

	

CVT$%, CVT$F, CVT%$, CVTF$, AND SWAP% (use multiple MAP
statements)

•

	

DEF* functions (use DEF functions)
•

	

FIELD statements (use MAP DYNAMIC and REMAP)

•

	

GOTO line-num% (do not use the integer suffix with a line number)
The default is /FLAG=DECLINING .

/[NO]IDS
The /IDS qualifier causes the Task Builder to build your task with I- and
D-space support . I- and D-space provides a faster program execution time and
also allows you to execute larger programs than usual . It is recommended
that you do not use the BASIC-PLUS-2 memory-resident library in an I- and
D-space task . By default, when you specify the /IDS qualifier, BASIC-PLUS-2
removes all references to the BASIC-PLUS-2 memory-resident library from
the Task Builder command file . The /NOIDS qualifier tells the Task Builder
not to build the task with I- and D-space support . /NOIDS is the default . See
the BASIC-PLUS-2 User's Guide for more information on enabling I- and
D-space for program execution .

SET

Environment Commands 2-67

SET

[NO]INDEX
The /INDEX qualifier causes the Task Builder to include the code needed for
indexed file operations . BASIC-PLUS-2 enables this qualifier automatically
for programs containing an OPEN statement with the ORGANIZATION
INDEXED clause . If you specify /NOINDEX, the Task Builder does not include
the code needed for indexed file operations . The default is /NOINDEX .

/[NO]LINE
The /LINE qualifier includes line number information in object modules . If you
specify /NOLINE, BASIC-PLUS-2 does not include line number information in
object modules . If you specify /NOLINE in a program containing the run-time
ERL function, BASIC-PLUS-2 issues a warning that the /NOLINE qualifier
has been overridden . The default is /LINE .

/[NO]LIST
The /LIST qualifier causes BASIC-PLUS-2 to produce a compiler listing file .
By default, the compiler listing generated by the /LIST qualifier contains a
memory allocation map . The name of the listing file is the same as the name
of the first program module specified, or the name of the program currently
in memory if no file specification is provided . The listing file has a default
file type of LST. If you specify /NOLIST, BASIC-PLUS-2 does not generate a
compiler listing. /NOLIST is the default .

/LONG
The /LONG qualifier causes BASIC-PLUS-2 to allocate 32 bits of storage
as the default size for all integer data not explicitly typed in the program .
Untyped integer values are treated as LONG values and must be in the LONG
range or BASIC-PLUS-2 signals the error "Integer error or overflow ." Table
1-2 in this manual lists BASIC-PLUS-2 data types and ranges . /WORD is the
default .

/[NO]MACRO
The /MACRO qualifier converts the program into MACRO-11 source code and
saves it in a file with the same name as the program and a file type of MAC .
A MACRO-11 file can be assembled. If you specify /NOMACRO, a MACRO-11
source code file is not generated . You cannot specify the /OBJECT qualifier
with the /MACRO qualifier . The default is /NOMACRO .

/[NO]OBJECT
The /OBJECT qualifier generates an object module with the same file name
as that of the program and a default file type of OBJ . The /NOOBJECT
qualifier allows you to check your program for errors without creating an object
file . If your program contains one or more fatal errors, an object module is

2-68 Environment Commands

not generated . You cannot specify the /MACRO qualifier with the /OBJECT
qualifier. /OBJECT is the default.

/PAGE SIZE {

	

} int-const

The /PAGE SIZE qualifier sets the page size of the listing file . Int-const must
be greater than zero or BASIC-PLUS-2 signals the warning message "Listing
length out of range-ignored." The default is /PAGE SIZE=60 .

/[NO]RELATIVE
The /RELATIVE qualifier causes the Task Builder to include the code needed
for relative file operations . BASIC-PLUS-2 sets this qualifier automatically
for programs containing an OPEN statement with the ORGANIZATION
RELATIVE clause . If you specify /NORELATIVE, the Task Builder does not
include the code necessary for relative file operations . /NORELATIVE is the
default .

/[NO]SEQUENTIAL
The /SEQUENTIAL qualifier causes the Task Builder to include the RMS-11
code needed for sequential file operations . BASIC-PLUS-2 sets this
qualifier automatically for programs containing an OPEN statement with
the ORGANIZATION SEQUENTIAL clause . If you specify /NOSEQUENTIAL,
the Task Builder does not include the RMS-11 code necessary for sequential
file operations . /NOSEQUENTIAL is the default .

/SINGLE
The /SINGLE qualifier causes BASIC-PLUS-2 to allocate 32 bits of storage as
the default size for all floating-point data not explicitly typed in the program .
Untyped floating-point values are treated as SINGLE values and must be in
the SINGLE range or BASIC-PLUS-2 signals the error "Floating-point error
or overflow." Table 1-2 in this manual lists BASIC-PLUS-2 data types and
ranges. The default is /SINGLE .

/[NO]SYNTAX CHECK
The /SYNTAX_CHECK qualifier causes BASIC-PLUS-2 to perform
syntax checking after each program line is entered . If you specify
/NOSYNTAX_CHECK, BASIC-PLUS-2 does not perform syntax checking .
The default is /NOSYNTAX_CHECK.

REAL
/TYPE-DEFAULT { } INTEGER

EXPLICIT

SET

Environment Commands 2-69

SET

The /TYPE DEFAULT qualifier sets the default data type (REAL or INTEGER)
for all data not explicitly typed in your program or specifies that all data must
be explicitly typed (EXPLICIT) .

•

	

REAL specifies that all data not explicitly typed is floating-point data of
the default size (SINGLE or DOUBLE) .

•

	

INTEGER specifies that all data not explicitly typed is integer data of the
default size (BYTE, WORD, or LONG) .

•

	

EXPLICIT specifies that all data in a program must be explicitly typed .
Implicitly declared variables cause BASIC-PLUS-2 to signal an error .

The default is TYPE DEFAULT=REAL .

NARIANT {

	

} int-const

The /VARIANT qualifier establishes int-const as a value to be used in compiler
directives. The variant value can be referenced in a lexical expression with the
lexical function %VARIANT . Int-const always has a data type of WORD . The
default is /VARIANT=O .

/[NO]VIRTUAL
The /VIRTUAL qualifier causes BASIC-PLUS-2 to include the RMS code
needed for virtual array and block I/O file operations . BASIC-PLUS-2 sets
this qualifier automatically when you compile a program containing an
OPEN statement with an ORGANIZATION VIRTUAL clause . If you specify
/NOVIRTUAL, BASIC-PLUS-2 does not include the RMS code necessary for
virtual array and block I/O file operations. /NOVIRTUAL is the default .

/[NO]WARNINGS
The /WARNINGS qualifier causes BASIC-PLUS-2 to display warning
messages during program compilation . The /NOWARNINGS qualifier causes
BASIC-PLUS-2 to disable warning messages during program compilation .
The default is /WARNINGS .

/WIDTH {

	

} int-const

The /WIDTH qualifier sets the width of the listing file . Int-const must be an
integer from 72 through 132, or BASIC-PLUS-2 signals the message "Listing
width out of range-ignored ." The default is /WIDTH=132 .

2-70 Environment Commands

Example

/WORD
The /WORD qualifier causes BASIC-PLUS-2 to allocate 16 bits of storage as
the default for all integer data not explicitly typed in the program . Untyped
integer values are treated as WORD values and must be in the range -32768 to
32767 or BASIC-PLUS-2 signals the error message "Integer error or overflow."
Table 1-2 in this manual lists BASIC-PLUS-2 data types and ranges . The
default is /WORD .

SET /DOUBLE/BYTE/LIST

On the SET command, the slash character can be omitted from a qualifier.
However, qualifiers must be separated by either slashes or commas . The
following is equivalent to the previous example :

SET DOUBLE, BYTE, LIST

In all other commands, the slash character is always required to denote a
qualifier.

SET

Environment Commands 2-71

SHOW

SHOW

Format

Syntax Rules

None .

Remarks

None .

Example

SHOW
PDP-11 BASIC-PLUS-2 V2 .7-00 using

ENVIRONMENT INFORMATION :
Current edit line : 0
NO Modules loaded
NO Main module loaded

DEFAULT DATA TYPE INFORMATION :
Data type : REAL
Real size : SINGLE
Integer size : WORD
Scale factor : 0

COMPILATION QUALIFIERS :
Object

NO Macro
Lines
Warnings

NO Debug records
NO Syntax checking
Flag : Declining
Variant : 0

BASIC2

The SHOW command displays the current defaults for the BASIC-PLUS-2
compiler on your terminal .

SHOW

2-72 Environment Commands

EIS with run support

RMS FILE ORGANIZATION :
NO Index
NO Relative
NO Sequential
NO Virtual

LISTING FILE INFORMATION :
NO Source
NO Cross Reference
NO Keywords

60 lines by 132 columns

BUILD QUALIFIERS :
NO Dump
NO Map
NO Cluster
NO I- and D-Space
Task extend : 512
RMS ODL file : LB :[1,1]RMS11X
BP2 Disk lib : LB :[1,1]V240TS
RMS Resident lib : NONE
BP2 Resident lib : NONE

UNSAVE

Format

The UNSAVE command deletes a specified file from storage .

UNSAVE [file-spec]

Syntax Rules
File-spec is the file specification of a program .

Remarks
1 . If you supply only a file name, BASIC-PLUS-2 deletes the file with the

specified name and a file type of B2S .

2 . If you do not supply a file specification, BASIC-PLUS-2 deletes the file
that has the file name of the program currently in memory and a file type
of B2S .

3 . If you do not supply a file specification and do not have a program in
memory, BASIC-PLUS-2 searches for the default file NONAME .B2S .

Example

UNSAVE DB2 :CHECK .DAT

UNSAVE

Environment Commands 2-73

3
Compiler Directives

A compiler directive is an instruction that causes BASIC-PLUS-2 to perform
a certain operation as it translates the source program. This chapter describes
the compiler directives supported by BASIC-PLUS-2 . Each compiler directive
is listed and discussed alphabetically .

Compiler Directives 3-1

%ABORT

%ABORT

Format

The %ABORT directive terminates program compilation and displays a fatal
error message that you can supply.

%ABORT [str-lit]

Syntax Rules
1 . Only a line number or a comment field can appear on the same physical

line as the %ABORT directive .
2 . Str-lit is the error message text . It must be a string literal enclosed in

quotation marks .

Remarks
When BASIC-PLUS-2 encounters a %ABORT directive, it stops the
compilation and terminates the listing file if a listing file has been requested .
If you specified an error message, BASIC-PLUS-2 displays the message text
on your terminal screen and in the compilation listing .

Example

100 %IF %VARIANT = 2 %THEN
%ABORT "Cannot compile with variant 2"

%END %IF

3-2 Compiler Directives

%CROSS

Format

The %CROSS directive causes BASIC-PLUS-2 to resume accumulating cross-
reference information for the listing file which was previously suspended by
the %NOCROSS directive .

%CROSS

Syntax Rules
Only a line number or a comment field can appear on the same physical line as
the %CROSS directive .

Remarks
1 . The %CROSS directive has no effect unless you request a cross-reference

section for the compilation listing with the /CROSS-REFERENCE qualifier .
For more information on listing file format, see the BASIC-PLUS-2 User's
Guide .

2 . When a cross-reference section is requested, the BASIC-PLUS-2 compiler
resumes accumulating cross-reference information immediately after
encountering the %CROSS directive .

Example

10 %CROSS

%CROSS

Compiler Directives 3-3

%IDENT

%IDENT

Format

The %IDENT directive lets you identify the version of a program module . The
identification text is placed in the object module and printed in the listing
header .

%IDENT str-lit

Syntax Rules
1 . Only a line number or a comment field can appear on the same physical

line as an %IDENT directive .
2 . Str-lit is the identification text . It must be a string literal enclosed in

quotation marks .
•

	

The identification text can consist of up to six RAD-50 characters .

• If the identification text contains more than six RAD-50 characters,
BASIC-PLUS-2 signals a warning message and truncates the extra
characters .

• If the identification text contains characters other than RAD-50
characters, BASIC-PLUS-2 signals a warning message and the
%IDENT directive is ignored .

Remarks
1 . The BASIC-PLUS-2 compiler inserts the identification text in the first 31

character positions of the second line on each listing page . BASIC-PLUS-2
also includes the identification text in the object module, if the compilation
produces one, and in the map file created by the Task Builder, if a map file
is requested .

2 . The %IDENT directive should appear at the beginning of your program if
you want the identification text to appear on the first page of your listing .
If the %IDENT directive appears after the first program statement, the
text will appear on the next page of the listing file .

3. You can use the %IDENT directive only once in a module . If you specify
more than one %IDENT directive in a module, BASIC-PLUS-2 signals a
warning and uses the identification text specified in the first directive .

3-4 Compiler Directives

Example

4 . The default identification text is a 6-digit number. The first two digits
represent the compiler base level, while the last four digits represent the
month and day. For example, the identification text 100712 represents
base level 10, and a date of July 12 .

40 %IDENT "V10"

%IDENT

Compiler Directives 3-5

%IF-%THEN-%ELSE-%END %IF

%IF-%THEN-%ELSE-%END %IF

Format

The %IF-%THEN-%ELSE-%END %IF directive lets you conditionally include
source code or execute another compiler directive .

%IF lex-exp %THEN code [%ELSE code] %END %IF

Syntax Rules
1 . Lex-exp is always a WORD integer.

2 . Lex-exp can be any of the following :

•

	

A lexical constant named in a %LET directive .
•

	

An integer literal, with or without the percent sign suffix .
•

	

A lexical built-in function (%VARIANT) .
•

	

Any combination of the above, separated by valid lexical operators .
Lexical operators include logical operators, relational operators, and the
arithmetic operators for addition (+), subtraction (-), multiplication
(*), and division (I) .

3 . Code is BASIC-PLUS-2 program code. It can be any BASIC-PLUS-2
statement or another compiler directive, including another %IF directive .
You can nest %IF directives to eight levels .

4. The %IF directive can appear anywhere in a program where a space is
allowed, except in column one or within a quoted string. This means
that you can use the %IF directive to make a whole statement, part of a
statement, or a block of statements conditional .

5 . %THEN, %ELSE, and %END %IF do not have to be on the same physical
line as %IF.

Remarks
1 . If lex-exp is true, BASIC-PLUS-2 processes the %THEN clause . If lex-

exp is false, BASIC-PLUS-2 processes the %ELSE clause. If there is no
%ELSE clause, BASIC-PLUS-2 processes the %END %IF clause . The
BASIC-PLUS-2 compiler includes statements in the %THEN or %ELSE
clause in the source program and executes directives in order of occurrence .

3-6 Compiler Directives

Example

2 . You must include the %END %IF clause . Otherwise, BASIC-PLUS-2
assumes the remainder of the program is part of the last %THEN
or %ELSE clause and signals the error "Missing %END %IF" when
compilation ends .

100 %IF (%VARIANT = 2)
%THEN DECLARE SINGLE hourly-pay(100)
%ELSE %IF (%VARIANT = 1)

%THEN DECLARE DOUBLE salary-pay(100)
%ELSE
%ABORT "Can't compile with specified variant"
%END %IF

%END %IF

PRINT %IF (%VARIANT = 2)
%THEN 'Hourly Wage Chart'

GOTO Hourly-routine
%ELSE 'Salaried Wage Chart'

GOTO Salary-routine
%END %IF

%IF-%THEN-%ELSE-%END %IF

Compiler Directives 3-7

%INCLUDE

%INCLUDE

Format

The %INCLUDE directive lets you include BASIC-PLUS-2 source text from
another program file in the current program compilation .

%INCLUDE str-lit

Syntax Rules
1 . Only a line number or a comment field can appear on the same physical

line as the %INCLUDE directive .
2 . Str-lit specifies the file to be included. It must be a string literal enclosed

in quotation marks .
3 . If you do not specify a complete file specification, BASIC-PLUS-2 uses the

default device and directory and the file type B2S .

Remarks
1. Any statement that appears after an END statement inside an included

file causes BASIC-PLUS-2 to signal an error .
2 . The BASIC-PLUS-2 compiler includes the specified source file in the

program compilation at the point of the %INCLUDE directive and prints
the included code in the program listing file if the compilation produces
one .

3 . The included file cannot contain line numbers . If it does, BASIC-PLUS-2
signals the error "Line number may not appear in %INCLUDE file ."

4. All statements in the accessed file are associated with the line number of
the program line that contains the %INCLUDE directive .

5. A file accessed by %INCLUDE can itself contain a %INCLUDE directive .

6. All %IF directives in an included file must have a matching %END %IF
directive or BASIC-PLUS-2 signals the error "IF directive in INCLUDE
directive needs END IF directive in same file ."

3-8 Compiler Directives

Example

100 %INCLUDE "CHECKIT"

%INCLUDE

Compiler Directives 3-9

%LET

%LET

Format

The %LET directive declares and provides values for lexical constants . You
can use lexical constants only in conditional expressions in the %IF-%THEN-
%ELSE directive and in lexical expressions in subsequent %LET directives .

%LET %lex-var = lex-exp

Syntax Rules
1 . Only a line number or a comment field can appear on the same physical

line as the %LET directive .
2 . Lex-var is the name of a lexical variable .

•

	

Lexical variables are always WORD integers .
•

	

The lexical variable must be preceded by a percent sign (%) and cannot
end with a dollar sign ($.) or percent sign .

3 . Lex-exp can be any of the following :
•

	

A lexical variable named in a previous %LET directive .
•

	

An integer literal, with or without the percent sign suffix .
•

	

A lexical built-in function .
•

	

Any combination of the above, separated by valid lexical operators .
Lexical operators can be logical operators, relational operators, and the
arithmetic operators for addition (+), subtraction (-), multiplication
(*), and division (/) .

Remarks
You cannot change the value of a lexical variable within a program unit once
it has been named in a %LET directive . For more information on coding
conventions see the BASIC-PLUS-2 User's Guide .

Example

100 %LET %DEBUG ON = 1%

3-10 Compiler Directives

%LIST

Format
%LIST

%LIST

The %LIST directive causes the BASIC-PLUS-2 compiler to resume
accumulating compilation information for the program listing file which was
previously suspended by the %NOLIST directive .

Syntax Rules
Only a line number or a comment field can appear on the same physical line as
the %LIST directive .

Remarks
1. The %LIST directive has no effect unless you requested a listing file . For

more information on listing file format, see the BASIC-PLUS-2 User's
Guide .

2. As soon as it encounters the %LIST directive, the BASIC-PLUS-2 compiler
resumes accumulating information for the program listing file . Thus, the
directive itself appears as the next line in the listing file .

Example

100 %LIST

Compiler Directives 3-11

%NOCROSS

%NOCROSS

Format

The %NOCROSS directive causes the BASIC-PLUS-2 compiler to stop
accumulating cross-reference information for the program listing file .

%NOCROSS

Syntax Rules
Only a line number or a comment field can appear on the same physical line as
the %NOCROSS directive .

Remarks
1 . The BASIC-PLUS-2 compiler stops accumulating cross-reference

information for the program listing file immediately after encountering
the %NOCROSS directive .

2 . The %NOCROSS directive has no effect unless you request a listing file
and cross-reference information .

3 . It is recommended that you not embed a %NOCROSS directive within a
statement. Embedding a %NOCROSS directive within a statement makes
the accumulation of cross-reference information unpredictable . For more
information on listing file format, see the BASIC-PLUS-2 User's Guide .

Example

100 %NOCROSS

3-12 Compiler Directives

%NOLIST

Format

The %NOLIST directive causes the BASIC-PLUS-2 compiler to stop
accumulating compilation information for the program listing file .

%NOLIST

%NOLIST

Syntax Rules
Only a line number or a comment field can appear on the same physical line as
the %NOLIST directive .

Remarks
1 . As soon as it encounters the %NOLIST directive, the BASIC-PLUS-2

compiler stops accumulating information for the program listing file . Thus,
the directive itself does not appear in the listing file .

2. The %NOLIST directive has no effect unless you requested a listing file .
3 . For more information on the listing file format, see the BASIC-PLUS-2

User's Guide .

Example

100 %NOLIST

Compiler Directives 3-13

%PAGE

%PAGE

Format

Syntax Rules
Only a line number or a comment field can appear on the same physical line as
the %PAGE directive .

Remarks
The %PAGE directive has no effect unless you request a listing file .

Example

100 %PAGE

The %PAGE directive causes BASIC-PLUS-2 to begin a new page in the
program listing file immediately after the line that contains the %PAGE
directive .

%PAGE

3-1 4 Compiler Directives

%PRINT

Format

%PRINT

The %PRINT directive lets you insert a message into your source code that the
BASIC-PLUS-2 compiler prints during compilation .

%PRINT str-lit

Syntax Rules
1 . Only a line number or a comment field can appear on the same physical

line as the %PRINT directive .

2 . Str-lit is the message text . It must be a string literal enclosed in quotation
marks .

Remarks
1 . %PRINT displays an informational error message containing text that you

specify.

2. The message text you specify is displayed on the terminal screen . If you
request a listing, the message appears in the compilation listing as well .

Example

10 %IF %DEBUG = 1% %THEN
%PRINT "This is a debug compilation"
%END %IF

The output is :

Error on line 10,

%PRINT "This is a debug compilation"

User PRINT message : This is a debug compilation

Compiler Directives 3-15

%SBTTL

%SBTTL

Format

The %SBTTL directive lets you specify a subtitle for the program listing file .

%SBTTL str-lit

Syntax Rules
1 . Only a line number or a comment field can appear on the same physical

line as the %SBTTL directive .
2 . Str-lit is the subtitle text. It must be a string literal enclosed in quotation

marks and have no more than 48 characters .

3 . If you specify more than 48 characters in the subtitle, BASIC-PLUS-2
truncates the extra characters but does not signal a warning or error .

Remarks
1 . The specified subtitle appears under the title of all pages of source code

in the listing file until the BASIC-PLUS-2 compiler encounters another
%SBTTL or %TITLE directive . BASIC-PLUS-2 clears the subtitle field
before the allocation map section of the listing is generated . This way, you
only get a subtitle on the listing pages that contain source code .

2 . Because BASIC-PLUS-2 associates a subtitle with a title, a new %TITLE
directive sets the current subtitle to the null string . In this case, no
subtitle appears in the listing until BASIC-PLUS-2 encounters another
%SBTTL directive .

3 . If you want a subtitle to appear on the first page of your listing, the
%SBTTL directive should appear at the beginning of your program,
immediately after the %TITLE directive . Otherwise, the subtitle will start
to appear only on the second page of the listing .

4. If you want the subtitle to appear on the page of the listing that contains
the %SBTTL directive, the %SBTTL directive should follow a %PAGE
directive, or follow a %TITLE directive which follows a %PAGE directive .

5 . The %SBTTL directive has no effect unless you request a listing file .

3-1 6 Compiler Directives

Example

100

	

%TITLE "Learning to Program in BASIC-PLUS-2"
%SBTTL "Using FOR-NEXT Loops"
REM

	

THIS PROGRAM IS A SIMPLE TEST
200

	

DATA 1, 2, 3, 4

NEXT 1%
300

	

END

%SBTTL

Compiler Directives 3-17

%TITLE

%TITLE

Format

The %TITLE directive lets you specify a title for the program listing file .

%TITLE str-lit

Syntax Rules
1 . Only a line number or a comment field can appear on the same physical

line as the %TITLE directive .

2 . Str-lit is the title text . It must be a string literal enclosed in quotation
marks and can have no more than 48 characters .

3. If you specify more than 48 characters in the title, BASIC-PLUS-2
truncates the extra characters but does not signal a warning or error .

Remarks
1. The specified title appears on the first line of every page of the listing

file until BASIC-PLUS-2 encounters another %TITLE directive in the
program .

2. The %TITLE directive should appear on the first line of your program,
before the first statement, if you want the specified title to appear on the
first page of your listing.

3. If you want the specified title to appear on the page that contains the
%TITLE directive, the %TITLE directive should immediately follow a
%PAGE directive .

4. Because BASIC-PLUS-2 associates a subtitle with a title, a new %TITLE
directive sets the current subtitle to the null string .

5. The %TITLE directive has no effect unless you request a listing file .

3-1 8 Compiler Directives

Example

100

	

%TITLE "Learning to Program in BASIC--PLUS--2"
REM THIS PROGRAM IS A SIMPLE TEST

200

	

DATA 1, 2, 3, 4

NEXT I%
300

	

END

%TITLE

Compiler Directives 3-19

%VARIANT

%VARIANT

Format

The %VARIANT directive is a built-in lexical function that allows you to
conditionally control program compilation . %VARIANT returns an integer
value when you reference it in a lexical expression. You set the variant value
with the /VARIANT qualifier when you compile the program or with the
/VARIANT qualifier to the SET command .

%VARIANT

Syntax Rules
The %VARIANT function can appear only in a lexical expression .

Remarks
The %VARIANT function returns the integer value specified with /VARIANT
qualifier to the COMPILE, SET, or RUN commands . The returned integer
always has a data type of WORD.

Example

%THEN

%ELSE %IF %VARIANT = %RSX OR %VARIANT = %VAX
%THEN

%ELSE
%ABORT "Illegal compilation variant"

%END %IF
%END %IF

3-20 Compiler Directives

40 %LET %RSTS = 2
50 %LET %RSX = 1
60 %LET %VAX = 0

70 %IF %VARIANT = %RSTS

4
Statements and Functions

This chapter provides reference material on all of the BASIC-PLUS-2
statements and functions . The statements and functions are described in
alphabetical order and each statement or function begins on a separate page .

Statements and Functions 4-1

ABS

ABS

Format

Syntax Rules
None .

Remarks
1 . The argument of the ABS function must be a real expression . When the

argument is a real expression, BASIC-PLUS-2 returns a value of the
same floating-point size. When the argument is not a real expression,
BASIC-PLUS-2 converts the argument to the default floating-point size
and returns a value of the default floating-point size .

2 . The returned floating-point value is always greater than or equal to zero .
The absolute value of zero is zero . The absolute value of a positive number
equals that number. The absolute value of a negative number equals that
number multiplied by -1 .

Example

10 G = 5 .1273
A = ABS(-100 * G)
B = -39
PRINT ABS(B), A

The output is :

39

	

512 .73

The ABS function returns a floating-point number that equals the absolute
value of a specified floating-point expression .

real-var = ABS(real-exp)

4-2 Statements and Functions

ABS%

Format

Syntax Rules

None .

Remarks

1 . If you specify a floating-point expression for int-exp, BASIC-PLUS-2
truncates it to an integer of the default integer size .

2. The returned value is always greater than or equal to zero . The absolute
value of zero is zero. The absolute value of a positive number equals that
number. The absolute value of a negative number equals that number
multiplied by -1 .

Example

10 G% = 5 .1273
A = ABS%(-100% * G%)
B = -39
PRINT ABS%(B), A

The output is :

39

	

512

The ABS% function returns an integer that equals the absolute value of a
specified integer expression .

int-var = ABS%(int-exp)

ABS%

Statements and Functions 4-3

ASCII

ASCII

Format

Syntax Rules
None .

Remarks
1 . The ASCII value of a null string is zero .
2. The ASCII function returns an integer value of the default size between 0

and 255.

Example

10 DECLARE STRING time-out
time out = "Friday"
PRINT ASCII (timeout)

The output is

70

The ASCII function returns the ASCII value in decimal of a string's first
character.

int-var ={ AASC SCII (str-exp)

4-4 Statements and Functions

ATN

Format

Syntax Rules

None .

Remarks

1 . ATN returns a value from -PI/2 through PU2 .

2. The argument of the ATN function must be a real expression. When the
argument is a real expression, BASIC-PLUS-2 returns a value of the
same floating-point size. When the argument is not a real expression,
BASIC-PLUS-2 converts the argument to the default floating-point size
and returns a value of the default floating-point size .

Example

10 DECLARE SINGLE angle rad, angle deg, T
INPUT "Tangent value" ;T
angle rad = ATN(T)
PRINT "The smallest angle with that tangent i " ;angle_rad ; "radians"
angle deg = angle_rad/(PI/180)
PRINT "and" ; angle deg ; "degrees"

The output is :

Tangent value? 2
The smallest angle with that tangent is 1 .10715 radians
and 63 .435 degrees

The ATN function returns the angle of a specified tangent in radians .

real-var = ATN(real-exp)

ATN

Statements and Functions 4-5

BUFSIZ

BUFSIZ

Format

The BUFSIZ function returns the record buffer size, in bytes, of a specified
channel .

int-var = BUFSIZ(chnl-exp)

Syntax Rules
1 . Chnl-exp is a numeric expression that specifies a channel number. You

cannot precede the chnl-exp with a number sign (#) .
2 . The value assigned to int-var is a WORD integer.

Remarks
1 . If the specified channel is closed, BUFSIZ returns a value of zero .
2 . BUFSIZ of channel #0 always returns the current terminal width or, in a

batch stream, returns a value of 512 .

Example

10 DECLARE LONG buffer_size
buffer-size = BUFSIZ(0)
PRINT "Buffer size equals" ;buffer_size

The output is :

Buffer size equals 132

4-6 Statements and Functions

CALL

Format

The CALL statement transfers control to a subprogram, external function,
or other callable routine. You can pass arguments to the routine and can
optionally specify passing mechanisms . When the called routine finishes
executing, control returns to the calling program .

CALL routine [pass-mech] [(actual-param , . . .)]

routine : f sub-name
any callable routine

BY VALUE
pass-mech :

	

BY REF
BY DESC

actual-param : { array((,]
exp

. . .) } [Pass-mech]

Syntax Rules
1 . Routine is the name of a BASIC-PLUS-2 SUB subprogram or another

callable program module . It cannot be a variable name .

Note

Although you can call routines written in other languages,
BASIC-PLUS-2 supports calls only to BASIC-PLUS-2 routines .

CALL

2 . Pass-mech specifies how arguments are passed to a non-BASIC routine .
• Specify a BY REF pass-mech after the routine name if you are invoking

a MACRO subprogram. If you invoke a MACRO subprogram but do not
specify BY REF, errors in the MACRO subprogram will not be handled
correctly.

Statements and Functions 4-7

CALL

•

	

Do not specify a pass-mech if you are invoking a BASIC-PLUS-2
routine . If you specify a pass-mech when invoking a BASIC-PLUS-2
routine, BASIC-PLUS-2 does not save the BASIC-PLUS-2 internal
variables and the results are unpredictable .

3 . If you do not specify a pass-mech, BASIC-PLUS-2 passes arguments as
indicated in Table 4-1 .
• BY VALUE specifies that BASIC-PLUS-2 passes the argument's 16-bit

value. Only BYTE and WORD values can be passed BY VALUE . BYTE
values passed BY VALUE are converted to WORD values .

•

	

BY REF specifies that BASIC-PLUS-2 passes the argument's address .
This is the default for all arguments except strings and entire arrays .

•

	

BY DESC specifies that BASIC-PLUS-2 passes the address of a
BASIC-PLUS-2 descriptor. You can pass only string values and entire
arrays by descriptor. See the BASIC-PLUS-2 User's Guide for a
description of BASIC-PLUS-2 descriptors .

'Specifies the default parameter-passing mechanism .

21wo asterisks indicate that the value can have 16 bits, at most .

(continued on next page)

4-8 Statements and Functions

Table 4-1 BASIC-PLUS-2 Parameter-Passing Mechanisms

Parameter BY VALUE

	

BY REF BY DESC

Integer and Real Data

Variables
Constants

Expressions

Elements of a
nonvirtual array
Virtual
array elements
Nonvirtual
entire array
Virtual
entire array

Yes2
Yes2

Yes2

Yes2

Yes2

No

No

Yes 1
Local
copyl
Local
copyl
Local
copyl
Local
copyl
Yes

No

No
No

No

No

No

Yesl

Yes

1Specifies the default parameter-passing mechanism .

CALL

4. If you call a non-BASIC routine and a passing mechanism appears before
the parameter list, it applies to all arguments passed to the called routine
and the routine is called with the R5 (fifth register) calling sequence .
You can override this passing mechanism by specifying a pass-mech for
individual arguments in the actual-param list .

5. Actual-param lists the arguments to be passed to the called routine .
6. You can pass expressions or entire arrays . Optional commas in parentheses

after the array name specify the dimensions of the array . The number of
commas is equal to the number of dimensions -1. Thus, no comma specifies
a one-dimensional array, one comma specifies a two-dimensional array, two
commas specify a three-dimensional array, and so on .

Statements and Functions 4-9

Table 4-1 (Cont.) BASIC-PLUS-2 Parameter-Passing Mechanisms

Parameter BY VALUE BY REF BY DESC

String Data

Variables
Constants

Expressions

Nonvirtual
array elements
Virtual
array elements
Nonvirtual
entire arrays
Virtual
entire arrays

No
No

No

No

No

No

No

Yes
Local
copy
Local
copy
Local
copy
Local
copy
Yes

No

Yes1

Local
copy l
Local
copy l
Local
copy
Local
copy l
Yesl

Yesl

Other Parameters

RFA variables No Yesl No

CALL

7. You cannot pass entire virtual arrays. Instead, share the data in a virtual
array between a calling program and a subprogram by opening a virtual
file in either program and dimensioning the array (using the same channel
number) in both programs .

8. The name of the routine can consist of 1 through 6 characters and must
conform to the following rules :
•

	

The first character of an unquoted name must be an alphabetic
character (A through Z). The remaining characters, if present, can be
any combination of letters, digits (0 through 9), dollar signs ($), or
periods (.) .

•

	

A quoted name can consist of any combination of alphabetic characters,
digits, dollar signs ($), periods (.), or spaces .

•

	

The routine can be a BASIC-PLUS-2 subprogram or a subprogram
written in another language .

• BASIC-PLUS-2 allows you to pass up to 32 parameters to a
BASIC-PLUS-2 subprogram and up to 255 parameters to a
MACRO-11 subprogram .

Remarks
1. BASIC-PLUS-2 does not allow recursion. That is, once a subprogram is

called, it cannot be called again until the SUBEND or SUBEXIT statement
for that routine has executed or until an error has been trapped with ON
ERROR GO BACK.

2. You can specify a null argument as an actual-param for non-BASIC
routines by omitting the argument and the pass-mech, but not the commas
or parentheses . This forces BASIC-PLUS-2 to pass a null argument and
allows you to access system routines from BASIC-PLUS-2 .

3. Arguments in the actual-param list must agree in data type and number
with the formal parameters specified in the subprogram .

4. Modifiable parameters are parameters passed by reference or descriptor.
An argument is modifiable when changes to it are evident in the calling
program. Changing a modifiable parameter in a subprogram means the
parameter is changed for the calling program as well . Only variables and
entire arrays passed by descriptor or by reference are modifiable .

4-10 Statements and Functions

Example

5 . Nonmodifiable parameters are parameters passed by value or by reference
with a local copy. An argument is nonmodifiable when changes to it are
not evident in the calling program. Changing a nonmodifiable argument
in a subprogram does not affect the value of that argument in the calling
program. Arguments passed by value, constants, and expressions are
nonmodifiable . Passing an argument as an expression (by placing it in
parentheses) changes it from a modifiable to a nonmodifiable argument .
Virtual array elements passed as parameters are non-modifiable . For
further information, refer to the section in the BASIC-PLUS-2 User's
Guide, "Passing Parameters to a BASIC-PLUS-2 Subprogram ."

6. BASIC-PLUS-2 automatically converts numeric actual parameters to
match the data type declared by the EXTERNAL statement for the routine
being called. If the actual parameter is a variable, BASIC-PLUS-2 signals
the informational message "Mode for parameter <n> of routine <name>
changed to match declaration" and passes the argument by local copy. This
prevents the called routine from modifying the contents of the variable .

7 . For expressions and virtual array elements passed by reference,
BASIC-PLUS-2 makes a local copy of the value, and passes the address
of this local copy. For dynamic string arrays, BASIC-PLUS-2 passes
a descriptor of the array of string descriptors . The compiler passes the
address of the argument's actual value for all other arguments passed by
reference .

8. If you attempt to call an external function, BASIC-PLUS-2 treats the
function as if it were invoked normally and validates all parameters . Note
that you cannot call a STRING or RFA function . See the EXTERNAL
statement for more information on how to invoke functions .

9. Files are not closed when the CALL statement executes .

10 EXTERNAL SUB OUTPUT (string)
DECLARE STRING msg_str
msg_str = "Successful call to OUTPUT!"
CALL OUTPUT (msg_str)

The output is :

Successful call to OUTPUT!

CALL

Statements and Functions 4-11

CAUSE ERROR

CAUSE ERROR

Format

The CAUSE ERROR statement allows you to artificially generate a
BASIC-PLUS-2 run-time error and transfer program control to a
BASIC-PLUS-2 error handler.

CAUSE ERROR err-num

Syntax Rules
Err-num must be a valid BASIC-PLUS-2 run-time error number .

Remarks

See the BASIC-PLUS-2 User's Guide for a list of errors and their
corresponding numbers .

Example

10 End_of file_error = 11%
CAUSE ERROR End-of-file-error

3200

	

SELECT ERR

4-12 Statements and Functions

CASE = 11
PRINT
RESUME

"End of file"
32767

CASE ELSE
RESUME 32767

END SELECT

CCPOS

Format

Syntax Rules
Chnl-exp is a numeric expression that specifies a channel number of an open
file or terminal. You cannot precede the chnl-exp with a number sign (#) .

Remarks
1. If chnl-exp is zero, CCPOS returns the current character position of the

controlling terminal .
2 . The int-var returned by the CCPOS function is of the default integer size .

3 . The CCPOS function counts only characters . If you use cursor addressing
sequences such as escape sequences, the value returned will not be the
cursor position .

4. The first character position on a line is zero .

Example

10 DECLARE LONG curs_pos
PRINT "Hello" ;
curspos = CCPOS (0)
PRINT curspos

The output is :

Hello 5

int-var = CCPOS(chnl-exp)

CCPOS

The CCPOS function returns the current character position or cursor position
of the output record on a specified channel .

Statements and Functions 4-13

CHAIN

CHAIN

Format

The CHAIN statement transfers control from the current program to another
executable image . CHAIN closes all files, then requests that the new program
begin execution . Control does not return to the original program when the new
image finishes executing .

Note

The CHAIN statement is not recommended for new program
development. It is recommended that you use subprograms and
external functions for program segmentation .

There are two formats . The first format is for BASIC-PLUS-2 on RSX-11M
and RSX-11M-PLUS systems. The second format is for BASIC-PLUS-2 on
RSTS/E systems .

1 For RSX-11 M/M-PLUS Systems :

CHAIN str-exp

2 . For RSTS/E Systems :

CHAIN str-exp [LINE lin-num]

Syntax Rules
1 . Str-exp represents the file specification of the program to which control is

passed. It can be a quoted or unquoted string .

2 . On RSTS/E systems, lin-num specifies a line number in another
BASIC-PLUS-2 program . The line number must exist and be in the
range from 1 through 32767 . The program containing the line number
must have been compiled with the /CHAIN qualifier .

4-14 Statements and Functions

Remarks
1 . Str-exp must refer to an executable image or BASIC-PLUS-2 signals an

error.
2 . If you do not specify a file type, BASIC-PLUS-2 searches for a file type of

TSK.

3. You cannot chain to a program on another node .
4 . Execution starts at the first line number of the specified program .

5. On RSTS/E systems, if you specify a lin-num, execution starts at the
specified line number.

6 . On RSTS/E systems, if you specify a line number and the line number does
not exist, BASIC-PLUS-2 signals an error .

7 . Before chaining takes place, all active output buffers are written, all open
files are closed, and all storage is released . On RSTS/E systems, the last
buffer (512 bytes) of a terminal-format file does not get written unless the
file is closed before the CHAIN statement executes .

8 . Because a CHAIN statement passes control from the executing image, the
values of any program variables are lost . This means that you can pass
parameters to a chained program only by using files or a system-specific
feature such as GET/PUT Core Common on RSTS/E systems .

9 . See the BASIC-PLUS-2 User's Guide for information about how the
CHAIN statement is implemented on your system .

Examples

1 . 10 CHAIN PROG2

100 CHAIN " PROG5 .COM "

2 . 190 !BASIC--PLUS--2 on RSTS/E systems only
200 CHAIN "NUMBER .TSK" LINE 390

CHAIN

Statements and Functions 4-15

CHANGE

CHANGE

Format

The CHANGE statement either converts a string of characters to an array of
their ASCII integer values or converts an array of numbers to a string of ASCII
characters .
The first format converts a string variable to an array. The second format
converts an array to a string variable .

1 . String Variable to Array

CHANGE str-exp TO num-array-name

2. Array to String Variable

CHANGE num-array-name TO str-var

Syntax Rules
1 . Str-exp is a string expression .
2 . Num-array-name should be a one-dimensional array. If you specify a

two-dimensional array, BASIC-PLUS-2 converts only the first row of that
array. BASIC-PLUS-2 does not support conversion to or from arrays of
more than two dimensions .

Remarks
1. String Variable to Array

•

	

This format converts each character in the string to its ASCII value .

•

	

BASIC-PLUS-2 assigns the value of the string's length to the first
element of the array .

•

	

BASIC-PLUS-2 assigns the ASCII value of the first character in the
string to the second element, (1) or (0,1), of the array, the ASCII value
of the second character to the third element, (2) or (0,2), and so on .

•

	

If the string is longer than the bounds of the array, BASIC-PLUS-2
does not translate the excess characters and signals the error
"Subscript out of range" (ERR=55) . The first element of the array
still contains the length of the string .

4-16 Statements and Functions

Example

2 . Array to String Variable
•

	

This format converts the elements of the array to a string of characters .

• The length of the string is determined by the value in the zero element,
(0) or (0,0), of the array. If the value of element zero is greater than
the array bounds, BASIC-PLUS-2 signals the error "Subscript out of
range" (ERR=55) .

•

	

BASIC-PLUS-2 changes the first element, (1) or (0,1), of the array
to its ASCII character equivalent, the second element, (2) or (0,2), to
its ASCII equivalent, and so on . The length of the returned string is
determined by the value in the zero element of the array . For example,
if the array is dimensioned as (10), but the zero element (0) contains
the value 5, BASIC-PLUS-2 changes only elements (1), (2), (3), (4),
and (5) to string characters .

•

	

BASIC-PLUS-2 truncates floating-point values to integers before
converting them to characters .

•

	

Values in array elements are treated modulo 256 .

10 DECLARE STRING ABCD, A
DIM INTEGER array-changes(6)
ABCD = "ABCD"
CHANGE ABCD TO array_changes
FOR 1 % = 0 TO 4
PRINT array_changes(I%)
NEXT 1%
CHANGE array-changes TO A
PRINT A

The output is :

4
65
66
67
68

ABCD

CHANGE

Statements and Functions 4-17

CHR$

CHR$

Format

Syntax Rules
None .

Remarks
1 . CHR$ returns the character whose ASCII value equals int-exp . If int-exp

is greater than 255, BASIC-PLUS-2 treats it modulo 256 . For example,
CHR$(325) is the same as CHR$(69) .

2. All arguments between 0 and 255 are considered unsigned 8-bit integers .
For example, -1 is treated as 255 .

3 . If you specify a floating-point expression for int-exp, BASIC-PLUS-2
truncates it to an integer of the default size .

Example

10 DECLARE INTEGER num exp
INPUT "Enter the ASCII value you wish to be converted" ;num exp
PRINT "The equivalent character is " ;CHR$(num exp)

The output is :

Enter the ASCII value you wish to be converted? 89
The equivalent character is Y

str-var = CHR$(int-exp)

The CHR$ function returns a 1-character string that corresponds to the ASCII
value you specify.

4-18 Statements and Functions

CLOSE

Format

Syntax Rules
Chnl-exp is a numeric expression that specifies a channel number associated
with a file . It can be preceded by an optional number sign (#) .

Remarks
1 . BASIC-PLUS-2 writes the contents of any active output buffers to the file

or device before it closes that file or device .

2 . Channel #0 (the controlling terminal) cannot be closed. An attempt to do
so has no effect .

3 . If you close a magnetic tape file that is open for output, BASIC-PLUS-2
writes an end-of-file on the magnetic tape at the current tape position .

4 . If you try to close a channel that is not currently open, BASIC-PLUS-2
does not signal an error and the CLOSE statement has no effect .

Example

10 OPEN "COURSE .DAT" FOR INPUT AS #2
INPUT #2, course nam, course num, course desc, course_instr

CLOSE #2

The CLOSE statement ends I/O processing to a device or file on the specified
channel .

CLOSE [#]chnl-exp, . . .

CLOSE

Statements and Functions 4-19

COMMON

COMMON

Format

The COMMON statement defines a named, shared storage area called a
COMMON block or program section (PSECT) . BASIC-PLUS-2 program
modules can access the values stored in the COMMON block by specifying
a COMMON block with the same name .

{ COMMON } [(com-name)] {[data-type] com-item}, . . .)
COM

num-unsubs-var
num-array-name (int-const, . . .)
str-unsubs-var = int-const

corn-item :

	

str-array-name (int-const, . . .) (= int-const]
FILL ((int-const)](= int-const]
FILL % ((int-const)]
FILL$ ((int-const)](= int-const]

Syntax Rules
1 . A COMMON block can have the same name as that of a program variable,

but cannot have the same name as that of a subprogram within the same
task image .

2. A COMMON block and a map in the same program module cannot have
the same name .

3 . All COMMON elements must be separated with commas .
4 . Com-name names the COMMON . Com-name is optional. If you specify a

common name, it must be in parentheses . If you do not specify a common
name, the default is ".$$$$." .

5 . Com-name can be from 1 through 6 characters . The first character of
the name must be an alphabetic character (A through Z) . The remaining
characters, if present, can be any combination of letters, digits (0 through
9), dollar signs ($), or periods (.) .

6 . Data-type can be any BASIC-PLUS-2 data type keyword . Data type
keywords, size, range, and precision are listed in Table 1-2 in this manual .

4-20 Statements and Functions

COMMON

7 . When you specify a data type, all following com-items, including FILL
items, are of that data type until you specify a new data type .

8 . If you do not specify any data type, com-items take the current default data
type and size .

9 . Com-item declares the name and format of the data to be stored .

•

	

Num-unsubs-var and num-array-name specify a numeric variable or a
numeric array.

•

	

Str-unsubs-var and str-array-name specify a fixed-length string variable
or array. You can specify the number of bytes to be reserved for the
variable with the =int-const clause. The default string length is 16.

• The FILL, FILL%, and FILL$ keywords allow you to reserve parts of
the record buffer within or between data elements and to define the
format of the storage . Int-const specifies the number of FILL items to
be reserved. The =int-const clause allows you to specify the number of
bytes to be reserved for string FILL items . Table 4-2 describes FILL
item format and storage allocation .

Note	

In the applicable formats of FILL, (int-const) represents a repeat count,
not an array subscript. FILL (n) represents n elements, not n + 1 .

Statements and Functions 4-21

COMMON

Table 4-2 FILL Item Formats and Storage Allocations

FILL Format

	

Storage Allocation

FILL Allocates storage for one element of the
default data type unless preceded by a
data-type ; the number of bytes allocated
depends on the default or the specified
data type .

FILL(int-const)

	

Allocates storage for the number of
floating-point elements specified by int-
const unless preceded by a data type ;
the number of bytes allocated for each
element depends on the default floating-
point data size or the specified data
type .

FILL%

	

Allocates storage for one integer
element; the number of bytes allocated
depends on the default integer size .

FILL%(int-const)

	

Allocates storage for the number of
integer elements specified by int-const ;
the number of bytes allocated for each
element depends on the default integer
size .

FILL$ Allocates 16 bytes of storage for a string
element. The dollar sign can be omitted
if the FILL keyword is preceded by the
STRING data type .

FILL$(int-const)

	

Allocates 16 bytes of storage for the
number of string elements specified by
int-const . The dollar sign can be omitted
if the FILL keyword is preceded by the
STRING data type .

(continued on next page)

4-22 Statements and Functions

Table 4-2 (Cont .) FILL Item Formats and Storage Allocations

FILL Format

	

Storage Allocation

COMMON

FILL$=int-const

	

Allocates the number of bytes of storage
specified by int-const for a string
element. The dollar sign can be omitted
if the FILL keyword is preceded by the
STRING data type .

FILL$(int-constl)=int-const2

	

Allocates the number of bytes of storage
specified by int-const2 for the number
of string elements specified by int-
constl . The dollar sign can be omitted
if the FILL keyword is preceded by the
STRING data type .

Remarks
1. You should know how your program overlays memory if the data stored

in a COMMON area is to be shared by several program modules . The
COMMON should be named in an overlay unit that will remain in memory
as long as program units need to reference the COMMON data . If the
overlay that names the COMMON is forced out of memory, BASIC-PLUS-2
reinitializes the COMMON area to zero when the overlay is brought back
into memory. See the BASIC-PLUS-2 User's Guide for information on
overlay structures .

2. A COMMON area and a MAP area with the same name, in different
program modules, specify the same storage area .

3 . BASIC-PLUS-2 does not execute COMMON statements . The COMMON
statement allocates and defines the data storage area at compilation time .

4. When you link your program, the size of the COMMON area is the size of
the largest COMMON area with that name . BASIC-PLUS-2 concatenates
COMMON statements with the same com-name within a single program
module into a single PSECT. The total space allocated is the sum of the
space allocated in the concatenated COMMON statements .
If you specify the same com-name in several program modules, the
size of the PSECT will be determined by the program module that has
the greatest amount of space allocated in the concatenated COMMON
statements .

Statements and Functions 4-23

COMMON

Example

5 . The COMMON statement must lexically precede any reference to variables
declared in it .

6. A COMMON area can be accessed by more than one program module,
as long as you define the com-name in each module that references the
COMMON area .

7 . Variable names in a COMMON statement in one program module need not
match those in another program module .

8 . Variables and arrays declared in a COMMON statement cannot be declared
elsewhere in the program by any other declarative statements .

9 . The data type specified for com-items or the default data type and size
determines the amount of storage reserved in a COMMON block :
•

	

BYTE integers reserve 1 byte .
•

	

WORD integers reserve 2 bytes .
•

	

LONG integers reserve 4 bytes .
•

	

SINGLE floating-point numbers reserve 4 bytes .
•

	

DOUBLE floating-point numbers reserve 8 bytes .
•

	

STRING reserves 16 bytes (the default) or the number of bytes you
specify with =int-const .

10. For multi-dimensional arrays, values are assigned in row-column order .

10 COMMON (sales) INTEGER shelf number,

	

&
STRING row = 2,

	

&
report name 24 &

DOUBLE FILL, &
LONG part bins

4-24 Statements and Functions

COMP%

Format

The COMP% function compares two numeric strings and returns a -1, 0, or 1,
depending on the results of the comparison .

int-var = COMP%(str-expl, str-exp2)

COMP%

Syntax Rules
Str-expl and str-exp2 are numeric strings. They can contain up to 60 ASCII
digits, an optional minus sign (-), and an optional decimal point (.) .

Remarks
1. If str-expl is greater than str-exp2, COMP% returns a 1 .
2. If the string expressions are equal, COMP% returns a 0 .
3. If str-expl is less than str-exp2, COMP% returns a -1 .
4. The value returned by the COMP% function is an integer of the default

size .

Example

10 DECLARE STRING num string, old num_string, &
INTEGER result

num_string = "-24 .5"
old num_string = "33"
result = COMP%(num_string, old num_string)
PRINT "The value is " ;result

The output is :

The value is -1

Statements and Functions 4-25

COs

COs

Format

Syntax Rules
None .

Remarks
1. The returned value is between -1 and 1 . This value is expressed in

radians .
2. BASIC-PLUS-2 expects the argument of the COS function to be a real

expression. When the argument is a real expression, BASIC-PLUS-2
returns a value of the same floating-point size . When the argument is not
a real expression, BASIC-PLUS-2 converts the argument to the default
floating-point size and returns a value of the default floating-point size .

Example

The COS function returns the cosine of an angle in radians .

real-var = COS(real-exp)

10 DECLARE SINGLE cos -value
cos-value = 26
PRINT COS(cos value)

The output is :

.646919

4-26 Statements and Functions

CTRLC

Format

Syntax Rules
None .

Remarks
1. When BASIC-PLUS-2 encounters a Ctrl/C, control passes to the error

handler currently in effect . If there is no error handler in a program, the
program aborts .

2 . Ctrl/C trapping is asynchronous ; that is, BASIC-PLUS-2 suspends
execution and signals the error "Programmable ^C trap" (ERR=28), as soon
as it detects a Ctrl/C . Consequently, a statement can be interrupted while
it is executing . A statement so interrupted may be only partially completed
and variables may be left in an undefined state .

3 . BASIC-PLUS-2 can trap more than one Ctrl/C error in a program as long
as the error does not occur while the error handler is executing . If a second
Ctrl/C is detected while the error handler is processing the first Ctrl/C, the
program aborts .

4. On RSX systems, the task that contains the CTRLC function must be
able to attach to a terminal as soon as the CTRLC fucntion is enabled . If
another task is attached to the terminal, the task that enabled the CTRLC
function terminates with a directive error .

5. The CTRLC function always returns a value of zero .

The CTRLC function enables Ctrl/C trapping . When Ctrl/C trapping is
enabled, a Ctrl/C entered at the terminal causes control to be transferred
to the error handler currently in effect .

int-var = CTRLC

CTRLC

Statements and Functions 4-27

CTRLC

Example

10 ON ERROR GOTO 19000
Y% = CTRLC

IF (ERR=28)
RESUME Ctrlc_handler

END IF

4-28 Statements and Functions

CVT$$

Format

The CVT$$ function is a synonym for the EDIT$ function . See the EDIT$
function for more information .

Note

The CVT$$ function is supported only for compatibility with BASIC-
PLUS. It is recommended that you use the EDIT$ function for new
program development .

str-var = CVT$$(str-exp, int-exp)

CVT$$

Statements and Functions 4-29

CVTxx

CVTxx

Format

Syntax Rules
None .

Remarks
1 . CVT$%

The CVT$% function maps the first two characters of a string into a 16-bit
integer. The CVT%$ function translates a 16-bit integer into a 2-character
string. The CVT$F function maps a 4- or 8-character string into a floating-
point variable. The CVTF$ function translates a floating-point number into a
4- or 8-byte character string . The number of characters translated depends on
whether the floating-point variable is single- or double-precision .

Note

The CVTxx function is supported only for compatibility with BASIC-
PLUS. It is recommended that you use BASIC-PLUS-2 dynamic
mapping or multiple MAP statements for new program development .

int-var = CVT$%(str-var)

real-var = CVT$F(str-var)

str-var = CVT%$(int-var)

str-var = CVTF$(real-var)

•

	

If the CVT$% str-var has fewer than two characters, BASIC-PLUS-2
pads the string with nulls .

•

	

The value returned by the CVT$% function is an integer of the default
size .

2 . CVT%$
•

	

Only two bytes of data are inserted into str-var .

4-30 Statements and Functions

CVTxx

•

	

If you specify a floating-point variable for int-var, BASIC-PLUS-2
truncates it to an integer of the default size . If the default size is
BYTE and the value of int-var exceeds 127, BASIC-PLUS-2 signals an
error.

3. CVT$F
• CVT$F maps four characters when the program is compiled with

/SINGLE and eight characters when the program is compiled with
/DOUBLE .

•

	

If str-var has fewer than four or eight characters, BASIC-PLUS-2 pads
the string with nulls .

•

	

The real-var returned by the CVT$F function is the default floating-
point size .

4. CVTF$
•

	

The CVTF$ function maps single-precision numbers to a 4-character
string and double-precision numbers to an 8-character string .

•

	

BASIC-PLUS-2 expects the argument of the CVTF$ function to
be a real expression . When the argument is a real expression,
BASIC-PLUS-2 returns a value of the same floating-point size .
When the argument is not a real expression, BASIC-PLUS-2 converts
the argument to the default floating-point size and returns a value of
the default floating-point size .

Examples

The output is :
1 .6724
24948

AT
at

Statements and Functions 4-31

1 . 10 DECLARE STRING test-string, another -string
DECLARE WORD first number, next number
test string = "AT"
PRINT CVT$%(test_string)
another string = "at"
PRINT CVT$%(another string)
first_number = 16724
PRINT CVT%$(first number)
next_number = 24948
PRINT CVT%$(next number)
END

CVTxx

2 . 10 DECLARE STRING test_ string, another string
DECLARE SINGLE first num, second num
test-string = "DESK"
first num = CVT$F(test_string)
PRINT first num
another-string = "desk"
second num = CVT$F(another_string)
PRINT second_num
PRINT CVTF$(first num)
PRINT CVTF$(second num)
END

The output is :

.218256E+12

.466242E+31
DESK
desk

4-32 Statements and Functions

DATA

Format

The DATA statement creates a data block for the READ statement .

num-lit
DATA str-Iit

unq-str

DATA

Syntax Rules
1 . Num-lit specifies a numeric literal .

2 . Str-lit is a character string that starts and ends with double or single
quotation marks . The quotation marks must match .

3 . Unq-str is a character sequence that does not start or end with double
quotation marks and does not contain a comma .

4 . Commas separate data elements . If a comma is part of a data item, the
entire item must be enclosed in quotation marks .

Remarks
1 . Because BASIC-PLUS-2 treats comment fields in DATA statements as

part of the DATA sequence, you should not include comments .

2 . A DATA statement must be the last or the only statement on a physical
line .

3 . DATA statements must end with a line terminator .

4. When a DATA statement is continued with an ampersand (&),
BASIC-PLUS-2 interprets all characters between the keyword DATA
and the ampersand as part of the data . Any code that appears on a
noncontinued line is considered a new statement .

5. You cannot use the percent sign suffix for integer constants that appear in
DATA statements . An attempt to do so causes BASIC-PLUS-2 to signal
the error "Data format error" (ERR=50) .

6. DATA statements are local to a program module .

7 . BASIC-PLUS-2 does not execute DATA statements . Instead, control is
passed to the next executable statement .

Statements and Functions 4-33

DATA

Example

8 . A program can have more than one DATA statement . BASIC-PLUS-2
assembles data from all DATA statements in a single program unit into a
lexically ordered single data block .

9. BASIC-PLUS-2 ignores leading and trailing blanks and tabs unless they
are in a string literal .

10. Commas are the only valid data delimiters . You must use a quoted string
literal if a comma is to be part of a string .

11. BASIC-PLUS-2 ignores DATA statements without an accompanying READ
statement .

12. BASIC-PLUS-2 signals the error "Data format error" (ERR=50) if the
DATA item does not match the data type of the variable specified in the
READ statement or if a data element that is to be read into an integer
variable ends with a percent sign (%) . If a string data element ends with a
dollar sign ($), BASIC-PLUS-2 treats the dollar sign as part of the string .

10 DECLARE INTEGER A,B,C
READ A,B,C
DATA 1,2,3
PRINT A + B + C

The output is :

6

4-34 Statements and Functions

DATE$

Format

The DATE$ function returns a string containing a day, month, and year in the
form dd-Mmm-yy .

str-var = DATE$(int-exp)

DATE$

Syntax Rules
1 . Int-exp can have up to six digits in the form yyyddd, where the characters

yyy specify the number of years since 1970 and the characters ddd specify
the day of that year.

2. You must fill all three of the d positions with digits or zeros before you can
fill the y positions . For example :
•

	

DATE$(121) returns the date 01-May-70, day 121 of the year 1970 .

•

	

DATE$(1201) returns the date 20-Jul-71, day 201 of the year 1971 .

•

	

DATE$(12001) returns the date 01-Jan-82, day one of the year 1982 .

•

	

DATE$(10202) returns the date 21-Jul-80, day 202 of the year 1980 .

Remarks
1 . If int-exp equals zero, DATE$ returns the current date .

2. The str-var returned by the DATE$ function consists of nine characters and
expresses the day, month, and year in the form dd-Mmm-yy .

3 . If you specify an invalid date, such as day 385, results are unpredictable .

4 . If you specify a floating-point expression for int-exp, BASIC-PLUS-2
truncates it to an integer of the default size .

5 . On RSTS/E systems, the form of the DATE$ function's output can be
changed to ISO format, yy.mm.dd, during the installation procedure, or to
the format selected by the system manager at system start-up time .

Statements and Functions 4-35

DATE$

Example

10 DECLARE STRING todays date
todays date = DATE$(0)
PRINT todays date

The output is :

26-Apr-91

4-36 Statements and Functions

DECLARE

Format

The DECLARE statement explicitly assigns a name and a data type to a
variable, an entire array, a function, or a constant .

There are three formats :
•

	

For variables and arrays
•

	

For functions
•

	

For named constants

1 . Variables and Arrays

DECLARE data-type decl-item [,[data-type] decl-item], . . .

2 . DEF Functions

DECLARE data-type FUNCTION { def-name [([def-param

3. Named Constants

DECLARE data-type CONSTANT { const-name = const-exp }, . . .

decl-item : { array-name (int-const, . . .) }
unsubs-var

def-param : [data-type]

DECLARE

Syntax Rules
1 . Data-type can be any BASIC-PLUS-2 data type keyword . Data type

keywords, size, range, and precision are listed in Table 1-2 in this manual .

2 . The following rules apply when declaring variables :

•

	

Decl-item names an array or a variable .

•

	

A decl-item named in a DECLARE statement cannot be named in
another DECLARE statement, or in a DEF, EXTERNAL, FUNCTION,
SUB, COMMON, MAP, or DIM statement .

•

	

Inst-const specifies the upper bounds of the array.

•

	

Each decl-item is associated with the preceding data type . A data type
is required for the first decl-item .

Statements and Functions 4-37

DECLARE

•

	

Decl-items of data type STRING are dynamic strings .
3 . The following rules apply when declaring DEF functions :

•

	

Def-name names the DEF function .
•

	

Data-type specifies the data type of the value the function returns .
•

	

Data type keywords must be separated by commas .
•

	

Def-params specify the number and, optionally, the data type of the
DEF parameters. Parameters define the arguments the DEF expects to
receive when invoked .
- When you specify a data type, all following parameters are of that

data type until you specify a new data type .
- If you do not specify any data type, parameters take the current

default data type and size .
- The number of parameters equals the number of commas plus

one. For example, empty parentheses specify one parameter of the
default type and size, one comma inside the parentheses specifies
two parameters of the default type and size ; and so on . One data
type inside the parentheses specifies one parameter of the specified
data type; two data types separated by one comma specifies two
parameters of the specified type, and so on .

4 . The following rules apply when defining named constants :
•

	

Const-name is the name you assign to the constant .
• Data-type specifies the data type of the constant. The value of the const

must be numeric if the data type is numeric and string if the data type
is STRING . If the data type is STRING, const must be a quoted string
or another string constant .

•

	

Const-exp cannot be of the RFA data type .
•

	

String constants cannot exceed 128 characters .
• BASIC-PLUS-2 allows const-exp to be an expression for STRING and

INTEGER data types . Expressions are not allowed as values when you
name floating-point constants .

•

	

Allowable operators in DECLARE CONSTANT expressions include all
valid arithmetic, relational, and logical operators except exponentiation .
Built-in functions cannot be used in DECLARE CONSTANT
expressions . The following example uses valid expressions as values :
DECLARE STRING CONSTANT left arrow = °<	" + LF + CR

4-38 Statements and Functions

DECLARE

Remarks

1 . The DECLARE statement is not executable .

2. The DECLARE statement must lexically precede any reference to the
variables, functions, or constants named in it .

3 . To declare a virtual or run-time array, use the DIMENSION statement .

4. When declaring variables :
•

	

Subsequent decl-items are associated with the specified data type until
you specify another data type .

•

	

All variables named in a DECLARE statement are initialized to zero if
numeric or to the null string if string .

5. When declaring DEF functions :

•

	

The DECLARE FUNCTION statement allows you to name a function
defined in a DEF or DEF* statement, specify the data type of the value
the function returns, and declare the number and data type of the DEF
parameters .

•

	

The first specification of a data type for a def-param is the default for
subsequent arguments until you specify another def-param .

•

	

Data-type keywords must be separated by commas . For example :
10 DECLARE DOUBLE FUNCTION interest (DOUBLE, SINGLE„)

This example declares two parameters of the default type and size, one
DOUBLE parameter, and three SINGLE parameters for the function
named interest .

6. When declaring named constants :

•

	

The DECLARE CONSTANT statement allows you to name a constant
value and assign a data type to that value . Note that you can specify
only one data type in a DECLARE CONSTANT statement . To declare
a constant of another data type, you must use a second DECLARE
CONSTANT statement .

•

	

During program execution, you cannot change the value assigned to the
constant .

•

	

You cannot use a const-nam where a variable is required .

Statements and Functions 4-39

DECLARE

Examples

•

	

BASIC-PLUS-2 signals an error if the data type of const-exp does not
match the specified data type .

Note	
Data types specified in a DECLARE statement override any defaults
specified in COMPILE command qualifiers or OPTION statements .

7. Although the data types LONG, WORD, and BYTE allow the values
-21474813648, -32768, and -128, you cannot specify these constants
explicitly. If you specify these values explicitly, BASIC-PLUS-2 signals an
integer overflow error. You can create integer constants with these values
only if you supply their value with an expression. For example :
DECLARE WORD CONSTANT X = -32767 - 1

1 . 10 !DEF functions
DECLARE INTEGER FUNCTION amount(DOUBLE,BYTE)

2 . 10 !Named Constants
DECLARE DOUBLE CONSTANT interest rate = 15 .22

4-40 Statements and Functions

DEF

Format

DEF

The DEF statement lets you define a single- or multi-line function .
The first format defines a single-line function DEF; the second format defines a
multiple-line function DEF.

1 . Single-line DEF

DEF [data-type] def-name [([data-type] unsubs-var , . . .)] = exp

2. Multiple-line DEF

DEF [data-type] def-name [([data-type unsubs-var], . . .)]
[statement] . . .
[statement] . . .

END DEF

	

[exp]
FNEND

Syntax Rules
1 . Data-type can be any BASIC-PLUS-2 data type keyword . Data type

keywords, size, range, and precision are listed in Table 1-2 in this manual .
2 . The data type that precedes the def-name specifies the data type of the

value returned by the DEF function .
3 . Def name is the name of the DEF function . The def-name can contain from

1 through 31 characters .
4 . If the def-name also appears in a DECLARE FUNCTION statement, the

following rules apply :
•

	

A function data type is required .
• The first character of the def-name must be an alphabetic character (A

through Z) . The remaining characters can be any combination of letters,
digits (0 through 9), dollar signs ($), underscores (_), or periods (.) .

5. If the def-name does not appear in a DECLARE FUNCTION statement,
but the DEF statement appears before the first reference to the def-name,
the following rules apply :
•

	

The function data type is optional .

Statements and Functions 4-41

DEF

•

	

The first character of the def-name must be an alphabetic letter (A
through Z) . The remaining characters can be any combination of
letters, digits, dollar signs, underscores, or periods .

•

	

If a function data type is not specified, the last character in the def
name must be a percent sign for an INTEGER function, or a dollar sign
for a STRING function; otherwise, it will take the current default data
type .

6 . If the def-name does not appear in a DECLARE FUNCTION statement,
and the DEF statement appears after the first reference to the def-name,
the following rules apply :
•

	

The function data type cannot be present .
•

	

The first two characters of the def-name must be FN. The remaining
characters can be any combination of letters, digits, dollar signs, or
periods, with one restriction : the last character must be a percent sign
for an INTEGER function, or a dollar sign for a STRING function .

•

	

There must be at least one character between the FN characters and
the ending dollar sign or percent character . FN$ and FN% are not
valid function names .

7 . Unsubs-var specifies optional formal DEF parameters . Because the
parameters are local to the DEF function, any reference to these variables
outside the DEF body creates a different variable .

8. You can specify the data type of DEF parameters with a data type keyword .
If you do not include a data type, the parameters are of the default type
and size . Parameters that follow a data type keyword are of the specified
type and size until you specify another data type .

9. You can specify up to 32 parameters in a DEF statement .
10. When you define a single-line function DEF, exp specifies the operations

the function performs .
11. When you define a multiple-line function DEF, the following rules apply :

•

	

Statements specifies the operations the function performs .
•

	

The END DEF or FNEND statement is required to end a multi-line
DEF.

•

	

BASIC-PLUS-2 does not allow you to specify any statements that
indicate the beginning or end of any SUB, FUNCTION, or PROGRAM
in a function definition .

4-42 Statements and Functions

• Exp specifies the function result . Exp must be compatible with the
DEF data type .

Remarks

1 . When BASIC-PLUS-2 encounters a DEF statement, control of the program
passes to the next executable statement after the DEF.

2 . The function is invoked when you use the function name in an expression .

3 . You cannot specify how parameters are passed. When you invoke a
function, BASIC-PLUS-2 evaluates parameters from left to right and
passes parameters to the function so that they cannot be modified .
Numeric parameters are passed by value and string parameters are
passed by descriptor, where the descriptor points to a local copy . DEF
functions can reference variables in the main program, but they cannot
reference variables in other DEF or DEF* functions . A DEF function can,
therefore, modify other variables in the program, but not variables within
another DEF function .

4 . A DEF function is local to the program, subprogram, or function that
defines it .

5 . You can declare a DEF by defining it, by using the DECLARE FUNCTION
statement, or by implicitly declaring it with a reference to the function in
an expression .

6 . If your program invokes a function with a name that does not start with
FN before the DEF statement defines the function, BASIC-PLUS-2 signals
an error.

7 . If the number of parameters, types of parameters, or type of result declared
in the invocation disagree with the number or types of parameters defined
in the DEF statement, BASIC-PLUS-2 signals an error .

8 . DATA statements in a multi-line DEF are not local to the function ; they
are local to the program module containing the function definition .

9 . To return a value in a multi-line DEF, make an assignment to the DEF
function name from inside the DEF function, or supply a value in an
EXIT DEF or END DEF statement. You can only assign a value to a DEF
function name while inside the DEF function .

10. The function value is initialized to zero or the null string each time you
invoke the function .

11. ON ERROR GO BACK is the default error handler in a DEF function
definition .

DEF

Statements and Functions 4-43

DEF

Examples

1 . 10 !Single-Line DEF
DEF DOUBLE add (DOUBLE A, B, SINGLE C, D, E) = A + B + C + D + E
INPUT 'Enter five numbers to be added' ;V,W,X,Y,Z
PRINT 'The sum is' ;ADD(V,W,X,Y,Z)

The output is :
Enter five numbers to be added? 1,2,3,4,5
The sum is 15

2. 10 ! PROGRAM I_want_a_raise
OPTION SCALE = 2
DECLARE DOUBLE CONSTANT Overtime -factor = 0 .50
DECLARE DOUBLE My hours, My_rate, Overtime

DEF DOUBLE Calculate_pay (DOUBLE Hours, Rate)

Overtime = Hours - 40 .0
Overtime = 0 .0 IF Overtime < 0 .0
Calculate-pay = (Hours * Rate) + (Overtime

END DEF

12. If an error occurs in a DEF function that is not handled in the DEF
function, control passes to the error handler of the main program . If
the main program has no error handler, control passes to the default
BASIC-PLUS-2 error handler.

13. ON ERROR statements within a DEF function are local to the function .
14. A GOTO, GOSUB, ON ERROR GOTO, or RESUME statement in a multi-

line function definition must refer to a line number or label in the same
function definition .

15. You cannot transfer control into a multi-line DEF except by invoking the
function .

16. DEF functions can be recursive ; however, BASIC-PLUS-2 does not detect
infinitely recursive DEF functions . If your program invokes an infinitely
recursive DEF function, your program will eventually terminate with a
fatal error.

INPUT 'Your hours this week' ;Myhours
INPUT 'Your hourly rate' ;My_rate
PRINT 'My pay this week is' ;Calculate_pay (My_hours,My_rate)

END

4-44 Statements and Functions

* Overtime-factor * Rate)

The output is :

Your hours this week? 45 .7
Your hourly rate? 20 .35
My pay this week is 987 .95

DEF

Statements and Functions 4-45

DEF*

DEF*

The DEF* statement lets you define a single- or multi-line function .
The first format defines a single-line function ; the second format defines a
multiple-line function .

[statement] . . .
[statement] . . .

END DEF

	

[exp]
FNEND

Syntax Rules
1 . Data-type can be any BASIC-PLUS-2 data type keyword . Data type

keywords, size, range, and precision are listed in Table 1-2 in this manual .

2 . The data type that precedes the def-name specifies the data type of the
value returned by the DEF* function .

3 . Def-name is the name of the DEF* function . The def-name can contain
from 1 to 31 characters .

4 . If the def-name also appears in a DECLARE FUNCTION statement, the
following rules apply :
•

	

A function data type is required .

4-46 Statements and Functions

Note

The DEF* statement is not recommended for new program develop-
ment. It is recommended that you use the DEF statement for defining
single- and multi-line functions .

Format
1 . Single-line DEF*

DEF* [data-type] def-name [([data-type] unsubs-var , . . .)] = exp

2. Multiple-line DEF*

DEF* [data-type] def-name [([data-type] unsubs-var , . . .)]

• The first character of the def-name must be an alphabetic character (A
through Z). The remaining characters can be any combination of letters,
digits (0 through 9), dollar signs ($), underscores (_), or periods (.) .

5. If the def-name does not appear in a DECLARE FUNCTION statement,
but the DEF* statement appears before the first reference to the def-name,
the following rules apply :
•

	

The function data type is optional .
• The first character of the def-name must be an alphabetic character

(A through Z) . The remaining characters can be any combination of
letters, digits, dollar signs, underscores, or periods .

•

	

If a function data type is not specified, the last character in the def-
name must be a percent sign for an INTEGER function, or a dollar sign
for a STRING function, or the function will take the default data type
and size .

6 . If the def-name does not appear in a DECLARE FUNCTION statement,
and the DEF* statement appears after the first reference to the def-name,
the following rules apply :
•

	

The function data type cannot be present .

•

	

The first two characters of the def-name must be FN. The remaining
characters can be any combination of letters, digits, dollar signs, or
periods, with one restriction : the last character must be a percent sign
for an INTEGER function, or a dollar sign for a STRING function ;
otherwise, the function takes the default data type and size .

•

	

There must be at least one character between the FN characters and
the ending dollar sign or percent character . FN$ and FN% are not
valid function names .

7 . Unsubs-var specifies optional formal function parameters .

8. You can specify the data type of function parameters with a data type
keyword. If you do not specify a data type, parameters are of the default
type and size. Parameters that follow a data type are of the specified type
and size until you specify another data type .

9. You can specify up to 32 parameters in a DEF* statement .
10. When you specify a single-line function DEF*, Exp specifies the operations

the function performs .
11 . When you specify a multiple-line function DEF*, the following rules apply :

•

	

Statements specifies the operations the function performs .

DEF*

Statements and Functions 4-47

DEF*

•

	

The END DEF or FNEND statement is required to end a multi-line
DEF*.

•

	

BASIC-PLUS-2 does not allow you to specify any statements that
indicate the beginning of any SUB, FUNCTION, PROGRAM, or DEF,
or the end or any SUB, FUNCTION, or PROGRAM, in a function
definition .

•

	

Exp specifies the function result . Exp must be compatible with the
DEF data type .

Remarks
1 . When BASIC-PLUS-2 encounters a DEF* statement, control of the

program passes to the next executable statement after the DEF* .

2. A function defined by the DEF* statement is invoked when you use the
function name in an expression .

3 . You cannot specify how parameters are passed . When you invoke a
DEF* function, BASIC-PLUS-2 evaluates parameters from left to right
and passes parameters to the function so that they cannot be modified .
Numeric parameters are passed by value, and string parameters are
passed by descriptor, where the descriptor points to a local copy . DEF*
functions can reference variables in the main program, but they cannot
reference variables in other DEF or DEF* functions . A DEF* function
can, therefore, modify variables in the program, but not variables within
another DEF* function .

4 . The following differences exist between DEF* and DEF statements :
•

	

You can use the GOTO, ON GOTO, GOSUB, and ON GOSUB
statements to a branch outside a multi-line DEF*, but they are
not recommended .

•

	

Although other variables used within the body of a DEF* function are
not local to the DEF* function, DEF* formal parameters are . If you
change the value of formal parameters within a DEF* function and
then transfer control out of the DEF* function without executing the
END DEF or FNEND statement, variables outside the DEF* that have
the same names as DEF* formal parameters are also changed .

•

	

A DEF* function value is not initialized when the DEF* function is
invoked. Therefore, if a DEF* function is invoked, and no new function
value is assigned, the DEF* function returns the value of its previous
invocation .

4-48 Statements and Functions

Examples

• The error handler of the program module that contains the DEF* is the
default error handler for a DEF* function . Parameters return to their
original values when control passes to the error handler .

5. A DEF* is local to the program or subprogram that defines it .
6. You can declare a DEF* either by defining it, by using the DECLARE

FUNCTION statement, or by implicitly declaring it with a reference to the
function in an expression .

7 . If the number of parameters, types of parameters, or type of result declared
in the invocation disagree with the number or types of parameters defined
in the DEF* statement, BASIC-PLUS-2 signals an error .

8. DEF* functions can be recursive ; however, BASIC-PLUS-2 does not detect
infinitely recursive DEF* functions . If your program invokes an infinitely
recursive DEF* function, your program will eventually terminate with a
fatal error.

9. DATA statements in a multi-line DEF* are not local to the function ; they
are local to the program module containing the function definition .

10. To return a value in a multi-line DEF*, make an assignment to the DEF
function from inside the DEF function, or assign a value to an EXIT DEF
or END DEF statement . You can assign a value to a DEF function only
while inside the DEF function .

11. You can pass up to 32 parameters to a DEF* function .

1 .

	

10 !Single-Line DEF*
DEF* STRING CONCAT(STRING A,B) = A + B
DECLARE STRING wordl,word2
INPUT "Enter two words" ;wordl,word2
PRINT CONCAT (wordl,word2)

The output is :
Enter two words? TO
? DAY
TODAY

DEF*

Statements and Functions 4-49

DEF*

2 . 10 !Multi-Line DEF*
DEF* DOUBLE example(DOUBLE A, B, SINGLE C, D, E)

EXIT DEF IF B = 0
example = (A/B) + C - (D*E)

END DEF
INPUT "Enter 5 numbers" ;V,W,X,Y,Z
PRINT example(V,W,X,Y,Z)

The output is :

Enter 5 numbers? 2,4,6,8,1
-1 .5

4-50 Statements and Functions

DELETE

Format

The DELETE statement removes a record from a relative or indexed file .

DELETE #chnl-exp

DELETE

Syntax Rules
Chnl-exp is a numeric expression that specifies a channel number associated
with a file . It must be immediately preceded by a number sign (#) .

Remarks
1. The DELETE statement removes the current record from a file . Once the

record is removed, you cannot access it .

2. The file specified by chnl-exp must have been opened with ACCESS
MODIFY or WRITE .

3 . You can delete a record only if the last I/O statement executed on the
specified channel was a successful GET or FIND operation .

4. The DELETE statement leaves the current record pointer undefined and
the next record pointer unchanged .

5 . BASIC-PLUS-2 signals an error when the following conditions exist :

•

	

The PO channel is illegal or not open .

•

	

No current record exists .
•

	

The specified record is locked .
•

	

Record access is illegal or illogical .

•

	

The operation is illegal .

Statements and Functions 4-51

DELETE

Example

10 DECLARE STRING record num

OPEN "CUS .DAT" FOR INPUT AS #1, RELATIVE FIXED

	

&
ACCESS MODIFY, RECORDSIZE 40

INPUT "WHICH RECORD WOULD YOU LIKE TO EXAMINE" ;record num
GET #1, RECORD record num
DELETE #1

4-52 Statements and Functions

DET

Format
real-var = DET

Syntax Rules
None .

Remarks
1. When a matrix is inverted with the MAT INV statement, BASIC-PLUS-2

calculates the determinant as a by-product of the inversion process . The
DET function retrieves this value .

2 . If your program does not contain a MAT INV statement, the DET function
returns a value of zero.

3. The value returned by the DET function is a floating-point value of the
default size .

Example

10 MAT INPUT first array(3,3)
MAT PRINT first array ;
PRINT
MAT inv_array = INV (first array)
determinant = DET
MAT PRINT inv_array ;
PRINT
PRINT determinant
PRINT
MAT mult array = first array * inv_array
MAT PRINT mult array ;

The DET function returns the value of the determinant of the last matrix
inverted with the MAT INV statement.

DET

Statements and Functions 4-53

DET

The output is :

? 1,0,0,0,1,0,0,0,1
1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

1

1 0 0
0 1 0
0 0 1

4-54 Statements and Functions

DIF$

Format

The DIF$ function returns a numeric string whose value is the difference
between two numeric strings .

str-var = DIF$(str-expl, str-exp2)

DIF$

Syntax Rules
Each str-exp can contain up to 54 ASCII digits, an optional decimal point, and
an optional leading sign .

Remarks
1 . BASIC-PLUS-2 subtracts str-exp2 from str-expl and stores the result in

str-var.

2. The difference between two integers takes the precision of the larger
integer.

3 . The difference between two decimal fractions takes the precision of the
more precise fraction, unless trailing zeros generate that precision .

4. The difference between two floating-point numbers takes precision as
follows :
•

	

The difference of the integer parts takes the precision of the larger
part .

•

	

The difference of the decimal fraction part takes the precision of the
more precise part .

5 . BASIC-PLUS-2 truncates leading and trailing zeros .

Example

10 PRINT DIF$ ("689","-231")

The output is :

920

Statements and Functions 4-55

DIMENSION

DIMENSION

The DIMENSION statement creates and names a static, dynamic, or virtual
array. The array subscripts determine the dimensions and the size of the array.
You can specify the data type of the array and associate the array with an I/O
channel. There are three formats :
•

	

For creating nonvirtual and nonexecutable arrays
•

	

For creating executable arrays
•

	

For creating virtual arrays

.

4-56 Statements and Functions

.

Syntax Rules
1. An array name in a DIM statement cannot also appear in a COMMON,

MAP, or DECLARE statement .
2 . Data-type can be any BASIC-PLUS-2 data type keyword . Data type

keywords, size, range, and precision are listed in Table 1-2 in this manual .
3. If you specify a data type and the array name ends in a percent sign (%)

or dollar sign ($) suffix character, the variable must have an INTEGER or
STRING data type .

Format
1 . Nonvirtual and Nonexecutable Arrays

DIM

	

}

	

data-type array-name mt-const
DIMENSION

	

{[

	

]

	

(

	

, . . .) },

2. Executable Arrays

DIM
1 DIMENSION

3. Virtual Arrays

DIM
1 DIMENSION

{[data-type] array-name (int-var, . . .) }, . .

#chnl-exp, { [data-type] array-name

(int-const, . . .) [= int-const] }, . . .

DIMENSION

4. If you do not specify a data type, the array name determines the type of
data the array holds . If the array name ends in a percent sign, the array
stores integer data of the default integer size . If the array name ends in a
dollar sign, the array stores string data ; otherwise, the array stores data of
the default type and size .

5. An array can have up to eight dimensions . Nonvirtual array sizes are
limited by the virtual memory limits of your system .

6. Each instance of int-const or int-vbl within the parentheses specifies the
upper bound of an array dimension . BASIC-PLUS-2 array bounds must
be in the range 0 to 32767 .

7. Although the compiler does not generate an error for subscript values
outside of these ranges, there is a limit to the amount of storage your
system can allocate . Therefore, very large arrays can cause an internal
allocation error or a run-time error.

8 . The following rules apply when creating nonvirtual and nonexecutable
arrays :
•

	

When all the dimension specifications are integer constants, as in
DIM A(15%,10%,20%), the DIM statement is nonexecutable and the
array size is static . A static array cannot appear in another DIM
statement because BASIC-PLUS-2 determines storage requirements
at compilation time .

• A nonexecutable DIM statement must lexically precede any reference
to the array it dimensions. That is, you must dimension a static array
before you can reference any of its elements .

9. The following rules apply when creating virtual arrays :
•

	

The virtual array must be dimensioned and the file must be open before
you can reference the array.

•

	

When the data type is STRING, the =int-const clause specifies
the length of each array element . The default string length is 16
characters . Virtual string array lengths are rounded to the next higher
power of 2 . Therefore, specifying an element length of 12 results in an
actual length of 16 . For example :
DIM #1, STRING vir array(100) = 12
OPEN "STATS .BAS" FOR OUTPUT as #1, VIRTUAL

10. The following rules apply when creating executable arrays :

Statements and Functions 4-57

DIMENSION

When any of the dimension specifications are integer variables as in
DIM A(10%,20%,Y%), the DIM statement is executable and the array is
dynamic. A dynamic array can be redimensioned with a DIM statement
any number of times because BASIC-PLUS-2 allocates storage at run time
when each DIM statement is executed .

Remarks
1 . You can create an array implicitly by referencing an array element without

using a DIM statement. This causes BASIC-PLUS-2 to create a static
array with dimensions of (10), (10,10), (10,10,10), and so on, depending on
the number of bounds specifications in the referenced array element . You
cannot create virtual or executable arrays implicitly.

2 . The lower bound of an array is always zero, rather than 1 . Thus, A(10)
allocates 11 elements, A(10,10) allocates 121 elements, and A(0,0,0)
allocates 1 element .

3 . BASIC-PLUS-2 allocates storage for arrays by row, from right to left .
4 . The following rules apply when creating nonvirtual and nonexecutable

arrays :
•

	

You can declare arrays with the COMMON, MAP, and DECLARE
statements. Arrays so declared cannot be redimensioned with the DIM
statement. Furthermore, string arrays declared with a COMMON or
MAP statement are always fixed length .

•

	

If you reference an array element declared in an array whose
subscripts are larger than the bounds specified in the DIM statement,
BASIC-PLUS-2 signals the error "Subscript out of range" (ERR=55) .

•

	

Arrays that require more than 32767 bytes of storage generate the
error "Array <name> too large ."

5. The following rules apply when creating virtual arrays :
•

	

When the rightmost subscript varies faster than the subscripts to the
left, fewer disk accesses are necessary to access array elements in
virtual arrays .

• Using the same DIM statement for multiple virtual arrays allocates all
arrays in a single disk file . The arrays are stored in the order in which
they were declared .

4-58 Statements and Functions

DIMENSION

•

	

Any program or subprogram can access a virtual array by declaring it
in a virtual DIMENSION statement . For example :
DIM #1, A(10)
DIM #1, B(10)

In this example, array B overlays array A . You must specify the same
channel number, data types, and limits in the same order as they occur
in the DIM statement that created the virtual array.

•

	

BASIC-PLUS-2 stores a string in a virtual array by padding it with
trailing nulls to the length of the array element . It removes these nulls
when it retrieves the string from the virtual array. Remember that
string array element sizes are always rounded to the next power of 2 .

• On RSX systems, the OPEN statement for a virtual array must include
the ORGANIZATION VIRTUAL clause for the channel specified in the
DIMENSION statement.

•

	

BASIC-PLUS-2 does not initialize virtual arrays and treats them as
statically allocated arrays . You cannot redimension virtual arrays .

•

	

Refer to the BASIC-PLUS-2 User's Guide for more information on
virtual arrays .

6 . The following rules apply when creating executable arrays :

• You create an executable, dynamic array by using integer variables
for array bounds, as in DIM A(Y%,X%) . This eliminates the need
to dimension an array to its largest possible size . Array bounds in
an executable DIM statement can be constants or variables, but not
expressions. At least one bound must be a variable .

•

	

You cannot reference an array named in an executable DIM statement
until after the DIM statement executes .

•

	

You can redimension a dynamic array to make the bounds of each
dimension larger or smaller, but you cannot change the number of
dimensions . For example, you cannot redimension a four-dimensional
array to be a five-dimensional array.

• The executable DIM statement cannot be used to dimension virtual
arrays, arrays received as formal parameters, or arrays declared in
COMMON, MAP, or nonexecutable DIM statements .

•

	

An executable DIM statement always reinitializes all elements in the
array to zero (for numeric arrays) or to the null string if string .

Statements and Functions 4-59

DIMENSION

•

	

If you reference an array element declared in an executable DIM
statement whose subscripts are larger than the bounds specified in the
last execution of the DIM, BASIC-PLUS-2 signals the error "Subscript
out of range" (ERR=55) .

Examples

4-60 Statements and Functions

1 . 10 !Nonvirtual, Nonexecutable
DIM STRING name_list(100), BYTE age(100)

2. 10 !Virtual
DIM #1%, STRING name_list(500), REAL amount(10,10)

3. 10 !Executable
DIM DOUBLE inventory(base,markup)

DIM DOUBLE inventory (new base,new markup)

ECHO

Format

The ECHO function causes characters to be echoed at a terminal that is opened
on a specified channel .

int-var = ECHO(chnl-exp)

Syntax Rules
Chnl-exp is a numeric expression that specifies a channel number associated
with an open terminal . It cannot be preceded by a number sign (#) .

Remarks
1. The ECHO function is the complement of the NOECHO function ; each

function disables the effect of the other .

2. The ECHO function has no effect on an unopened channel .

3. The ECHO function always returns a value of zero .

Example

10 DECLARE INTEGER Y,

	

&
STRING pass word

Y = NOECHO(0%)
SET NO PROMPT
INPUT "Enter your password : " ;pass word
Y = ECHO(0%)
IF pass word

	

"Darlene"
THEN

PRINT CR+LF+"YOU ARE CORRECT !"
END IF

The output is :

Enter your password?
YOU ARE CORRECT !

ECHO

Statements and Functions 4-61

EDIT$

EDIT$

Format

Syntax Rules
None .

Remarks
1 . BASIC-PLUS-2 edits str-exp to produce str-var .
2 . The editing that BASIC-PLUS-2 performs depends on the value of int-exp .

Table 4-3 describes EDIT$ values and functions .
3 . All values are additive . For example, you can perform the editing functions

of values 8, 16, and 32 by specifying a value of 56 . You can also specify the
values in an expression, for example, 8% + 16% + 32% . Specifying editing
values as an expression eliminates human error .

4 . If you specify a floating-point expression for int-exp, BASIC-PLUS-2
truncates it to an integer of the default size .

Table 4-3 EDIT$ Values

The EDIT$ function performs one or more string editing functions, depending
on the value of its integer argument .

str-var = EDIT$(str-exp, int-exp)

Value

	

Function

1

	

Discards each character's parity bit (bit 7)
2

	

Discards all spaces and tabs
4

	

Discards all carriage returns <CR>, line feeds LF, form feeds FF,
deletes , escapes <ESC>, and nulls <NUL>

8

	

Discards leading spaces and tabs
16

	

Converts multiple spaces and tabs to a single space
32

	

Converts lowercase letters to uppercase letters
(continued on next page)

4-62 Statements and Functions

Example

Table 4-3 (Cont .) EDIT$ Values

Value

	

Function

64

	

Converts left bracket to left parenthesis ([to () and right bracket to
right parenthesis (I to))

128

	

Discards trailing spaces and tabs (same as TRM$ function)
256 Suppresses all editing for characters within quotation marks ; if the

string has only one quotation mark, BASIC-PLUS-2 suppresses all
editing for the characters following the quotation mark

10 DECLARE STRING old_string, new string
old-string = "a value of 32 converts lowercase letters to uppercase"
new-string = EDIT$(old_string,32)
PRINT new-string

The output is :

A VALUE OF 32 CONVERTS LOWERCASE LETTERS TO UPPERCASE

EDIT$

Statements and Functions 4-63

END

END

Format

The END statement marks the physical and logical end of a main program, a
program module, or a block of statements .

' DEF[exp]
FUNCTION[exp]
IF
PROGRAM
SELECT
SUB

Syntax Rules
1 . The END statement with no block keyword marks the end of a main

program. The END or END PROGRAM statement must be the last
statement on the last lexical line of the main program .

2. The END statement followed by a block keyword marks the end of a
program, a BASIC-PLUS-2 SUB, or FUNCTION subprogram, a DEF, an
IF, a PROGRAM, or a SELECT statement block .

3. The END block statement must be the lexically last statement in a
subprogram or statement block and must match the statement that
established the subprogram or statement block .

Remarks
1 . END DEF and END FUNCTION

•

	

When BASIC-PLUS-2 executes an END DEF or an END FUNCTION
statement, it returns the function value to the statement that invoked
the function and releases all storage associated with the DEF or
FUNCTION.

•

	

If you specify an optional expression with the END DEF or END
FUNCTION statement, the expression must be compatible with the
DEF or FUNCTION data type. The expression is the function result
unless an EXIT DEF or EXIT FUNCTION statement is executed. This
expression supersedes all function assignments .

4-64 Statements and Functions

• The END DEF statement restores the error handler in effect when
the DEF was invoked . This is not true of the DEF* statement because
error handling in a DEF* statement is global .

•

	

The END FUNCTION statement does not affect I/O operations or
files .

2 . END PROGRAM
•

	

The END PROGRAM statement allows you to end a program module .

•

	

You can specify an END PROGRAM statement without a matching
PROGRAM statement .

3 . END SUB
•

	

The END SUB statement does not affect I/O operations or files .

•

	

The END SUB statement releases the storage allocated to local
variables and returns control to the calling program .

•

	

The END SUB statement cannot be executed in an error handler
unless the END SUB is in a subprogram called by the error handler of
another routine .

•

	

The END SUB statement restores the error handler in effect when the
SUB was invoked.

4. When an END or END PROGRAM statement marking the end of a main
program executes, BASIC-PLUS-2 closes all files and releases all program
storage .

5 . If you use ON ERROR error handling, you must clear any errors with the
RESUME statement before executing an END PROGRAM, END SUB, or
END FUNCTION statement .

6. Except for the END PROGRAM statement, BASIC-PLUS-2 signals
an error when a program contains an END block statement with no
corresponding and preceding block keyword .

END

Statements and Functions 4-65

END

Example

10

	

INPUT "Guess a number" ;A%
IF A% = 24
THEN

PRINT, "YOU GUESSED IT!"
END IF

IF A% < 24
THEN

PRINT, "BIGGER IS BETTER!"
GOTO 10
END IF

IF A% > 24
THEN

PRINT, "SMALLER IS BETTER!"
GOTO 10

END IF

END PROGRAM

4-66 Statements and Functions

ERL

Format

Syntax Rules
None .

Remarks
1 . The value of int-var returned by the ERL function is a WORD integer .

2. If the ERL function is used before an error occurs or after an error is
handled with a RESUME statement, the results are undefined .

3. The ERL function overrides the /NOLINE qualifier . If a program
compiled with the /NOLINE qualifier in effect contains an ERL function,
BASIC-PLUS-2 signals the warning message "ERL overrides NOLINE ."

Example

100

	

IF ERL = 20
THEN

PRINT "Invalid input . . . try again"
RETRY

ELSE
PRINT "UNEXPECTED ERROR"

The ERL function returns the number of the BASIC line where the last error
occurred .

int-var = ERL

ERL

Statements and Functions 4-67

ERN$

ERN$

Format

Example

The ERN$ function returns the name of the main program or subprogram that
was executing when the last error occurred .

str-var = ERN$

Syntax Rules
None .

Remarks
If the ERN$ function executes before an error occurs, ERN$ is undefined .
When an error occurs, ERN$ is set to the name of the module that caused
the error.

10 ON ERROR GOTO 20
DECLARE LONG int exp

15 INPUT "Enter an number" ;int exp
PRINT Date$(int exp)
GOTO 30

20 PRINT 'Error in module' ;ERN$
RESUME 15

30 END

The output is :

Enter a number? ABCD
Error in module DATE
Enter a number? 0
11-May-91

4-68 Statements and Functions

ERR

Format
int-var = ERR

Syntax Rules
None .

Remarks
1 . The value of int-var returned by the ERR function is always a WORD

integer.
2 . If the ERR function is used before an error occurs or after an error is

handled with a RESUME statement, the results are undefined .

3 . See the BASIC-PLUS-2 User's Guide for a list of BASIC-PLUS-2 run-time
errors and their numbers .

Example

10 PRINT "Error number" ;ERR
IF ERR = 50 THEN PRINT "DATA FORMAT ERROR"
ELSE PRINT "UNEXPECTED ERROR"
END IF
RESUME
END

The ERR function returns the error number of the current run-time error.

ERR

Statements and Functions 4-69

ERT$

ERT$

Format

Syntax Rules
Int-exp is a BASIC-PLUS-2 error number. The error number must be in the
range 0 through 255 .

Remarks
1 . The ERT$ function can be used at any time to return the text associated

with a specified error number.

2 . If you specify a floating-point expression for int-exp, BASIC-PLUS-2
truncates it to an integer of the default size .

Example

20

	

PRINT "Error number" ;ERR
PRINT ERT$ (ERR)
RETRY

The ERT$ function returns explanatory text associated with an error number .

str-var = ERT$(int-exp)

4-70 Statements and Functions

EXIT

Format

The EXIT statement lets you exit from a main program, a SUB, or FUNCTION
subprogram, a multi-line DEF, or a statement block .

EXIT block

block :

DEF[exp]
FUNCTION[exp]
SUB
PROGRAM
label

EXIT

Syntax Rules

1 . The DEF, FUNCTION, SUB, and PROGRAM keywords specify the type of
subprogram, or multi-line DEF from which BASIC-PLUS-2 is to exit .

2 . If you specify an optional expression with the EXIT DEF statement or
with the EXIT FUNCTION statement, the expression becomes the function
result and supersedes any function assignment. It also overrides any
expression specified on the END DEF or END FUNCTION statement .
Note that the expression must be compatible with the FUNCTION or DEF
data type.

3 . Label specifies a statement label for an IF, SELECT, FOR, WHILE, or
UNTIL statement block .

Remarks

1. An EXIT SUB, EXIT FUNCTION, EXIT PROGRAM, or EXIT DEF
statement is equivalent to an unconditional branch to an equivalent END
statement. Control then passes to the statement that invoked the DEF or
to the statement following the statement that called the subprogram .

2 . The EXIT PROGRAM statement causes BASIC-PLUS-2 to exit from a
main program module .

3 . BASIC-PLUS-2 allows you to specify an EXIT PROGRAM statement
without a matching PROGRAM statement .

Statements and Functions 4-71

EXIT

Example

4 . The EXIT label statement is equivalent to an unconditional branch to the
first statement following the end of the IF, SELECT, FOR, WHILE, or
UNTIL statement labeled by the specified label .

5 . An EXIT FUNCTION, EXIT SUB or EXIT PROGRAM statement cannot be
used within a multi-line DEF function .

6 . When the EXIT FUNCTION, EXIT SUB or EXIT PROGRAM statement
executes, BASIC-PLUS-2 releases all storage allocated to local variables
and returns control to the calling program .

10 DEF factorial(X)
EXIT DEF 1 if X = 0
END DEF (X * factorial(X -1))

20 PRINT "5! _ " ;factorial(5)

The output is :

5! = 120

4-72 Statements and Functions

EXP

Format

Syntax Rules
None .

Remarks
1. The EXP function returns the value of e raised to the power of real-exp .
2. BASIC-PLUS-2 expects the argument of the EXP function to be a real

expression. When the argument is a real expression, BASIC-PLUS-2
returns a value of the same floating-point size . When the argument is not
a real expression, BASIC-PLUS-2 converts the argument to the default
floating-point size and returns a value of the default floating-point size .

3. EXP allows arguments between -88 and 88 . When the argument exceeds
the upper limit of this range, BASIC-PLUS-2 signals an error . When the
argument exceeds the lower limit of this range, the EXP function returns a
zero and BASIC-PLUS-2 does not signal an error .

Example

10 DECLARE SINGLE num_val
num val = EXP(4 .6)
PRINT num val

The output is :

99 .4843

The EXP function returns the value of the mathematical constant e raised to a
specified power.

real-var = EXP(real-exp)

EXP

Statements and Functions 4-73

EXTERNAL

EXTERNAL

Format

The EXTERNAL statement declares constants, variables, functions, and
subroutines external to your program . You can describe parameters for
external functions and subroutines .
There are four formats :
•

	

For external constants
•

	

For external variables
•

	

For external functions
•

	

For external subroutines

1 . External Constants

EXTERNAL data-type CONSTANT const-name, .

2 . External Variables

EXTERNAL data-type unsubs-var, . . .

3 . External Functions

EXTERNAL data-type FUNCTION { func-name [pass-mech]
[(external-param , . . .)] }, . . .

4 . External Subroutines

EXTERNAL SUB { sub-name [pass-mech]
[(external-param , . . .)] }, . . .

BY VALUE
pass-mech :

	

BY REF
BY DESC

external-param : [param-data-type] [DIM ([,] . . .)] [= int-const] [pass-
mech]

4-74 Statements and Functions

Syntax Rules
1 . The name of an external constant, variable, function, or subroutine can be

from one through six characters .
2 . For all external routine declarations, the name must be a valid

BASIC-PLUS-2 identifier and must not be the same as any other SUB,
FUNCTION, or PROGRAM name .

3. The first character of an unquoted name must be an alphabetic character .
The remaining characters, if present, can be any combination of letters,
digits (0 through 9), dollar signs ($), and periods (.) .

4. External Constants
For external constants, data-type must be WORD or INTEGER (if the
default size is WORD) .

5. External Variables
For external variables, data type can be any valid numeric data type .

6. External Functions and Subroutines
•

	

For external functions and subroutines, the data type can be any valid
BASIC-PLUS-2 data type. See Table 1-2 in this manual for more
information on data type size, range and precision .

•

	

For external functions, the data type that precedes the keyword
FUNCTION defines the data type of the function result .

•

	

External-param defines the form of the arguments passed to the
external function or subprogram . Empty parentheses indicate that the
subprogram expects zero parameters . Missing parentheses indicate
that the EXTERNAL statement does not define parameters .

•

	

You can specify up to 32 formal parameters for BASIC-PLUS-2
subprograms and 255 formal parameters for other programs .

•

	

Param-data-type specifies the data type of a parameter . If you do not
specify a data type, parameters are of the default data type and size .

•

	

Quoted names are allowed for external subroutines only. Quoted names
can be any combination of letters, digits, dollar signs, periods, and
spaces .

•

	

Pass-mech specifies how parameters are to be passed to the function or
subroutine .
- A pass-mech clause outside the parentheses applies to all

parameters .

EXTERNAL

Statements and Functions 4-75

EXTERNAL

- A pass-mech clause inside the parentheses overrides the previous
pass-mech and applies only to the specific parameter .

7. Declaring Array Dimensions
The DIM keyword indicates that the parameter is an array . Commas
specify array dimensions . The number of dimensions is equal to the
number of commas plus 1 . For example :
10 EXTERNAL STRING FUNCTION new (DOUBLE, STRING DIM(,), DIM())

This statement declares a function named new that has three parameters .
The first is a double-precision floating-point value, the second is a two-
dimensional string array, and the third is a one-dimensional string array.
The function returns a string result .

Remarks
1. The EXTERNAL statement must precede any program reference to the

constant, variable, function, or subroutine declared in the statement .

2. The EXTERNAL statement is not executable .

3. A name declared in an EXTERNAL CONSTANT statement can be used in
any nondeclarative statement as if it were a constant .

4. A name declared in an EXTERNAL FUNCTION statement can be used
as a function invocation in an expression. In addition, you can invoke
a function with the CALL statement unless the function data type is
STRING or RFA.

5. A name declared in an EXTERNAL SUB statement can be used in a CALL
statement .

6. The optional pass-mech clauses in the EXTERNAL FUNCTION
and EXTERNAL SUB statements tell BASIC-PLUS-2 how to pass
arguments to a non-BASIC function or subprogram . Table 4-1 describes
BASIC-PLUS-2 parameter-passing mechanisms . Note that you cannot
specify a pass-mech when invoking a BASIC-PLUS-2 subprogram .

•

	

BY VALUE specifies that BASIC-PLUS-2 passes the argument's 16-bit
value .

• BY REF specifies that BASIC-PLUS-2 passes the argument's address .
This is the default for all arguments except strings and entire arrays .
If you know the size of string parameters and the dimensions of array
parameters, you can improve run-time performance by passing strings
and arrays by reference .

4-76 Statements and Functions

•

	

BY DESC specifies that BASIC-PLUS-2 passes the address of a
BASIC-PLUS-2 descriptor. For information about the format
of a BASIC-PLUS-2 descriptor for strings and arrays, see the
BASIC-PLUS-2 User's Guide .

7 . When invoked, the arguments passed to external functions and subroutines
should match the external parameters declared in the EXTERNAL
FUNCTION or EXTERNAL SUB statement in number, type, and passing
mechanism. BASIC-PLUS-2 forces arguments to be compatible with
declared parameters . If they are not compatible, BASIC-PLUS-2 signals
an error.

Examples

EXTERNAL

Statements and Functions 4-77

1 . 10 !External Constant
EXTERNAL WORD CONSTANT IE .SUC

2 . 10 !External Variable
EXTERNAL WORD SYSNUM

3 . 10 !External Function
EXTERNAL DOUBLE FUNCTION USR$2(WORD,LONG)

4. 10 !External Subroutine
EXTERNAL SUB calc BY DESC (STRING DIM(,), BYTE BY REF)

FIELD

FIELD

Format

The FIELD statement dynamically associates string variables with all or parts
of a record buffer. FIELD statements do not move data . Instead, they permit
direct access through string variables to sections of a specified record buffer .

Note

The FIELD statement is supported only for compatibility with
BASIC-PLUS. Because data defined in the FIELD statement can
be accessed only as string data, you must use the CVTxx functions
to process numeric data ; therefore, you must convert string data
to numeric after you move it from the record buffer. Then, after
processing, you must convert numeric data back to string data before
transferring it to the record buffer. It is recommended that you use the
BASIC-PLUS-2 dynamic mapping feature or multiple maps instead of
the FIELD statement and CVTxx functions .

FIELD #chnl-exp, int-exp AS str-var[, int-exp AS str-var] . . .

Syntax Rules
1 . Chnl-exp is a numeric expression that specifies a channel number

associated with a file. It must be immediately preceded by a number
sign (#) . A file must be open on the specified channel or BASIC-PLUS-2
signals an error.

2 . Int-exp specifies the number of characters in str-var .

Remarks
1. A FIELD statement is executable . You can change a buffer description at

any time by executing another FIELD statement. For example :
FIELD #1%, 40% AS whole_field$
FIELD #1%, 10% AS A$, 10% AS B$, 10% AS C$, 10% AS D$

4-78 Statements and Functions

Example

The first FIELD statement associates the first 40 characters of a buffer
with the variable wholeJIeld$. The second FIELD statement associates
the first 10 characters of the same buffer with A$, the second 10 characters
with B$, and so on . Later program statements can refer to any of the
variables named in the FIELD statements to access specific portions of the
buffer.

2. You cannot define virtual array strings as string variables in a FIELD
statement .

3. The FIELD statement is also described in the BASICPLUS Language
Manual .

10 FIELD #8%, 2% AS U$, 2% AS CL$, 4% AS X$, 4% AS Y$
LSET U$ = CVT%$(U%)
LSET CL$ = CVT%$(CL%)
LSET X$ = CVTF$(X)
LSET Y$ = CVTF$(Y)
U% = CVT$%(U$)
CL% = CVT$%(CL$)
X = CVT$F(X$)
Y = CVT$F(Y$)

FIELD

Statements and Functions 4-79

FIND

FIND

Format

1

The FIND statement locates a specified record in a disk file and makes it the
current record for a GET, UPDATE, or DELETE operation . FIND statements
are valid on RMS sequential, relative, and indexed files .

FIND #chnl-exp [, position-clause]

RFA rfa-exp
position-clause :

	

RECORD num-exp
KEY# key-clause

key-clause :

	

int-expl rel-op key-exp

EQ
rel-op :

	

GE
GT

key-exp :

4-80 Statements and Functions

int-exp2
str-exp }

Syntax Rules
Chnl-exp is a numeric expression that specifies a channel number associated
with a file . It must be immediately preceded by a number sign (#) .

Remarks
1 . Position-clause

•

	

Position-clause specifies the position of a record in a file .
BASIC-PLUS-2 signals an error if you specify a position-clause and
the channel is not associated with a disk file. The RECORD position-
clause is invalid for a SEQUENTIAL FIXED file. If you do not specify
a position-clause, FIND locates records sequentially. Sequential record
access is valid on all RMS files .

• The RFA position-clause allows you to randomly locate records by
specifying the record file address (RFA) of a record . You specify the
disk address of a record, and RMS locates the record at that address .
All file organizations can be accessed by RFA .
Rfa-exp in the RFA position-clause is a variable of the RFA data type
that specifies the record's file address . Note that an RFA expression
can only be a variable of the RFA data type or the GETRFA function .
Use the GETRFA function to find the RFA of a record .

•

	

The RECORD position-clause allows you to randomly locate records in
relative files by specifying the record number.

- Num-exp in the RECORD position-clause specifies the number
of the record you want to locate . It must be between 1 and the
number of the record with the highest number in the file .

- When you specify a RECORD clause, chnl-exp must be a channel
associated with an open relative file.

•

	

The KEY position-clause allows you to randomly locate records in
indexed files by specifying a key of reference, a relational test, and a
key value .

2 . Key-clause
•

	

In a key-clause, int-expl is the target key of reference. It must be an
integer in the range of zero through the highest-numbered key for the
file. The primary key is #0, the first alternate key is #1, the second
alternate key is #2, and so on . Int-expl must be preceded by a number
sign (#) or BASIC-PLUS-2 signals an error .

•

	

When you specify a key-clause, the specified channel must be a channel
associated with an open indexed file .

3 . Rel-op
•

	

Rel-op is a relational operator that specifies how key-exp is to be
compared with int-expl in the key-clause .

EQ means equal to
GE means greater than or equal to
GT means greater than

•

	

A successful random FIND operation by key locates the first record
whose key satisfies the key-clause comparison :

- With an equal to (EQ) key match, a successful FIND locates the
first record in the file that equals the key value specified in key-exp .

Statements and Functions 4-81

FIND

FIND

If the characters specified by a str-exp key expression are less
than the key length, characters specified by str-exp are matched
approximately rather than exactly. For example, if you specify
"ABC" and the key length is six characters, BASIC-PLUS-2 locates
the first record that begins with ABC. If you specify "ABCABC",
BASIC-PLUS-2 locates only a record with the key "ABCABC" . If
no match is possible, BASIC-PLUS-2 signals the error "Record not
found" (ERR=155) .
If you specify a greater than or equal to (GE) key match, a
successful FIND locates the first record that equals the key value
specified in key-exp . If no exact match is possible, BASIC-PLUS-2
selects the next record in the key sort order with a higher key
value. If no such record exists, BASIC-PLUS-2 signals the error
"Record not found" (ERR=155) .

With a greater than (GT) key match, a successful FIND locates the
first record with a value greater than the key value specified in
key-exp . If no such record exists, BASIC-PLUS-2 signals the error
"Record not found" (ERR=155) .

4. Key-exp

•

	

Int-exp2 specifies an integer value to be compared with the key value of
a record.

• Str-exp specifies a string value to be compared with the key value of a
record . Str-exp can contain fewer characters than the key of the record
you want to locate, but cannot be a null string .

5 . FIND does not transfer any data to the record buffer . To access the
contents of a record, use the GET statement .

6 . The file specified by chnl-exp must be open with ACCESS READ or
MODIFY before your program can execute a FIND statement .

7 . A successful sequential FIND operation updates both the current record
pointers and next record pointers .

•

	

For sequential files, a successful FIND operation locates the next
sequential record (the record pointed to by the next record pointer) in
the file, changes the current record pointer to the record just found,
and sets the next record pointer to the next sequential record . If the
current record pointer points to the last record in a file, a sequential
FIND operation causes BASIC-PLUS-2 to signal "End of file on device"
(ERR=11) .

4-82 Statements and Functions

Example

• For relative files, a successful FIND operation locates the record that
exists with the next higher record number (or cell number), makes it
the current record, and sets the next record pointer to the record with
the next higher record number .

• For indexed files, a successful FIND operation locates the next logical
record in the current key of reference, makes this the current record,
and changes the next record pointer to the next logical record in the
current key of reference .

8. A successful random access FIND operation by RFA or by record changes
the current record pointer to the record specified by rfa-exp or int-exp, but
leaves the next record pointer unchanged .

9. A successful random access FIND operation by key changes the current
record pointer to the first record whose key satisfies the key-clause
comparison, and the next record pointer to the record with the next
value in the key sort order .

10. When a random access FIND operation by RFA, record, or key is
not successful, BASIC-PLUS-2 signals the error "Record not found"
(ERR=155). The values of the current record pointer and next record
pointer are undefined .

11 . You should not use a FIND statement on a terminal-format or virtual array
file .

12 . When you access a shared file, a successful FIND locks the record or bucket
and unlocks the previously locked record or bucket .

10 DECLARE LONG rec-num
MAP (cusrec) WORD cus num

	

&
STRING cus nam=20, cus add=20, cus city=10, cus_zip=9

OPEN "ACCT .DAT" FOR INPUT AS #1,

	

&
RELATIVE FIXED,

	

&
ACCESS MODIFY

	

&
MAP cusrec

INPUT "Which record number would you like to delete" ;rec num
FIND #1, RECORD rec num
DELETE #1
CLOSE #1
END

FIND

Statements and Functions 4-83

FIX

FIX

Format

Syntax Rules
None .

Remarks
1 . The FIX function returns the integer portion of a floating-point value, not

an integer value .
2. BASIC-PLUS-2 expects the argument of the FIX function to be a real

expression. When the argument is a real expression, BASIC-PLUS-2
returns a value of the same floating-point size . When the argument is not
a real expression, BASIC-PLUS-2 converts the argument to the default
floating-point size and returns a value of the default floating-point size .

3 . If real-exp is negative, FIX returns the negative integer portion . For
example, FIX(-5 .2) returns -5 .

Example

10 DECLARE SINGLE result
result = FIX(-3 .333)
PRINT FIX(24 .566), result

The output is :

24

	

-3

The FIX function truncates a floating-point value at the decimal point and
returns the integer portion represented as a floating-point value .

real-var = FIX(real-exp)

4-84 Statements and Functions

FNEND

Format

FNEND

The FNEND statement is a synonym for END DEF. See the END statement
for more information .

FNEND [exp]

Statements and Functions 4-85

FNEXIT

FNEXIT

Format

The FNEXIT statement is a synonym for the EXIT DEF statement. See the
EXIT statement for more information .

FNEXIT [exp]

4-86 Statements and Functions

FOR

Format

FOR

The FOR statement repeatedly executes a block of statements, while
incrementing a specified control variable for each execution of the statement
block. FOR loops can be conditional or unconditional, and can modify other
statements .
There are four formats :

•

	

Unconditional

•

	

Conditional

•

	

Unconditional statement modifier

•

	

Conditional statement modifier

1 . Unconditional

FOR num-unsubs-var = num-expl TO num-exp2 [STEP num-exp3]
[statement] . . .

NEXT num-unsubs-var

2. Conditional FOR)

num-unsubs-var = num-expl [STEP num-exp3]

UNTIL cond-exp
WHILE

[statement] . . .

NEXT num-unsubs-var

3. Unconditional Statement Modifier

statement FOR num-unsubs-var = num-expl TO num-exp2 [STEP num-exp3]

4 . Conditional Statement Modifier

statement FOR num-unsubs-var = num-expl [STEP num-exp3]

UNTIL

	

cond-exp
WHILE

Statements and Functions 4-87

FOR

Syntax Rules

1 . Num-unsubs-var must be a numeric, unsubscripted variable .
2 . Num-unsubs-var is the loop variable . It is incremented each time the loop

executes .
3 . In unconditional FOR loops, num-expl is the initial value of the loop

variable ; num-exp2 is the maximum value .
4 . In conditional FOR loops, num-expl is the initial value of the loop variable,

while the cond-exp in the WHILE or UNTIL clause is the condition that
controls loop iteration .

5. Num-exp3 in the STEP clause is the value by which the loop variable is
incremented after each execution of the loop .

Remarks

1. The default for num-exp3 is 1 if there is no STEP clause .
2. You can transfer control into a FOR loop only by returning from a function

invocation, a subprogram call, a subroutine call, or an error handler that
was invoked in the loop .

3 . The loop variable can be modified inside the FOR loop .
4. The starting, incrementing, and ending values of a loop cannot be changed

during loop execution .

5 . When an unconditional FOR loop ends, the loop variable contains the value
last used in the loop, not the value that caused loop termination .

6 . BASIC-PLUS-2 converts num-expl, num-exp2, and num-exp3 to the data
type of the loop variable before storing them .

7 . If the loop variable exceeds the allowable range for its data type,
BASIC-PLUS-2 signals the error "Integer overflow, FOR loop" (ERR=60) .

8 . An inner loop must be entirely within an outer loop ; the loops cannot
overlap .
• There is a limit to the number of inner loops you can contain within a

single outer loop . This number varies according to the complexity of
the loops. If you exceed the limit, BASIC-PLUS-2 signals the error
message "Program structures nested too deeply."

•

	

You cannot use the same loop variable in nested FOR loops . For
example, if the outer loop uses FOR I = 1 TO 10, you cannot use the
variable I as a loop variable in an inner loop .

4-88 Statements and Functions

Examples

9 . During each iteration of a conditional loop, BASIC-PLUS-2 tests the value
of cond-exp before it executes the loop .
•

	

If you specify a WHILE clause and cond-exp is false (value zero),
BASIC-PLUS-2 exits from the loop. If the cond-exp is true (value
nonzero), the loop executes again .

•

	

If you specify an UNTIL clause and cond-exp is true (value nonzero),
BASIC-PLUS-2 exits from the loop . If the cond-exp is false (value
zero), the loop executes again .

10. When FOR is used as a statement modifier, BASIC-PLUS-2 executes the
statement until the loop variable equals or exceeds num-exp2 or until the
WHILE or UNLESS condition is satisfied .

11 . Each FOR statement must have a corresponding NEXT statement or
BASIC-PLUS-2 signals an error. (This is not the case if the FOR
statement is used as a statement modifier .)

1 . 10 !Unconditional
DECLARE LONG course num, STRING course_nam
FOR I = 3 TO 12 STEP 3
INPUT "Course number" ;course num
INPUT "Course name" ;course_nam
NEXT I

Course number? 221
Course name? Botany
Course number? 231
Course name? Organic Chemistry
Course number? 237
Course name? Life Science II
Course number? 244
Course name? Programming in BASIC-PLUS-2

2 . 10 !Unconditional Statement Modifier
DECLARE INTEGER counter
PRINT "This is an unconditional statement modifier"

FOR counter = 1 TO 3
END

The output is :
This is an unconditional statement modifier
This is an unconditional statement modifier
This is an unconditional statement modifier

FOR

Statements and Functions 4-89

FOR

3 . 10 !Conditional Statement Modifier
DECLARE INTEGER counter, &

STRING my name
INPUT "Try and guess my name" ;my name

UNTIL my name = "BASIC"
PRINT "You guessed it!"

Try and guess my name? PASCAL
Try and guess my name? FORTRAN
Try and guess my name? BASIC
You guessed it!

4-90 Statements and Functions

FOR counter

	

1

	

&

FORMAT$

Format

Syntax Rules
1 . The rules for building a format string are the same as those for printing

numbers with the PRINT USING statement . See the description of the
PRINT USING statement for more information .

2 . You cannot specify the FORMAT$ function in a PRINT USING statement .

Remarks
None .

Example

10 DECLARE STRING result,

	

&
INTEGER num exp

num exp = 12345
result = FORMAT$(num exp,"##,###")
PRINT result

The output is :

12,345

The FORMAT$ function converts an expression to a formatted string .

str-var = FORMAT$(exp, str-exp)

FORMAT$

Statements and Functions 4-91

FSP$

FSP$

Format

The FSP$ function returns a string describing an open file on a specified
channel .

str-var = FSP$(chnl-exp)

Syntax Rules
1. Chnl-exp is a numeric expression that specifies a channel number. You

cannot precede the chnl-exp with a number sign (#) .

2. A file must be open on chnl-exp .
3 . The FSP$ function must come immediately after the OPEN statement for

the file.
4 . The returned string is 28 bytes long .

Remarks
1 . Table 4-4 describes the RMS fields and their corresponding BYTE values .

2. Use the FSP$ function with files opened as ORGANIZATION
UNDEFINED. Then use multiple MAP statements to interpret the
returned data .

3 . See the BASIC-PLUS-2 User's Guide and the RMS-11 documentation for
more information on FSP$ values .

Table 4-4 FSP$ Return Values and Corresponding RMS Fields

Return Value

	

RMS Field

	

Description

0

	

RFM + ORG

	

File Organization code plus record
format code

1

	

RAT

	

Record handling mask
2,3

	

MRS

	

Maximum record size in bytes
4,5,6,7

	

ALQ

	

File allocation size

4-92 Statements and Functions

(continued on next page)

Example

Table 4-4 (Cont.) FSP$ Return Values and Corresponding RMS Fields

10 MAP (A) STRING A = 28
MAP (A) BYTE org rfm, rat, WORD mrs, LONG alq, &

WORD bks bls, num keys,LONG bkt mrn,
OPEN "STUDENT .DAT" FOR INPUT AS #1%,

	

&
ORGANIZATION UNDEFINED,

	

&
RECORDTYPE ANY, ACCESS READ

A = FSP$(1%)
PRINT "RMS organization and record format = " ;org rfm
PRINT "RMS record attributes = " ;rat
PRINT "RMS maximum record size = " ;mrs
PRINT "RMS allocation quantity = " ;alq
PRINT "RMS bucket size = " ;bks bls
PRINT "Number of keys = " ;num keys
PRINT "RMS maximum record number = " ;mrn
PRINT "RMS virtual block number = " ;bkt

The output is :

RMS organization = 2
RMS record attributes = 2
RMS maximum record size 5
RMS allocation quantity

	

1
RMS bucket size = 0
Number of keys = 0
RMS maximum record number = 0
RMS virtual block number = 1

FSP$

Statements and Functions 4-93

Return Value RMS Field Description

8,9 BLS or BKS Magtape block size or file bucket size
10,11 NA Number of indexed keys
12,13,14,15 MRN Maximum record number
16,17,18,19 BKT Virtual block number or relative record

number

FSS$

FSS$

Format

The FSS$ function scans a file name string beginning at a specified position
and returns a 30-character string describing the file name and status . Because
file specifications differ from system to system, the returned string contains
system-specific information .

str-vbl = FSS$(str-vbl,int-vbl)

Syntax Rules
1 . Str-vbl names the file name string to be scanned .
2 . Int-vbl specifies the character position at which scanning starts .

Remarks
1 . If you specify a floating-point variable for int-vbl, BASIC-PLUS-2

truncates it to an integer of the default size .
2 . Str-vbl is a 30-character string . See the BASIC-PLUS-2 User's Guide for

information on the encoding of str-vbl .

3 . See the BASIC-PLUS-2 User's Guide for more information on the values
returned by the FSS$ function.

Example

100

	

Y$ = FSS$(A$,B%)

4-94 Statements and Functions

FUNCTION

Format

}

The FUNCTION statement marks the beginning of a FUNCTION subprogram
and defines the subprogram's parameters .

FUNCTION data-type func-name [([formal-param], . . .)]
[statement] . . .

END FUNCTION [exp]
{ FUNCTIONEND [exp]

unsubs-var

formal param :

	

[data-type]

	

array-name (
L
int-const

J

FUNCTION

Syntax Rules
1 . Func-name names the FUNCTION subprogram .

2 . Func-name can have from one through six characters . The first character
must be an alphabetic character. The remaining characters can be any
combination of letters, digits (0 through 9), dollar signs ($) and periods (.),
with the exception that the last character cannot be a dollar sign ($) .

3. Data-type can be any BASIC-PLUS-2 data type keyword. Data type
keywords, size, range, and precision are listed in Table 1-2 in this manual .

4. The data type that precedes the func-name specifies the data type of the
value returned by the function .

5. Formal-param specifies the number and type of parameters for the
arguments the function expects to receive when invoked .

•

	

Empty parentheses indicate that the function has no parameters .

•

	

Data-type specifies the data type of a parameter . If you do not specify a
data type, parameters are of the default data type and size . When you
do specify a data type, all following parameters are of that data type
until you specify a new data type .

•

	

Parameters defined in formal-param must agree in number and type
with the arguments specified in the function invocation .

Statements and Functions 4-95

FUNCTION

•

	

You can specify up to 32 formal parameters .

6 . Exp specifies the function result which supersedes any function
assignment . Exp must be compatible with the function's data type .

Remarks
1 . The FUNCTION statement must be the first statement in the FUNCTION

subprogram .

2 . Every FUNCTION statement must have a corresponding END FUNCTION
or FUNCTIONEND statement .

3. Any BASIC-PLUS-2 statement except END, PROGRAM, END
PROGRAM, SUB, SUBEND, END SUB, or SUBEXIT can appear in a
FUNCTION subprogram .

4 . FUNCTION subprograms must be declared with the EXTERNAL
statement before your BASIC-PLUS-2 program can invoke them .

5. All variables and data, except virtual arrays, COMMON areas, MAP areas,
and EXTERNAL variables, in a FUNCTION subprogram are local to the
subprogram .

6 . BASIC-PLUS-2 initializes local numeric variables to zero and local string
variables to the null string each time the FUNCTION subprogram is
invoked .

7 . ON ERROR GO BACK is the default error handler for FUNCTION
subprograms .

8 . To return a function value, either assign a value to the function name or
specify a value with the END FUNCTION or EXIT FUNCTION statement .
Note that you can only assign a value to a function name while inside that
function subprogram .

Example

10 FUNCTION REAL sphere volume (REAL R)
IF R < 0 THEN EXIT FUNCTION
sphere volume = 4/3 * PI *R **3
END FUNCTION

4-96 Statements and Functions

FUNCTIONEND

Format

The FUNCTIONEND statement is a synonym for the END FUNCTION
statement. See the END statement for more information .

FUNCTIONEND [exp]

FUNCTIONEND

Statements and Functions 4-97

FUNCTIONEXIT

FUNCTIONEXIT

Format

The FUNCTIONEXIT statement is a synonym for the EXIT FUNCTION
statement. See the EXIT statement for more information .

FUNCTIONEXIT [exp]

4-98 Statements and Functions

GET

Format

}

Syntax Rules
Chnl-exp is a numeric expression that specifies a channel number associated
with a file . It must be immediately preceded by a number sign (#) .

Remarks
1. Position-clause

•

	

Position-clause specifies the position of a record in a file .
BASIC-PLUS-2 signals an error if you specify a position-clause and
chnl-exp is not associated with a disk file. The RECORD position-
clause is invalid for accessing SEQUENTIAL FIXED files . If you
do not specify a position-clause, GET retrieves records sequentially .
Sequential record access is valid on all RMS files .

The GET statement moves a record from a file to a record buffer and makes
the data available for processing. GET statements are valid on sequential,
relative, indexed, and block I/O files .

GET #chnl-exp [, position-clause]

RFA rfa-exp
position-clause :

	

RECORD num-exp
KEY# key-clause

key-clause :

	

int-expl rel-op key-exp

EQ
rel-op :

	

GE
GT

key-exp
int-exp2

{ str-exp

GET

Statements and Functions 4-99

GET

•

	

The RFA position-clause allows you to randomly retrieve records by
specifying the record file address (RFA); You specify the disk address
of a record, and RMS retrieves the record at that address . All file
organizations can be accessed by RFA .
Rfa-exp in the RFA position-clause is an expression of the RFA data
type that specifies the record's file address . An RFA expression must
be a variable of the RFA data type or the GETRFA function . Use the
GETRFA function to obtain the RFA of a record .

•

	

The RECORD position-clause allows you to randomly retrieve records
in relative files by specifying the record number .

- Num-exp in the RECORD position-clause specifies the number of
the record you want to retrieve . It must be between 1 and the
number of the record with the highest number in the file .

- When you specify a RECORD clause, chnl-exp must be a channel
associated with an open relative file .

•

	

The KEY position-clause allows you to randomly retrieve records in
indexed files by specifying a key of reference, a relational test, or a key
value .

2 . Key-clause
• In a key-clause, int-expl is the target key of reference. It must be an

integer value in the range of zero through the highest-numbered key
for the file . The primary key is #0, the first alternate key is #1, the
second alternate key is #2, and so on . Int-expl must be preceded by a
number sign (#) or BASIC-PLUS-2 signals an error .

•

	

When you specify a key clause, chnl-exp must be a channel associated
with an open indexed file .

3 . Rel-op
•

	

Rel-op specifies how key-exp is to be compared with int-expl in the
key-clause .
- EQ means equal to
- GE means greater than or equal to
- GT means greater than

•

	

With an equal to (EQ) key match, a successful GET operation retrieves
the first record in the file that equals the key value specified in key-exp .
If the key expression is a str-exp whose length is less than the key
length, characters specified by the str-exp are matched approximately

4-100 Statements and Functions

rather than exactly. That is, if you specify a string expression "ABC"
and the key length is six characters, BASIC-PLUS-2 matches
the first record that begins with ABC . If you specify "ABCABC",
BASIC-PLUS-2 matches only a record with the key "ABCABC ." If no
match is possible, BASIC-PLUS-2 signals the error "Record not found"
(ERR=155).

©

	

If you specify a greater than or equal to (GE) key match, a successful
FIND locates the first record that equals the key value specified in
key-exp . If no exact match is possible, BASIC-PLUS-2 selects the
next record in the key sort order with a higher key value . If no such
record exists, BASIC-PLUS-2 signals the error "Record not found"
(ERR=155).

©

	

If you specify a greater than (GT) key match, a successful GET
operation retrieves the first record with a value greater than key-exp .
If no such record exists, BASIC-PLUS-2 signals the error "Record not
found" (ERR=155) .

4. Key-exp
©

	

Int-exp2 in the key clause specifies an integer value to be compared
with the key value of a record .

©

	

Str-exp in the key clause specifies a string value to be compared with
the key value of a record . The string expression can contain fewer
characters than the key of the record you want to retrieve but it cannot
be a null string .

5 . The file specified by chnl-exp must be open with ACCESS READ or
MODIFY before your program can execute a GET statement .

6 . If the last I/O operation was a successful FIND operation, a sequential
GET operation retrieves the current record located by the FIND operation
and sets the next record pointer to the record logically succeeding the
pointer.

7 . If the last I/O operation was not a FIND operation, a sequential GET
operation retrieves the next record and sets the record logically succeeding
the record pointer to the current record .
©

	

For sequential files, a sequential GET operation retrieves the next
record in the file .

©

	

For relative files, a sequential GET operation retrieves the record with
the next higher cell number .

GET

Statements and Functions 4-101

GET

Example

©

	

For indexed files, a sequential GET operation retrieves the next record
in the current key of reference .

8 . A successful random GET operation by RFA or by record retrieves the
record specified by rfa-exp or int-exp .

9. A successful random GET operation by key retrieves the first record whose
key satisfies the key-clause comparison .

10. A successful random GET operation by RFA, record, or key sets the value of
the current record pointer to the record just read . The next record pointer
is set to the next logical record .

11 . An unsuccessful GET operation leaves the record pointers and the record
buffer in an undefined state .

12. If the retrieved record is smaller than the receiving buffer, BASIC-PLUS-2
fills the remaining buffer space with nulls .

13. If the retrieved record is larger than the receiving buffer, BASIC-PLUS-2
truncates the record and signals an error .

14. You should not use a GET statement on a terminal-format or virtual array
file .

15. When you access a shared file, a successful GET locks the record or bucket
and unlocks the previously locked record or bucket .

16. A successful GET operation sets the value of the RECOUNT variable to the
number of bytes transferred from the file to the record buffer .

10

	

DECLARE LONG rec-num
MAP (CUSREC) WORD cus num

	

&
STRING cus nam = 20, cus add = 20, cus city = 10, cus_zip

	

9
OPEN "CUS ACCT .DAT" FOR INPUT AS #1

	

&
RELATIVE FIXED, ACCESS MODIFY,

	

&
MAP CUSREC

INPUT "Which record number would you like to view" ;rec num
GET #1, RECORD REC NUM
PRINT "The customer's number is " ;CUS NUM
PRINT "The customer's name is " ;cus nam
PRINT "The customer's address is " ;cus add
PRINT "The customer's city is " ;cus_city
PRINT "The customer's zip code is " ;cus_ zip
CLOSE #1
END

4-102 Statements and Functions

GETRFA

Format

GETRFA

The GETRFA function returns the record's file address (RFA) of the last record
accessed in an RMS file open on a specified channel .

rfa-var = GETRFA(chnl-exp)

Syntax Rules
1. Rfa-var is a variable of the RFA data type .
2 . Chnl-exp is the channel number of an open RMS file. You cannot precede

the chnl-exp with a number sign (#) .
3 . You must access a record in the file with a GET, FIND, or PUT statement

before using the GETRFA function, or BASIC-PLUS-2 signals "No current
record" (ERR=131) .

Remarks
1 . There must be a file open on the specified chnl-exp or BASIC-PLUS-2

signals an error.
2 . You can use the GETRFA function with RMS sequential, relative, indexed,

and (except on RSTS/E systems) block UO files .
3. The RFA value returned by the GETRFA function can be used only for

assignments to and comparisons with other variables of the RFA data type .
Comparisons are limited to equal to (=) and not equal to (<>) relational
operations .

4 . RFA values cannot be printed or used for any arithmetic operations .

Example

10 DECLARE RFA R ARRAY(1 TO 100)

FOR 1% = 1% TO 100%
PUT #1
R ARRAY(I%) = GETRFA(1)

NEXT I%

Statements and Functions 4-103

GOSUB

GOSUB

The GOSUB statement transfers control to a specified line number or label
and stores the location of the GOSUB statement for eventual return from the
subroutine .

Format

GO SUB
} targetGOSUB

Syntax Rules
1. Target must refer to an existing line number or label in the same program

unit as the GOSUB statement or BASIC-PLUS-2 signals an error.
2 . Target cannot be inside a block structure such as a FOR . . . NEXT,

WHILE, or UNTIL loop or a multi-line function definition unless the
GOSUB statement is also within that block or function definition .

Remarks
None .

Example

10

	

GOSUB subroutine -1

200 subroutine 1 :

RETURN

4-104 Statements and Functions

GOTO

The GOTO statement transfers control to a specified line number or label .

Format

5 GO TO

	

target
GOTO

Syntax Rules
1 . Target must refer to an existing line number or label in the same program

unit as the GOTO statement or BASIC-PLUS-2 signals an error .

2 . Target cannot be inside a block structure such as a FOR . . . NEXT,
WHILE, or UNTIL loop or a multi-line function definition unless the GOTO
statement is also inside that loop or function definition .

Remarks
None .

Example

10 IF answer = 0
THEN GOTO done

END IF

done :
EXIT PROGRAM

GOTO

Statements and Functions 4-105

IF

IF

Format

]

The IF statement evaluates a conditional expression and transfers program
control depending on the resulting value .
There are two formats :
©

	

Conditional
©

	

Statement modifier

1 . Conditional

IF cond-exp THEN statement . [ELSE statement .
[statement I . . . END IF

2. Statement Modifier

statement IF cond-exp

Syntax Rules
1. The following rules apply to conditional IF statements :

©

	

Cond-exp can be any valid conditional expression .
©

	

All statements between the THEN keyword and the next ELSE, line
number, or END IF are part of the THEN clause. All statements
between the keyword ELSE and the next line number or END IF are
part of the ELSE clause .

© BASIC-PLUS-2 assumes a GOTO statement when the keyword ELSE
is followed by a line number . When the target of a GOTO statement is
a label, the keyword GOTO is required . The use of this syntax is not
recommended for new program development .

©

	

The END IF statement terminates the most recent unterminated IF
statement.

©

	

A new line number terminates all unterminated IF statements .
2. The following rules apply to statement modifier IF statements :

©

	

IF can modify any executable statement except a block statement such
as FOR, WHILE, UNTIL, or SELECT .

©

	

Cond-exp can be any valid conditional expression .

4-106 Statements and Functions

Remarks

1 . The following remarks apply to conditional IF statements :
©

	

BASIC-PLUS-2 evaluates the conditional expression for truth or
falsity. If true (nonzero), BASIC-PLUS-2 executes the THEN clause .
If false (zero), BASIC-PLUS-2 skips the THEN clause and executes
the ELSE clause, if present .

© The keyword NEXT cannot be in a THEN or ELSE clause unless the
FOR or WHILE statement associated with the keyword NEXT is also
part of the THEN or ELSE clause .

© If a THEN or ELSE clause contains a block statement such as a FOR,
SELECT, UNTIL, or WHILE, then a corresponding block termination
statement such as a NEXT or END must appear in the same THEN or
ELSE clause .

©

	

IF statements can be nested to 12 levels .
© Any executable statement is valid in the THEN or ELSE clause,

including another IF statement . You can include any number of
statements in either clause .

©

	

Execution continues either at the statement following the END IF
clause or at the first line number following an unterminated IF
statement.

2 . BASIC-PLUS-2 executes a statement modifier IF statement only if the
conditional expression is true (nonzero) .

IF

Statements and Functions 4-107

IF

Example

10 IF Update_flag = True
THEN

ELSE

END IF

4-108 Statements and Functions

Weekly_salary = New rate * 40 .0
UPDATE #1
IF Dept <> New dept
THEN

GET #1, KEY #1 EQ New dept
Dept employees = Dept employees + 1
UPDATE #1

END IF
PRINT "Update complete"

PRINT "Skipping update for this employee"

INPUT

Format

INPUT

The INPUT statement assigns values from your terminal or from a terminal-
format file to program variables .

INPUT [#chnl-exp,] input-item [{ 1; } input-item] . . .

input-item :

	

[strng-const { ; }] str-var

Syntax Rules
1. Chnl-exp is a numeric expression that specifies a channel number

associated with a file . It must be immediately preceded by a number
sign (#) .

2 . Str-const is the prompt issued for the input string value .

3. Str-var is a program variable to which the input string value is assigned .

4. You can include more than one input-item in an INPUT statement by
separating them with commas (,) or semicolons (;) .

5 . The comma or semicolon that follows str-var has no formatting effect .
BASIC-PLUS-2 always advances to a new line when you terminate input
with a carriage return .

6. The separator that directly follows str-const determines where the question
mark prompt (if requested) is displayed and where the cursor is positioned
for input.
©

	

A comma causes BASIC-PLUS-2 to skip to the next print zone and
display the question mark unless a SET NO PROMPT statement has
been executed . For example :
DECLARE STRING your name
INPUT "What is your name",your name

The output is :
What is your name

	

?

Statements and Functions 4-109

INPUT

© A semicolon causes BASIC-PLUS-2 to display the question mark next
to str-const unless a SET NO PROMPT statement has been executed .
For example :
DECLARE STRING your name
INPUT "What is your name" ;your name

The output is :
What is your name?

7. BASIC-PLUS-2 always advances to a new line when you terminate input
with a carriage return .

Remarks
1. If you do not specify a channel, the default chnl-exp is #0 (the controlling

terminal). If a chnl-exp is specified, a file must be open on that channel
with ACCESS READ or MODIFY before the INPUT statement can execute .

2. If input comes from a terminal, BASIC-PLUS-2 displays str-const, if
present. If the terminal is open on channel #0, BASIC-PLUS-2 also
displays a question mark (?) .

3. You can disable the question mark prompt by using the SET NO PROMPT
statement. See the SET PROMPT statement for more information .

4. When BASIC-PLUS-2 receives a line terminator or a complete record,
it checks each data element for correct data type and range limits, then
assigns the values to the corresponding variables .

5. If you specify a string variable to receive the input text, and the user enters
an unquoted string in response to the prompt, BASIC-PLUS-2 ignores the
string's leading and trailing spaces and tabs. An unquoted string cannot
contain any commas .

6 . If there is not enough data in the current record or line to satisfy the
variable list, BASIC-PLUS-2 takes one of the following actions :

©

	

If the input device is a terminal and you have not specified SET NO
PROMPT, BASIC-PLUS-2 repeats the question mark but not the
str-const on a new line until sufficient data is entered .

©

	

If the input device is not a terminal, BASIC-PLUS-2 signals the error
"Not enough data in record" (ERR=59) .

7. If there are more data items than variables in the INPUT response,
BASIC-PLUS-2 ignores the excess .

4-110 Statements and Functions

Example

8 . If there is an error while data is being converted or assigned (for example,
string data being assigned to a numeric variable), BASIC-PLUS-2 takes
one of the following actions :
©

	

If there is no error handler in effect and the input device is a terminal,
BASIC-PLUS-2 signals a warning, reexecutes the INPUT statement,
and displays str-const and the input prompt .

©

	

If there is an error handler in effect and the input device is not a
terminal, BASIC-PLUS-2 signals the error "Illegal number" (ERR=52)
or "Data format error" (ERR=50).

9. When a RESUME statement transfers control to an INPUT statement, the
INPUT statement retrieves a new record or line regardless of any data left
in the previous record or line .

10. After a successful INPUT statement, the RECOUNT variable contains the
number of characters transferred from the file or terminal to the record
buffer.

11. If you terminate input text with Ctrl/Z, BASIC-PLUS-2 assigns the value
to the variable and signals the error "End of file on device" (ERR=11)
when the next terminal input statement executes. If you are in the BASIC
environment and there is no subsequent INPUT, INPUT LINE, or LINPUT
statement in the program, the Ctrl/Z is passed to BASIC-PLUS-2 as a
signal to exit the BASIC environment . BASIC-PLUS-2 signals the error
"Unsaved changes have been made, Ctrl/Z or EXIT to exit" if you have
made changes to your program or are running a program that has never
been saved. If you have not made changes, BASIC-PLUS-2 exits from the
BASIC environment and does not signal an error.

10 DECLARE STRING var_1,

	

&
INTEGER var_2

INPUT "The first variable" ;var_1, "The second variable" ;var 2

The output is :

The first variable? name
The second variable? 4

INPUT

Statements and Functions 4-111

INPUT LINE

INPUT LINE

The INPUT LINE statement assigns a string value, including the line
terminator, from a terminal or terminal-format file to a string variable .

Format

INPUT LINE [#chnl-exp,] input-item [{ : } input-item] . . .

input-item :

	

[strng-const {

	

}] str-var

Syntax Rules
1 . Chnl-exp is a numeric expression that specifies a channel number

associated with a file. It must be immediately preceded by a number
sign (#) .

2. Str-const is the prompt issued for the input string value .

3. Str-var is a program variable to which the input string value is assigned .

4. You can include more than one input-item in an INPUT LINE statement by
separating them with commas (,) or semicolons (;) .

5. The separator (comma or semicolon) that directly follows str-var has no
formatting effect . BASIC-PLUS-2 always advances to a new line when
you terminate input with a carriage return.

6. The separator that directly follows str-const determines where the question
mark (if requested) is displayed and where the cursor is positioned for
input .
©

	

A comma causes BASIC-PLUS-2 to skip to the next print zone and
display the question mark unless a SET NO PROMPT statement has
been executed . For example :
10 DECLARE STRING your name

INPUT LINE "Name",your name

The output is :
Name

	

?

4-112 Statements and Functions

INPUT LINE

© A semicolon causes BASIC-PLUS-2 to display the question mark next
to str-const unless a SET NO PROMPT statement has been executed .
For example :
10 DECLARE STRING your name

INPUT LINE "Name" ;your name

The output is :
Name?

7. BASIC-PLUS-2 always advances to a new line when you terminate input
with a carriage return .

Remarks
1 . The default chnl-exp is #0 (the controlling terminal) . If a channel is

specified, a file must be open on that channel with ACCESS READ or
ACCESS MODIFY before the INPUT LINE statement can execute .

2. BASIC-PLUS-2 signals an error if the INPUT LINE statement has no
argument .

3 . If input comes from a terminal, BASIC-PLUS-2 displays the contents
of str-constl, if present. If the terminal is open on channel #0,
BASIC-PLUS-2 also displays a question mark (?) .

4. You can disable the question mark prompt by using the SET NO PROMPT
statement. See the SET PROMPT statement for more information .

5. The INPUT LINE statement assigns all input characters, including any
line terminator, to string variables . Single and double quotation marks,
commas, tabs, leading and trailing spaces, and other special characters in
the string are part of the data .

6. When a RESUME statement transfers control to an INPUT LINE
statement, the INPUT LINE statement retrieves a new record or line
regardless of any data left in the previous record or line .

7. After a successful INPUT LINE statement, the RECOUNT variable
contains the number of characters transferred from the file or terminal to
the record buffer.

8. If you terminate input text with Ctrl/Z, BASIC-PLUS-2 assigns the value
to the variable and signals the error "End of file on device" (ERR=11)
when the next terminal input statement executes. If you are in the BASIC
environment and there is no next INPUT, INPUT LINE, or LINPUT
statement in the program, the Ctrl/Z is passed to BASIC-PLUS-2 as
a signal to exit the BASIC environment . BASIC-PLUS-2 signals the

Statements and Functions 4-113

INPUT LINE

Example

error "Unsaved changes have been made, Ctrl/Z or EXIT to exit" if you
have made changes to your program . If you have not made changes,
BASIC-PLUS-2 exits from the BASIC environment and does not signal an
error.

10 DECLARE STRING Z,N,record_string
INPUT LINE "Type two words", Z$,'Type your name' ;N$
INPUT LINE #4%, record_string$

4-114 Statements and Functions

INSTR

Format

INSTR

The INSTR function searches for a substring within a string . It returns the
position of the substring's starting character .

int-var = INSTR(int-exp, str-expl, str-exp2)

Syntax Rules
1 . Int-exp specifies the character position in the main string at which

BASIC-PLUS-2 starts the search .

2 . Str-expl specifies the main string .

3 . Str-exp2 specifies the substring .

Remarks
1. The position returned by the INSTR function is the number of characters

from the beginning of the string regardless of the value specified in int-exp .

2. If int-exp is less than 1, INSTR starts its search at the first character of
the string .

3. If you specify a floating-point expression for int-exp, BASIC-PLUS-2
truncates it to an integer of the default size .

4. The INSTR function searches str-expl, the main string, for the first
occurrence of a substring, str-exp2, and returns the position of the
substring's first character.

5 . If you know that the substring is not near the beginning of the string,
specifying a starting position greater than 1 speeds program execution by
reducing the number of characters BASIC-PLUS-2 must search .

6. INSTR returns the character position in the main string at which
BASIC-PLUS-2 finds the substring, except in the following situations :

©

	

If only the substring is null, and if int-exp is less than or equal to zero,
INSTR returns a value of 1 .

©

	

If only the substring is null, and if int-exp is equal to or greater than 1
and less than or equal to the length of the main string, INSTR returns
the value of int-exp .

Statements and Functions 4-115

INSTR

Example

©

	

If only the substring is null, and if int-exp is greater than the length of
the main string, INSTR returns the main string's length plus 1 .

©

	

If the substring is not null, and if int-exp is greater than the length of
the main string, INSTR returns a value of zero .

©

	

If only the main string is null, INSTR returns a value of zero .
©

	

If both the main string and the substring are null, INSTR returns a 1 .

7. If BASIC-PLUS-2 cannot find the substring, INSTR returns a value of
zero .

10 DECLARE STRING alpha,

	

&
INTEGER result

alpha = "ABCDEF"
result = INSTR(l,alpha,"DEF")
PRINT result

The output is :

4

4-116 Statements and Functions

INT

Format

Syntax Rules
None .

Remarks
1 . If real-exp is negative, BASIC-PLUS-2 returns the largest whole number

less than or equal to real-exp . For example, INT(-5.3) is -6 .

2 . BASIC-PLUS-2 expects the argument of the INT function to be a real
expression. When the argument is a real expression, BASIC-PLUS-2
returns a value of the same floating-point size . When the argument is not
a real expression, BASIC-PLUS-2 converts the argument to the default
floating-point size and returns a value of the default floating-point size .

Examples

1 . 10 DECLARE SINGLE any_ num, result
any num = 6 .667
result = INT(any_num)
PRINT result

The output is :
6

2. 10 !This example contrasts the INT and FIX functions
DECLARE SINGLE test num
test_num = -32 .7
PRINT "INT OF -32 .7 IS :

	

INT(test num)
PRINT "FIX OF -32 .7 IS :

	

FIX(test num)

The output is :
INT OF -32 .7 IS : -33
FIX OF -32 .7 IS : -32

The INT function returns the floating-point value of the largest whole number
less than or equal to a specified expression .

real-var = INT(real-exp)

INT

Statements and Functions 4-117

INTEGER

INTEGER

Format

Syntax Rules
Exp can be either numeric or string . A string expression can contain the ASCII
digits 0 through 9, a plus sign (+), or a minus sign (-) .

Remarks
1. BASIC-PLUS-2 evaluates exp, then converts it to the specified INTEGER

size. If you do not specify a size, BASIC-PLUS-2 uses the default
INTEGER size .

2. If exp is a string, BASIC-PLUS-2 ignores leading and trailing spaces and
tabs .

3. The INTEGER function returns a value of zero when a string argument
contains only spaces and tabs, or when it is null .

Example

10 INPUT "Enter a floating-point number" ;F_P
PRINT INTEGER(F_P, WORD)

The output is :

Enter a floating-point number? 76 .99
76

The INTEGER function converts a numeric expression or numeric string to a
specified or default INTEGER data type .

~
,BYTE

int-var = INTEGER(exp ,WORD)
,LONG

4-118 Statements and Functions

ITERATE

Format

The ITERATE statement allows you to explicitly reexecute a loop .

ITERATE [label]

ITERATE

Syntax Rules
Label is the name that identifies the FOR . . . NEXT, WHILE, or UNTIL loop .
For more information on labels, see Section 1 .1.2 .

Remarks

1 . ITERATE is equivalent to an unconditional branch to the current loop's
NEXT statement. If you supply a label, ITERATE transfers control to
the NEXT statement in the specified loop . If you do not supply a label,
ITERATE transfers control to the current loop's NEXT statement .

2. The ITERATE statement can be used only within a FOR . . . NEXT,
WHILE, or UNTIL loop .

Example

10 Date_ loop : WHILE 1% = 1%
GET #1
ITERATE Date-loop IF Day$ <> Today$
ITERATE Date-loop IF Month$ <> Thismonth$
ITERATE Date_loop IF Year$ <> This_year$
PRINT Item$

NEXT

Statements and Functions 4-119

KILL

KILL

Format

The KILL statement deletes a disk file, removes the file's directory entry, and
releases the file's storage space .

KILL file-spec

Syntax Rules
File-spec can be a quoted string constant, a string variable, or a string
expression. It cannot be an unquoted string constant .

Remarks
1 . The KILL statement marks a file for deletion but does not delete the file

until all users have closed it .
2 . If you do not specify a complete file specification, BASIC-PLUS-2 uses

the default device and directory. If you do not specify a file version,
BASIC-PLUS-2 on RSX systems deletes the highest version of the file .

3. The file must exist, or BASIC-PLUS-2 signals an error .
4. You can delete a file in another directory if you have access to that directory

and privilege to delete the file .

Example

KILL "TEMP .DAT"

4-120 Statements and Functions

LEFT$

Format

Syntax Rules
1 . Int-exp specifies the number of characters to be extracted from the left side

of str-exp .

2 . If you specify a floating-point expression for int-exp, BASIC-PLUS-2
truncates it to an integer of the default size .

Remarks
1. The LEFT$ function extracts a substring from the left of the specified

str-exp and stores it in str-var .

2 . If int-exp is less than 1, LEFT$ returns a null string .

3. If int-exp is greater than the length of str-exp, LEFT$ returns the entire
string .

Example

10 DECLARE STRING sub string, main_string
main-string = "1234567"
sub-string

	

LEFT$(main_string, 4)
PRINT sub-string

The output is :

1234

The LEFT$ function extracts a specified substring from a string's left side,
leaving the main string unchanged .

str-var = LEFT[$] str-exp, int-exp

LEFT$

Statements and Functions 4-121

LEN

LEN

Format

Syntax Rules
None .

Remarks
1. If str-exp is null, LEN returns a value of zero .
2. The length of str-exp includes leading, trailing, and embedded blanks . Tabs

in str-exp are treated as a single space .
3. The value returned by the LEN function is a WORD integer.

Example

10 DECLARE STRING alpha, &
INTEGER length

alpha = "ABCDEFG"
length = LEN(alpha)
PRINT length

The output is :

7

The LEN function returns an integer value equal to the number of characters
in a specified string .

int-var = LEN(str-exp)

4-122 Statements and Functions

LET

Format

The LET statement assigns a value to one or more variables .

[LET] var, . . . = exp

Syntax Rules
The keyword LET is optional .

Remarks
1. You cannot assign string data to a numeric variable or unquoted numeric

data to a string variable .
2 . The value assigned to a numeric variable is converted to the variable's

data type . For example, if you assign a floating-point value to an integer
variable, BASIC-PLUS-2 truncates the value to an integer .

3 . For dynamic strings, the destination string's length equals the source
string's length.

4. When you assign a value to a fixed-length string variable (a variable
declared in a COMMON or MAP statement), the value is left justified
and padded with spaces or truncated to match the length of the string
variable. Because of this padding, the length of the string is always the
length declared in the COMMON or MAP statement . You cannot easily
concatenate these strings because of the padding .

5 . To add characters to a static string, you must first strip off the trailing
blanks with the TRM$ function. For example :

LET

The output is :
A
A
AB

Statements and Functions 4-123

100 COMMON A$ = 16
A$ _ "A"
PRINT A$
A$ = A$ + "B"
PRINT A$
A$ = TRM$(A$)
PRINT A$

+ "B"

LET

Example

6 . Virtual array strings are of fixed length as declared in the DIMENSION
statement. When you assign a value to a virtual array string, it is left-
justified and padded with null characters . Therefore, values stored in
virtual arrays cannot contain trailing null characters .

10 DECLARE STRING alpha, &
INTEGER length

LET alpha = "ABCDEFG"
LET length = LEN(alpha)
PRINT length

The output is :

7

4-124 Statements and Functions

LINPUT

Format

The LINPUT statement assigns a string value, without line terminators, from
a terminal or terminal-format file to a string variable .

LINPUT [#chnl-exp,] input-item [{ : } input-item] . . .

input-item :

	

[strng-const { . }] str-var

Syntax Rules
1 . Chnl-exp is a numeric expression that specifies a channel number

associated with a file. It must be immediately preceded by a number
sign (#) .

2 . Str-const is the prompt issued for the input value .
3. Str-var is a program string variable to which the input value is assigned .
4. You can include more than one input-item in an LINPUT statement by

separating them with commas (,) or semicolons (;) .
5 . The separator (comma or semicolon) that directly follows str-var has no

formatting effect . BASIC-PLUS-2 always advances to a new line when
you terminate input with a carriage return.

6. The separator character that directly follows str-const determines where
the question mark (if requested) is displayed and where the cursor is
positioned for input .
©

	

A comma causes BASIC-PLUS-2 to skip to the next print zone to
display the question mark unless a SET NO PROMPT statement has
been executed . For example :
10 DECLARE STRING your name

LINPUT "Name",your name

The output is :
Name

LINPUT

Statements and Functions 4-125

LINPUT

© A semicolon causes BASIC-PLUS-2 to display the question mark next
to str-const unless a SET NO PROMPT statement has been executed .
For example :
10 DECLARE STRING your name

LINPUT "What is your name" ;your name

The output is :
What is your name?

7. BASIC-PLUS-2 always advances to a new line when you terminate input
with a carriage return .

Remarks
1 . The default chnl-exp is #0 (the controlling terminal). If you specify a

channel, the file associated with that channel must have been opened with
ACCESS READ or MODIFY.

2. BASIC-PLUS-2 signals an error if the LINPUT statement has no
argument .

3 . If input comes from a terminal, BASIC-PLUS-2 displays the contents
of str-constl, if present. If the terminal is open on channel #0,
BASIC-PLUS-2 also displays a question mark (?) .

4 . You can disable the question mark prompt by using the SET NO PROMPT
statement. See the SET PROMPT statement for more information .

5 . The LINPUT statement assigns all characters, except a line terminator, to
str-earl . Single and double quotation marks, commas, tabs, leading and
trailing spaces, or other special characters in the string are part of the
data .

6. If a RESUME statement transfers control to a LINPUT statement, the
LINPUT statement retrieves a new record regardless of any data left in the
previous record.

7. After a successful LINPUT statement, the RECOUNT variable contains the
number of bytes transferred from the file or terminal to the record buffer .

8. If you terminate input text with CtrUZ, BASIC-PLUS-2 assigns the value
to the variable and signals the error "End of file on device" (ERR=11)
when the next terminal input statement executes. If you are in the BASIC
environment and there is no next INPUT, INPUT LINE, or LINPUT
statement in the program, the Ctrl/Z is passed to BASIC-PLUS-2 as a
signal to exit the BASIC environment .

4-126 Statements and Functions

Example

10 DECLARE STRING last_name
LINPUT "ENTER YOUR LAST NAME" ;Last name
LINPUT #2%, Last name

LINPUT

Statements and Functions 4-127

LOG

LOG

Format

Syntax Rules
None.

Remarks
1. Real-exp must be greater than zero. An attempt to find the logarithm

of zero or a negative number causes BASIC-PLUS-2 to signal "Illegal
argument in LOG" (ERR=53) .

2. The LOG function uses the mathematical constant e as a base .
BASIC-PLUS-2 approximates e to be 2.718281828459045 (double
precision) .

3. The LOG function returns the exponent to which e must be raised to equal
real-exp .

4 . BASIC-PLUS-2 expects the argument of the LOG function to be a real
expression. When the argument is a real expression, BASIC-PLUS-2
returns a value of the same floating-point size . When the argument is not
a real expression, BASIC-PLUS-2 converts the argument to the default
floating-point size and returns a value of the default floating-point size .

Example

10 DECLARE SINGLE exponent
exponent = LOG(98 .6)
PRINT exponent

The output is :

4 .59107

The LOG function returns the natural logarithm (base e) of a specified number.
The LOG function is the inverse of the EXP function .

real-var = LOG(real-exp)

4-128 Statements and Functions

LOG10

Format

Syntax Rules
None .

Remarks
1 . Real-exp must be larger than zero. An attempt to find the logarithm of zero

or a negative number causes BASIC-PLUS-2 to signal "Illegal argument
in LOG" (ERR=53) .

2. The LOG10 function returns the exponent to which 10 must be raised to
equal real-exp .

3. BASIC-PLUS-2 expects the argument of the LOG10 function to be a real
expression. When the argument is a real expression, BASIC-PLUS-2
returns a value of the same floating-point size . When the argument is not
a real expression, BASIC-PLUS-2 converts the argument to the default
floating-point size and returns a value of the default floating-point size .

Example

10 DECLARE SINGLE exp base_10
exp base_10 = LOG1O(250)
PRINT exp base_10

The output is :

2 .39794

real-var = LOG10(real-exp)

LOG10

The LOG10 function returns the common logarithm (base 10) of a specified
number.

Statements and Functions 4-129

LSET

LSET

Format

The LSET statement assigns left-justified data to a string variable. LSET does
not change the length of the destination string variable .

LSET str-var, . . . = str-exp

Syntax Rules
Str-var is the destination string . Str-exp is the string value assigned to str-var.

Remarks
1 . The LSET statement treats all strings as fixed length . LSET does not

change the length of the destination string or create new storage . LSET
does, however, overwrite the current storage of str-var .

2 . If the destination string is longer than str-exp, LSET left justifies str-exp
and pads it with spaces on the right. If smaller, LSET truncates characters
from the right of str-exp to match the length of str-var.

3 . With string virtual arrays, LSET changes the length of str-exp to the
declared length by padding it with spaces on the right . Note that the LET
statement uses null characters for padding .

Example

10 DECLARE STRING alpha
alpha = "ABODE"
LSET alpha = "FGHIJKLMN"
PRINT alpha

The output is :

FGHIJ

4-130 Statements and Functions

MAG

Format

Syntax Rules
None .

Remarks
1. The returned value is always greater than or equal to zero . The absolute

value of zero is zero . The absolute value of a positive number equals that
number. The absolute value of a negative number equals that number
multiplied by -1 .

2 . The MAG function is similar to the ABS function in that it returns the
absolute value of a number. The ABS function, however, takes a floating-
point argument and returns a floating-point value . The MAG function
takes an argument of any numeric data type and returns a value of the
same data type as the argument . It is recommended that you use the
MAG function rather than the ABS and ABS% functions, because the MAG
function returns a value using the data type of the argument .

Example

10 DECLARE SINGLE A
A = -34 .6
PRINT MAG(A)

The output is :

34 .6

The MAG function returns the absolute value of a specified expression . The
returned value has the same data type as that of the expression .

var = MAG(exp)

MAG

Statements and Functions 4-131

MAGTAPE

MAGTAPE

Format

The MAGTAPE function permits your program to control unformatted
magnetic tape files .

int-vari = MAGTAPE(func-code, int-var2, chnl-exp)

Syntax Rules
1 . Func-code is an integer from 1 through 9 that specifies the code for the

MAGTAPE function you want to perform. MAGTAPE function codes are
described in Table 4-5 .

2 . Int-vari is the value returned by function codes 4, 5, 7, and 9 .

3 . Int-var2 is an integer parameter for function codes 4, 5, and 6 .

©

	

Int-var2 for function 4 is a value from 1 through 32767 that specifies
the number of records to skip .

©

	

Int-var2 for function 5 is a value from 1 through 32767 that specifies
the number of records to backspace .

©

	

Int-var2 for function 6 specifies the density and/or parity of the
magnetic tape drive .

4 . Chnl-exp is a numeric expression that specifies a channel number
associated with the magnetic tape file . You cannot precede the chnl-exp
with a number sign (#) .

Table 4-5 MAGTAPE Function Codes

Code

	

Function

1

	

Rewind and take tape offline
2

	

Write EOF
3

	

Rewind tape
4

	

Skip records
5

	

Backspace

4-132 Statements and Functions

(continued on next page)

Table 4-5 (Cont .) MAGTAPE Function Codes

Code

	

Function

6

	

Set density or set parity
7

	

Get status
8 t

	

Get characteristics of file
9 t

	

Rewind once file is closed

tRSTS/E systems only.

5 . On RSTS/E systems, MAGTAPE function 9 must be specified after the
OPEN statement and before the CLOSE statement associated with the
specified magnetic tape .

Remarks
1. You cannot use the MAGTAPE function with RMS files .

2 . If the specified function code is 1,2,3,6, or 9, int-varl always equals zero .

3 . If the specified function code is 4, int-varl is an integer of the default size
that equals the number of records to skip over.

4 . If the specified function code is 5, int-varl is an integer of the default size
that equals the number of records to backspace over .

5. If the specified function code is 7, int-varl is a 16-bit integer that reflects
the status of the specified magnetic tape . See the BASIC-PLUS-2 User's
Guide for information on bit values and their meaning .

6. If the specified function code is 8, int-varl is a 16-bit integer that
describes the file characteristics of the specified magnetic tape . See
the BASIC-PLUS-2 User's Guide for information on bit values and their
meaning.

7 . If the specified function code is 9, the tape is rewound when the file is
closed .

Example

20 I = MAGTAPE (3%,0%,2%)

MAGTAPE

Statements and Functions 4-133

MAP

MAP

Format

The MAP statement defines a named area of statically allocated storage called
a PSECT, declares data fields in the record, and associates them with program
variables .

MAP (map-name) { [data-type] map-item }, . . .

map-item :

num-unsubs-var
num-array-name (int-const, . .)
str-unsubs-var [= int-const]
str-array-name (int-constl, . . .) [= int-const]
FILL [(int-const)] [= int-const]
FILL% [(int-const)]
FILL$ [(int-const)] [= int-const]

Syntax Rules
1 . Map-name is global to the program and image . It cannot appear elsewhere

in the program unit as a variable name .
2. Map-name can be from one through six characters . The first character of

the name must be an alphabetic character (A through Z) . The remaining
characters, if present, can be any combination of letters, digits (0 through
9), dollar signs ($), or periods (.) .

3 . Data-type can be any BASIC-PLUS-2 data type keyword . Data type
keywords, size, range, and precision are listed in Table 1-2 .

4. When you specify a data type, all following map-items, including FILL
items, are of that data type until you specify a new data type .

5. If you specify a dollar sign ($) or percent sign (%) suffix character, the
variable must be a string or integer data type, respectively.

6. If you do not specify a data type, all following map-items take the current
default data type and size .

7. Map-item declares the name and format of the data to be stored .
©

	

Num-unsubs-var and num-array-name specify a numeric variable or a
numeric array.

4-134 Statements and Functions

MAP

©

	

Str-unsubs-var and str-array-name specify a fixed-length string variable
or array. You can specify the number of bytes to be reserved for the
variable with the =int-const clause. The default string length is 16 .

© The FILL, FILL%, and FILL$ keywords allow you to reserve parts of
the record buffer within or between data elements and to define the
format of the storage . Int-const specifies the number of FILL items to
be reserved . The =int-const clause allows you to specify the number of
bytes to be reserved for string FILL items . Table 4-2 describes FILL
item format and storage allocation .

©

	

In the applicable formats of FILL, (int-connt) represents a repeat count,
not an array subscript . FILL (n), for example, represents n elements,
not n + 1 .

8. Variable names, array names, and FILL items, following a data type other
than STRING cannot end with a dollar sign. Variable names, array names,
and FILL items, following a data type other than BYTE, WORD, LONG, or
INTEGER, cannot end with a percent sign .

9. Variables and arrays declared in a MAP statement cannot be declared
elsewhere in the program by any other declarative statement .

Remarks
1. BASIC-PLUS-2 does not execute MAP statements . The MAP statement

allocates static storage and defines data at compilation time .

2. A program can have multiple maps with the same name . The allocation for
each map overlays the others. Thus, data is accessible in many ways. The
actual size of the data area is the size of the largest map . When you link
your program, the size of the map area is the size of the largest map with
that name .

3 . Map-items with the same name can appear in different MAP statements
with the same map name only if they match exactly in attributes such
as data type, position, and so forth . If the attributes are not the same,
BASIC-PLUS-2 signals an error. For example :
10 MAP (ABC) LONG A, B

MAP (ABC) LONG A, C ! This MAP statement is valid
MAP (ABC) LONG B, A ! This MAP statement produces an error
MAP (ABC) WORD A, B ! This MAP statement produces an error

The third MAP statement causes BASIC-PLUS-2 to signal the error
"variable <name> not aligned in multiple references in MAP <name>,"
while the fourth MAP statement generates the error "Attributes of overlaid
variable <name> don't match ."

Statements and Functions 4-135

MAP

Example

4 . The MAP statement should precede any reference to variables declared in
it.

5 . Storage space for map-items is allocated in order of occurrence in the MAP
statement .

6. A MAP area can be accessed by more than one program module, as long as
you define the map-name in each module that references the MAP .

7. A COMMON area and a MAP area with the same name specify the same
storage area and are not allowed in the same program module ; however, a
COMMON in one module can reference the storage declared by a MAP or
COMMON in another module .

8. Variables in a MAP statement are initialized to zero or a null string .
9. A map named in an OPEN statement's MAP clause is associated with that

file . The file's records and record fields are defined by that map . The size of
the map determines the record size for file I/O, unless the OPEN statement
includes a RECORDSIZE clause .

10. The allocation for a MAP cannot exceed 32767 bytes or BASIC-PLUS-2
signals the error "COMMON/MAP <name> is too large ."

10 MAP (BUF1) BYTE AGE, STRING emp name = 20

	

&
SINGLE emp num

MAP (BUF1) BYTE FILL, STRING last name = 12,

	

&
FILL = 8, SINGLE FILL

4-136 Statements and Functions

MAP DYNAMIC

Format

MAP DYNAMIC

The MAP DYNAMIC statement names the variables and arrays whose size
and position in a storage area can change at run time . The MAP DYNAMIC
statement is used in conjunction with the REMAP statement . The REMAP
statement defines or redefines the position in the storage area of variables
named in the MAP DYNAMIC statement .

MAP DYNAMIC (map-dyn-name){[data-type]map-item }, . . .

map-dyn-name :
I
map-name
static-str-var

map-item :

Syntax Rules
1 . Map-dyn-name can be either a map name or a static string variable .

©

	

Map-name is the storage area named in a MAP statement .

num-unsubs-var
num-array-name (int-const, . . .)
str-unsubs-var
str-array-name (int-const, . . .)

}

©

	

If you specify a map name, then a MAP statement with the same name
must precede both the MAP DYNAMIC statement and the REMAP
statement .

©

	

When you specify a static string variable, the string must be declared
before you can specify a MAP DYNAMIC statement or a REMAP
statement .

©

	

Static-str-var must specify a static string variable or a string parameter
variable .

©

	

If you specify a static-str-var, the following restrictions apply :
Static-str-var cannot be a string constant .
Static-str-var cannot be the same as any previously declared
map-item in a MAP DYNAMIC statement .
Static-str-var cannot be a subscripted variable .

Statements and Functions 4-137

MAP DYNAMIC

2 . Map-item declares the name and data type of the items to be stored in the
storage area. All variable pointers point to the beginning of the storage
area until the program executes a REMAP statement .
©

	

Num-unsubs-var and num-array-name specify a numeric variable or a
numeric array.

© Str-unsubs-var and str-array-name specify a string variable or array.
You cannot specify the number of bytes to be reserved for the variable
in the MAP DYNAMIC statement. All string items have a fixed length
of zero until the program executes a REMAP statement .

3 . Data-type can be any BASIC-PLUS-2 data type keyword . Data type
keywords, size, range, and precision are listed in Table 1-2 in this manual .

4. When you specify a data type, all following map-items are of that data type
until you specify a new data type .

5 . If you do not specify any data type, map-items take the current default
data type and size .

6 . Map-items must be separated with commas .
7 . If you specify a dollar sign or percent sign suffix, the variable must be

either a STRING data type or an integer data type, respectively .

Remarks
1. All variables and arrays declared in a MAP DYNAMIC statement cannot

be declared elsewhere in the program by any other declarative statements .
2. The MAP DYNAMIC statement does not affect the amount of storage

allocated to the map buffer declared in a previous MAP statement or the
storage allocated to a static string . Until your program executes a REMAP
statement, all variable and array element pointers point to the beginning
of the MAP buffer or static string .

3 . BASIC-PLUS-2 does not execute MAP DYNAMIC statements . The MAP
DYNAMIC statement names the variables whose size and position in the
MAP or static string buffer can change and defines their data type .

4 . Before you can specify a map name in a MAP DYNAMIC statement,
there must be a MAP statement in the program unit with the same map
name; otherwise, BASIC-PLUS-2 signals the error "MAP DYNAMIC
<map-name> requires MAP or static string ." Similarly, before you can
specify a static string variable in the MAP DYNAMIC statement, the string
variable must be declared ; otherwise, BASIC-PLUS-2 signals the same
error message .

4-138 Statements and Functions

Example

5 . A static string variable must be either a variable declared in a MAP or
COMMON statement or a parameter declared in a SUB or FUNCTION . It
cannot be a parameter declared in a DEF or DEF* function .

6. The MAP DYNAMIC statement must lexically precede the REMAP
statement or BASIC-PLUS-2 signals the error "MAP variable <name>
referenced before declaration."

100

	

MAP (MY .BUF) STRING DUMMY = 512
MAP DYNAMIC (MY .BUF) STRING LAST, FIRST, MIDDLE, &

BYTE AGE, STRING EMPLOYER, &
STRING CHARACTERISTICS

MAP DYNAMIC

Statements and Functions 4-139

MAT

MAT

Format

The MAT statement lets you implicitly create and manipulate one- and two-
dimensional arrays . You can use the MAT statement to assign values to array
elements, or to redimension a previously dimensioned array . You can also
perform matrix arithmetic operations such as multiplication, addition, and
subtraction, and other matrix operations such as transposing and inverting
matrices .
There are five formats :
©

	

For numeric initialization
©

	

For string initialization
©

	

For array arithmetic
©

	

For scalar multiplication
©

	

For inversion and transposition

1 . Numeric Initialization

CON
MAT num-array =

	

IDN

	

[(int-expl [, int-exp2])]
ZER

2 . String Initialization

MAT str-array = NUL$ [(int-expi [, int-exp2])]

3 . Array Arithmetic

MAT num-arrayl = num-array2

	

-

	

num-array3

4. Scalar Multiplication

MAT num-array4 = (num-exp) " num-array5

5. Inversion and Transposition

MAT num-array6 = { NVN } (num-arrayl)

4-140 Statements and Functions

Syntax Rules
1 . Int-expl and int-exp2 define the upper bounds of the array being implicitly

created or the new dimensions of an existing array .

2 . You cannot use the MAT statement on arrays of more than two dimensions .

3 . If you are creating an array, int-expl and int-exp2 cannot exceed 10 .

4 . If you do not specify bounds, BASIC-PLUS-2 creates the array and
dimensions it to (10) or (10,10) .

5 . If you specify bounds, BASIC-PLUS-2 creates the array with the specified
bounds. If the bounds exceed (10) or (10,10), BASIC-PLUS-2 signals the
error "Redimensioned array" (ERR=105) .

Remarks
1 . To perform MAT operations on arrays larger than (10,10), create the input

and output arrays with the DIM statement .

2 . You cannot increase the number of array elements or change the number
of dimensions in an array when you redimension with the MAT statement .
For example, you can redimension an array with dimensions (5,4) to (4,5)
or (3,2), but you cannot redimension that array to (5,5) or to (10) . The
total number of array elements includes those in row and column zero .

3 . If an array is named in both a DIM statement and a MAT statement, the
DIM statement must lexically precede the MAT statement .

4. MAT statements do not operate on elements in the zero element (one-
dimensional arrays) or in the zero row or column (two-dimensional arrays) .
MAT statements use these elements to store results of intermediate
calculations. Therefore, you should not depend on values in row and
column zero if your program uses MAT statements .

5 . When the array exists, the following rules apply :

©

	

If you specify bounds, BASIC-PLUS-2 redimensions the array to
the specified size ; however, MAT operations cannot increase the total
number of array elements .

©

	

If you do not specify bounds, BASIC-PLUS-2 does not redimension the
array.

6 . Initialization
©

	

CON sets all elements of num-array to 1, except those in row and
column zero .

MAT

Statements and Functions 4-141

MAT

©

	

IDN creates an identity matrix from num-array . The number of
rows and columns in num-array must be identical. IDN sets all
elements to zero except those on the diagonal from num-array(1,1) to
num-array(n,n), which are set to 1 .

©

	

ZER sets all array elements to zero, except those in row and column
zero .

©

	

NUL$ sets all elements of a string array to the null string, except those
in row and column zero .

7 . Array Arithmetic
©

	

The equal sign (=) assigns the results of the specified operation to the
elements in num-arrayl .

©

	

If num-array3 is not specified, BASIC-PLUS-2 assigns the values
of num-array2's elements to the corresponding elements of num-
arrayl . Num-arrayl must have at least as many rows and columns as
num-array2 .

©

	

Use the plus sign (+) to add the elements of two arrays . Num-array2
and num-array3 must have identical bounds .

©

	

Use the minus sign (-) to subtract the elements of two arrays .
Num-array2 and num-array3 must have identical bounds .

©

	

Use the asterisk (*) to perform matrix multiplication on the elements
of num-array2 and num-array3 and to assign the results to num-
arrayl . This operation gives the dot product of num-array2 and
num-array3 . All three arrays must be two-dimensional, and the
number of columns in num-array2 must equal the number of rows in
num-array3 . BASIC-PLUS-2 redimensions num-arrayl to have the
same number of rows as num-array2 and the same number of columns
as num-array3 .

©

	

You cannot perform matrix multiplication with the same array as both
the source and destination, or BASIC-PLUS-2 signals an error .

8 . Scalar Multiplication
BASIC-PLUS-2 multiplies each element of num-array5 by num-exp and
stores the results in the corresponding elements of num-array4 .

9 . Inversion and Transposition
© TRN transposes num-array7 and assigns the results to num-array6 . If

num-array7 has m rows and n columns, num-array6 will have n rows
and m columns . Both arrays must be two-dimensional .

4-142 Statements and Functions

Examples

©

	

You cannot transpose a matrix to itself : MAT A = TRN(A) is invalid .

©

	

INV inverts num-array7 and assigns the results to num-array6. Num-
array7 must be a two-dimensional array that can be reduced to the
identity matrix with elementary row operations. The row and column
dimensions must be identical .

©

	

You cannot use the MAT statement to invert an array with a datatype
of LONG or BYTE, or to invert an array received as a parameter .

1 . 10 !Numeric Initialization
MAT CONVERT = zer(10,10)

2 . 10 !Initialization
MAT name$ = NUL$(5,5)

3. !Array Arithmetic
MAT new int = old int - rslt int

4 . 10 !Scalar Multiplication
MAT Z40 = (4 .24) * Z

5 . 10 !Inversion and Transposition
MAT Q% = INV (Z)

MAT

Statements and Functions 4-143

MAT INPUT

MAT INPUT

Format

The MAT INPUT statement assigns values from a terminal or terminal-format
file to array elements .

MAT INPUT [#chnl-exp,] { array [(int-expl [, int-exp2])] }, . . .

Syntax Rules
1 . Chnl-exp is a numeric expression that specifies a channel number

associated with a file . It must be immediately preceded by a number
sign (#) .

2 . The file associated with chnl-exp must be an open terminal-format file or
terminal . If chnl-exp is not specified, BASIC-PLUS-2 takes data from the
controlling terminal .

3 . Int-expl and int-exp2 define the upper bounds of the array being implicitly
created or the dimensions of an existing array.

4 . If you are creating an array, int-expl and int-exp2 cannot exceed 10 .

Remarks
1. You cannot use the MAT INPUT statement on arrays of more than two

dimensions .
2 . If you do not specify bounds, BASIC-PLUS-2 creates the array and

dimensions it to (10,10) .
3 . If you do specify bounds, BASIC-PLUS-2 creates the array with the

specified bounds . If the bounds exceed (10) or (10,10), BASIC-PLUS-2
signals the error "Redimensioned array" (ERR=105) .

4 . To use the MAT INPUT statement with arrays larger than (10,10), create
the input and output arrays with the DIM statement .

5. When the array exists, the following rules apply :

© If you specify bounds, BASIC-PLUS-2 redimensions the array to the
specified size; however, MAT INPUT cannot increase the total number
of array elements .

©

	

If you do not specify bounds, BASIC-PLUS-2 does not redimension the
array.

4-144 Statements and Functions

Example

6 . Unless a SET NO PROMPT statement has been executed, the MAT INPUT
statement prompts with a question mark on terminals open on channel
#0 only. See the description of the SET PROMPT statement for more
information .

7. Use commas to separate data elements and a line terminator to end
the input of data. Use an ampersand (&) before the line terminator to
continue data over more than one line .

8. The MAT INPUT statement assigns values by row. For example, it assigns
values to all elements in row 1 before beginning row 2 .

9. The MAT INPUT statement assigns the row number of the last data
element transferred into the array to the system variable NUM .

10. The MAT INPUT statement assigns the column number of the last data
element transferred into the array to the system variable NUM2 .

11 . If there are fewer elements in the input data than there are array
elements, BASIC-PLUS-2 does not change the remaining array elements .

12. If there are more data elements in the input stream than there are array
elements, BASIC-PLUS-2 ignores the excess .

13. Row zero and column zero are not changed .

10 MAT INPUT XYZ(5,5)
MAT PRINT XYZ ;

The output is :

? 1,2,3,4,5
1 2 3 4 5
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

MAT INPUT

Statements and Functions 4-145

MAT LINPUT

MAT LINPUT

Format

The MAT LINPUT statement receives string data from a terminal or terminal-
format file and assigns it to string array elements .

MAT LINPUT [#chnl-exp,] { str-array [(int-expl [, int-exp2])] }, . . .

Syntax Rules
1. Chnl-exp is a numeric expression that specifies a channel number

associated with a file or terminal. It must be immediately preceded by
a number sign (#) .

2. The file associated with chnl-exp must be an open terminal-format file or
terminal. If a channel is not specified, BASIC-PLUS-2 takes data from the
controlling terminal .

3. Int-expl and int-exp2 define the upper bounds of the array being implicitly
created or the dimensions of an existing array.

4 . If you are creating an array, int-expl and int-exp2 cannot exceed 10 .

Remarks
1. You cannot use the MAT LINPUT statement on arrays of more than two

dimensions .
2 . If you do not specify bounds, BASIC-PLUS-2 creates the array and

dimensions it to (10,10) .
3 . If you do specify upper bounds, BASIC-PLUS-2 creates the array with the

specified bounds . If the bounds exceed (10) or (10,10), BASIC-PLUS-2
signals the error "Redimensioned array" (ERR=105) .

4. To use MAT LINPUT with arrays larger than (10,10), create the input and
output arrays with the DIM statement .

5 . When the array exists, the following rules apply :

©

	

If you specify bounds, BASIC-PLUS-2 redimensions the array to the
specified size ; however, MAT LINPUT cannot increase the total number
of array elements .

©

	

If you do not specify bounds, BASIC-PLUS-2 does not redimension the
array.

4-146 Statements and Functions

Example

6 . Unless a SET NO PROMPT statement has been executed, the MAT
LINPUT statement prompts with a question mark for each string array
element for terminals open on channel zero . BASIC-PLUS-2 assigns
values to all elements of row 1 before beginning row 2 .

7. The MAT LINPUT statement assigns the row number of the last data
element transferred into the array to the system variable NUM .

8. The MAT LINPUT statement assigns the column number of the last data
element transferred into the array to the system variable NUM2 .

9. Entering only a line terminator in response to the question mark prompt
causes BASIC-PLUS-2 to assign a null string to that string array element .

10. Like the MAT INPUT statement, the MAT LINPUT statement normally
accepts only a single line of input from an input file . To supply more
than one line of input, you must use an ampersand (&) before the line
terminator.

11. MAT LINPUT does not change row and column zero .

The output is :

? Babcock
? Santani
? Lloyd
? Kelly
Babcock
Santani

Lloyd
Kelly

MAT LINPUT

Statements and Functions 4-147

10 DIM cus_rec$(3,3)
MAT LINPUT cus_rec$(2,2)

rec$(1,1)
rec$(1,2)

PRINT
PRINT
PRINT
PRINT

cus
cus
cus_rec$(2,1)
cus_rec$(2,2)

MAT PRINT

MAT PRINT

Format

The MAT PRINT statement prints the contents of a one- or two-dimensional
array on your terminal or assigns the value of each array element to a record
in a terminal-format file .

MAT PRINT [#chnl-exp,] { array [(int-expl [, int-exp2])] [';] } . . .

Syntax Rules
1 . Chnl-exp is a numeric expression that specifies a channel number

associated with a file or terminal . It must be immediately preceded by
a number sign (#) .

2. The file associated with chnl-exp must be an open terminal-format file or
terminal. If you do not specify a channel, BASIC-PLUS-2 takes data from
the controlling terminal .

3. Int-expl and int-exp2 define the upper bounds of the array being implicitly
created or the dimensions of an existing array .

4. The separator (comma or semicolon) determines the output format for the
array :
©

	

If you use a comma, BASIC-PLUS-2 prints each array element in a
new print zone and starts each row on a new line .

©

	

If you use a semicolon, BASIC-PLUS-2 separates each array element
with a space and starts each row on a new line .

©

	

If you do not use a separator character, BASIC-PLUS-2 prints each
array element on its own line .

Remarks
1 . You cannot use the MAT PRINT statement on arrays of more than two

dimensions .
2 . When you use the MAT PRINT statement to print more than one array,

each array name except the last must be followed with either a comma or a
semicolon. BASIC-PLUS-2 prints a blank line between arrays .

4-148 Statements and Functions

Example

3 . If the array does not exist, the following rules apply :

©

	

If you do not specify bounds, BASIC-PLUS-2 creates the array and
dimensions it to (10,10) .

©

	

If you specify bounds, BASIC-PLUS-2 creates the array with the
specified bounds . If the bounds exceed (10) or (10,10), BASIC-PLUS-2
prints the elements (10) or (10,10), and signals the error "Subscript
out of range" (ERR=55) .

4. When the array exists, the following rules apply :

©

	

If the specified bounds are smaller than the maximum bounds of
a dimensioned array, BASIC-PLUS-2 prints a subset of the array,
but does not redimension the array . For example, if you use the
DIM statement to dimension A(20,20), and then MAT PRINT A(2,2),
BASIC-PLUS-2 prints elements (1,1), (1,2), (2,1), and (2,2) only;
array A(20,20) does not change .

©

	

If you do not specify bounds, BASIC-PLUS-2 prints the entire array .

5. The MAT PRINT statement does not print elements in row or column zero .

6. The MAT PRINT statement cannot redimension an array .

10 DIM cus rec$(3,3)
MAT LINPUT cus_rec$(2,2)
MAT PRINT cus_rec$(2,2)

The output is :

? Babcock
? Santani
? Lloyd
? Kelly
Babcock
Santani

Lloyd
Kelly

MAT PRINT

Statements and Functions 4-149

MAT READ

MAT READ

Format

The MAT READ statement assigns values from DATA statements to array
elements .

MAT READ { array [(int-expl [, int-exp2])]], . . .

Syntax Rules

1. Int-expl and int-exp2 define the upper bounds of the array being implicitly
created or the dimensions of an existing array .

2 . If you are creating an array, int-expl and int-exp2 cannot exceed 10 .

Remarks

1 . If you do not specify bounds, BASIC-PLUS-2 creates the array and
dimensions it to (10) or (10,10) .

2 . If you specify bounds, BASIC-PLUS-2 creates the array with the specified
bounds. If the bounds exceed (10) or (10,10), BASIC-PLUS-2 signals the
error "Redimensioned array" (ERR=105) .

3 . To read arrays larger than (10,10), create the array with the DIM
statement .

4. When the array exists, the following rules apply :

© If you specify bounds, BASIC-PLUS-2 redimensions the array to the
specified size ; however, MAT READ cannot increase the total number
of array elements .

©

	

If you do not specify bounds, BASIC-PLUS-2 does not redimension the
array.

5. All the DATA statements must be in the same program unit as the MAT
READ statement.

6. The MAT READ statement assigns data items by row . For example, it
assigns data items to all elements in row 1 before beginning row 2 .

7. The MAT READ statement does not read elements into row or column zero .

4-150 Statements and Functions

Example

8 . The MAT READ statement assigns the row number of the last data
element transferred into the array to the system variable NUM .

9. The MAT READ statement assigns the column number of the last data
element transferred into the array to the system variable NUM2 .

10. If you use MAT READ for an existing array without specifying bounds,
BASIC-PLUS-2 does not redimension the array . If you use MAT READ for
an existing array and specify bounds, BASIC-PLUS-2 redimensions the
array.

11 . You cannot use the MAT READ statement on arrays of more than two
dimensions .

10 MAT READ A(3,3)
MAT READ B(3,3)
PRINT
PRINT "Matrix A"
PRINT
MAT PRINT A ;
PRINT
PRINT "Matrix B"
PRINT
MAT PRINT B ;
DATA 1,2,3,4,5,6

The output is :

Matrix A

1 2 3
4 5 6
0 0 0

Matrix B

0 0 0
0 0 0
0 0 0

MAT READ

Statements and Functions 4-151

MAX

MAX

Format

The MAX function compares the values of two or more numeric expressions
and returns the highest value .

num-var = MAX (num-exp1, num-exp2 (,num-exp3, . . .])

Syntax Rules
BASIC-PLUS-2 allows you to specify up to eight numeric expressions .

Remarks
1 . If you specify values with different data types, BASIC-PLUS-2 performs

data type conversions to maintain precision .
2 . BASIC-PLUS-2 returns a function result whose data type is compatible

with the values you supply.

Example

20 DECLARE REAL John_ grade, &
Bob-grade, &
Joe_grade, &
highest_grade

30 INPUT "John's grade" ;Joen_grade
40 INPUT "Bob's grade" ;Bob_grade
50 INPUT "Joe's grade" ;Joe_grade
60 highest_grade = MAX(John_grade, Bob_grade, Joe-grade)
70 PRINT "The highest grade is" ;highest_grade

The output is :

John's grade? 90
Bob's grade? 95
Joe's grade? 79
The highest grade is 95

4-152 Statements and Functions

MID$

Format

The MID$ function extracts a specified substring from a string expression .

str-var = MID[$] (str-exp, int-exp1, int-exp2)

Syntax Rules
1 . Int-expl specifies the position of the substring's first character .
2. Int-exp2 specifies the length of the substring .

Remarks
1 . If int-expl is less than 1, MID$ assumes a starting character position of 1 .
2 . If int-exp2 is less than or equal to zero, MID$ assumes a length of zero .
3 . If you specify a floating-point expression for int-expl or int-exp2, MID$

truncates it to a WORD integer .
4. The MID$ function extracts a substring from str-exp and stores it in

str-var .

5. If int-expl is greater than the length of str-exp, MID$ returns a null string .
6 . If int-exp2 is greater than the length of str-exp, the returned string begins

at int-expl and includes all characters remaining in str-exp .

7 . If int-exp2 is less than or equal to zero, MID$ returns a null string .

Example

10 !MID$ Function
DECLARE STRING old string, new-string
old-string = "ABCD"
new string = MID$(old_string,l,3)
PRINT new string

The output is :

ABC

MID$

Statements and Functions 4-153

MIN

MIN

Format

Syntax Rules

BASIC-PLUS-2 allows you to specify up to eight numeric expressions .

Remarks

1 . If you specify values with different data types, BASIC-PLUS-2 performs
data type conversions to maintain precision .

2. BASIC-PLUS-2 returns a function result whose data type is compatible
with the values you supply.

Example

20 DECLARE REAL John_ grade, &
Bob-grade, &
Joe_grade, &
lowest_ grade

30 INPUT "John's grade" ;John_grade
40 INPUT "Bob's grade" ;Bob_grade
50 INPUT "Joe's grade" ;Joe_grade
60 lowest-grade = MIN(John_grade, Bob-grade, Joe-grade)
70 PRINT "The lowest grade is" ;lowest_grade

The output is :

John's grade? 95
Bob's grade? 100
Joe's grade? 84
The lowest grade is 84

The MIN function compares the values of two or more numeric expressions and
returns the smallest value .

num-var = MIN (num-exp1, num-exp2 (,num-exp3, . . . J)

4-154 Statements and Functions

MOD

Format

Syntax Rules

None .

Remarks
1. Num-expl is divided by num-exp2 .

2 . If you specify values with different data types, BASIC-PLUS-2 performs
data type conversions to maintain precision .

3 . BASIC-PLUS-2 returns a function result whose data type is compatible
with the values you supply.

4 . The function result is either a positive or negative value, depending on
the value of the first numeric expression . For example, if the first numeric
expression is negative, then the function result will also be negative .

Example

10 DECLARE REAL A,B
20 A = 500
30 B = MOD(A,70)
40 PRINT "The remainder equals" ;B

The output is :

The remainder equals 10

The MOD function divides a numeric value by another numeric value and
returns the remainder .

num-var = MOD (num-expl, num-exp2)

MOD

Statements and Functions 4-155

MOVE

MOVE

Format

The MOVE statement transfers data between a record buffer and a list of
variables .

MOVE { FROM 1
#chnl-exp, move-item, . . .

num-var
num-array ([,] . . .)
str-var [= int-exp]

move-item :

	

str-array ([,] . . .) [= int-exp]
[data-type] FILL [(int-exp)] [= int-const]
FILL% [(int-exp)]
FILL$ [(int-exp)] [= int-exp]

Syntax Rules
1. Chnl-exp is a numeric expression that specifies a channel number

associated with a file. It must be immediately preceded by a number
sign (#) .

2 . Move-item specifies the variable or array to which or from which data is to
be moved .

3. Parentheses indicate the number of dimensions in a numeric array . The
number of dimensions is equal to the number of commas plus 1. Empty
parentheses indicate a one-dimensional array, one comma indicates a
two-dimensional array, and so on .

4 . Str-var and str-array specify a fixed-length string variable or array .
Parentheses indicate the number of dimensions in a string array. The
number of dimensions is equal to the number of commas plus 1 . You
can specify the number of bytes to be reserved for the variable or array
elements with the =int-exp clause. The default string length for a MOVE
FROM statement is 16 . For a MOVE TO statement, the default is the
string's length .

4-156 Statements and Functions

MOVE

5. The FILL, FILL%, and FILL$ keywords allow you to transfer fill items of
a specific data type. Table 4-2 shows FILL item formats, representations,
and storage requirements .

© If you specify a data type before the FILL keyword, the fill is of that
data type. If you do not specify a data type, the fill is of the default
data type . Data-type can be any BASIC-PLUS-2 data type keyword .
Data type keywords, size, range, and precision are listed in Table 1-2
in this manual .

©

	

FILL items following a data type other than STRING cannot end with
a dollar sign . FILL items following a data type other than BYTE,
WORD, LONG, or INTEGER cannot end with a percent sign .

©

	

Int-exp specifies the number of FILL items to be moved .

©

	

FILL% indicates integer fill . FILL$ indicates string fill . The =int-exp
clause specifies the number of bytes to be moved for string FILL items .

© In the applicable formats of FILL, (int-exp) represents a repeat count,
not an array subscript. FILL (n), for example, represents n elements,
not n + 1 .

6. You cannot use an expression or function reference as a move-item .

Remarks
1 . Before a MOVE FROM statement can execute, the file associated with

chnl-exp must be open and there must be a record in the record buffer .

2 . A MOVE statement neither transfers data to or from external devices, nor
invokes the Record Management Services (RMS) . Instead, it transfers data
between user areas . Thus, a record should first be fetched with the GET
statement before you use a MOVE FROM statement, and a MOVE TO
statement should be followed by a PUT or UPDATE statement that writes
the record to a file .

3. MOVE FROM transfers data from the record buffer to the move-item.

4. MOVE TO transfers data from the move-item to the record buffer .

5. The MOVE statement does not affect the record buffer's size . If a MOVE
statement partially fills a buffer, the rest of the buffer is unchanged . If
there is more data in the variable list than in the buffer, BASIC-PLUS-2
signals the error "MOVE overflows buffer" (ERR=161) .

Statements and Functions 4-157

MOVE

Examples

6 . Each MOVE statement to or from a channel transfers data starting at the
beginning of the buffer. For example :
100 MOVE FROM #1%, 1%, A$ = I%

In this example, BASIC-PLUS-2 assigns the first value in the record
buffer to I% ; the value of I% is then used to determine the length of A$.

7. If a MOVE statement operates on an entire array, the following conditions
apply :
©

	

BASIC-PLUS-2 transfers elements of row and column zero (in contrast
to the MAT statements) .

©

	

The storage size of the array elements and the size of the array
determine the amount of data moved . A MOVE statement that
transfers data from the buffer to a longword integer array transfers the
first four bytes of data into the first element (for example, (0,0)), the
next four bytes of data into element (0,1), and so on .

8. If the MOVE TO statement specifies an explicit string length, the following
restrictions apply :
©

	

If the string is equal to or longer than the explicit string length,
BASIC-PLUS-2 moves only the specified number of characters into the
buffer.

©

	

If the string is shorter than the explicit string length, BASIC-PLUS-2
moves the entire string and pads it with spaces to the specified length .

9. BASIC-PLUS-2 does not check the validity of data during the MOVE
operation .

1 . 20 MOVE FROM #4%, RUNS%, HITS%, ERRORS%, RBI%, BAT AVERAGE

2 . 100 MOVE TO #9%, FILL$ = 10%, A$ = 10%, B$ = 30%, C$ = 2%

4-158 Statements and Functions

NAME . . . AS

Format

The NAME . . . AS statement renames the specified file .

NAME file-specl AS file-spec2

NAME . . . AS

Syntax Rules
1 . File-specl and file-spec2 must be string expressions .
2 . There is no default file type in file-specl or file-spec2 . If the file to be

renamed has a file type, file-specl must include both the file name and the
file type .

3 . If you specify only a file name, BASIC-PLUS-2 searches for a file with no
file type. If you do not specify a file type for file-spec2, BASIC-PLUS-2
names the file but does not assign a file type .

4 . If you specify a directory name with file-spec2, the file will be placed in the
specified directory. If you do not specify a directory name, the default is the
current directory.

5 . On RSX systems, file version numbers are optional . BASIC-PLUS-2
renames the highest version of file-specl if you do not specify a version
number.

Remarks
1. If the file specified by file-specl does not exist, BASIC-PLUS-2 signals the

error "Can't find file or account" (ERR=5) .

2. If you use the NAME . . . AS statement on an open file, BASIC-PLUS-2
does not rename the file until it is closed .

3. You cannot use the NAME . . . AS statement to move a file between
devices. Under RSTS/E, you can change only the name, type, or version
number. Under RSX, you can can also change the directory. If you specify
a new device with the NAME . . . AS statement, BASIC-PLUS-2 signals
the error "Illegal usage for device" (ERR=133) .

Statements and Functions 4-159

NAME . . . AS

Example

400 NAME "OLDPRG .BAS" AS "NEWPRG .BAS"

4-160 Statements and Functions

NEXT

Format

Syntax Rules
1. Num-unsubs-var is required in a FOR . . . NEXT loop and must correspond

to the num-unsubs-var specified in the FOR statement .
2. Num-unsubs-var is not allowed in an UNTIL or WHILE loop .
3. Num-unsubs-var must be a numeric, unsubscripted variable .

Remarks
Each NEXT statement must have a corresponding FOR, UNTIL, or WHILE
statement, or BASIC-PLUS-2 signals an error .

Example

10 PROGRAM calculating-pay
DECLARE INTEGER no hours, &

SINGLE weekly_pay, minimum wage
minimum wage = 3 .65
no hours = 40
WHILE no-hours > 0

INPUT 'Enter the number of hours you intend to work this week" ;no hours
weekly_pay = no hours * minimum wage
PRINT "If you worked" ;no hours ;"hours, your pay would be" ;weekly_pay

NEXT
END PROGRAM

The output is :

Enter the number of hours you intend to work this week? 35
If you worked 35 hours, your pay would be 127 .75
Enter the number of hours you intend to work this week? 23
If you worked 23 hours, your pay would be 83 .95
Enter the number of hours you intend to work this week? 0
If you worked 0 hours your pay would be 0

The NEXT statement marks the end of a FOR, UNTIL, or WHILE loop .

NEXT [num-unsubs-var]

NEXT

Statements and Functions 4-161

NOECHO

NOECHO

Format

The NOECHO function disables echoing of input on a terminal .

int-var = NOECHO(chnl-exp)

Syntax Rules
Chnl-exp is a numeric expression that specifies a channel number associated
with an open terminal . It cannot be preceded by a number sign (#) .

Remarks
1 . If you specify NOECHO, BASIC-PLUS-2 accepts characters entered on the

terminal as input, but the characters do not echo on the terminal .

2 . The NOECHO function is the complement of the ECHO function ; NOECHO
disables the effect of ECHO and vice versa .

3 . NOECHO always returns a value of zero .

Example

10 DECLARE INTEGER Y,

	

&
STRING pass word

Y = NOECHO(0)
INPUT "Enter your password" ;pass word
IF pass word = "DARLENE" THEN PRINT "Confirmed"
Y = ECHO(0)

The output is :

Enter your password?
Confirmed

4-162 Statements and Functions

NUM

Format
int-var = NUM

Syntax Rules
None .

Remarks
1. NUM returns a value of zero if it is invoked before BASIC-PLUS-2 has

executed any MAT I/O statements .

2. For a two-dimensional array, NUM returns an integer specifying the
row number of the last data element transferred into the array . For a
one-dimensional array, NUM returns the number of elements entered .

3. The value returned by the NUM function is an integer of the default size .

Example

10 OPEN "ACCT" FOR INPUT AS #2
DIM stu rec$(3,3)
MAT INPUT #2, stu_rec$
PRINT "Row count =" ;NUM
PRINT "Column number =" ;NUM2

The output is :

Row count = 1
Column number = 1

NUM

The NUM function returns the row number of the last data element transferred
into an array by a MAT I/O statement .

Statements and Functions 4-163

NUM2

NUM2

Format

Syntax Rules
None .

Remarks
1 . NUM2 returns a value of zero if it is invoked before BASIC-PLUS-2 has

executed any MAT I/O statements or if the last array element transferred
was in a one-dimensional list .

2 . The NUM2 function returns an integer specifying the column number of
the last data element transferred into an array .

3 . The value returned by the NUM2 function is an integer of the default size .

Example

The NUM2 function returns the column number of the last data element
transferred into an array by a MAT I/O statement .

int-var = NUM2

10 OPEN "ACCT" FOR INPUT AS #2
DIM stu rec$(3,3)
MAT INPUT #2, stu rec$
PRINT "Row count =" ;NUM
PRINT "Column number =" ;NUM2

The output is :

Row count = 1
Column number = 1

4-164 Statements and Functions

NUM$

Format

Syntax Rules
None .

Remarks
1 . If num-exp is positive, the first character in the string expression is a

space. If num-exp is negative, the first character is a minus sign (-) .
2. The NUM$ function does not include trailing zeros in the returned string .

If all digits to the right of the decimal point are zeros, NUM$ omits the
decimal point as well .

3. When num-exp is a floating-point variable and has an integer portion of
six decimal digits or less (for example, 1234 .567), BASIC-PLUS-2 rounds
the number to six digits (1234 .57). If num-exp has seven decimal digits
or more, BASIC-PLUS-2 rounds the number to six digits and prints it in
E-format .

4. When num-exp is between 0 .1 and 1 and contains more than 6 digits,
BASIC-PLUS-2 rounds it to six digits. When num-exp is smaller than 0 .1,
BASIC-PLUS-2 rounds it to 6 digits and prints it in E-format .

5 . The NUM$ function returns a maximum number of digits as follows :
©

	

Three digits for BYTE integers
©

	

Five digits for SINGLE floating-point numbers and WORD integers
©

	

Ten digits for LONG integers
©

	

Sixteen digits for DOUBLE floating-point numbers
6 . The last character in the returned string is a space .

str-var = NUM$(num-exp)

NUM$

The NUM$ function evaluates a numeric expression and returns a string of
characters in PRINT statement format, with leading and trailing spaces .

Statements and Functions 4-165

NUM$

Example

10 DECLARE STRING number
number = NUM$(34 .5500/31 .8)
PRINT number

The output is :

1 .08648

4-166 Statements and Functions

NUM1$

Format

Syntax Rules
None .

Remarks
1. The NUM1$ function returns a string consisting of numeric characters

and a decimal point that corresponds to the value of num-exp . Leading
and trailing spaces or zeroes are not included in the returned string . If all
digits to the right of the decimal point are zeroes, the decimal point is also
omitted .

2. If num-exp is negative, the first character returned by NUM1$ is a minus
(-) sign .

3. Except for the special cases cited in remarks 1 and 2, the NUM1$ function
returns a maximum number of digits as follows :

©

	

Three digits for BYTE integers
©

	

Six digits for SINGLE floating-point numbers and WORD integers

©

	

Ten digits for LONG integers
©

	

Sixteen digits for DOUBLE floating-point numbers

4. Disregarding leading and trailing zeroes, when SINGLE floating-point
numbers contain more than six digits in the integer portion (such as
1234567 .8), BASIC-PLUS-2 rounds the number to six digits, placing
zeroes in the remaining integer portion (such as 1234570) . When SINGLE
floating-point numbers contain more than six digits, with six digits or
less in the integer portion (such as 123456 .7), BASIC-PLUS-2 rounds the
number to six digits (such as 123457) .

str-var = NUM1$(num-exp)

NUM1$

The NUM1$ function changes a numeric expression to a numeric character
string without leading and trailing spaces and without rounding .

Statements and Functions 4-167

NUM1$

Example

5 . Rules for rounding DOUBLE floating-point numbers are the same as for
SINGLE floating-point numbers, except the number of significant digits
returned is 16, not six.

6 . The NUM1$ function does not produce E notation .

10 DECLARE STRING number
number = NUM1$(PI/2)
PRINT number

The output is :

1 .5708

4-168 Statements and Functions

ON ERROR GO BACK

ON ERROR GO BACK

If the ON ERROR GO BACK statement is located in a subprogram or DEF
function, it transfers control to the calling program when an error occurs . If
the ON ERROR GO BACK statement is located in a main program module, it
transfers control to the BASIC-PLUS-2 default error handler when an error
occurs .

Format

1
ONERROR GO BACK
ON ERROR

Syntax Rules
None .

Remarks
1 . If there is no error outstanding, execution of an ON ERROR GO BACK

statement causes subsequent errors to return control to the calling
program's error handler .

2. If there is an error outstanding, execution of an ON ERROR GO BACK
statement immediately transfers control to the calling program's error
handler.

3. By default, DEF functions and subprograms re-signal errors to the calling
program .

4. The ON ERROR GO BACK statement remains in effect until the program
unit completes execution or until BASIC-PLUS-2 executes another ON
ERROR statement .

5. An ON ERROR GO BACK statement executed in the main program is
equivalent to an ON ERROR GOTO 0 statement .

6 . If a main program calls a subprogram named SUB1, and SUB1 calls the
subprogram named SUB2, an ON ERROR GO BACK statement executed
in SUB2 transfers control to SUB1's error handler when an error occurs in
SUB2 . If SUB1 also has executed an ON ERROR GO BACK statement,
BASIC-PLUS-2 transfers control to the main program's error handling
routine .

Statements and Functions 4-169

ON ERROR GO BACK

Example

10 IF ERR = 11
THEN

RESUME err-hand
ELSE

ON ERROR GO BACK
END IF

4-170 Statements and Functions

ON ERROR GOTO

The ON ERROR GOTO statement transfers program control to a specified line
or label in the current program unit when a trappable error occurs .

Format

ONERROR

	

GO TO
ON ERROR J l GOTO } target

Syntax Rules
1 . Target must be a valid BASIC-PLUS-2 line number or label and must

exist in the same program unit as the ON ERROR GOTO statement .
2. If an ON ERROR GOTO statement is in a DEF function, target must also

be in that function definition .

Remarks
1. Execution of an ON ERROR GOTO statement causes subsequent errors to

transfer control to the specified target .
2. The ON ERROR GOTO statement remains in effect until the program unit

completes execution or until BASIC-PLUS-2 executes another ON ERROR
statement .

3. BASIC-PLUS-2 does not allow recursive error handling. If a second error
occurs during execution of an error-handling routine, control passes to the
BASIC-PLUS-2 error handler and the program stops executing .

Example

50 SUB LIST (STRING A)
DECLARE STRING B
ON ERROR GOTO err-block
OPEN A FOR INPUT AS FILE #1

Input-loop :
LINPUT #1, B
PRINT B

GOTO Input-loop

ON ERROR GOTO

Statements and Functions 4-171

ON ERROR GOTO

err-block :
IF (ERR=11%)
THEN

CLOSE #1%
RESUME done

ELSE
ON ERROR GOTO 0

END IF

done :
END SUB

4-172 Statements and Functions

ON ERROR GOTO 0

ON ERROR GOTO 0

The ON ERROR GOTO 0 statement disables ON ERROR error handling and
passes control to the BASIC-PLUS-2 error handler when an error occurs .

Format
ON ERROR

	

GO TO
1ONERROR 1 GOTO 0

Syntax Rules
None .

Remarks
1. If an error is outstanding, execution of an ON ERROR GOTO 0 statement

immediately transfers control to the BASIC-PLUS-2 error handler . The
BASIC-PLUS-2 error handler will report the error and exit the program .

2. If there is no error outstanding, execution of an ON ERROR GOTO
0 statement causes subsequent errors to transfer control to the
BASIC-PLUS-2 error handler.

Example

10 ON ERROR GOTO err routine
FOR I = 1% TO 10%

PRINT "Please type a number"
INPUT A

NEXT I
err_routine :
IF ERR = 50

THEN
RESUME

ELSE
ON ERROR GOTO 0

END IF

The output is :

Please type a number
IcvvzI

?End of file on device at line

	

10 in "MYPROG "

Statements and Functions 4-173

ON . . . GOSUB

ON . . . GOSUB

Format

The ON . . . GOSUB statement transfers program control to one of several
subroutines, depending on the value of a control expression .

ON int-exp GOSUB target , . . . [OTHERWISE target]

Syntax Rules
1 . Int-exp determines which target BASIC-PLUS-2 selects as the GOSUB

argument. If int-exp equals 1, BASIC-PLUS-2 selects the first target. If
int-exp equals 2, BASIC-PLUS-2 selects the second target, and so on .

2 . Target must be a valid BASIC-PLUS-2 line number or label and must
exist in the current program unit .

Remarks
1 . Control cannot be transferred into a statement block (such as FOR . . .

NEXT, UNTIL . . . NEXT, WHILE . . . NEXT, DEF . . . END DEF, or
SELECT . . . END SELECT) .

2 . If there is an OTHERWISE clause, and if int-exp is less than 1 or greater
than the number of targets in the list, BASIC-PLUS-2 selects the target of
the OTHERWISE clause.

3 . If there is no OTHERWISE clause, and if int-exp is less than 1 or greater
than the number of targets in the list, BASIC-PLUS-2 signals the error
"ON statement out of range" (ERR=58) .

4. If a target specifies a nonexecutable statement, BASIC-PLUS-2 transfers
control to the first executable statement that lexically follows the target .

4-174 Statements and Functions

Example

err-routine :
PRINT "Out of range :
RETURN

done :
END

ON . . . GOSUB

Statements and Functions 4-175

100 INPUT "Please enter 1, 2 or 3" ; A%
ON A% GOSUB 1000, 2000, 3000 OTHERWISE err routine
GOTO done

1000 PRINT "That was a 1"
RETURN

2000 PRINT "That was a 2"
RETURN

3000 PRINT "That was a 3"
RETURN

ON . . . GOTO

ON . . . GOTO

Format

The ON . . . GOTO statement transfers program control to one of several lines
or targets, depending on the value of a control expression .

ON int-exp { GO TO J target , . . . [OTHERWISE target]
GOTO

Syntax Rules
1 . Int-exp determines which target BASIC-PLUS-2 selects as the GOTO

argument. If int-exp equals 1, BASIC-PLUS-2 selects the first target . If
int-exp equals 2, BASIC-PLUS-2 selects the second target, and so on .

2 . Target must be a valid BASIC-PLUS-2 line number or a label and must
exist in the current program unit .

Remarks
1. Control cannot be transferred into a statement block (such as FOR . . .

NEXT, UNTIL . . . NEXT, WHILE . . . NEXT, DEF . . . END DEF, or
SELECT . . . END SELECT) .

2. If there is an OTHERWISE clause, and if int-exp is less than 1 or greater
than the number of targets in the list, BASIC-PLUS-2 transfers control to
the target of the OTHERWISE clause .

3 . If there is no OTHERWISE clause, and if int-exp is less than 1 or greater
than the number of line numbers in the list, BASIC-PLUS-2 signals "ON
statement out of range" (ERR=58) .

4 . If a target specifies a nonexecutable statement, BASIC-PLUS-2 transfers
control to the first executable statement that lexically follows the target .

Example

10 ON INDEX% GOTO 700,800,900 OTHERWISE 1000

4-176 Statements and Functions

ONECHR

Format

The ONECHR function allows single-character input (ODT submode) to
a terminal opened on a specified channel . This function must be used in
conjunction with the GET statement .

int-vbl = ONECHR(chnl-exp)

Syntax Rules
1 . Chnl-exp is a numeric expression that specifies a channel number

associated with an open terminal . It cannot be preceded by a number
sign (#) .

2 . The ONECHR function must be used immediately before a GET statement .

Remarks
1 . BASIC disables the ONECHR function immediately after a GET statement

executes . Therefore, your program must invoke the ONECHR function for
each single character input you want to perform .

2 . Control passes to the program as soon as you enter a character . You do not
have to enter a line terminator.

3 . To obtain optimal performance (especially when using scrolling regions
and other compilicated operations), it is necessary that you attach to the
terminal before using the ONECHR function . To attach to the terminal use
an IO .ATT QIO . See your operating system documentation for additional
information about QIOs .

Example

100

	

OPEN "TI :" FOR INPUT AS FILE #1%
Y% = ONECHR(1%)
GET #1%
MOVE FROM #1%, A$ = 1%
PRINT A$

ONECHR

Statements and Functions 4-177

OPEN

OPEN

Format

The OPEN statement opens a file for processing. It transfers user-specified
file characteristics to Record Management Services (RMS), or to the operating
system on RSTS/E systems, and verifies the results .

OPEN file-spec [FOR INPUT ~ AS [FILE] [#] chnl-exp
FOR OUTPUT

[, open-clause] . . .

open-clause :

APPEND
READ

ACCESS WRITE
MODIFY
SCRATCH

NONE

ALLOW READ
WRITE
MODIFY

[BUFFER int-exp ',

[CLUSTERSIZE int-exp]

[CONTIGUOUS

[DEFAULTNAME file-spec]

[EXTENDSIZE int-exp

[FILESIZE int-exp l,

[MAP map-name]

4-178 Statements and Functions

[ORGANIZATION]

[RECORDSIZE int-exp I

/INDEXED
RELATIVE
SEQUENTIAL
UNDEFINED
VIRTUAL

ANY

RECORDTYPE FORTRAN
LIST
NONE

[TEMPORARY]

(USEROPEN func-name J

[WINDOWSIZE int-exp]

Indexed files only :

[ALTERNATE [KEY] key-clause [DUPLICATES] [CHANGES]

[PRIMARY [KEY] key-clause [DUPLICATES]

Relative and indexed files only :

[BUCKETSIZE int-exp 1

[CONNECT chnl-exp2]

Sequential files only :

(BLOCKSIZE int-exp

[NOREWIND]

[[NO]SPAN I

Virtual files only :

[MODE int-exp]

FIXED
STREAM
VARIABLE

]

OPEN

Statements and Functions 4-179

OPEN

int-unsubs-var
decimal-unsubs-var
str-unsubs-var
(str-unsubs-varl , . . . str-unsubs-var8)

Syntax Rules
1 . File-spec specifies the file to be opened and associated with chnl-exp . It

can be any valid string expression and must be a valid file specification .
BASIC-PLUS-2 passes these values to RMS without editing, alteration, or
validity checks .

2 . BASIC-PLUS-2 supplies SY. as the default device if you do not specify a
device in your file specification . No default file type is supplied unless you
include the DEFAULTNAME clause in the OPEN statement .

3 . The FOR clause determines how BASIC-PLUS-2 opens a file .

©

	

If you open a file with FOR INPUT, the file must exist or
BASIC-PLUS-2 signals an error.

© If you open a file with FOR OUTPUT, BASIC-PLUS-2 creates the file
if it does not exist . On RSX systems, if the file exists, BASIC-PLUS-2
creates a new version of the file ; On RSTS/E systems, BASIC-PLUS-2
overwrites the file .

Remarks

key-clause :

©

	

If you do not specify either FOR INPUT or FOR OUTPUT,
BASIC-PLUS-2 tries to open an existing file . If there is no such
file, BASIC-PLUS-2 creates one .

4. Chnl-exp is a numeric expression that specifies a channel number to be
associated with the file being opened . It can be preceded by an optional
number sign (#) and must be in the range of 1 through 12 .

5. A statement that accesses a file cannot execute until you open that file and
associate it with a channel .

1 . The OPEN statement does not retrieve records .

2 . Channel #0, the terminal, is always open . If you try to open channel zero,
BASIC-PLUS-2 signals the error "I/O channel already open" (ERR=7) .

3 . If a program opens a file on a channel already associated with an open file,
BASIC-PLUS-2 closes the previously opened file and opens the new one .

4-180 Statements and Functions

OPEN

4. The implicit or explicit closing of a file will render any channels connected
to that file invalid .

5 . The ACCESS clause determines how the program can use the file .

©

	

ACCESS READ allows only FIND, GET, or other input statements
on the file . The OPEN statement cannot create a file if the ACCESS
READ clause is specified .

©

	

ACCESS WRITE allows only PUT, UPDATE, or other output
statements on the file .

©

	

ACCESS MODIFY allows any I/O statement except SCRATCH on the
file. ACCESS MODIFY is the default .

©

	

ACCESS SCRATCH allows any I/O statement valid for a sequential or
terminal-format file .

©

	

ACCESS APPEND is the same as ACCESS WRITE for sequential files,
except that BASIC-PLUS-2 positions the file pointer after the last
record when it opens the file. You cannot use ACCESS APPEND on
relative or indexed files .

6. The ALLOW clause can be used in the OPEN statement to specify file
sharing of relative, indexed, sequential, and virtual files .

©

	

ALLOW NONE lets no other users access the file . This is the default
when any access other than READ is specified .

©

	

ALLOW READ lets other users have read access to the file .

©

	

ALLOW WRITE lets other users have write access to the file .

©

	

ALLOW MODIFY lets other users have unlimited access to the file .

7 . The BLOCKSIZE clause specifies the physical block size of magnetic tape
files. The BLOCKSIZE clause can be used for magnetic tape files only .

© The value of int-exp is the number of records in a block . Therefore,
the block size in bytes is the product of the RECORDSIZE and the
BLOCKSIZE value .

©

	

The default blocksize is one record .

8. The BUCKETSIZE clause applies only to relative and indexed files . It
specifies the size of an RMS bucket in terms of the number of records one
bucket should hold .
©

	

The value of int-exp determines the number of records in a bucket .
Therefore, the BUCKETSIZE in bytes is the product of the record size
and bucket size .

Statements and Functions 4-181

OPEN

©

	

The default is one record .
9 . The BUFFER clause can be used with all file organizations except

UNDEFINED .
©

	

For RELATIVE and INDEXED files, int-exp specifies the number of
device or file buffers RMS uses for file processing .

© For SEQUENTIAL files, int-exp specifies the size of the buffer ; for
example, BUFFER 8 for a SEQUENTIAL file sets the buffer size to
eight 512-byte blocks .

©

	

For VIRTUAL files, the BUFFER clause has no effect .
10. The CLUSTERSIZE clause allows you to specify the smallest amount of

contiguous disk space to be allocated when an RMS or RSTS/E file's present
allocation is exhausted .
© The CLUSTERSIZE clause is valid on RSTS/E systems only. On RSX

systems, the EXTENDSIZE clause serves a function similar to that of
the CLUSTERSIZE clause .

©

	

Int-exp must be a power of 2 . For example, a CLUSTERSIZE of 8
means that each time the file requires more disk space, the RSTS/E
operating system must have at least eight contiguous blocks to allocate .
If the disk is fragmented, therefore, there can be no 8-block clusters
and BASIC-PLUS-2 signals the error "No room for user on device"
(ERR=4) .

©

	

The default CLUSTERSIZE is determined when the disk pack is
initialized or mounted . You can use the DCL command SHOW DISK to
determine the default clustersize .

11. The CONTIGUOUS clause causes RMS to try to create the file as a
contiguous sequence of disk blocks .
©

	

The CONTIGUOUS clause does not affect existing files or nondisk files .
©

	

If you specify a CONTIGUOUS clause and there is not enough
contiguous disk space available, RMS signals an error .

©

	

On RSTS/E systems, you cannot extend a contiguous file beyond its
initially allocated size . If you attempt to do so, BASIC-PLUS-2 signals
the error "Protection violation" (ERR=10) . Use the FILESIZE clause
with the CONTIGUOUS clause to allocate enough contiguous disk
space when you open the file .

4-182 Statements and Functions

12 . The CONNECT clause establishes additional record access streams for
RMS files that allow your program to process more than one record of
a file at the same time. Each stream represents an independent and
concurrently active sequence of record operations .
©

	

The CONNECT clause must specify a RELATIVE or INDEXED file
already opened on chnl-exp2 with the primary OPEN statement .

©

	

Each connection established in a secondary OPEN statement uses
another I/O channel . Because there are 12 available I/O channels, you
can have a maximum of 11 connections to a file .

©

	

All clauses in the secondary OPEN statements must be identical except
the MAP, CONNECT, and USEROPEN clauses .

© BASIC-PLUS-2 signals the error "Invalid file options" (ERR=139) if
your program attempts to connect to a record stream that is already
connected to another stream .

©

	

When a file is closed, all files that are connected to that file must also
be closed .

13. The DEFAULTNAME clause lets you supply a default file specification .
©

	

The DEFAULTNAME clause is valid for RMS files only.
©

	

If file-spec is not a complete file specification, file-spec2 specified in the
DEFAULTNAME clause supplies the missing parts. For example :
10

	

INPUT 'FILE NAME' ;fnam$
20

	

OPEN fnam$ FOR INPUT AS FILE #1%,

	

&
ORGANIZATION SEQUENTIAL &
DEFAULTNAME "DU1 : .DAT"

Here, if you enter "ABC" for the file name, BASIC-PLUS-2 tries to
open DU1:[123,2]ABC.DAT.

14. The EXTENDSIZE clause lets you specify the increment by which RMS
extends a file after its initial allocation is filled .
© The EXTENDSIZE clause is valid on RSX systems only . On RSTS/E

systems, the CLUSTERSIZE clause serves a similar function to the
EXTENDSIZE clause.

©

	

The value of int-exp is in 512-byte disk blocks .
©

	

The EXTENDSIZE clause has no effect on an existing file .
15. The FILESIZE clause lets you pre-extend a new file to a specified size .

©

	

The value of int-exp is the initial allocation of disk blocks .

OPEN

Statements and Functions 4-183

OPEN

©

	

The FILESIZE clause has no effect on an existing file .
16. The MAP clause specifies that a previously declared map is associated with

the file's record buffer. The MAP clause determines the record buffer's
address and length unless overridden by the RECORDSIZE clause .
©

	

The size of the specified map must be as large or larger than the
longest record length or maximum record size . For files with a fixed
record size, the specified map must match exactly .

©

	

The size of the largest MAP with the same map name in the current
program unit becomes the file's record size if the OPEN statement does
not include a RECORDSIZE clause .

©

	

It is recommended that you do not use both the MAP and
RECORDSIZE clauses in an OPEN statement. If you do use both
the MAP and RECORDSIZE clauses in an OPEN statement, the
following rules apply :
- The RECORDSIZE clause overrides the record size set by the MAP

clause .
- The map must be as large or larger than the specified

RECORDSIZE.
©

	

If there is no MAP clause, the record buffer space that BASIC-PLUS-2
allocates is not directly accessible . Therefore, MOVE statements are
needed to access data in the record buffer .

© You must have a MAP clause when creating an indexed file ; you cannot
use KEY clauses without MAP statements because keys serve as offsets
into the buffer.

17. The MODE clause is provided for non-RMS file operations .
©

	

Int-exp specifies a MODE value .
©

	

On RSX systems, MODE is ignored except when your program is doing
device-specific I/O to a magnetic tape . In this case, you can use MODE
to set the tape density. In all other cases, RSX ignores the MODE
value. See the BASIC-PLUS-2 User's Guide for information on MODE
values .

©

	

On RSTS/E systems, MODE values affect only native RSTS/E files, not
RMS files. MODE values have different meanings depending on the
context in which you use them . This is because other pieces of software
can scan the MODE values to see which bits are set . For example, bit
14 may have one meaning to the RSTS/E terminal driver but another

4-184 Statements and Functions

OPEN

meaning to the file processor. See the BASIC-PLUS-2 User's Guide for
information on MODE values .

18 . The NOREWIND clause controls tape positioning on magnetic tape files so
that the operating system does not position the tape at its beginning . Your
program can then search for records from the current position .
©

	

When you specify NOREWIND with an OPEN FOR INPUT statement,
BASIC-PLUS-2 instructs the system to search for the specified file
without rewinding . If the file is not found, BASIC-PLUS-2 instructs
the system to rewind the tape and search for the file from the start of
the tape . If the file is still not found, BASIC-PLUS-2 signals the error
"File not found."

©

	

If you specify NOREWIND with an OPEN FOR OUTPUT statement,
BASIC-PLUS-2 instructs the system to position the tape at its logical
end. The program can then write records .

©

	

By default, if you do not specify NOREWIND, the tape is positioned at
its beginning .

©

	

The NOREWIND clause can be used for magnetic tape files only .
19. The NOSPAN clause specifies that records cannot cross block boundaries .

The NOSPAN clause does not affect nondisk files . The SPAN clause
specifies that sequential records can cross block boundaries . SPAN is the
default .

20 . The ORGANIZATION clause specifies the organization of a file . When
present, it must precede all other clauses . When you specify an
ORGANIZATION clause, you must also specify one of the following
organization options : UNDEFINED, INDEXED, SEQUENTIAL,
RELATIVE, or VIRTUAL .
©

	

Specify ORGANIZATION UNDEFINED if you do not know the actual
organization of the file . When you specify the ORGANIZATION
UNDEFINED clause, a block I/O file is opened. You can then use the
FSP$ function or a USEROPEN routine to determine the attributes
of the file . You will usually want to specify the RECORDTYPE
ANY clause with the ORGANIZATION UNDEFINED clause . The
combination of these two clauses should allow you to access any file
sequentially. You must have exclusive access to a file in order to specify
the ORGANIZATION UNDEFINED clause in an OPEN statement .
Therefore, you must also specify the ALLOW NONE clause when you
specify ORGANIZATION UNDEFINED .

Statements and Functions 4-185

OPEN

©

	

When you specify ORGANIZATION INDEXED, you create an indexed
file that contains data records that are sorted in ascending or
descending order according to a primary index key value . You can
access an existing file with descending keys ; however, you cannot create
a file with descending keys .

The index keys you specify determine the order in which records
are stored.
Index keys must be variables declared in a MAP statement
associated with the OPEN statement for the file .

- BASIC-PLUS-2 allows you to specify an indexed file as either
variable or fixed length .

©

	

When you specify ORGANIZATION SEQUENTIAL, you create a file
that stores records in the order in which they are written .
- Sequential files can contain records of any valid BASIC-PLUS-2

record format : fixed-length, variable-length, or stream . If
you do not specify a record format with the ORGANIZATION
SEQUENTIAL clause, the default is variable-length records .

- If you open an existing file using stream as a record format option,
the STREAM records can be delimited by any special character .

©

	

When you specify ORGANIZATION RELATIVE, you create a file
that contains a series of records that are numbered consecutively .
BASIC-PLUS-2 allows you to specify either fixed-length or variable-
length records .

©

	

When you specify ORGANIZATION VIRTUAL, you create a
sequentially fixed file with a record size of 512 (or a multiple of 512) .
You can then access the file with the FIND, GET, PUT, or UPDATE
statements or through one or more virtual arrays . BASIC-PLUS-2
allows you to overwrite existing records in a file not containing virtual
arrays and opened as ORGANIZATION VIRTUAL by using the PUT
statement with a RECORD clause . All other organizations require the
UPDATE statement to change an existing record . It is recommended
that you also use the UPDATE statement to change existing records in
VIRTUAL files that do not contain virtual arrays .

©

	

If you omit the ORGANIZATION clause, BASIC-PLUS-2 opens a
terminal-format file .
- Terminal-format files are implemented as RMS sequential variable

files on RSX systems and store ASCII characters in variable-length
records .

4-186 Statements and Functions

OPEN

- Carriage control is performed by the operating system ; and on RSX
systems, the record does not contain carriage returns or line feeds .
RSTS/E terminal-format files, however, do contain carriage return
and line feed characters .

- You use essentially the same syntax to access terminal-format
files as when reading from or writing to the terminal (INPUT and
PRINT) .

21. The PRIMARY KEY clause lets you specify an indexed file's key. You must
specify a primary key when opening an indexed file . The ALTERNATE
KEY clause lets you specify up to 254 alternate keys . The ALTERNATE
KEY clause is optional .

©

	

RMS creates one index list for each primary and alternate key you
specify. These indexes are part of the file and contain pointers to the
records. Each key you specify corresponds to a sorted list of record
pointers .

©

	

The keys you specify determine the order in which records in the
file are stored . All keys must be variables declared in the file's
corresponding MAP statement. The position of the key in the MAP
statement determines its position in the record . The data type and size
of the key are as declared in the MAP statement .

© A key can be an unsubscripted string or WORD variable .

©

	

You can also create a segmented index key for string keys by separating
the string variable names with commas and enclosing them in
parentheses. You can then reference a segment of the specified key
by referencing one of the string variables instead of the entire key . A
string key can have up to eight segments .

©

	

The order of appearance of keys determines key numbers . The primary
key, which must appear first, is key #0. The first alternate key is #1,
and so on .

©

	

DUPLICATES in the PRIMARY and ALTERNATE key clauses specifies
that two or more records can have the same key value . If you do not
specify DUPLICATES, the key value must be unique in all records .

©

	

CHANGES in the ALTERNATE KEY clause specifies that you can
change the value of an alternate key when updating records . If you
do not specify CHANGES when creating the file, you cannot change
the value of a key. If you specify the CHANGES clause, you must also
specify the duplicates clause . You cannot specify CHANGES with the
PRIMARY KEY clause .

Statements and Functions 4-187

OPEN

©

	

ALTERNATE KEY clauses are optional for existing files . If you do
specify a key, it must match a key in the file .

22. The RECORDTYPE clause specifies the file's record attributes . The
RECORDTYPE clause can only be used with RMS files .
©

	

ANY specifies a match with any file attributes when opening an
existing file . If you create a new file, ANY is treated as LIST for all
organizations except VIRTUAL. For VIRTUAL, it is treated as NONE .

©

	

FORTRAN specifies a control character in the record's first byte .
©

	

LIST specifies implied carriage control, JCR[LF This is the default for
all file organizations except VIRTUAL .

©

	

NONE specifies no attributes . This is the default for VIRTUAL files .
23 . The RECORDSIZE clause specifies the file's record size . Note that there

are restrictions on the maximum record size allowed for various file and
record formats . See the RMS-11 documentation for more information .

©

	

For fixed-length records, int-exp specifies the size of all records .

©

	

For variable-length records, int-exp specifies the size of the largest
record .

©

	

It is recommended that you do not use both the MAP and
RECORDSIZE clauses in an OPEN statement . If you do use both
the MAP and RECORDSIZE clauses in an OPEN statement, the
following rules apply :
- The RECORDSIZE clause overrides the record size set by the MAP

clause .
- The map must be as large or larger than the specified

RECORDSIZE.
©

	

If you specify a MAP clause but no RECORDSIZE clause, the record
size is equal to the map size .

©

	

If there is no MAP clause, the RECORDSIZE clause determines the
record size .

©

	

When creating a relative or indexed file, you must specify either a MAP
or RECORDSIZE clause ; otherwise, BASIC-PLUS-2 signals an error .

©

	

For fixed files, the record size must match exactly .
©

	

If you do not specify a RECORDSIZE clause when opening an existing
file, BASIC-PLUS-2 retrieves the record size value from the file .

4-188 Statements and Functions

© When you create SEQUENTIAL files, BASIC-PLUS-2 supplies a
default record size of 132 .

©

	

The record size is always 512 for VIRTUAL files unless you specify a
RECORDSIZE.

24. The TEMPORARY clause causes BASIC-PLUS-2 to delete the output file
as soon as the program closes it .

25. The USEROPEN clause lets you open a file with your own FUNCTION
subprogram .
©

	

Func-name is the name of a MACRO program; it cannot be the name of
a BASIC-PLUS-2 program .

©

	

You do not need to declare the useropen routine as an external function .

©

	

BASIC-PLUS-2 calls the user program after it fills the File Access
Block (FAB), the Record Access Block (RAB), and the Extended
Attribute Blocks (XAB) . The subprogram must issue the appropriate
RMS calls, including $OPEN and $CONNECT, and return the RMS
status as the value of the function . See the BASIC-PLUS-2 User's
Guide for more information on the USEROPEN routine .

26. The WINDOWSIZE clause followed by int-exp lets you specify the number
of block retrieval pointers you want to maintain in memory for the
file. Retrieval pointers are associated with the file header and point to
contiguous blocks on disk . By keeping retrieval pointers in memory, you
can reduce the I/O associated with locating a record, as the operating
system does not have to access the file header for pointers as frequently.

©

	

The number of retrieval pointers in memory at any one time is
determined by the system default or by the WINDOWSIZE clause .

©

	

On RSX systems, you can specify up to 127 retrieval pointers . The
default number of retrieval pointers is seven .

©

	

On RSTS/E systems, the number of pointers in a window block is fixed
at seven. Thus, you cannot use the WINDOWSIZE clause . You can,
however, use the CLUSTERSIZE clause to increase the number of
contiguous blocks mapped by one retrieval pointer .

OPEN

Statements and Functions 4-189

OPEN

Examples

4-190 Statements and Functions

1 . 10 OPEN "FILE .DAT" AS FILE #4

2 . 10 OPEN "INPUT .DAT" FOR INPUT AS FILE #4,

	

&
ORGANIZATION SEQUENTIAL FIXED,

	

&
RECORDSIZE 200,

	

&
MAP ABC,

	

&
ALLOW MODIFY, ACCESS MODIFY

OPEN Newfile$ FOR OUTPUT AS FILE #3,

	

&
INDEXED VARIABLE,

	

&
MAP Emp name,

	

&
DEFAULTNAME "SY : .DAT",

	

&
PRIMARY KEY Last$ DUPLICATES,

	

&
ALTERNATE KEY First$ DUPLICATES, CHANGES

MAP (SEGKEY) STRING last name = 15,

	

&
MI = 1, first name = 15

OPEN "NAMES .IND" FOR OUTPUT AS FILE #1,

	

&
ORGANIZATION INDEXED,

	

&
PRIMARY KEY (last name, first name, MI),

	

&
MAP SEGKEY

OPTION

Format

}

The OPTION statement allows you to set compilation qualifiers such as default
data type, size, and scale factor . You can also set compilation conditions such
as constant type checking . The options you set affect only the program module
in which the OPTION statement occurs .

OPTION option-clause, . . .

option-clause :

const-type-clause :

	

REAL
I INTEGER

type-clause :

size-clause :

size-item :

int-clause :

real-clause :

CONSTANT TYPE =const-type-clause
TYPE=type-clause
SIZE=size-clause
SCALE=int-const

{

INTEGER
REAL
EXPLICIT

}

f size-item
(size-item, . . .)

INTEGER int-clause
REAL real-clause

BYTE
WORD
LONG

1
SINGLE

1DOUBLE

OPTION

Statements and Functions 4-191

OPTION

Syntax Rules
None.

Remarks
1 . Option-clause specifies the compilation qualifiers to be in effect for the

program module .
2 . Const-type-clause specifies the data type for all constants that do not end

in a data type suffix or are not in explicit literal notation with a data type
supplied .

3 . Type-clause sets the default data type for variables that have not been
explicitly declared and for constants if no constant type clause is specified .
You can specify only one type-clause in a program module .

4 . Size-clause sets the default data subtypes for floating-point and integer
data . Size-item specifies the data subtype you want to set. You can specify
an INTEGER or REAL size-item, or any combination . Multiple size-items
in an OPTION statement must be enclosed in parentheses and separated
by commas .

5. The SCALE option controls the scaling of double-precision-floating-point
variables . Int-const specifies the power of 10 you want as the scaling factor.
It must be an integer between 0 and 6 or BASIC-PLUS-2 signals an error.
See the description of the SCALE command in Chapter 2 of this manual
for more information on scaling .

6. You can have more than one option in an OPTION statement, or you can
use multiple OPTION statements in a program module ; however, each
OPTION statement must lexically precede all other source code in the
program module, with the exception of comment fields, REM, PROGRAM,
SUB, FUNCTION, and OPTION statements .

7 . OPTION statement specifications apply only to the program module
in which the statement appears and affect all variables in the module,
including SUB and FUNCTION parameters .

8 . BASIC-PLUS-2 signals an error in the case of conflicting options . For
example, you cannot specify more than one type-clause or SCALE factor in
the same program unit .

9 . If you do not specify a type-clause or a subtype-clause, BASIC-PLUS-2 uses
the current environment default data types .

4-192 Statements and Functions

Example

10. If you do not specify a scale factor, BASIC-PLUS-2 uses the current
environment default scale factor .

FUNCTION REAL DOUBLE monthly_payment,

	

&
(DOUBLE interest rate, &
LONG no of_payments, &
DOUBLE principle)

OPTION TYPE = REAL, &
SIZE = (REAL DOUBLE, INTEGER LONG), &
SCALE = 4

OPTION

Statements and Functions 4-193

PLACE$

PLACE$

Format

The PLACE$ function explicitly changes the precision of a numeric string.
PLACE$ returns a numeric string, truncated or rounded, according to the
value of an integer argument you supply .

str-var = PLACE$(str-exp, int-exp)

Syntax Rules
1 . Str-exp specifies the numeric string you want to process . It can have ASCII

digits, an optional minus sign (-), and an optional decimal point (.) .

2 . Int-exp specifies the numeric precision of str-exp . Table 4-6 shows examples
of rounding and truncation and the values of int-exp that produce them .

Remarks
1 . If str-exp has more than 60 characters, BASIC-PLUS-2 signals the error

"Illegal number" (ERR=52) .
2 . Str-exp is rounded or truncated, or both, according to the value of int-exp .

3 . If int-exp is between -60 and 60, rounding and truncation occur as follows :

©

	

For positive integer expressions, rounding occurs to the right of the
decimal place. For example, if int-exp is 1, rounding occurs one digit
to the right of the decimal place (the number is rounded to the nearest
tenth). If int-exp is 2, rounding occurs two digits to the right of the
decimal place (the number is rounded to the nearest hundredth), and
so on .

©

	

If int-exp is zero, BASIC-PLUS-2 rounds to the nearest unit .

© For negative integer expressions, rounding occurs to the left of the
decimal point . If int-exp is -1, for example, BASIC-PLUS-2 moves
the decimal point one place to the left, then rounds to units . If int-

exp is -2, rounding occurs two places to the left of the decimal point ;
BASIC-PLUS-2 moves the decimal point two places to the left, then
rounds to tens .

4-194 Statements and Functions

4 . If int-exp is between 9940 and 10,060, truncation occurs as follows :

©

	

If int-exp is 10,000, BASIC-PLUS-2 truncates the number at the
decimal point.

©

	

If int-exp is greater than 10,000 (10,000 plus n) BASIC-PLUS-2
truncates the numeric string n places to the right of the decimal point .
For example, if int-exp is 10,001 (10,000 plus 1), BASIC-PLUS-2
truncates the number starting one place to the right of the decimal
point. If int-exp is 10,002 (10,000 plus 2), BASIC-PLUS-2 truncates
the number starting two places to the right of the decimal point, and so
on .

©

	

If int-exp is less than 10,000 (10,000 minus n), BASIC-PLUS-2
truncates the numeric string n places to the left of the decimal point .
For example, if int-exp is 9999 (10,000 minus 1), BASIC-PLUS-2
truncates the number starting one place to the left of the decimal point .
If 9998 (10,000 minus 2), BASIC-PLUS-2 truncates starting two places
to the left of the decimal point, and so on .

5 . If int-exp is not between -60 and 60 or 9940 and 10,060, BASIC-PLUS-2
returns a value of zero .

6. If you specify a floating-point expression for int-exp, BASIC-PLUS-2
truncates it to an integer of the default size .

7. Table 4-6 shows examples of rounding and truncation and the values of
int-exp that produce them . The number used is 123456 .654321 .

Table 4-6 Rounding and Truncation of 123456 .654321

PLACE$

Statements and Functions 4-195

Int-exp Effect Value Returned

-5 Rounded to 100,000s and truncated 1
-4 Rounded to 10,000s and truncated 12
-3 Rounded to 1000s and truncated 123
-2 Rounded to 100s and truncated 1235
-1 Rounded to 10s and truncated 12346
0 Rounded to units and truncated 123457
1 Rounded to tenths and truncated 123456 .7
2 Rounded to hundredths and truncated 123456.65

(continued on next page)

PLACE$

Example

Table 4-6 (Cont.) Rounding and Truncation of 123456 .654321

10 DECLARE STRING str exp, str var
str exp = "9999 .9999"
str var = PLACE$(str_exp,3)
PRINT str var

The output is :

10000

4-196 Statements and Functions

Int-exp Effect Value Returned

3 Rounded to thousandths and truncated 123456.654

4 Rounded to ten-thousandths and truncated 123456.6543

5 Rounded to hundred-thousandths and 123456.65432

9,995

truncated

Truncated to 100,000s 1

9,996 Truncated to 10,000s 12

9,997 Truncated to 1000s 123

9,998 Truncated to 100s 1234

9,999 Truncated to 10s 12345

10,000 Truncated to units 123456

10,001 Truncated to tenths 12345.6

10,002 Truncated to hundredths 123456.65

10,003 Truncated to thousandths 123456.654

10,004 Truncated to ten-thousandths 123456.6543

10,005 Truncated to hundred-thousandths 123456.65432

POS

Format

Syntax Rules

1 . Str-expl specifies the main string .

2. Str-exp2 specifies the substring .

3 . Int-exp specifies the character position in the main string at which
BASIC-PLUS-2 starts the search .

Remarks
1. The POS function searches str-expl, the main string, for the first

occurrence of str-exp2, the substring, and returns the position of the
substring's first character.

2. The position returned by the POS function is the number of characters
from the beginning of the string regardless of the value specified in int-exp .

3 . If int-exp is greater than the length of the main string, POS returns a
value of zero .

4 . POS always returns the character position in the main string at which
BASIC-PLUS-2 finds the substring, with the following exceptions :
©

	

If only the substring is null, and if int-exp is less than or equal to zero,
POS returns a value of 1 .

© If only the substring is null, and if int-exp is equal to or greater than
1 and less than or equal to the length of the main string, POS returns
the value of int-exp .

©

	

If only the substring is null and if int-exp is greater than the length of
the main string, POS returns the main string's length plus 1 .

©

	

If only the main string is null, POS returns a value of zero .

POS

The POS function searches for a substring within a string and returns the
substring's starting character position .
The POS function is the same as the INSTR function except for the order of
the arguments .

int-var = POS(str-expl, str-exp2, int-exp)

Statements and Functions 4-197

POS

Example

©

	

If both the main string and the substring are null, POS returns 1 .
5 . If BASIC-PLUS-2 cannot find the substring, POS returns a value of zero .
6. If int-exp is less than 1, BASIC-PLUS-2 assumes a starting position of 1 .
7. If you know that the substring is not near the beginning of the string,

specifying a starting position greater than 1 speeds program execution by
reducing the number of characters BASIC-PLUS-2 must search .

8. If you specify a floating-point expression for int-exp, BASIC-PLUS-2
truncates it to an integer of the default size .

400 DECLARE STRING main_str,

	

&
sub str

DECLARE INTEGER first-char
main_str = "ABCDEFG"
sub_str = "DEFG"
first char = POS(main_str, sub_str, 1)
PRINT first char

The output is :

4

4-198 Statements and Functions

PRINT

The PRINT statement transfers program data to a terminal or a terminal-
format file .

Format
PRINT [#chnl-exp,] [output-list]

output-list :

	

[exp] [{

	

} exp] . . . [:]

Syntax Rules
1 . Chnl-exp is a numeric expression that specifies a channel number

associated with a file. It must be immediately preceded by a number
sign (#) . If you do not specify a channel, BASIC-PLUS-2 prints to the
controlling terminal .

2. Output-list specifies the expressions to be printed and the print format to
be used.

3 . Exp can be any valid expression .
4. A separator character (comma or semicolon) must separate each exp .

Separator characters control the print format as follows :
©

	

A comma (,) causes BASIC-PLUS-2 to skip to the next print zone
before printing the expression .

©

	

A semicolon (;) causes BASIC-PLUS-2 to print the expression
immediately after the previous expression .

Remarks
1 . A terminal or terminal-format file must be open on the specified channel .

Your current terminal is always open on channel #0 .
2. A PRINT line has an integral number of print zones . Note, however, that

the number of print zones in a line differs from terminal to terminal .
3 . The PRINT statement prints string constants and variables exactly as they

appear, with no leading or trailing spaces .

PRINT

Statements and Functions 4-199

PRINT

4 . BASIC-PLUS-2 prints quoted string literals exactly as they appear .
Therefore, you can print quotation marks, commas, and other characters
by enclosing them in quotation marks .

5. A PRINT statement with no output-list prints a blank line .
6. An expression in the output-list can be followed by more than one separator

character. That is, you can omit an expression and specify where the next
expression is to be printed by the use of multiple separator characters . For
example :
200 PRINT "Name",, "Address and " ;"City"

The output is :
Name

	

Address and City

In this example, the double commas after "Name" cause BASIC-PLUS-2 to
skip two print zones before printing "Address and ." The semicolon causes
the next expression, "City," to be printed immediately after the preceding
expression. Multiple semicolons have the same effect as a single semicolon .

7. When printing numeric fields, BASIC-PLUS-2 precedes each number with
a space or minus sign (-) and follows it with a space .

8 . BASIC-PLUS-2 does not print trailing zeros to the right of the
decimal point . If all digits to the right of the decimal point are zeros,
BASIC-PLUS-2 omits the decimal point as well .

9 . For REAL numbers (SINGLE and DOUBLE), BASIC-PLUS-2 does not
print more than six digits in explicit notation . If a number requires more
than six digits, BASIC-PLUS-2 uses E-format and precedes positive
exponents with a plus sign (+) . BASIC-PLUS-2 rounds a floating-point
number with a magnitude between 0 .1 and 1.0 to 6 digits . For magnitudes
smaller than 1, BASIC-PLUS-2 prints a maximum of 5 leading zeros and
6 digits in explicit point unscaled notation .

10. The PRINT statement can print a maximum of :
©

	

Three digits of precision for BYTE integers
©

	

Five digits of precision for WORD integers
©

	

Six digits of precision for SINGLE floating-point numbers
©

	

Ten digits of precision for LONG integers
©

	

Sixteen digits of precision for DOUBLE floating-point numbers
©

	

The string length for STRING values

4-200 Statements and Functions

PRINT

11 . If there is a comma or semicolon following the last item in output-list,
BASIC-PLUS-2 does the following :
© When printing to a terminal, BASIC-PLUS-2 does not generate a line

terminator after printing the last item . The next item printed with a
PRINT statement is printed at the position specified by the separator
character following the last item in the first PRINT statement .

©

	

When printing to a terminal-format file, BASIC-PLUS-2 does not write
out the record until a PRINT statement without trailing punctuation
executes .

©

	

If a comma is positioned after the last print zone, the output is
displayed on the next line .

12. If no punctuation follows the last item in the output-list, BASIC-PLUS-2
does the following :
©

	

When printing to a terminal, BASIC-PLUS-2 generates a line
terminator after printing the last item .

©

	

When printing to a terminal-format file, BASIC-PLUS-2 writes out the
record after printing the last item .

13. If a string field does not fit on the current line, BASIC-PLUS-2 does the
following:
©

	

When printing string elements to a terminal, BASIC-PLUS-2 prints
as much as will fit on the current line and prints the remainder on the
next line .

©

	

When printing string elements to a terminal-format file, BASIC-PLUS-2
prints the entire element on the next line .

14. If a numeric field is the first field in a line, and the numeric field spans
more than one line, BASIC-PLUS-2 prints part of the number on one line
and the remainder on the next ; otherwise, numeric fields are never split
across lines. If the entire field cannot be printed at the end of one line, the
number is printed on the next line .

15. When a number's trailing space does not fit in the last print zone, the
number is printed without the trailing space .

Statements and Functions 4-201

PRINT

Example

10 PRINT "name " ; "age", "height " ; "weight"

The output is :

name age

	

height weight

4-202 Statements and Functions

PRINT USING

Format

The PRINT USING statement generates output of numeric or STRING
expressions, formatted according to a format string, and directs it to a terminal
or a terminal-format file .

PRINT [#chnl-exp] USING str-exp { : } output-list

output-list:

	

[exp] [{ '; } exp] .
L ; J

Syntax Rules
1 . Chnl-exp is a numeric expression that specifies a channel number

associated with a file. It must be immediately preceded by a number
sign (#) . If you do not specify a channel, BASIC-PLUS-2 prints to the
controlling terminal .

2 . Str-exp is the format string . It must contain at least one valid format field
and must be followed by a separator (comma or semicolon) and at least one
expression .

3 . Output-list specifies the expressions to be printed .
©

	

Exp can be any valid expression except a FORMAT$ function .
©

	

A comma or semicolon must separate each expression .
©

	

A comma or semicolon is optional after the last expression in the list .

Remarks
1 . The PRINT USING statement can print a maximum of-

©

	

Three digits of precision for BYTE integers
©

	

Five digits of precision for WORD integers
©

	

Six digits of precision for SINGLE floating-point numbers
©

	

Ten digits of precision for LONG integers
©

	

Sixteen digits of precision for DOUBLE floating-point numbers

PRINT USING

Statements and Functions 4-203

PRINT USING

©

	

The string length for STRING values
2. A terminal or terminal-format file must be open on the specified channel or

BASIC-PLUS-2 signals an error .
3. The separator characters (comma or semicolon) in the PRINT USING

statement do not control the print format . The print format is controlled by
the format string. Therefore, it does not matter whether you use a comma
or semicolon .

4 . Formatting Numeric Output
©

	

The number sign (#) reserves space for one sign or digit .
©

	

The comma (,) causes BASIC-PLUS-2 to insert commas before every
third significant digit to the left of the decimal point . In the format
field, the comma must be to the left of the decimal point and to the
right of the rightmost dollar sign, asterisk, or number sign . A comma
reserves space for a comma or digit.

© The period (.) inserts a decimal point . The number of reserved places
on either side of the period determines where the decimal point appears
in the output .

©

	

The hyphen (-) reserves space for a sign and specifies trailing minus
sign format. If present, it must be the last character in the format field .
It causes BASIC-PLUS-2 to print negative numbers with a minus sign
after the last digit, and positive numbers with a trailing space. The
hyphen (-) can be used as part of a dollar sign ($$) format field .

©

	

The letters CD (Credit/Debit) enclosed in angle brackets (<CD>) print
CR (Credit Record) after negative numbers, or zero and DR (Debit
Record) after positive numbers . If present, they must be the last
characters in the format field . The Credit/Debit format can be used as
part of a dollar sign ($$) format field .

© Four carets (^^^^) specify E notation for floating-point numbers . They
reserve four places for SINGLE and DOUBLE values . If present, they
must be the last characters in the format field .

©

	

Two dollar signs ($$) reserve space for a dollar sign and a digit and
cause BASIC-PLUS-2 to print a dollar sign immediately to the left of
the most significant digit .

©

	

Two asterisks (**) reserve space for two digits and cause
BASIC-PLUS-2 to fill the left side of the numeric field with leading
asterisks .

4-204 Statements and Functions

© A zero enclosed in angle brackets (<0>) prints leading zeros instead of
leading spaces .

©

	

A percent sign enclosed in angle brackets (<%>) prints all spaces in the
field if the value of the print item is zero .

Note

You cannot specify the dollar sign ($$), asterisk-fill (**), and zero-fill
(<0>) formats within the same print field . Similarly, BASIC-PLUS-2
does not allow you to specify the zero-fill (<0>) and the blank-if-zero
(<%>) formats within the same print field .

©

	

An underscore (_) forces the next formatting character in the format
string to be interpreted as a literal . It affects only the next character .
If the next character is not a valid formatting character, the underscore
has no effect .

5 . BASIC-PLUS-2 interprets any other characters in a numeric format string
as string literals .

6 . Depending on usage, the same format string characters can be combined to
form one or more print fields within a format string. For example :

©

	

When a dollar sign ($$) or asterisk-fill (**) format precedes a number
sign (#) , it modifies the number sign format . The dollar sign or
asterisk-fill format reserves two places, and with the number signs
forms one print field . For example :

$$###

	

Forms one field and reserves five spaces
**## Forms one field and reserves four spaces
When these formats are not followed by a number sign or a blank-if-
zero (<%>) format, they reserve two places and form a separate print
field .

© When a zero-fill (<0>) or blank-if-zero format precedes a number sign,
it modifies the number sign format . The <0> or <%> reserves one place,
and with the number signs forms one print field . For example :

<0>####

	

Forms one field and reserves five spaces
<%>###

	

Forms one field and reserves four spaces
When these formats are not followed by a number sign, they reserve
one space and form a separate print field .

PRINT USING

Statements and Functions 4-205

PRINT USING

© When a blank-if-zero (<%>) format follows a dollar sign or asterisk-fill
format (**), it modifies the dollar sign ($$) or asterisk fill (**) format
string. The blank-if-zero reserves one space, and with the dollar signs
or asterisks forms one print field . For example :
$$<%>###

	

Forms one field and reserves six spaces
**<%>##

	

Forms one field and reserves five spaces
When the blank-if-zero precedes the dollar signs or asterisks, it
reserves one space and forms a separate print field .

7 . For E notation, PRINT USING left justifies the number in the format field
and adjusts the exponent to compensate, except when printing zero . When
printing zero in E notation, BASIC-PLUS-2 prints leading spaces, leading
zeros, a decimal point, and zeros in the fractional portion if the PRINT
USING string contains these formatting characters, and then the string
"E+00 ."

8. Zero cannot be negative. If a small negative number rounds to zero, it is
represented as a positive zero .

9 . If there are reserved positions to the left of the decimal point, and the
printed number is less than 1, BASIC-PLUS-2 prints one zero to the left
of the decimal point and pads with spaces to the left of the zero .

10. If there are more reserved positions to the right of the decimal point than
fractional digits, BASIC-PLUS-2 prints trailing zeros in those positions .

11. If there are fewer reserved positions to the right of the decimal point than
fractional digits, BASIC-PLUS-2 rounds the number to fit the reserved
positions .

12. If a number does not fit in the specified format field, BASIC-PLUS-2
prints a percent sign warning symbol (%), followed by the number in
PRINT format .

13. Formatting String Output
© Format string characters control string output and can be entered only

as uppercase characters . All format characters except the backslash
and exclamation point must start with a single quotation mark (') . A
single quote by itself reserves one character position . A single quote
followed by any format characters marks the beginning of a character
format field and reserves one character position .

4-206 Statements and Functions

PRINT USING

© L reserves one character position . The number of Ls plus the leading
single quote determines the field's size . BASIC-PLUS-2 left justifies
the print expression and pads with spaces if the print expression is less
than or equal to the field's width . If the print expression is larger than
the field, BASIC-PLUS-2 left justifies the expression and truncates its
right side to fit the field .

© R reserves one character position. The number of Rs plus the leading
single quote determines the field's size . BASIC-PLUS-2 right-justifies
the print expression and pads with spaces if the print expression is less
than or equal to the field's width. If the print expression is larger than
the field, BASIC-PLUS-2 truncates the right side to fit the field .

©

	

C reserves one character position. The number of Cs plus the leading
single quote determines the field's size . If the string does not fit
in the field, BASIC-PLUS-2 truncates its right side ; otherwise,
BASIC-PLUS-2 centers the print expression in this field . If the string
cannot be centered exactly, it is offset one character to the left .

© E reserves one character position. The number of Es plus the leading
single quote determines the field's size . BASIC-PLUS-2 left justifies
the print expression if it is less than or equal to the field's width and
pads with spaces ; otherwise, BASIC-PLUS-2 expands the field to hold
the entire print expression .

©

	

Two backslashes (\ \) when separated by n spaces reserve n+2
character positions . PRINT USING left justifies the string in this field .
BASIC-PLUS-2 does not allow a leading quotation mark with this
format .

© An exclamation point (!) creates a 1-character field . The exclamation
point both starts and ends the field . BASIC-PLUS-2 does not allow a
leading quotation mark with this format .

14. BASIC-PLUS-2 interprets any other characters in the format string as
string literals and prints them exactly as they appear .

15. If a comma or semicolon follows the last item, the following occurs :
output-list

© When printing to a terminal, BASIC-PLUS-2 does not generate a line
terminator after printing the last item . The next item printed with a
PRINT statement is printed at the position specified by the separator
character following the last item in the first PRINT statement .

Statements and Functions 4-207

PRINT USING

Examples

©

	

When printing to a terminal-format file, BASIC-PLUS-2 does not write
out the record until a PRINT statement without trailing punctuation
executes .

16. If no punctuation follows the last item in output-list, the following occurs :

©

	

When printing to a terminal, BASIC-PLUS-2 generates a line
terminator after printing the last item .

©

	

When printing to a terminal-format file, BASIC-PLUS-2 writes out the
record after printing the last item .

1 .

	

200 PRINT USING "### .###",-12 .345
PRINT USING "## .###",12 .345

The output is :
-12 .345
12 .345

2. 30 INPUT "Your Name" ;Winner$
Jackpot = 10000 .0

PRINT USING "CONGRATULATIONS, 'EEEEEEEEE, YOU WON $$##### .##",
Winner$, Jackpot

END

The output is :
Your Name? Hortense Corabelle
CONGRATULATIONS, Hortense Corabelle, YOU WON $10000 .00

4-208 Statements and Functions

PROD$

Format

The PROD$ function returns a numeric string that is the product of two
numeric strings . The precision of the returned numeric string depends on the
value of an integer argument .

str-var = PROD$(str-expl, str-exp2, int-exp)

PROD$

Syntax Rules
1 . Str-expl and str-exp2 specify the numeric strings you want to multiply . A

numeric string can have ASCII digits, an optional minus sign (-), and an
optional decimal point (.) .

2. If str-exp consists of more than 60 characters, BASIC-PLUS-2 signals the
error "Illegal number" (ERR=52) .

3 . Int-exp specifies the numeric precision of str-exp . Table 4-6 shows examples
of rounding and truncation and the values of int-exp that produce them .

Remarks
1 . Str-exp is rounded or truncated, or both, according to the value of int-exp .

2. If int-exp is between -60 and 60, rounding and truncation occur as follows :

©

	

For positive integer expressions, rounding occurs to the right of the
decimal place. For example, if int-exp is 1, rounding occurs one digit
to the right of the decimal place (the number is rounded to the nearest
tenth). If int-exp is 2, rounding occurs two digits to the right of the
decimal place (the number is rounded to the nearest hundredth), and
so on .

©

	

If int-exp is zero, BASIC-PLUS-2 rounds to the nearest unit .

© For negative integer expressions, rounding occurs to the left of the
decimal point. If int-exp is -1, for example, BASIC-PLUS-2 moves
the decimal point one place to the left, then rounds to units . If int-

exp is -2, rounding occurs two places to the left of the decimal point ;
BASIC-PLUS-2 moves the decimal point two places to the left, then
rounds to tens .

Statements and Functions 4-209

PROD$

Example

3. If int-exp is between 9940 and 10,060, truncation occurs as follows :

©

	

If int-exp is 10,000, BASIC-PLUS-2 truncates the number at the
decimal point .

©

	

If int-exp is greater than 10,000 (10000 plus n) BASIC-PLUS-2
truncates the numeric string n places to the right of the decimal point .
For example, if int-exp is 10,001 (10,000 plus 1), BASIC-PLUS-2
truncates the number starting one place to the right of the decimal
point . If int-exp is 10,002 (10,000 plus 2), BASIC-PLUS-2 truncates
the number starting two places to the right of the decimal point, and so
on .

©

	

If int-exp is less than 10,000 (10,000 minus n), BASIC-PLUS-2
truncates the numeric string n places to the left of the decimal point .
For example, if int-exp is 9999 (10,000 minus 1), BASIC-PLUS-2
truncates the number starting one place to the left of the decimal point .
If 9998 (10,000 minus 2), BASIC-PLUS-2 truncates starting two places
to the left of the decimal point, and so on .

4. If int-exp is not between -60 and 60 or 9940 and 10,060, BASIC-PLUS-2
returns a value of zero .

5. If you specify a floating-point expression for int-exp, BASIC-PLUS-2
truncates it to an integer of the default size .

10 DECLARE STRING num expl, &
num_exp2, &
product

num expl = "34 .555"
num exp2 = "297 .676"
product = PROD$(num expl, num exp2, 1)
PRINT product

The output is :

10286 .2

4-210 Statements and Functions

PROGRAM

Format

The PROGRAM statement allows you to identify a main program with a name
other than the file name .

PROGRAM prog-name

Syntax Rules
Prog-name specifies the module name of the compiled source and cannot be the
same as any SUB or FUNCTION name .

Remarks
1. The PROGRAM statement must be the first statement in a main program

and can be preceded only by comment fields and lexical directives .

2 . If you examine the program using the BASIC-PLUS-2 Debugger, the
program name you specify will be the module name used .

3 . The PROGRAM statement is optional ; BASIC-PLUS-2 allows you to
specify an END PROGRAM statement and an EXIT PROGRAM statement
without a matching PROGRAM statement .

Example

20 PROGRAM first test

END PROGRAM

PROGRAM

Statements and Functions 4-211

PUT

PUT

Format

The PUT statement transfers data from the record buffer to a file . PUT
statements are valid on RMS sequential, relative, indexed, and block I/O files .
You cannot use PUT statements on terminal-format files, virtual array files, or
files opened with the ORGANIZATION UNDEFINED clause .

PUT #chnl-exp [,RECORD num-exp [,COUNT int-exp]]

Syntax Rules
1 . Chnl-exp is a numeric expression that specifies a channel number

associated with a file . It must be immediately preceded by a number
sign (#) .

2 . The RECORD clause allows you to randomly write records to a relative
file by specifying the record number. Num-exp must be between 1 and the
maximum record number allowed for the file . BASIC-PLUS-2 does not
allow you to use the RECORD clause on sequential variable, sequential
fixed, sequential stream, or indexed files .

3. Int-exp in the COUNT clause specifies the record's size . If there is
no COUNT clause, the record's size is that defined by the MAP or
RECORDSIZE clause in the OPEN statement . The RECORDSIZE clause
overrides the MAP clause .
© If you write a record to a file with variable-length records, int-exp must

be an integer from zero through the maximum record size specified in
the OPEN statement .

©

	

If int-exp equals zero, the entire record is written to the file .
© If you write a record to a file with fixed-length records, the COUNT

clause serves no purpose . If used, int-exp must equal the record size
specified in the OPEN statement .

4-212 Statements and Functions

PUT

Remarks

1 . For sequential access, the file associated with chnl-exp must be open with
ACCESS WRITE, MODIFY, SCRATCH, or APPEND .

2 . For random access, the relative or sequential fixed file associated with
chnl-exp must be open with ACCESS WRITE or MODIFY.

3 . To add records to an existing sequential file, open it with ACCESS
APPEND. If you are not at the end of the file when attempting a PUT
to a sequential file, BASIC-PLUS-2 signals "Not at end of file" (ERR=149) .

4. After a PUT statement executes, there is no current record pointer. The
next record pointer is set as follows :
©

	

For sequential files, variable and stream PUT operations set the next
record pointer to the end of the file .

©

	

For relative and sequentially fixed files, a sequential PUT operation
sets the next record pointer to the next record plus 1 .

©

	

For relative and sequential fixed files, a random PUT operation leaves
the next record pointer unchanged .

©

	

For indexed files, a PUT operation leaves the next record pointer
unchanged .

5. When you specify a RECORD clause, BASIC-PLUS-2 evaluates num-exp
and uses this value as the relative record number of the target cell .
©

	

If the target cell is empty or occupied by a deleted record,
BASIC-PLUS-2 places the record in that cell .

© If there is a record in the target cell and the file has not been opened as
a VIRTUAL file, the PUT statement fails, and BASIC-PLUS-2 signals
the error "Record already exists" (ERR=153) .

6. A PUT statement with no RECORD clause writes records to the file as
follows :
©

	

For sequential variable and stream files, a PUT operation adds a record
at the end of the file .

©

	

For relative and sequential fixed files, a PUT operation places the
record in the empty cell pointed to by the next record pointer. If the file
is empty, the first PUT operation places a record in cell number 1, the
second in cell number 2, and so on .

Statements and Functions 4-213

PUT

©

	

For indexed files, RMS stores records in order of ascending primary key
value and updates all indexes so that they point to the record .

7. When you open a file as ORGANIZATION VIRTUAL, the file you open is a
sequential fixed file with a record size that is a multiple of 512 bytes . You
can then access the file with the FIND, GET, PUT, or UPDATE statements
or through one or more virtual arrays . BASIC-PLUS-2 allows you to
overwrite existing records in a file not containing virtual arrays and
opened as ORGANIZATION VIRTUAL by using the PUT statement with a
RECORD clause . All other organizations require the UPDATE statement
to change an existing record . It is recommended that you also use the
UPDATE statement to change existing records in VIRTUAL files that do
not contain virtual arrays .

8 . If an existing record in an indexed file has a record with the same key
value as the one you want to put in the file, BASIC-PLUS-2 signals
the error "Duplicate key detected" (ERR=134) if you did not specify
DUPLICATES for the key in the OPEN statement . If you specified
DUPLICATES, RMS stores the duplicate records in a first-in/first-out
sequence .

9. The number specified in the COUNT clause determines how many bytes
are transferred from the buffer to a file :
© If you have not completely filled the record buffer before executing a

PUT statement, BASIC-PLUS-2 pads the record with nulls to equal
the specified value .

©

	

If the specified COUNT value is less than the buffer size, the record is
truncated to equal the specified value .

©

	

The number in the COUNT clause must not exceed the size specified
in the MAP or RECORDSIZE clause in the OPEN statement or
BASIC-PLUS-2 signals "Size of record invalid" (ERR=156) .

©

	

For files with fixed-length records, the number in the COUNT clause
must match the record size.

10. Although block I/O files are implemented through RMS-11 on RSX systems
when you write a record to a block I/O file, RMS-11 does not perform the
same error checking as with relative files . A PUT will write a record to a
disk block specified in the RECORD clause, regardless of whether the block
already contains a record. See the BASIC-PLUS-2 User's Guide for more
information on RMS-11 block I/O files .

11. See the BASIC-PLUS-2 User's Guide for more information on RSTS/E
native mode files .

4-214 Statements and Functions

Examples

PUT

Statements and Functions 4-215

1 . 10 !Sequential, Relative, Indexed, and Virtual Files
PUT #3, COUNT 55%

2 . 10 !Relative and Virtual Files Only
PUT #5, RECORD 133, COUNT 16%

QUO$

QUO$

Format

The QUO$ function returns a numeric string that is the quotient of two
numeric strings . The precision of the returned numeric string depends on the
value of an integer argument .

str-var = QUO$(str-expl, str-exp2, int-exp)

Syntax Rules
1 . Str-expl and str-exp2 specify the numeric strings you want to divide. A

numeric string can have ASCII digits, an optional minus sign (-), and an
optional decimal point (.)

2 . Int-exp specifies the numeric precision of str-exp . Table 4-6 shows examples
of rounding and truncation and the values of int-exp that produce them.

Remarks
1 . If str-exp consists of more than 60 characters, BASIC-PLUS-2 signals the

error "Illegal number" (ERR=52) .
2 . Str-exp is rounded or truncated, or both, according to the value of int-exp .

3 . If int-exp is between -60 and 60, rounding and truncation occur as follows :
©

	

For positive integer expressions, rounding occurs to the right of the
decimal place. For example, if int-exp is 1, rounding occurs one digit
to the right of the decimal place (the number is rounded to the nearest
tenth) . If int-exp is 2, rounding occurs two digits to the right of the
decimal place (the number is rounded to the nearest hundredth), and
so on .

©

	

If int-exp is zero, BASIC-PLUS-2 rounds to the nearest unit .
© For negative integer expressions, rounding occurs to the left of the

decimal point . If int-exp is -1, for example, BASIC-PLUS-2 moves
the decimal point one place to the left, then rounds to units . If int-
exp is -2, rounding occurs two places to the left of the decimal point ;
BASIC-PLUS-2 moves the decimal point two places to the left, then
rounds to tens .

4-216 Statements and Functions

Example

4 . If int-exp is between 9940 and 10,060, truncation occurs as follows :
©

	

If int-exp is 10000, BASIC-PLUS-2 truncates the number at the
decimal point .

©

	

If int-exp is greater than 10,000 (10,000 plus n) BASIC-PLUS-2
truncates the numeric string n places to the right of the decimal point .
For example, if int-exp is 10,001 (10,000 plus 1), BASIC-PLUS-2
truncates the number starting one place to the right of the decimal
point. If int-exp is 10,002 (10,000 plus 2), BASIC-PLUS-2 truncates
the number starting two places to the right of the decimal point, and so
on .

©

	

If int-exp is less than 10,000 (10,000 minus n), BASIC-PLUS-2
truncates the numeric string n places to the left of the decimal point .
For example, if int-exp is 9999 (10,000 minus 1), BASIC-PLUS-2
truncates the number starting one place to the left of the decimal point .
If 9998 (10,000 minus 2), BASIC-PLUS-2 truncates starting two places
to the left of the decimal point, and so on .

5 . If int-exp is not between -60 and 60 or 9940 and 10,060, BASIC-PLUS-2
returns a value of zero .

6 . If you specify a floating-point expression for int-exp, BASIC-PLUS-2
truncates it to an integer of the default size .

100 DECLARE STRING num_str1, &
num_str2, &
quotient

num_strl = "458996 .43"
num_str2 = "123222 .444"
quotient = QUO$(num_strl, num_str2, 2)
PRINT quotient

The output is :

3 .72

QUO$

Statements and Functions 4-217

RAD$

RAD$

Format

Syntax Rules
None .

Remarks
1 . The RAD$ function converts int-var to a 3-character string in Radix-50

format and stores it in str-var . Radix-50 format allows you to store three
characters of data as a 2-byte integer .

2 . If you specify a floating-point variable for int-var, BASIC-PLUS-2
truncates it to an integer of the default size .

3 . See the BASIC-PLUS-2 User's Guide for information on the Radix-50
character set and ASCII/Radix-50 equivalents .

Example

100 DECLARE STRING radix
radix = RAD$(1683)

The RAD$ function converts a specified integer in Radix-50 format to a 3-
character string .

str-var = RAD$(int-var)

4-218 Statements and Functions

RANDOMIZE

Format

Syntax Rules
None .

Remarks
1 . Without the RANDOMIZE statement, successive runs of the same program

generate the same random number sequence .

2 . If you use the RANDOMIZE statement before invoking the RND function,
the starting point changes for each run . Therefore, a different random
number sequence appears each time .

Example

20 DECLARE REAL random_num
RANDOMIZE

FOR I = 1 TO 2
random_num = RND
PRINT random_num

NEXT I

The output is :

.379784

.311572

RANDOMIZE

The RANDOMIZE statement gives the random number function RND a new
starting value .

1
RANDOMIZE
RANDOM

Statements and Functions 4-219

RCTRLC

RCTRLC

Format

Syntax Rules
None .

Remarks
1 . After BASIC-PLUS-2 executes the RCTRLC function, a Ctrl/C entered

at the terminal returns you to DCL command level or to the BASIC
environment .

2 . RCTRLC always returns a value of zero .

Example

100 Y = RCTRLC

The RCTRLC function disables Ctrl/C trapping .

int-var = RCTRLC

4-220 Statements and Functions

RCTRLO

Format

The RCTRLO function cancels the effect of a C/o entered on a terminal opened
on a specified channel .

int-var = RCTRLO (chnl-exp)

RCTRLO

Syntax Rules
Chnl-exp is a numeric expression that specifies a channel number associated
with an open terminal . It cannot be preceded by a number sign (#) .

Remarks
1 . If you enter a Ctrl/O to cancel terminal output, nothing is printed on the

specified terminal until your program executes the RCTRLO or until you
enter another Ctrl/O, at which time normal terminal output resumes .

2. The RCTRLO function always returns a value of zero .

3. RCTRLO has no effect if the specified channel is open to a device that does
not use the Ctrl/O convention .

Example

10 PRINT "A" FOR I% = 1% TO 10%
Y% = RCTRLO(0%)
PRINT "Normal output is resumed"

The output is :

A
A
A
A

Statements and Functions 4-221

READ

READ

Format

Syntax Rules
None .

Remarks
1 . If your program has a READ statement without DATA statements,

BASIC-PLUS-2 signals a compile-time error .

2 . When BASIC-PLUS-2 initializes a program unit, it forms a data sequence
of all values in all DATA statements . An internal pointer points to the first
value in the sequence .

3. When BASIC-PLUS-2 executes a READ statement, it sequentially assigns
values from the data sequence to variables in the READ statement variable
list. As BASIC-PLUS-2 assigns each value, it advances the internal
pointer to the next value .

4. BASIC-PLUS-2 signals the error "Out of data" (ERR=57) if there are fewer
data elements than READ statements . Extra data elements are ignored .

5. The data type of the value must agree with the data type of the variable
to which it is assigned or BASIC-PLUS-2 signals "Data format error"
(ERR=50) .

6 . If you read a string variable and the DATA element is an unquoted string,
BASIC-PLUS-2 ignores leading and trailing spaces. If the DATA element
contains any commas, they must be inside quotation marks .

7. BASIC-PLUS-2 evaluates subscript expressions in the variable list
after it assigns a value to the preceding variable, and before it assigns a
value to the subscripted variable . For instance, in the following example,
BASIC-PLUS-2 assigns the value of 10 to variable A, then assigns the
string LESTER to array element A$(A) .

The READ statement assigns values from a DATA statement to variables .

READ var, . . .

4-222 Statements and Functions

Example

100 READ A, A$(10)

900 DATA 10, LESTER

The string, LESTER, will be assigned to A$(10) .

10 DECLARE STRING A,B,C
READ A,B,C
DATA "X", "Y", "Z"
PRINT A + B + C

The output is :

XYZ

READ

Statements and Functions 4-223

REAL

REAL

Format

Syntax Rules
Exp can be either numeric or string . If a string, it can contain the ASCII digits
0 through 9, uppercase E, a plus sign (+), a minus sign (-), and a period (.) .

Remarks
1 . BASIC-PLUS-2 evaluates exp, then converts it to the specified REAL size .

If you do not specify a size, BASIC-PLUS-2 uses the default REAL size .

2 . BASIC-PLUS-2 ignores leading and trailing spaces and tabs if exp is a
string .

3 . The REAL function returns a value of zero when a string argument
contains only spaces and tabs, or when the argument is null .

Example

100 DECLARE STRING any_num
INPUT "Enter a number" ;any num
PRINT REAL(any num, DOUBLE)

The output is :

Enter a number? 123095959
.123096E+09

The REAL function converts a numeric expression or numeric string to a
specified or default floating-point data type .

real-var = REAL(exp [
:DOUBLE,DOUBLE

4-224 Statements and Functions

RECOUNT

Format

Syntax Rules
None .

Remarks
1 . The RECOUNT value is reset by every input operation on any channel,

including channel #0 .
©

	

After an input operation from your terminal, RECOUNT contains the
number of characters (bytes) transferred (including line terminators) .

©

	

After accessing a file record, RECOUNT contains the number of
characters in the record .

2 . Because RECOUNT is reset by every input operation on any channel, you
should copy the RECOUNT value to a different storage location before
executing another input operation.

3. If an error occurs during an input operation, the value of RECOUNT is
undefined .

4. RECOUNT is unreliable after a Ctrl/C interrupt because the Ctrl/C trap
may have occurred before BASIC-PLUS-2 set the value for RECOUNT .

5. The RECOUNT function returns a WORD value .

RECOUNT

The RECOUNT function returns the number of characters transferred by the
last input operation .

int-var = RECOUNT

Statements and Functions 4-225

RECOUNT

Example

200 DECLARE INTEGER character_count
INPUT "Enter a sequence of numeric characters" ;character_count
character-count = RECOUNT
PRINT character count ;"characters received (including CR and LF)"

The output is :

Enter a sequence of numeric characters? 12345678
10 characters received (including CR and LF)

4-226 Statements and Functions

REM

Format

The REM statement allows you to document your program .

REM [comment]

REM

Syntax Rules
1 . REM must be the only statement on the line or the last statement on a

multi-statement line .
2 . BASIC-PLUS-2 interprets every character between the keyword REM and

the next line number as part of the comment .

3. Because the REM statement is not executable, you can place it anywhere
in a program, except where other statements, such as SUB and END SUB,
must be the first or last statement in a program unit .

Remarks
1. When the REM statement is the first statement on a line-numbered line,

BASIC-PLUS-2 treats any reference to that line number as a reference to
the next higher-numbered executable statement .

2 . The REM statement is similar to the comment field that begins with an
exclamation point, with one exception : the REM statement must be the
last statement on a BASIC line . The exclamation point comment field can
be ended with another exclamation point or a line terminator and followed
by a BASIC-PLUS-2 statement . See Chapter 1 of this manual for more
information on the comment field .

Statements and Functions 4-227

REM

Example

10 REM This is a multi-line comment
All text up to BASIC line 20 is a part of this REM statement .
Any BASIC statements on line 10 are ignored .

PRINT "This does not execute" .

20 PRINT "This will execute"

The output is :

This will execute

4-228 Statements and Functions

REMAP

Format

The REMAP statement defines or redefines the position in the storage area of
variables named in the MAP DYNAMIC statement .

REMAP (map-dyn-name) remap-item, . . -

map-dyn-name : 1
map-name
static-str-var

num-var
num-array-name ([int-exp, . . .])
str-var [= int-exp]

remap-item :

	

str-array-name ([int-exp, . . .])[= int-exp]
[data-type] FILL [(int-exp)] [= int-exp]
FILL% [(int-exp)]
FILL$ [(int-exp)][= int-exp]

Syntax Rules
1 . Map-dyn-name can be either a map name or a static string variable .

©

	

Map-name is the storage area named in a MAP statement .
©

	

If you specify a map name, then a MAP statement with the same name
must precede both the MAP DYNAMIC statement and the REMAP
statement .

©

	

When you specify a static string variable, the string must be declared
before you can specify a MAP DYNAMIC statement or a REMAP
statement .

©

	

If you specify a static-str-var, the following restrictions apply :
Static-str-var cannot be a string constant .
Static-str-var cannot be the same as any previously declared
map-item in a MAP DYNAMIC statement .
Static-str-var cannot be a subscripted variable .

REMAP

Statements and Functions 4-229

REMAP

2. Remap-item names a variable, array, or array element declared in a
preceding MAP DYNAMIC statement :
©

	

Num-var specifies a numeric variable or array element . Num-array-
name followed by a set of empty parentheses specifies an entire
numeric array.

©

	

Str-var specifies a string variable or array element . Str-array-name
followed by a set of empty parentheses specifies an entire fixed-length
string array. You can specify the number of bytes to be reserved for
string variables and array elements with the =int-exp clause. The
default string length is 16 .

3 . Remap-item can also be a FILL item . The FILL, FILL%, and FILL$
keywords let you reserve parts of the record buffer . Int-exp specifies the
number of FILL items to be reserved . The =int-exp clause allows you to
specify the number of bytes to be reserved for string FILL items . Table 4-2
describes FILL item format and storage allocation .

Note

In the FILL clause, (int-exp) represents a repeat count, not an array
subscript. FILL (n), for example, represents n elements, not n + 1 .

4. All remap-items, except FILL items, must have been named in a previous
MAP DYNAMIC statement, or BASIC-PLUS-2 signals an error.

5 . Data-type can be any BASIC-PLUS-2 data type keyword . Data type
keywords and their size, range, and precision are listed in Table 1-2 in this
manual. You can specify a data type only for FILL items . If you do not
specify a data type, FILL items take the current default data type and size .

6 . Remap-items must be separated with commas .

Remarks
1. The REMAP statement does not affect the amount of storage allocated to

the map area .
2 . Each time a REMAP statement executes, BASIC-PLUS-2 sets record

pointers to the named map area for the specified variables from left to
right .

4-230 Statements and Functions

REMAP

3 . The REMAP statement must be preceded by a MAP DYNAMIC statement
or BASIC-PLUS-2 signals the error "No such MAP area <name> ." The
MAP statement or static string variable creates a named area of static
storage, the MAP DYNAMIC statement specifies the variables whose
positions can change at run time, and the REMAP statement specifies the
new positions for the variables names in the MAP DYNAMIC statement .

4. Before you can specify a map name in a REMAP statement, there must be
a MAP statement in the program unit with the same map name ; otherwise,
BASIC-PLUS-2 signals the error "<Name> is not a DYNAMIC MAP
variable of MAP <name> ." Similarly, before you can specify a static string
variable in a REMAP statement, the string variable must be declared or
BASIC-PLUS-2 signals the same error message .

5. If a static string variable is the same as a map name, BASIC-PLUS-2
overrides the static string name and uses the map name .

6. Until the REMAP statement executes, all variables named in the MAP
DYNAMIC statement point to the first byte of the MAP area and all string
variables have a length of zero . When the REMAP statement executes,
BASIC-PLUS-2 sets the internal pointers as specified in the REMAP
statement. For example :
100

	

MAP (DUMMY) STRING map buffer = 50
MAP DYNAMIC (DUMMY) LONG A, STRING B, SINGLE C(7)
REMAP (DUMMY) B=14, A, C))

The REMAP statement sets a pointer to byte 1 of DUMMY for string
variable B, a pointer to byte 15 for LONG variable A, and pointers to bytes
19, 23, 27, 31, 35, 39, 43, and 47 for the elements in SINGLE array C .

7. You can use the REMAP statement to redefine the pointer for an array
element or variable more than once in a single REMAP statement . For
example :
100

	

MAP (DUMMY) STRING FILL = 48
MAP DYNAMIC (DUMMY) LONG A, B(10)
REMAP (DUMMY) BO, B(0)

This REMAP statement sets a pointer to byte 1 in DUMMY for array B .
Because array B uses a total of 44 bytes, the pointer for the first element
of array B, B(O) points to byte 45 . References to array element B(0) will be
to bytes 45 through 48. Pointers for array elements 1 through 10 are set to
bytes 5, 9, 13, 17, and so forth .

8 . Because the REMAP statement is local to a program module, it affects
pointers only in the program module in which it executes .

Statements and Functions 4-231

REMAP

Examples

1 . 20 DECLARE LONG CONSTANT emp_fixed_info = 4 + 9 + 2
MAP (employ) LONG badge,

	

&
STRING social see num = 9,

	

&
BYTE name_ length,

	

&
address-length,

	

&
FILL (60)

MAP DYNAMIC (employ) STRING emp name,

	

&
emp address

WHILE 1%
GET #1
REMAP (employ) STRING FILL = emp_fixed_info, &

emp name = name-length, &
emp address = address-length

PRINT emp name
PRINT emp address
PRINT

NEXT

END

2. 900 SUB deblock (STRING input rec, STRING item())
MAP DYNAMIC (input rec) STRING A(3)
REMAP (input_rec) &

A(1) = 5, &
A(2) = 3, &
A(3) = 4

FOR I = 1 TO 3
item(I) = A(I)

NEXT I
END SUB

4-232 Statements and Functions

RESET

Format

The RESET statement is a synonym for the RESTORE statement . See the
RESTORE statement for more information .

RESET [#chnl-exp [, KEY #int-exp]]

RESET

Statements and Functions 4-233

RESTORE

RESTORE

Format

The RESTORE statement resets the DATA pointer to the beginning of the
DATA sequence, or sets the record pointer to the first record in a file .

RESTORE [#chnl-exp [, KEY #int-exp]]

Syntax Rules
1 . Chnl-exp is a numeric expression that specifies a channel number

associated with a file. It must be immediately preceded by a number
sign (#) .

2 . Int-exp must be an integer from zero through the number of keys in the file
minus 1. It must be immediately preceded by a number sign (#) .

Remarks
1 . If you do not specify a channel, RESTORE resets the DATA pointer to the

beginning of the DATA sequence .
2 . RESTORE affects only the current program unit . Thus, executing a

RESTORE statement in a subprogram does not affect the DATA pointer in
the main program .

3 . If there is no channel specified, and the program has no DATA statements,
RESTORE has no effect .

4 . The file specified by chnl-exp must be open .
5 . If chnl-exp specifies a magnetic tape file, BASIC-PLUS-2 rewinds the tape

to the first record in the file .
6 . The KEY clause applies to indexed files only . It sets a new key of reference

equal to int-exp and sets the next record pointer to the first logical record
in that key.

7 . For indexed files, the RESTORE statement without a KEY clause sets the
next record pointer to the first logical record specified by the current key of
reference. If there is no current key of reference, the RESTORE statement
sets the next record pointer to the first logical record of the primary key .

8 . If you use the RESTORE statement on any file type other than indexed,
BASIC-PLUS-2 sets the next record pointer to the first record in the file .

4-234 Statements and Functions

RESUME

RESUME

Format

The RESUME statement marks an exit point from an ON ERROR error-
handling routine . BASIC-PLUS-2 clears the error condition and returns
program control to a specified line number or label, or to the program block in
which the error occurred .

RESUME [target]

Syntax Rules
Target must be a valid BASIC-PLUS-2 line number or label and must exist in
the same program unit .

Remarks
1 . The following restrictions apply :

©

	

The RESUME statement cannot be used in a multi-line DEF unless the
target is also in the DEF function definition .

©

	

The execution of a RESUME with no target is illegal if there is no error
active .

©

	

A RESUME statement cannot transfer control out of the current
program unit. Therefore, a RESUME statement with no target cannot
terminate an error handler if the error handler is handling an error
that occurred in a subprogram or an external function, and the error
was passed to the calling program's error handler by an ON ERROR
GO BACK statement or by default .

2. When no target is specified in a RESUME statement, BASIC-PLUS-2
transfers control based on where the error occurs. If the error occurs on
a numbered line containing a single statement, BASIC-PLUS-2 always
transfers control to that statement . When the error occurs within a multi-
statement line under the following conditions, BASIC-PLUS-2 acts as
follows :
©

	

Within a FOR, WHILE, or UNTIL loop, BASIC-PLUS-2 transfers
control to the first statement that follows the FOR, WHILE, or UNTIL
statement .

4-236 Statements and Functions

Example

9 . The RESTORE statement is not allowed on virtual array files or on files
opened on unit record devices .

200 RESTORE #7%, KEY #4%

RESTORE

Statements and Functions 4- 235

RETURN

RETURN

Format

Syntax Rules
None .

Remarks
1 . Once the RETURN is executed in a subroutine, no other statements in the

subroutine are executed, even if they appear after the RETURN statement .

2 . Execution of a RETURN statement before the execution of a GOSUB
or ON . . . GOSUB causes BASIC-PLUS-2 to signal "RETURN without
GOSUB" (ERR=72) .

Example

100 GOSUB subroutine-1

subroutine 1 :

RETURN

The RETURN statement transfers control to the statement immediately
following the most recently executed GOSUB or ON . . . GOSUB statement in
the current program unit .

RETURN

4-238 Statements and Functions

Example

©

	

Within a SELECT block, BASIC-PLUS-2 transfers control to the start
of the CASE block in which the error occurs .

©

	

After a loop or SELECT block, BASIC-PLUS-2 transfers control to the
statement that follows the NEXT or END SELECT statement .

©

	

If none of the above conditions occurs, BASIC-PLUS-2 transfers
control back to the statement that follows the most recent line number .

3. A RESUME statement with a specified line number transfers control to the
first statement of a multi-statement line, regardless of which statement
caused the error .

4. A RESUME statement with a specified label transfers control to the block
of code indicated by that label .

5. When BASIC-PLUS-2 executes a RESUME statement, it clears the error
condition .

6. After a Ctrl/C trap, a RESUME statement with no line number returns
control to the statement immediately following the previous line number .

RESUME

10 Error_routine :
IF ERR = 11

THEN
CLOSE #1
RESUME end-Of DroQ

ELSE
RESUME

END IF
end ofprog : END

Statements and Functions 4-237

RND

RND

Format

Syntax Rules
None .

Remarks
1 . If the RND function is preceded by a RANDOMIZE statement,

BASIC-PLUS-2 generates a different random number or series of numbers
each time a program executes .

2. The RND function returns a pseudorandom number if not preceded
by a RANDOMIZE statement; that is, each time a program runs,
BASIC-PLUS-2 generates the same random number or series of random
numbers .

3. The RND function returns a floating-point value of the default size .

Example

40 DECLARE REAL random_num
RANDOMIZE
FOR I = 1 TO 3

	

!FOR loop causes BASIC to print three random numbers
random_num = RND
PRINT random num

NEXT I

The output is :

.865243

.477417

.734673

The RND function returns a random number greater than or equal to zero and
less than 1 .

real-var = RND

4-240 Statements and Functions

RIGHT$

Format

Syntax Rules
None .

Remarks
1. The RIGHT$ function extracts a substring from str-exp and stores the

substring in str-var . The substring begins with the character in the
position specified by int-exp and ends with the rightmost character in the
string.

2. The length of the resulting string is the number of characters in str-exp

minus int-exp .

3 . If int-exp is less than or equal to zero, RIGHT$ returns the entire string .

4. If int-exp is greater than the length of str-exp, RIGHT$ returns a null
string .

5 . If you specify a floating-point expression for int-exp, BASIC-PLUS-2
truncates it to a WORD integer .

Example

50 DECLARE STRING main_str,

	

&
end_result

main_str = "1234567"
end result = RIGHT$(main_str, 3)
PRINT end result

The output is :

34567

The RIGHT$ function extracts a substring from a string's right side, leaving
the string unchanged .

str-var = RIGHT[$] (str-exp, int-exp)

RIGHT$

Statements and Functions 4-239

SCRATCH

SCRATCH

Format

The SCRATCH statement deletes the current record and all following records
in a sequential file .

SCRATCH #chnl-exp

Syntax Rules
Chnl-exp is a numeric expression that specifies a channel associated with a file .
It must be immediately preceded by a number sign (#) .

Remarks
1. The SCRATCH statement applies to ORGANIZATION SEQUENTIAL files

only.
2 . Before you execute the SCRATCH statement, the file must be opened with

ACCESS SCRATCH .
3. The SCRATCH statement has no effect on terminals or unit record devices .
4 . For disk files, the SCRATCH statement discards the current record and all

that follows it in the file . The physical length of the file does not change .

5 . For magnetic tape files, the SCRATCH statement overwrites the current
record with two end-of-file marks .

Example

600 SCRATCH #4%

4-242 Statements and Functions

RSET

Format

Syntax Rules
None .

Remarks
1. The RSET statement treats strings as fixed-length . It does not change the

length of str-var, nor does it create new storage locations .

2. If str-var is longer than str-exp, RSET right-justifies the data and pads it
with spaces on the left .

3 . If str-var is shorter than str-exp, RSET truncates str-exp on the left .

4 . With string virtual arrays, RSET changes the length of str-exp to the
declared length by padding it with spaces on the right . Note that the LET
statement uses null characters for padding .

Example

20 DECLARE STRING test
test = "ABCDE"
RSET test = "123"
PRINT "X" + test

The output is :

X 123

The RSET statement assigns right-justified data to a string variable . RSET
does not change a string variable's length .

RSET str-var, . . . = str-exp

RSET

Statements and Functions 4-241

SEG$

Example

10 DECLARE STRING alpha, center
alpha = "ABCDEFGHIJK"
center = SEG$(alpha, 4, 8)
PRINT center

The output is :

DEFGH

4-244 Statements and Functions

SEG$

Format

Syntax Rules
None .

Remarks
1 . BASIC-PLUS-2 extracts the substring from str-exp, the main string, and

stores the substring in str-var . The substring begins with the character
in the position specified by int-expl and ends with the character in the
position specified by int-exp2 .

2. If int-expl is less than 1, BASIC-PLUS-2 assumes a value of 1 .

3. If int-expl is greater than int-exp2 or the length of str-exp, the SEG$
function returns a null string.

4. If int-expl equals int-exp2, the SEG$ function returns the character at the
position specified by int-exp1 .

5 . Unless int-exp2 is greater than the length of str-exp, the length of the
returned substring equals int-exp2 minus int-expl plus 1 . If int-exp2 is
greater than the length of str-exp, the SEG$ function returns all characters
from the position specified by int-expl to the end of str-exp .

6. If you specify a floating-point expression for int-expl or int-exp2,

BASIC-PLUS-2 truncates it to WORD integer.

The SEG$ function extracts a substring from a main string, leaving the original
string unchanged .

str-var = SEG$(str-exp, int-expl, int-exp2)

SEG$

Statements and Functions 4-243

SELECT

© Exp3 and exp4 specify a range of numeric or string values separated
by the keyword TO. Multiple ranges must be separated with commas .
BASIC-PLUS-2 executes the statements in the CASE block when expl
falls within any of the specified ranges .

5. A SELECT statement can have only one else-clause . The else-clause is
optional and, when present, must be the last CASE block in the SELECT
block .

6 . The SELECT statement begins the SELECT BLOCK and the END
SELECT keywords terminate it. BASIC-PLUS-2 signals an error if you do
not include the END SELECT keywords .

7 . Each CASE keyword establishes a CASE block . The next CASE or END
SELECT keyword ends the CASE block .

8 . You can nest SELECT blocks within a CASE or CASE ELSE block .

Remarks
1 . Each statement in a SELECT block can have its own line number .
2 . BASIC-PLUS-2 evaluates expl when the SELECT statement is first

encountered; BASIC-PLUS-2 then compares expl with each case-clause in
order of occurrence until a match is found or until a CASE ELSE block or
END SELECT is encountered .

3 . The following conditions constitute a match :
©

	

Expl satisfies the relationship to exp2 specified by rel-op .
©

	

Exp1 is greater than or equal to exp3 but less than or equal to exp4,
greater than or equal to exp5 but less than or equal to exp6, and so on .

4 . When a match is found between expl and a case-item, BASIC-PLUS-2
executes the statements in the CASE block where the match occurred .
If ranges overlap, the first match causes BASIC-PLUS-2 to execute the
statements in the CASE block . After executing CASE block statements,
control passes to the statement immediately following the END SELECT
keywords .

5 . If no CASE match occurs, BASIC-PLUS-2 executes the statements in
the else-clause, if present, and then passes control to the statement
immediately following the END SELECT keywords .

6 . If no CASE match occurs and you do not supply a case-else clause, control
passes to the statement following the END SELECT keywords .

4-246 Statements and Functions

Example

100

	

SELECT A% + B% + C%
CASE = 100

PRINT 'THE VALUE IS EXACTLY 100'
CASE 1 TO 99

PRINT 'THE VALUE IS BETWEEN 1 AND 99'
CASE > 100

PRINT 'THE VALUE IS GREATER THAN 100'
CASE ELSE

PRINT 'THE VALUE IS LESS THAN 1'
END SELECT

SELECT

Statements and Functions 4-247

SET [NO] PROMPT

SET [NO] PROMPT

Format

Syntax Rules
None .

Remarks
1 . If you do not specify a SET PROMPT statement, the default is SET

PROMPT.
2 . SET NO PROMPT disables BASIC-PLUS-2 from issuing a question mark

prompt for the INPUT, LINPUT, INPUT LINE, MAT INPUT, and MAT
LINPUT statements on channel #0 .

3 . Prompting is reenabled when either a SET PROMPT statement or a
CHAIN statement is executed, or when a NEW, OLD, RUN or SCRATCH
command is executed in the BASIC environment.

4 . The SET NO PROMPT statement does not affect the string constant you
specify as the input prompt with the INPUT statement .

The SET PROMPT statement enables a question mark prompt to appear after
BASIC-PLUS-2 executes either an INPUT, LINPUT, INPUT LINE, MAT
INPUT, or MAT LINPUT statement on channel #0 . The SET NO PROMPT
statement disables the question mark prompt .

SET [NO] PROMPT

4-248 Statements and Functions

Example

20 DECLARE STRING your name, your age, your-grade
INPUT "Enter your name" ;your name
SET NO PROMPT
INPUT "Enter your age" ;your age
SET PROMPT
INPUT "Enter the last school grade you completed" ;your_grade

The output is :

Enter your name? Katherine Kelly
Enter your age 15
Enter the last school grade you completed? 9

SET [NO] PROMPT

Statements and Functions 4-249

SGN

SGN

Format

Syntax Rules
None .

Remarks
1 . If real-exp does not equal zero, SGN returns MAG(real-exp)/real-exp .
2 . If real-exp equals zero, SGN returns a value of zero .
3 . SGN returns a WORD integer.

Example

10 DECLARE INTEGER sign
sign = SGN(46/23)
PRINT sign

The output is :

1

The SGN function determines whether a numeric expression is positive,
negative, or zero . It returns a 1 if the expression is positive, a -1 if the
expression is negative, and zero if the expression is zero .

int-var = SGN(real-exp)

4-250 Statements and Functions

SIN

Format

Syntax Rules
Real-exp is an angle specified in radians .

Remarks

Example

The SIN function returns the sine of an angle in radians .

real-var = SIN(real-exp)

1. The returned value is between -1 and 1 .
2. BASIC-PLUS-2 expects the argument of the SIN function to be a real

expression. When the argument is a real expression, BASIC-PLUS-2
returns a value of the same floating-point size . When the argument is not
a real expression, BASIC-PLUS-2 converts the argument to the default
floating-point size and returns a value of the default floating-point size .

100 s1 angle = SIN(PI/2)
PRINT s1_angle

The output is :

1

SIN

Statements and Functions 4-251

SLEEP

SLEEP

Format

The SLEEP statement suspends program execution for a specified number of
seconds or until a carriage return is entered from the controlling terminal .

SLEEP int-exp

Syntax Rules
1 . Int-exp is the number of seconds BASIC-PLUS-2 waits before resuming

program execution .
2 . Int-exp must be an integer from 0 through 32767 ; if it is greater than

32767, BASIC-PLUS-2 signals the error "Integer error" (ERR=51) .

Remarks
Pressing the Return key on the controlling terminal cancels the effect of the
SLEEP statement .

Example

60 SLEEP 120%

4-252 Statements and Functions

SPACE$

Format

Syntax Rules
Int-exp specifies the number of spaces in the returned string .

Remarks
1 . BASIC-PLUS-2 treats an int-exp less than zero as zero .

2 . If you specify a floating-point expression for int-exp, BASIC-PLUS-2
truncates it to a WORD integer .

Example

10 DECLARE STRING A, B
A = "1234"
B = "5678"
PRINT A + SPACE$(5%) + B

The output is :

1234

	

5678

The SPACE$ function creates a string containing a specified number of spaces .

str-var = SPACE$(int-exp)

SPACE$

Statements and Functions 4-253

SQR

SQR

Format

Syntax Rules
None .

Remarks
1 . BASIC-PLUS-2 signals the error "Imaginary square roots" (ERR=54),

when real-exp is negative and returns the square root of the absolute value
of the expression .

2 . BASIC-PLUS-2 assumes that the argument of the SQR function is a real
expression. When the argument is a real expression, BASIC-PLUS-2
returns a value of the same floating-point size . When the argument is
not a real expression, BASIC-PLUS-2 returns a value of the default
floating-point size .

Example

100 DECLARE REAL root
root = SQR(20*5)
PRINT root

The output is :

10

The SQR function returns the square root of a positive number.

real-var =
1
SQRT

}
(real-exp)

4-254 Statements and Functions

STATUS

Format

Syntax Rules
None .

Remarks
1 . The STATUS function returns a WORD integer .

2. The value returned by the STATUS function is undefined until
BASIC-PLUS-2 executes an OPEN statement .

3. The STATUS value is reset by every input operation on any channel .
Therefore, you should copy the STATUS value to a different storage
location before your program executes another input operation .

4 . On RSTS/E systems, depending on the error, the STATUS function displays
a value representing one of the following :

©

	

The RMS-11 primary status field (STS) or the RMS-11 secondary
status field (STV). See the RSTS /E RMS-11 MACRO Programmer's
Guide for more information .

©

	

The device characteristics after an RMS-11 OPEN file operation (set
by the DEV field of the FAB) . See the RSTS/E RMS-11 MACRO
Programmer's Guide system for more information .

©

	

For OPEN operations where no error occurs, the status word describes
the device characteristics of the FIRQB and FQFLAG field . The first 7
bits describe the device, and bits 7 through 15 describe characteristics
of the OPEN statement. See the BASICPLUS Language Manual
or the RSTS /E System Directives Manual for more information on
STATUS values .

int-var = STATUS

STATUS

The STATUS function returns a word-length integer value containing
information about the last opened channel . Your program can test each bit
to determine the status of the channel .

Statements and Functions 4-255

STATUS

5. On RSX systems, depending on the error, the STATUS function displays a
value representing one of the following :
©

	

The RMS-11 primary status field (STS) or the RMS-11 secondary
status field (STV) . See the RSX-11M/M PLUS RMS-11 Macro
Programmer's Guide for more information .

© The device characteristics after an RMS-11 OPEN file operation (set by
the DEV field of the FAB) . See the RSX-11M/M-PLUS RMS-11 Macro
Programmer's Guide for more information .

© In the event of a directive error, the Directive Status Word ($DSW)
and its corresponding error code . See the RSX-11MIMPLUS Mini
Reference for the error codes .

©

	

The STATUS field of a QIO. See the RSX-11M/MPLUS I/O Drivers
Reference Manual for more information .

©

	

The first word of a GETLUN or GLUN$ directive describing device
characteristics . Seethe RSX-11M/M-PLUS and Micro/RSX Executive
Reference Manual for more information .
See Table 4-7 for a list of the values of the STATUS word for OPEN
operations where no errors occur .

Table 4-7 RSX STATUS Values

4-256 Statements and Functions

(continued on next page)

Value Bit Set Meaning

1 0 Record-oriented device
2 1 Carriage-control device
4 2 Terminal device
8 3 Directory device
16 4 Single-directory device
32 5 Sequential device
64 6 Mass storage device
128 7 User-mode diagnostics supported
256 8 Massbus device
512 9 Unit software write-locked
1024 10 Input spooled device

Example

Table 4-7 (Cont.) RSX STATUS Values

150

	

Y% = STATUS

STATUS

Statements and Functions 4-257

Value Bit Set Meaning

2048 11 Output spooled device
4096 12 Pseudo device
8192 13 Device mountable as a communication
16384 14 Device mountable as a Files-11 device
-32768 15 Device mountable

STOP

STOP

Format

Syntax Rules

None.

Remarks
1 . The STOP statement cannot appear before a PROGRAM, SUB, or

FUNCTION statement .
2. The STOP statement does not close files .

3. When a STOP statement executes in a program executed with the
environment RUN/DEBUG command or compiled with the /DEBUG
qualifier, control passes to the BASIC-PLUS-2 debugger . The debugger
prints the line number and module name associated with the STOP
statement, then displays the number sign (#) prompt. You can then
use the BASIC-PLUS-2 debugger commands to analyze and debug
your program . See B for a description of the BASIC-PLUS-2 debugger
commands. Once you are finished debugging your program, use the EXIT
command to exit from the debugger and end the program .

4. When a STOP statement executes in a program executed with the RUN
command or compiled without the /DEBUG qualifier, the line number of the
STOP statement and a number sign (#) prompt are printed . In response
to the prompt, you can either enter the debugger command CONTINUE
to continue program execution, or the EXIT command to end the program .
The EXIT command closes all files before leaving the program .

The STOP statement halts program execution allowing you to optionally
continue execution .

STOP

4-258 Statements and Functions

Example

40 PRINT "Type CONTINUE when the program stops"
INPUT "Do you want to stop now" ; Quit$

IF Quit$ = "Y"
THEN

STOP
ELSE

PRINT "So what are you waiting for?"
STOP

END IF

The output is :

Type CONTINUE when the program stops
Do you want to stop now? Y
Stop at line 40

#CONTINUE

BASIC2

STOP

Statements and Functions 4-259

STR$

STR$

Format

Syntax Rules
None .

Remarks
1 . If num-exp is negative, the first character in the returned string is a minus

sign (-) .
2. The STR$ function produces E notation .

3. When you print a floating-point number that has 6 decimal digits or
more but the integer portion has 6 digits or less (for example, 1234 .567),
BASIC-PLUS-2 rounds the number to 6 digits (1234 .57) . If a floating-point
number's integer part is 7 decimal digits or more, BASIC-PLUS-2 rounds
the number to 6 digits and prints it in E format .

4. When you print a floating-point number with magnitude between 0 .1 and
1, BASIC-PLUS-2 rounds it to 6 digits . When you print a number with
magnitude smaller than 0 .1, BASIC-PLUS-2 rounds it to 6 digits and
prints it in E format.

Example

100 DECLARE STRING new_num
new num = STR$(1543 .659)
PRINT new num

The output is :

1543 .66

The STR$ function changes a numeric expression to a numeric character string
without leading and trailing spaces .

str-var = STR$(num-exp)

4-260 Statements and Functions

STRING$

Format

The STRING$ function creates a string containing a specified number of
identical characters .

str-var = STRING$(int-expl, int-exp2)

Syntax Rules
1 . Int-expl specifies the character string's length .

2 . Int-exp2 is the decimal ASCII value of the character that makes up the
string. This value is treated modulo 256 .

Remarks
1. BASIC-PLUS-2 signals the error "Integer error" (ERR=51), if int-expl is

greater than 32767 .
2 . If int-expl is less than or equal to zero, BASIC-PLUS-2 treats it as zero .

3. BASIC-PLUS-2 treats int-exp2 as an unsigned 8-bit integer. For example,
-1 is treated as 255 .

4. If either int-expl or int-exp2 is a floating-point expression, BASIC-PLUS-2
truncates it to a WORD integer .

Example

40 DECLARE STRING output_str
output str = STRING$(10%, 50%) !50 is the ASCII value of the
PRINT output str

	

!character "2"

The output is :

2222222222

STRING$

Statements and Functions 4-261

SUB

SUB

Format

The SUB statement marks the beginning of a BASIC-PLUS-2 subprogram and
specifies the number and data type of its parameters .

SUB sub-name [(formal-param, . . .)] [statement] . . .
[statement] . . .

END SUB
SUBEND

unsubs-var

formal-param :

	

[data-type]

	

array-name
(L

int-const
,

Syntax Rules
1. The SUB statement must be the first statement in the SUB subprogram .
2 . Sub-name is the name of the separately compiled subprogram .

3. Formal-param specifies the number and type of parameters for the
arguments the SUB subprogram expects to receive when invoked .
©

	

Empty parentheses indicate that the SUB subprogram has no
parameters .

© Data-type specifies the data type of a parameter . If you do not specify a
data type, parameters are of the default data type and size . When you
do specify a data type, all following parameters are of that data type
until you specify a new data type. Data type keywords and their size,
range, and precision are listed in Table 1-2 in this manual .

4. Sub-name can have from one through six characters and must conform to
the following rules :
©

	

The first character of an unquoted name must be an alphabetic
character (A through Z). The remaining characters, if present, can be
any combination of letters, digits (0 through 9), dollar signs ($), or
periods (.) .

4-262 Statements and Functions

SUB

©

	

A quoted name can consist of any combination of alphabetic characters,
digits, dollar signs ($), periods (.), or spaces .

5. Parameters defined in formal-param must agree in number, type, and
ordinality with the arguments specified in the CALL statement of the
calling program .

6 . You can specify up to 32 formal parameters . MACRO-11 subprograms
accept a maximum of 255 parameters .

7 . Each SUB statement must have a corresponding END SUB statement or
SUBEND statement .

Remarks
1 . Compiler directives and comment fields created with an exclamation point

(!) can precede the SUB statement because they are not BASIC-PLUS-2
statements. Note that REM is a BASIC-PLUS-2 statement ; therefore, it
cannot precede the SUB statement .

2. Any BASIC-PLUS-2 statement except the FUNCTION statement can
appear in a SUB subprogram .

3. All variables, except those named in MAP and COMMON statements, are
local to that subprogram .

4. BASIC-PLUS-2 initializes local variables to zero or the null string .

5. In BASIC-PLUS-2 you cannot specify how subprograms receive
parameters. BASIC-PLUS-2 subprograms receive numeric unsubscripted
variables by reference and string unsubscripted variables by descriptor .
Table 4-1 lists and describes BASIC-PLUS-2 parameter-passing
mechanisms .
©

	

BY REF specifies that the subprogram receives the argument's address .

© BY DESC specifies that the subprogram receives the address of
a BASIC-PLUS-2 descriptor. For information about the format
of a BASIC-PLUS-2 descriptor for strings and arrays, see the
BASIC-PLUS-2 User's Guide .

6. You cannot call subprograms recursively.

7. The default error handling for SUB subprogams is ON ERROR GO BACK .

Statements and Functions 4-263

SUB

Example

100 SUB SUBPRO (BYTE AGE, DOUBLE WAGE(20,20), STRING EMP NAME)

900 END SUB

4-264 Statements and Functions

SUBEND

Format

The SUBEND statement is a synonym for END SUB . See the END statement
for more information .

SUBEND

SUBEND

Statements and Functions 4-265

SUBEXIT

SUBEXIT

Format

The SUBEXIT statement is a synonym for the EXIT SUB statement . See the
EXIT statement for more information .

SUBEXIT

4-266 Statements and Functions

SUM$

Format

Syntax Rules
None .

Remarks
1. Each string expression can contain up to 54 ASCII digits and an optional

decimal point and sign.

2. BASIC-PLUS-2 adds str-exp2 to str-expl and stores the result in str-var .

3. If str-expl and str-exp2 are integers, str-var takes the precision of the
larger string unless trailing zeros generate that precision .

4. If str-expl and str-exp2 are decimal fractions, str-var takes the precision of
the more precise fraction unless trailing zeros generate that precision .

5 . SUM$ omits trailing zeros to the right of the decimal point .

6. The sum of two fractions takes precision as follows :

©

	

The sum of the integer parts takes the precision of the larger part .

©

	

The sum of the decimal fraction part takes the precision of the more
precise part .

7. SUM$ truncates leading and trailing zeros .

str-var = SUM$(str-expl, str-exp2)

SUM$

The SUM$ function returns a string whose value is the sum of two numeric
strings .

Statements and Functions 4-267

SUM$

Example

40 DECLARE STRING A, B, total
A = "46"
B = "87"
total = SUM$(A,B)
PRINT total

The output is :

133

4-268 Statements and Functions

SWAP%

Format

Syntax Rules
None .

Remarks
1 . SWAP% is a WORD function . BASIC-PLUS-2 evaluates int-exp and

converts it to the WORD data type, if necessary .

2 . BASIC-PLUS-2 transposes the bytes of int-exp and returns a WORD
integer.

Example

30 DECLARE INTEGER word_int
word_int = SWAP%(23)
PRINT word int

The output is :

5888

The SWAP% function transposes a WORD integer's bytes .

int-var = SWAP%(int-exp)

SWAP%

Statements and Functions 4-269

SYS

SYS

Format

The SYS function lets you perform special I/O functions, establish special
characteristics for a job, set terminal characteristics, and cause the monitor to
execute special operations . The SYS function can be used on RSTS/E systems
only.

str-vbl = SYS(str-exp)

Syntax Rules
Str-exp is a RSTS/E SYS call code . See the RSTS/E Programming Manual for
a complete list of SYS call codes and their meanings .

Remarks
None .

Example

100

	

OPEN User keyboard$ AS FILE #1
Tmp$ = SYS(CHR$(118)+CHR$(18))

	

! Cancel any typeahead from user
LINUT 'Enter the first line of text' ;User_input$

4-270 Statements and Functions

TAB

Format

When used with the PRINT statement, the TAB function moves the cursor or
print mechanism to a specified column .

str-var = TAB(int-exp)

Syntax Rules
Int-exp specifies the column number of the cursor or print mechanism .

Remarks
1. The leftmost column position is zero .

2. If int-exp is less than the current cursor position, the TAB function has no
effect .

3. The TAB function can move the cursor or print mechanism only from the
left to the right .

4. You can use more than one TAB function in the same PRINT statement .

5. Use semicolons to separate multiple TAB functions in a single statement .
If you use commas, BASIC-PLUS-2 moves to the next print zone before
executing the TAB function .

6. If you specify a floating-point expression for int-exp, BASIC-PLUS-2
truncates it to WORD integer.

Example

200 PRINT "Number 1" ; TAB(15) ; "Number 2" ; TAB(30) ; "Number 3"

The output is :

Number 1

	

Number 2

	

Number 3

TAB

Statements and Functions 4- 271

TAN

TAN

Format

The TAN function returns the tangent of an angle in radians .

real-var = TAN(real-exp)

Syntax Rules
Real-exp is an angle specified in radians .

Remarks
BASIC-PLUS-2 expects the argument of the TAN function to be a real
expression. When the argument is a real expression, BASIC-PLUS-2 returns
a value of the same floating-point size . When the argument is not a real
expression, BASIC-PLUS-2 converts the argument to the default floating-point
size and returns a value of the default floating-point size .

Example

10 tangent = TAN(PI/4)
PRINT tangent

The output is :

1

4-272 Statements and Functions

TIME

Format

Syntax Rules
None .

Remarks
1. The value returned by the TIME function depends on the value of int-exp .

2 . If int-exp equals zero, TIME returns the number of seconds since midnight .

3 . BASIC-PLUS-2 on RSX systems accepts only an argument of zero .
All other arguments to the TIME function are undefined and cause
BASIC-PLUS-2 to signal "Not implemented" (ERR=250) .

4 . BASIC-PLUS-2 on RSTS/E systems accepts values 0 through 4 and
returns values as shown in Table 4-8 . All other arguments to the
TIME function are undefined and cause BASIC-PLUS-2 to signal "Not
implemented" (ERR=250) .

5 . The TIME function returns a floating-point value of the default size .

6 . If you specify a floating-point expression for int-exp, BASIC-PLUS-2
truncates it to a WORD integer .

Table 4-8 TIME Function Values

The TIME function returns the time of day (in seconds) as a floating-point
number. On RSTS/E systems, the TIME function can also return process CPU
time and connect time .

real-var = TIME(int-exp)

Argument Value

	

BASIC-PLUS-2 Returns

TIME

0

	

The amount of time elapsed since midnight in seconds
1

	

The CPU time of the current process in tenths of a
second

(continued on next page)

Statements and Functions 4-273

TIME

Table 4-8 (Cont.) TIME Function Values

Argument Value

	

BASIC-PLUS-2 Returns

2

	

The connect time of the current process in minutes
3

	

Kilo-core ticks
4

	

Device time in minutes

Example

10 PRINT TIME(0)

The output is :

49671

4-274 Statements and Functions

TIME$

	

TIME

The TIME$ function returns a string displaying the time of day in the form
hh:mm AM, hh:mm PM, or 24-hour clock .

Format
str-var = TIME$(int-exp)

Syntax Rules
1 . Str-var is the time of day.
2 . Int-exp specifies the number of minutes before midnight .

Remarks
1 . If int-exp equals zero, TIME$ returns the current time of day .
2 . Int-exp must be a value between 0 and 1440 or BASIC-PLUS-2 signals an

error.
3. The TIME$ function uses either an AM/PM or 24-hour clock . The type of

clock is an installation option .
4 . On RSTS/E systems, the clock type can also be set by the system manager

at system start-up time .
5 . If you specify a floating-point expression for int-exp, BASIC-PLUS-2

truncates it to a WORD integer.

Example

20 DECLARE STRING current-time
current-time = TIME$(0)
PRINT current time

The output is :

01 :51 PM

TIME$

Statements and Functions 4-275

TRM$

TRM$

Format

Syntax Rules
None .

Remarks
The returned str-var is identical to str-exp, except that it has all the trailing
blanks and tabs removed .

Example

20 DECLARE STRING old-string, new-string
old-string = "ABCDEFG

	

"
new-string = TRM$(old_string)
PRINT old string ;"XYZ"
PRINT new_string ;"XYZ"

The output is :

ABCDEFG

	

XYZ
ABCDEFGXYZ

The TRM$ function removes all trailing blanks and tabs from a specified
string .

str-var = TRM$(str-exp)

4-276 Statements and Functions

UNLESS

Format

The UNLESS qualifier modifies a statement . BASIC-PLUS-2 executes the
modified statement only if a conditional expression is false .

statement UNLESS (cond-exp)

UNLESS

Syntax Rules
The UNLESS statement cannot be used on nonexecutable statements or on
statements such as SELECT, IF, and DEF that establish a statement block .

Remarks
BASIC-PLUS-2 executes the statement only if cond-exp is false (value zero) .

Example

10 PRINT "A DOES NOT EQUAL 3" UNLESS A% = 3%

Statements and Functions 4-277

UNLOCK

UNLOCK

Format

Example

The UNLOCK statement unlocks the current record or bucket locked by the
last FIND or GET statement .

UNLOCK #chnl-exp

Syntax Rules
Chnl-exp is a numeric expression that specifies a channel number associated
with a file . It must be immediately preceded by a number sign (#) .

Remarks
1 . A file must be opened on the specified channel before UNLOCK can

execute .
2 . The UNLOCK statement applies only to files on disk .
3 . If the current record is not locked by a previous GET or FIND statement,

the UNLOCK statement has no effect and BASIC-PLUS-2 does not signal
an error .

4. The UNLOCK statement does not affect record buffers .
5. After BASIC-PLUS-2 executes the UNLOCK statement, you cannot

update or delete the current record .

6 . Once the UNLOCK statement executes, the position of the current record
pointer is undefined .

20 UNLOCK #10%

4-278 Statements and Functions

UNTIL

Format

The UNTIL statement marks the beginning of an UNTIL loop or modifies the
execution of another statement .
The first format shows the loop definition form ; the second format shows the
statement modification form .

1 . Conditional

UNTIL cond-exp
[statement] . . .

NEXT

2 . Statement Modifier

statement UNTIL cond-exp

UNTIL

Syntax Rules
The UNTIL statement cannot be used on nonexecutable statements or on
statements such as SELECT, IF, and DEF that establish a statement block .

Remarks
1. The following remarks apply to loop definition :

©

	

A NEXT statement must end the UNTIL loop .

©

	

BASIC-PLUS-2 evaluates cond-exp before each loop iteration . If the
expression is false (value zero), BASIC-PLUS-2 executes the loop .
If the expression is true (value nonzero), control passes to the first
executable statement after the NEXT statement .

2. In the statement modifier form, BASIC-PLUS-2 executes the statement
repeatedly until cond-exp is true .

Statements and Functions 4-279

UNTIL

Examples

1 .

	

10 !Conditional
UNTIL A >= 5

A =A+ .01
TOTAL = TOTAL + 1

NEXT

2. 10 !Statement Modifier
A = A + 1 UNTIL A >= 200

4-280 Statements and Functions

UPDATE

Format

The UPDATE statement replaces a record in a file with a record in the record
buffer. The UPDATE statement is valid on RMS sequential, relative, and
indexed files .

UPDATE #chnl-exp [, COUNT int-exp]

Syntax Rules
1 . Chnl-exp is a numeric expression that specifies a channel number

associated with a file. It must be immediately preceded by a number
sign (#) .

2 . Int-exp specifies the size of the new record .

Remarks
1. If int-exp equals zero, the entire record is written to the file .
2. The file associated with chnl-exp must be a disk file opened with ACCESS

MODIFY.
3 . Each UPDATE statement must be preceded by a successful GET or FIND

operation or BASIC-PLUS-2 signals "No current record" (ERR=131) .
Because FIND locates but does not retrieve records, you must specify a
COUNT clause in the UPDATE statement when the preceding operation
was a FIND . Int-exp must exactly match the size of the old record .

4. After an UPDATE statement executes, there is no current record pointer .
The next record pointer is unchanged .

5. The length of the new record must be the same as that of the existing
record for all files with fixed-length records and for all sequential files .
If the new record is larger than the existing record, BASIC-PLUS-2
truncates the right side of the new record to fit the existing record . If the
new record is smaller than the existing record, the file gets corrupted .
If you specify a COUNT clause, the int-exp must match the size of the
existing record .

UPDATE

Statements and Functions 4-281

UPDATE

Example

6 . For relative files with variable-length records, the new record can be larger
or smaller than the record it replaces .
©

	

The new record must be smaller than or equal to the maximum record
size set with the MAP or RECORDSIZE clause when the file was
opened .

© You must use the COUNT clause to specify the size of the new record if
it is different from that of the record last accessed by a GET operation
on that channel .

7 . For indexed files with variable-length records, the new record can be larger
or smaller than the record it replaces .
©

	

When an indexed file permits duplicate primary keys, an updated
record must be the same length as the old one .

©

	

When the program does not permit duplicate primary keys, the new
record can be no longer than the maximum record size specified in
the MAP or RECORDSIZE clause when the file was opened and must
include at least the primary key field .

8. An indexed file alternate key for the new record can differ from that of
the existing record only if the OPEN statement for that file specified
CHANGES for the alternate key .

9 . On RSTS/E systems, you can use the UPDATE statement on native-mode
files opened with mode 1 bit set (UPDATE mode).

100 UPDATE #4%, COUNT 32

4-282 Statements and Functions

VAL

Format

The VAL function converts a numeric string to a floating-point value .

real-var = VAL(str-exp)

Syntax Rules

Str-exp can contain the ASCII digits 0 through 9, uppercase E, a plus sign (+),
a minus sign (-), and a period (.) .

Remarks

1. The VAL function ignores spaces and tabs .

2. If str-exp is null or contains only spaces and tabs, VAL returns a value of
zero .

3 . The value returned by the VAL function is of the default floating-point size .

Example

10 DECLARE REAL real num
real num = VAL("990 .32")
PRINT real num

The output is :

990 .32

VAL

Statements and Functions 4- 283

VAL%

VAL%

Format

The VAL% function converts a numeric string to an integer .

int-var = VAL%(str-exp)

Syntax Rules
Str-exp can contain the ASCII digits 0 through 9, a plus sign (+), or a minus
sign (-) .

Remarks
1 . The VAL% function ignores spaces and tabs .
2 . If str-exp is null or contains only spaces and tabs, VAL% returns a value of

zero .
3 . The value returned by the VAL% function is an integer of the default size .

Example

10 DECLARE INTEGER ret_int
ret_int = VAL%("789")
PRINT ret int

The output is :

789

4-284 Statements and Functions

WAIT

Format

Syntax Rules
Int-exp must be a number from 0 through 32767; if it is greater than 32767,
BASIC-PLUS-2 assumes a value of 32767 .

Remarks
1. The WAIT statement must precede a GET operation to a terminal or an

INPUT, INPUT LINE, LINPUT, MAT INPUT, or MAT LINPUT statement ;
otherwise, it has no effect .

2 . Int-exp is the number of seconds BASIC-PLUS-2 waits for input before
signaling the error "Keyboard wait exhausted" (ERR=15) .

3. After BASIC-PLUS-2 executes a WAIT statement, all input statements
wait the specified amount of time before BASIC-PLUS-2 signals an error.

4. WAIT 0 disables the WAIT statement .

Example

10 DECLARE STRING your name
WAIT 60
INPUT "You have sixty seconds to type your name" ;your name
WAIT 0

The output is :

You have sixty seconds to type your name?

%Keyboard wait exhausted at line 10 in "WAIT "

The WAIT statement specifies the number of seconds the program waits for
terminal input before signaling an error.

WAIT int-exp

WAIT

Statements and Functions 4-285

WHILE

WHILE

Format

The WHILE statement marks the beginning of a WHILE loop or modifies the
execution of another statement .
The first format shows the loop definition form ; the second format shows the
statement modification form .

1 . Conditional

WHILE cond-exp
[statement] . . .

NEXT

2 . Statement Modifier

statement WHILE cond-exp

Syntax Rules
1 . Cond-exp can be any valid relational or logical expression .

2. A NEXT statement must end the WHILE loop .
3 . The WHILE statement cannot be used on nonexecutable statements or on

statements such as SELECT, IF, and DEF that establish a statement block .

Remarks
1 . BASIC-PLUS-2 evaluates cond-exp before each WHILE loop iteration . If

the expression is true (value nonzero), BASIC-PLUS-2 executes the loop .
If the expression is false (value zero), control passes to the first executable
statement after the NEXT statement .

2 . In a statement modifier WHILE, BASIC-PLUS-2 executes statement
repeatedly as long as cond-exp is true .

4-286 Statements and Functions

Examples

1 . 10 !Conditional
WHILE X < 100

X = X + SQR(X)
NEXT

2 . 10 !Statement Modifier
X% = X% + 1% WHILE X% < 100%

WHILE

Statements and Functions 4-287

XLATE$

XLATE$

Format

The XLATE$ function translates one string to another by referencing a table
string you supply.

str-var = XLATE[$] (str-expl, str-exp2)

Syntax Rules

1 . Str-expl is the input string .

2. Str-exp2 is the table string .

Remarks

1. Str-exp2 can contain up to 256 ASCII characters, numbered from 0 to 255 ;
the position of each character in the string corresponds to an ASCII value .
Because 0 is a valid ASCII value (null), the first position in the table string
is position zero .

2 . XLATE$ scans str-expl character by character, from left to right . It
finds the ASCII value n of the first character in str-expl and extracts
the character it finds at position n in str-exp2 . XLATE$ then appends
the character from str-exp2 to str-var . XLATE$ continues this process,
character by character, until the end of str-expl is reached .

3. The output string may be smaller than the input string for the following
reasons :
©

	

XLATE$ does not translate nulls . If the character at position n in
str-exp2 is a null, XLATE$ does not append that character to str-var.

© If the ASCII value of the input character is outside the range of
positions in str-exp2, XLATE$ does not append any character to
str-var .

4-288 Statements and Functions

Example

10 DECLARE STRING A, table, source
A = "abcdefghijklmnopgrstuvwxyz"
table = STRING$(65, 0) + A
LINPUT "Type a string of uppercase letters" ; source
PRINT XLATE$(source, table)

The output is :

Type a string of uppercase letters? ABCDEFG
abcdefg

XLATE$

Statements and Functions 4-289

A
BASIC PLUS 2 Keywords

This appendix contains a list of the BASIC-PLUS-2 reserved and unreserved
keywords as well as a list of keywords that are reserved in VAX BASIC .

A.1 BASIC-PLUS-2 Reserved and Unreserved Keywords
The following is a list of the BASIC-PLUS-2 keywords . Most of the keywords
are reserved. The unreserved keywords are marked with a dagger . If you use
a reserved keyword as a program variable, you receive an error message . You
can use unreserved keywords as program variables .

%ABORT
%CDD
%CROSS
%ELSE
%END
%FROM
%IDENT
%IF
%INCLUDE
%LET
%LIBRARY
%LIST
%NOCROSS
%NOLIST
%PAGE
%PRINT
%SBTTL
%THEN
%TITLE
%VARIANT
ABORT
ABS
ABS%
ACCESS

BASIC-PLUS-2 Keywords A-1

ACCESS%
ACTIVE
ALIGNED
ALLOW
ALTERNATE
AND
ANY
APPEND
AS
ASC
ASCII
ATN
ATN2
BACK
BASE
BEL
BINARY
BIT
BLOCK
BLOCKSIZE
BS
BUCKETSIZE
BUFFER
BUFSIZ
BY
BYTE
CALL
CASE
CAUSE
CCPOS
CHAIN
CHANGE
CHANGES
CHECKING
CHR$
CLK$
CLOSE
CLUSTERSIZE
COM
COMMON
COMP%
CON
CONNECT

A-2 BASIC-PLUS-2 Keywords

CONSTANT
CONTIGUOUS
CONTINUE
COS
COT
COUNT
CR
CTRLC
CVTF$
CVT$F
CVT$$
CVT$%
CVT%$
DAT
DAT$
DATA
DATE$
DECIMAL
DECLARE
DEF
DEFAULTNAME
DEL
DELETE
DESC
DET
DIF$
DIM
DIMENSION
DOUBLE
DOUBLEBUF
DUPLICATES
DYNAMIC
ECHO
EDIT$
ELSE
END
EQ
EQV
ERL
ERN$
ERR
ERROR
ERT$

ESC
EXIT
EXP
EXPLICIT
EXTEND
EXTENDSIZE
EXTERNAL
EXTRACT
FF
FIELD
FILE
FILESIZE
FILL
FILL$
FILL%
FIND
FIX
FIXED
FLUSH
FNAME$
FNEND
FNEXIT
FOR
FORMAT$
FORTRAN
FREE
FROM
FSP$
FSS$
FUNCTION
FUNCTIONEND
FUNCTIONEXIT
GE
GET
GETRFA
GFLOAT
GO
GOBACK
GOSUB
GOTO
GROUP
GT
HFLOAT

A-4 BASIC-PLUS-2 Keywords

HT
IDN
IF
IFEND
IFMORE
IMAGE
IMP
INACTIVE
INDEXED
INPUT
INSTR
INT
INTEGER
INV
INVALID
ITERATE
KEY
KILL
LEFT
LEFT$
LEN
LET
LF
LINE
LINO
LINPUT
LIST
LOC
LOCKED
LOG
LOG10
LONG
LSET
MAG
MAGTAPE
MAP
MAR
MAR%
MARGIN
MAT
MAX
MID
MID$

MIN
MOD
MOD%
MODE
MODIFY
MOVE
NAME
NEXT
NO t
NOCHANGES
NODATA
NODUPLICATES
NOECHO
NOEXTEND
NOMARGIN
NONE
NOPAGE
NOREWIND
NOSPAN
NOT
NUL$
NUM
NUM$
NUM1$
NUM2
ON
ONECHR
ONERROR
OPEN
OPTION
OR
ORGANIZATION
OTHERWISE
OUTPUT
OVERFLOW
PAGE
PEEK
PI
PLACE$
POS
POS%

t Unreserved keyword .

A-6 BASIC-PLUS-2 Keywords

PPS%
PRIMARY
PRINT
PROD$
PROGRAM
PROMPT t
PUT
QUO$
RAD$
RANDOM
RANDOMIZE
RCTRLC
RCTRLO
READ
REAL
RECORD
RECORDSIZE
RECORDTYPE
RECOUNT
REF
REGARDLESS
RELATIVE
REM
REMAP
RESET
RESTORE
RESUME
RETURN
RFA
RIGHT
RIGHT$
RND
ROUNDING
RSET
SCALE
SCRATCH
SEG$
SELECT
SEQUENTIAL
SET
SETUP

Unreserved keyword .

SGN
Si
SIN
SINGLE
SIZE
SLEEP
SO
SP
SPACE$
SPAN
SPEC%
SQR
SQRT
STATUS
STEP
STOP
STR$
STREAM
STRING
STRING$
SUB
SUBEND
SUBEXIT
SUBSCRIPT
SUM$
SWAP%
SYS
TAB
TAN
TEMPORARY
TERMINAL
THEN
TIM
TIME
TIME$
TO
TRM$
TRN
TYP
TYPE
TYPE$
UNALIGNED
UNDEFINED

A-8 BASIC-PLUS-2 Keywords

UNLESS
UNLOCK
UNTIL
UPDATE
USAGE$
USEROPEN
USING
USR$
VAL
VAL%
VALUE
VARIABLE
VARIANT
VFC
VIRTUAL
VPS%
VT
WAIT
WHILE
WINDOWSIZE
WORD
WRITE
XLATE
XLATE$
XOR
ZER

A.2 Reserved Keywords In VAX BASIC
The following keywords are reserved keywords in VAX BASIC . If you use
these keywords in a program, BASIC-PLUS-2 signals the warning message
"Keyword <keyword> is reserved in VAX BASIC ." It is recommended that you
do not use these keywords if you want your program to be transportable to
VAX BASIC .

ACTIVATE
ASK
BASIC
CAUSE
CLEAR
CONTINUE
DEACTIVATE
DEVICE

BASIC-PLUS-2 Keywords A-9

DRAW
GRAPH
HANDLE
HANDLER
INFORMATIONAL
INITIAL
INKEY$
JSB
LBOUND
NX
NXEQ
OF
OPTIONAL
PICTURE
PLOT
PROGRAM
RETRY
RMSSTATUS
ROTATE
SET
SEVERE
SHEAR
SHIFT
TRANSFORM
UBOUND
WARNING
WHEN

A-10 BASIC-PLUS-2 Keywords

B
Debugger Commands

This section describes the BASIC-PLUS-2 debugger commands .
BASIC-PLUS-2 debugger commands help you locate run-time errors
and debug program modules . You can use the debugger commands
interactively in the BASIC-PLUS-2 environment or from DCL command level .
To use debugger commands, you must compile the program using the /DEBUG
qualifier. For more information on the BASIC-PLUS-2 debugger see the
BASIC-PLUS-2 User's Guide .

Debugger Commands B-1

BREAK

BREAK

Format

The BREAK command lets you stop program execution at a specified line
number, program statement, or at the beginning of CALL statements, user-
defined functions, and FOR, UNTIL, and WHILE loops . The program stops
before executing the specified breakpoint.

BREAK

	

ON block
{ [ON] stmnt-break, . . .

	

'

CALL
block :

	

DEF
LOOP

stmnt-break :

	

lin-num[.stmnt-num] [;mod-nam]

Syntax Rules
1 . The BREAK command with no parameters sets a breakpoint at each line

number. The program stops at each line number before executing any
statements on the line .

2 . Block specifies a particular statement or function where execution is to
stop. The ON keyword must precede the block . You can specify only one
block in each BREAK command .
©

	

BREAK ON CALL stops execution each time BASIC-PLUS-2 executes
a CALL statement to a subprogram . The program stops before any
statements in the subprogram execute . If you are executing a task-built
program, both the calling and the called program must be compiled
with the /DEBUG qualifier ; otherwise, the BREAK ON CALL command
has no effect . If you are executing a program in the BASIC-PLUS-2
environment, the called program must be compiled with the /DEBUG
qualifier.

©

	

BREAK ON DEF stops execution each time BASIC-PLUS-2 encounters
a user-defined function in a module compiled with the /DEBUG
qualifier. The statement stops before any statements in the function
execute .

B-2 Debugger Commands

©

	

BREAK ON LOOP stops execution each time BASIC-PLUS-2
encounters a FOR, WHILE, or UNTIL statement or modifier .
The program breaks each time the program loops back to the
loop statement . The program stops after the loop is initialized or
incremented, but before any statements in the loop execute .

3 . Stmnt-break specifies a particular line number or statement where
execution is to stop . You can specify a maximum of 10 stmnt-break
breakpoints . If you specify more than 10 breakpoints, BASIC-PLUS-2
signals the error message "No room ."

©

	

Lin-num is a program line number .

©

	

Stat-num is a particular statement associated with the specified line
number. The period (.) is required and must immediately follow
the line number. No space is allowed between the lin-num and stat-
num. If you include a space between the lin-num and stat-num,
BASIC-PLUS-2 signals an error. The compiler listing lists statements
on multi-statement lines by line and statement number .

©

	

Mod-nam specifies that the preceding breakpoint is a breakpoint only
in the named program module . The semicolon (;) is required .

Remarks
1. If you specify a stmnt-break or block that does not exist, no break occurs,

BASIC-PLUS-2 does not signal an error or warning, and the program
executes normally.

2. To disable program breakpoints, use the UNBREAK command .

Example

BREAK 30 .2, 500 ;PROGB, 2000 .3 ;PROCC

BREAK ON CALL

CON

BREAK at line 30 statement 2

BREAK

Debugger Commands B-3

CONTINUE

CONTINUE

Format

Syntax Rules
None .

Remarks
When you have finished entering debugger commands, use the CONTINUE
command to resume program execution .

Example

BREAK ON LOOP

CON

The CONTINUE command continues program execution .

CONTINUE

B-4 Debugger Commands

CORE

Format

Syntax Rules
None .

Remarks
1 . The maximum program space allowed on RSX systems is 32K words minus

the size of your resident library. The maximum program space allowed on
RSTS/E systems is 31K words minus the size of your resident library . See
the BASIC-PLUS-2 User's Guide for more information on program space
and resident libraries .

2. You can use the CORE command only when at least one program module
has been compiled with the /DEBUG qualifier. Note, however, that the
number returned by the CORE command reflects the memory allocation for
the entire task, not just the program module compiled with the /DEBUG
qualifier.

3 . Knowing the size of core memory can help you control the size of your
program and allow you optimize to accordingly. See the BASIC-PLUS-2
User's Guide for more information on optimization .

Example

CORE
CORE = 7647

The CORE command returns the number of words currently allocated in
memory for your entire task . Use the CORE command in conjunction with
the debugger commands FREE, STRING, and I/O BUFFER to determine how
memory is allocated for your task .

CORE

CORE

Debugger Commands B-5

ERL

ERL

Format

Syntax Rules
None .

Remarks
If no error has occurred, the result returned by the ERL command is undefined .

Example

ERL
ERL = 1050

The ERL command returns the line number of the line executing when the last
error occurred .

ERL

B-6 Debugger Commands

ERN

Format
ERN

Syntax Rules
None .

Remarks
1 . The ERN command returns a module name only when an error is handled

successfully.

2 . If no error occurs, the result returned by the ERN command is undefined .

Example

ERN
ERN$ = CHECKS

ERN

The ERN command returns the 1- to 6-character name of the program module
that was executing when the last successfully handled error occurred . If a
fatal error was not successfully trapped, control passes from the debugger to
command level .

Debugger Commands B-7

ERR

ERR

Format

Syntax Rules
None .

Remarks
If no error occurs, the result returned by the ERR command is undefined .

Example

ERR
ERR = 55

The ERR command returns the error number of the last error that occurred .
See the BASIC-PLUS-2 User's Guide for a list of errors and their numbers .

ERR

B-8 Debugger Commands

EXIT

Format

Syntax Rules
None .

Remarks
The EXIT command does not close open channels .

Example

EXIT

EXIT

The EXIT command returns control to BASIC-PLUS-2 if you are executing a
program in the BASIC-PLUS-2 environment and to command level if you are
executing a task-built program .

EXIT

Debugger Commands B-9

FREE

FREE

Format
FREE

Syntax Rules
None .

Remarks
1 . When string or I/O operations exceed the amount of available free memory,

BASIC-PLUS-2 extends the amount of memory allocated for your task .

2 . Knowing the amount of free memory space available can help you control
the size of your program and optimize accordingly. See the BASIC-PLUS-2
User's Guide for information on optimization .

Example

FREE
FREE = 184

The FREE command returns the number of words currently available in
memory for UO and string operations. Use the FREE command in conjunction
with the debugger commands CORE, STRING, and PO BUFFER to determine
how memory is allocated for your task .

B-10 Debugger Commands

I/O BUFFER

Format

Syntax Rules
None .

Remarks
Knowing the size of the UO buffer can help you control the size of your program
and optimize accordingly. See the BASIC-PLUS-2 User's Guide for information
on optimization .

Example

I/0 BUFFER
I/0 BUFFERS = 1765

The I/O BUFFER command returns the number of words currently allocated
for I/O buffer space . Use the I/O BUFFER command in conjunction with the
debugger commands CORE, STRING, and FREE to determine how memory is
allocated for your task .

I/O BUFFER

I/O BUFFER

Debugger Commands B-11

LET

LET

Format

The LET command allows you to change the contents of program variables .

LET vbll = 1.
vbl2

Jconst

Syntax Rules
1 . Vbl1 specifies a numeric or string variable that you want to change .
2 . Const or vbl2 specifies the new value for vbll . You can specify only a

constant or variable name . BASIC-PLUS-2 does not allow expressions .
3. You cannot set string variables to a null string with the LET command. If

you try to do so, BASIC-PLUS-2 signals the error message "Illegal syntax
in LET." However, you can set a variable to the null string in your source
program and then assign that variable to another variable with the LET
command. For example :
1000 NULL$= ""
1010 A$="HELLO"
1020

	

PRINT A$

Then, compile or run the program with the /DEBUG qualifier, establish
a breakpoint at line 1020, and set A$ to the null string with the LET
command. For example :
BREAK at line 1020

LET A$ = NULL$

Remarks
1 . If you attempt to create a new variable with the LET command,

BASIC-PLUS-2 signals the error "Illegal syntax in LET ."
2. Task-built programs must be compiled with the /DEBUG qualifier for the

LET command to take effect . BASIC-PLUS-2 signals the error "Illegal
syntax in LET" if the program module was not compiled with the /DEBUG
qualifier .

B-12 Debugger Commands

Example

3 . BASIC-PLUS-2 signals the error "Illegal syntax in LET" when you try
to access a variable across modules or in a module not compiled with the
/DEBUG qualifier.

LET A%=15%

LET NAME$="EILEEN"

LET

Debugger Commands B-13

PRINT

PRINT

Format

The PRINT command allows you to display the current contents of program
variables .

PRINT vbl

Syntax Rules
1 . Vbl specifies the numeric or string variable whose contents you want to

display.
2 . Vbl cannot be a constant or expression .

Remarks
1. When executing a task-built program, you can access only those variables

contained in program modules that have been compiled with the /DEBUG
qualifier.

2. Task-built programs must be compiled with the /DEBUG qualifier for the
PRINT command to take effect .

3. BASIC-PLUS-2 signals the error "Illegal syntax in PRINT" when you try
to access a variable across modules or in a module not compiled with the
/DEBUG qualifier.

Example

PRINT C
23

B-14 Debugger Commands

RECOUNT

Format

Syntax Rules
None .

Remarks
If you exit from your program without closing open channels or executing the
END statement, the Debugger signals the error "End-of-file on device ." If you
then try to continue program execution by typing the CONTINUE command,
the debugger signals the error "Can't CONTINUE or STEP" When you exit
from the debugger, files are not closed and data is not transferred . You can
remedy this situation by including an error handler which passes control to an
END statement. BASIC-PLUS-2 will then close files and transfer data .

Example

RECOUNT
RECOUNT = 19

RECOUNT

The RECOUNT command tells you how many characters, including blanks and
terminators, were transferred by the last I/O operation .

RECOUNT

Debugger Commands B-15

REDIRECT

REDIRECT

Format

Syntax Rules
Term-nam specifies the name of an unattached terminal . The terminal name
must be an unquoted string that corresponds to an existing terminal, or
BASIC-PLUS-2 signals the error "Cannot open device ."

Remarks
1. The program executes on the terminal that issued the RUN command . Use

another REDIRECT command to direct debugger I/O back to the terminal
on which the program is executing .

2. You can use the REDIRECT command only when at least one program
module has been compiled with the /DEBUG qualifier .

3 . On RSTS/E systems, if the specified terminal is unavailable, the debugger
signals the error "Cannot open device ." On RSX systems, if the specified
terminal is unavailable, the debugger stops executing until the specified
terminal is available and does not signal an error .

Example

REDIRECT KB2 :

The REDIRECT command allows you to direct all debugging I/O operations to
a specified terminal .

REDIRECT term-nam

B-16 Debugger Commands

STATUS

Format

The STATUS command returns a word-length integer that contains information
about the last opened channel .

STATUS

Syntax Rules
None .

Remarks
1. The STATUS function returns a WORD integer .

2. The debugger returns the last STATUS word .

3 . On RSTS/E systems, depending on the error, the STATUS function displays
a value representing one of the following :

©

	

The RMS-11 primary status field (STS) or the RMS-11 secondary
status field (STV) . See the RSTS/E RMS-11 MACRO Programmer's
Guide for more information .

©

	

The device characteristics after an RMS-11 OPEN file operation (set
by the DEV field of the FAB) . See the RSTS/E RMS-11 MACRO
Programmer's Guide system for more information .

©

	

For OPEN operations where no error occurs, the status word describes
the device characteristics of the FIRQB and FQFLAG field . The first 7
bits describe the device, and bits 7 through 15 describe characteristics
of the OPEN statement . See the BASICPLUS Language Manual
or the RSTS/E System Directives Manual for more information on
STATUS values .

4 . On RSX systems, depending on the error, the STATUS function displays a
value representing one of the following :
©

	

The RMS-11 primary status field (STS) or the RMS-11 secondary
status field (STV) . See the RSX-11M/M-PLUS RMS-11 Macro
Programmer's Guide for more information .

STATUS

Debugger Commands B-17

STATUS

Example

© The device characteristics after an RMS-11 OPEN file operation (set by
the DEV field of the FAB) . See the RSX-11M/M PLUS RMS-11 Macro
Programmer's Guide for more information .

©

	

The Directive Status Word ($DSW) and its corresponding error
code. (This is displayed in the event of a directive error .) See the
RSX-11M/MPLUS Mini Reference for the error codes .

©

	

The STATUS field of a QIO. See the RSX-11M/M-PLUS I/O Drivers
Reference Manual for more information .

©

	

The first word of a GETLUN or GLUN$ directive describing device
characteristics . Seethe RSX-11M/M-PLUS and Micro/RSX Executive
Reference Manual for more information .
See Table 4-7 for a list of the values of the STATUS word for OPEN
operations where no errors occur .

STATUS
STATUS = 31

B-18 Debugger Commands

STEP

Format

Syntax Rules
1 . Int-const is the number of statements to be executed before the program

stops. It must be a positive integer from 1 through 32767 .

2. You must include a space between the STEP command and int-const or
only one statement executes .

3 . STEP with no int-const is the same as specifying STEP 1 . Only one
statement executes and the program then stops .

Remarks
1 . When you execute a task-built program, the BASIC-PLUS-2 debugger

only counts statements executing in program modules compiled with the
/DEBUG qualifier.

2 . If a module not compiled with the /DEBUG qualifier executes before a
module compiled with the /DEBUG qualifier, the program does not stop
until the specified number of statements in the module compiled with
/DEBUG have executed .

Example

BREAK at line 1050 statement 1

STEP 2

CON

STEP at line 1050 statement 3

The STEP command causes the program module to execute statement by
statement, stopping after a specified number of statements have executed .

STEP [int-const]

STEP

Debugger Commands B-19

STRING

STRING

Format

Syntax Rules
None .

Remarks
Knowing how much memory is allocated to string operations can help
you control the size of your program and optimize accordingly. See the
BASIC-PLUS-2 User's Guide for information on optimization .

Example

STRING
STRING = 2086

The STRING command tells you how many words are currently allocated for
string storage for your entire task . Use the STRING command in conjunction
with the debugger commands CORE, I/O BUFFER, and FREE to determine
how memory is allocated for your task.

STRING

B-20 Debugger Commands

TRACE

Format

Syntax Rules
None .

Remarks
1 . The TRACE command does not affect program execution or breakpoints .

2 . A task-built program must be compiled with the /DEBUG qualifier for the
TRACE command to take effect . When the BASIC-PLUS-2 encounters a
program module not compiled with the /DEBUG qualifier, tracing stops.
When BASIC-PLUS-2 returns to a module compiled with the /DEBUG
qualifier, tracing resumes .

3 . Specify the UNTRACE command to disable tracing. See the description of
the UNTRACE command for more information .

Example

TRACE

BREAK 300

CONT

at line 100 statement 1

at line 100 statement 2

at line 200 statement 1

BREAK at line 300 statement 1

BREAK 500

CONT

TRACE

The TRACE command displays line numbers and statement numbers as the
program executes .

TRACE

Debugger Commands B-21

UNBREAK

UNBREAK

Format

The UNBREAK command disables previously set breakpoints in programs and
subprograms .

UNBREAK

CALL
block :

	

DEF
LOOP

stmnt-break :

	

lin-num[.stmnt-num] [;mod-nam]

Syntax Rules
1 . ON block specifies a particular statement or function where execution is to

stop. You can specify only one ON block in each UNBREAK command :

©

	

UNBREAK ON CALL disables breakpoints that occur when
BASIC-PLUS-2 executes a CALL statement to a subprogram .

©

	

UNBREAK ON DEF disables breakpoints that occur when
BASIC-PLUS-2 encounters a user-defined function in a module
compiled with the /DEBUG qualifier .

©

	

UNBREAK ON LOOP disables breakpoints that occur when
BASIC-PLUS-2 encounters a FOR, WHILE, or UNTIL statement
or modifier.

2 . Stmnt-break specifies a particular line number or statement where
execution is to stop .
©

	

Lin-num specifies a program line number .

©

	

Stat-num specifies a particular statement associated with lin-num .
The period (.) separator is required and must immediately follow the
line number. BASIC-PLUS-2 signals an error if you include a space
between lin-num and stat-num . The cross-reference section of the
compiler listing lists statements on multi-statement lines by number .

B-22 Debugger Commands

ON block
[ON] stmnt-break, . . .

Remarks

Example

©

	

Mod-nam specifies a program module compiled with the /DEBUG
qualifier. When you specify a module name, the specified line number is
disabled as a breakpoint only in that program module . If a breakpoint
has not been previously set, BASIC-PLUS-2 signals an error.

©

	

If lin-num or stat-num do not exist, the debugger signals the error "Bad
line spec in (UN)BREAK."

3. UNBREAK with no parameters disables all previously specified stmnt-
break breakpoints . ON block breakpoints are not disabled .

None .

UNBREAK ON LOOP

UNBREAK 100 ;GAMES, 500 . 600 .2

CON

UNBREAK

Debugger Commands B-23

UNTRACE

UNTRACE

Format

The UNTRACE command disables the TRACE command .

UNTRACE

Syntax Rules
None .

Remarks
Enter the UNTRACE command when the program encounters a specified
breakpoint and stops executing .

Example

UNTRACE

CON

B-24 Debugger Commands

C
Editing Mode Commands

This appendix describes the BASIC-PLUS-2 editing mode commands .
To use the editing mode commands, enter the EDIT command while in
the BASIC-PLUS-2 environment . Once you enter the EDIT command,
BASIC-PLUS-2 places you in editing mode where you can use the editing
mode commands to modify your program . See Chapter 2 for more information
on the BASIC-PLUS-2 EDIT command .

Editing Mode Commands C- 1

DEFINE

DEFINE

Format

Syntax Rules
The DEFINE and EXECUTE editing mode commands are invalid in a
macro definition . If you specify these commands in your macro definition,
BASIC-PLUS-2 signals an error message .

Remarks
1 . To create a macro definition, enter the DEFINE command . BASIC-PLUS-2

displays the DEFINE prompt (->). Next, enter the editing mode commands
in the sequence in which you want them to execute . When you are finished,
enter EXIT or CTRL/Z to exit. You can then use the EXECUTE command
to execute your macro definition . See the description of the EXECUTE
editing mode command for more information .

2 . BASIC-PLUS-2 writes the macro definition to a file, so the definition
remains in effect until you enter another DEFINE command .

Example

* DEFINE

Enter command sequence :
->FIND REM
->SUBSTITUTE /REM/!/
->EXIT

* EXECUTE

The DEFINE editing mode command allows you to enter a macro definition. A
macro definition consists of a series of editing mode commands in the order in
which they are to execute .

DEFINE

C-2 Editing Mode Commands

EXECUTE

Format

Syntax Rules
Int-const specifies the number of times the macro executes . If you do not
specify int-const, BASIC-PLUS-2 executes the macro once .

Remarks
An EXECUTE command always executes the last defined macro definition .
If no macro definition exists, BASIC-PLUS-2 signals the error "Command
sequence has not been defined ."

Example

* EXECUTE 5

EXECUTE

The EXECUTE editing mode command executes the last macro defined by the
DEFINE command. You specify the number of times the macro is to execute .

EXECUTE [int-const]

Editing Mode Commands C-3

EXIT

EXIT

Format

Syntax Rules
None .

Remarks
1 . If you enter EXIT or Ctrl/Z in response to the editing mode prompt,

BASIC-PLUS-2 exits from the editing mode .
2 . If you enter EXIT or Ctrl/Z to end a DEFINE or INSERT command,

BASIC-PLUS-2 displays the editing mode prompt and you can enter more
editing mode commands .

Example

* DEFINE

Enter command sequence
->FIND REM
->SUBS /REM/!
->EXIT

The EXIT or Ctrl/Z editing mode command marks the end of a DEFINE or
INSERT command or exits you from editing mode .

EXIT

C-4 Editing Mode Commands

FIND

Format

FIND

The FIND editing mode command searches the current program for a specified
string starting at the last edited line and continuing to the end of the program .

FIND [unq-str

Syntax Rules
1 . Unq-str specifies the string you want to find .
2 . If you do not specify a unq-str, the FIND command matches the unq-

str specified by the last FIND command. If there is no previous FIND
command, BASIC-PLUS-2 matches the first character of the last edited
line .

Remarks
1. When BASIC-PLUS-2 locates the string, BASIC-PLUS-2 displays the line

containing the string and sets it as the last edited line . BASIC-PLUS-2
also displays an informational message .

2 . If the string does not exist, the last edited line remains unchanged and
BASIC-PLUS-2 displays a message which informs you that the string was
not located .

3 . The FIND command matches the string exactly as you enter it . If the
string is uppercase, BASIC-PLUS-2 searches for matching uppercase
characters .

Example

* FIND PRIMT

330 PRIMT 'How many receipts do you have' ;RECEIPTS

"PRIMT" found on line 330

Editing Mode Commands C-5

INSERT

INSERT

Format

The INSERT editing mode command allows you to add lines to a program .

INSERT [lin-num]

Syntax Rules
1 . Lin-num specifies the line number after which you want to insert new

program lines .
2. If the line number does not exist, BASIC-PLUS-2 signals an error .
3. If you do not specify a line number, BASIC-PLUS-2 inserts program lines

after the last edited line .
4. The first line of the inserted lines must begin with a line number.

Remarks
1. To insert program lines, enter the INSERT command and then enter in the

program lines you want to insert . When you are finished inserting lines,
enter the EXIT command to return to editing mode . BASIC-PLUS-2
displays the editing mode prompt and you can enter more editing
subcommands .

2 . If you insert a line number that already exists, BASIC-PLUS-2 replaces
the existing line with the code you insert and does not signal a warning .

3 . BASIC-PLUS-2 does not perform syntax checking on program lines
inserted by the INSERT command .

4. The current edit line does not change . For example, if the current edit line
is 10 and you insert lines 20 and 30, line 10 remains the current edit line .

C-6 Editing Mode Commands

Example

* INSERT 30

Enter lines to be added after line 30
->40 INPUT 'More receipts' ;RECEIPTS$
->50 IF RECEIPTS$ = I'll
->

	

THEN GOTO 32767
->

	

END IF
->

	

EXIT
*

INSERT

Editing Mode Commands C-7

SUBSTITUTE

SUBSTITUTE

The SUBSTITUTE editing mode command allows you to substitute
one character string for another in the program currently in memory.
SUBSTITUTE is the editing mode equivalent of the EDIT command with one
exception: you cannot specify a range of lines . The SUBSTITUTE subcommand
can replace only one occurrence of the specified search string, while the EDIT
command can replace all occurrences in a range of lines, if you so specify .

Format
SUBSTITUTE search-clause [replace-clause]

search-clause :

	

delim unq-strl delim

replace-clause :

	

[unq-str2] [delim] [int-const]

Syntax Rules
1. Delim is a unique delimiter character that marks the beginning and end of

the search and replace strings .
©

	

Delim cannot be a character used in the search or replace strings .
©

	

The beginning and ending delim characters must match, or
BASIC-PLUS-2 signals an error .

2 . Unq-strl specifies the string you want to remove or replace . Unq-str2
specifies the string to be substituted for unq-strl .
©

	

If unq-strl is found, BASIC-PLUS-2 replaces it with unq-str2 .
©

	

If unq-strl is not found, BASIC-PLUS-2 signals an error .
©

	

If you do not specify unq-str2, BASIC-PLUS-2 deletes unq-strl .
©

	

If you do not specify unq-strl, BASIC-PLUS-2 replaces the first
character of the last edited line with unq-str2 .

© The SUBSTITUTE command matches and replaces strings exactly as
you enter them . If unq-strl is uppercase, BASIC-PLUS-2 searches for
an uppercase string. If it is lowercase, BASIC-PLUS-2 searches for a
lowercase string .

C-8 Editing Mode Commands

SUBSTITUTE

3. Int-const specifies the occurrence of str-litl you want to replace . If you do
not specify an int-const, BASIC-PLUS-2 replaces the first occurrence of
str-litl .

4. If you specify the SUBSTITUTE command without an argument,
BASIC-PLUS-2 signals the error "Parameters required ."

Remarks
BASIC-PLUS-2 displays the edited line with changes after the SUBSTITUTE
command executes .

Example

* SUBSTITUTE /A •%/ABSOLUTE%/3

Editing Mode Commands C-9

Object Time System Routines

This appendix contains a list of the module names in the BASIC-PLUS-2
Object Time System (OTS) and a brief description of each of their functions .

Table D-1 Control, Matrix, and Miscellaneous Modules

Module
Name

	

Description

$BTDID

	

Logical functions
$BTDLD

	

Logical functions-LONGWORD
$CALLR

	

CALL thread-BY REF
$CALLS

	

CALL thread-BP2
$CHANG

	

ASCII string conversions
$CNTRL

	

GOTO and branch statements
$ERTHR

	

Error threads
$FUNC1

	

Function call threads (obsolete)
$FUNC2

	

General function threads
$FUNC3

	

DEF* function code thread
$FUNC4

	

DEF function code thread
$LOADS

	

Loading of truth values
$MATIC

	

Matrix inversion-COMMON
$MATID

	

Matrix inversion-DOUBLE
$MATIF

	

Matrix inversion-FLOATING
$MTRET

	

Matrix inversion-RELOAD RETURN
$MATRT

	

Matrix inversion-root
$MATRX

	

Matrix threads

D

(continued on next page)

Object Time System Routines D-1

Table D-1 (Cont.) Control, Matrix, and Miscellaneous Modules

Module
Name

	

Description

$NEGAT

	

Negate operations
$REDIM

	

General redimensioning routine
$TESTS

	

Logical test routines
$RUNDN

	

Dummy routine to fill $ICIOO

Table D-2 Array Threads

Module
Name

	

Description

All$

	

1-dimensional INTEGER array address with bounds checking
A1D$

	

1-dimensional DOUBLE array address with bounds checking
A1F$

	

1-dimensional FLOATING array address with bounds checking
A21$

	

2-dimensional INTEGER array address with bounds checking
A2D$

	

2-dimensional DOUBLE array address with bounds checking
A2F$

	

2-dimensional FLOATING array address with bounds checking
B1I$

	

1-dimensional INTEGER array address without bounds checking
B1D$

	

1-dimensional DOUBLE array address without bounds checking
B1F$

	

1-dimensional FLOATING array address without bounds checking
B2I$

	

2-dimensional INTEGER array address without bounds checking
B2D$

	

2-dimensional DOUBLE array address without bounds checking
B2F$

	

2-dimensional FLOATING array address without bounds checking
V1I$

	

1-dimensional INTEGER array value with bounds checking
V1D$

	

1-dimensional DOUBLE array value with bounds checking
V1F$

	

1-dimensional FLOATING array value with bounds checking
V21$

	

2-dimensional INTEGER array value with bounds checking
V2D$

	

2-dimensional DOUBLE array value with bounds checking
V2F$

	

2-dimensional FLOATING array value with bounds checking
W1I$

	

1-dimensional INTEGER array value without bounds checking
W1D$

	

1-dimensional DOUBLE array value without bounds checking
(continued on next page)

D-2 Object Time System Routines

Table D-2 (Cont.) Array Threads

Module
Name

	

Description

W1F$ 1-dimensional FLOATING array value without bounds checking
W21$ 2-dimensional INTEGER array value without bounds checking
W2D$ 2-dimensional DOUBLE array value without bounds checking
W2F$

	

2-dimensional FLOATING array value without bounds checking

Table D-3 String Modules

Module
Name

	

Description

$PROCT

	

CTRL/C protection routine
$SSCST

	

Subscript routines for common string arrays
$SSOFF

	

Find offset into array
$SSPTR

	

Subscript pointer mode threads
$SSRDM

	

Redimensioning thread
$SSSUB

	

Subscript routines for normal arrays
$SSVIR

	

Subscripting for virtual arrays
$STCFS

	

String/numeric conversion functions
$STCMP

	

String comparison routines
$STCOS

	

String concatenation routines
$STCVT

	

String conversion function
$STFNS

	

String functions
$STFN1

	

String functions (continued)
$STGTA

	

String get a mode source routines
$STLSS

	

String left set routines
$STMOS

	

String move routines
$STMSC

	

String routines (miscellaneous)
$STNMD

	

DOUBLE NUM(1)$ function
$STNMF

	

SINGLE NUM(1)$ function
$STNML

	

LONGWORD NUM(1)$ function
(continued on next page)

Object Time System Routines D-3

Table D-3 (Cont.) String Modules

Module
Name

	

Description

$STRSS

	

String right set routines

$STVLD

	

VAL function-DOUBLE

$STVLF

	

VAL function
$STVLI

	

VAL function
$STVLL

	

VAL function-LONGWORD
$STXCM

	

XLT CVT common routines
$STXLT

	

String XLATE function
$SWPST

	

Swap stack locations

Table D-4 Common Math Modules

Module
Name

	

Description

$BMOVS

	

BYTE moves
$BNEXT

	

BYTE next threads
$DCMP

	

DOUBLE comparison routines
$DMOV

	

DOUBLE moves
$DRAND

	

RND DOUBLE
$DTAN

	

DOUBLE tangent
$DTIME

	

TIME(X%) function-DOUBLE
$DXDD

	

DOUBLE ** DOUBLE
$ECDF

	

Approximate FLOATING/DOUBLE comparison
$ECONV

	

FLOATING formatted conversion
$ECPY

	

DOUBLE/SINGLE copy threads
$EMISC

	

ABSOLUTE VALUE/SIGN FUNCTIONS
$FCMP

	

FLOATING comparisons
$FMOV

	

FLOATING moves
$FRAND

	

RND/RANDOMIZE
$FTAN

	

Tangent FLOATING

D-4 Object Time System Routines

(continued on next page)

Table D-4 (Cont.) Common Math Modules

Module
Name

	

Description

$FXFF

	

SINGLE ** SINGLE
$JADDS

	

INTEGER addition
$JCMPS

	

INTEGER comparison
$JCOMP

	

INTEGER complements
$JCONV

	

INTEGER conversion routines

$JDIVS

	

INTEGER division

$JMISC

	

ABS function

$JMOVS

	

Simple INTEGER moves

$JMUL

	

INTEGER multiplication

$JNCR

	

Increments and decrements

$JNEXT

	

INTEGER next threads

$JPADD

	

INTEGER addition with arguments

$JPCMP

	

INTEGER argument comparison
$JPMOV

	

INTEGER argument movement

$JPSUB

	

INTEGER subtraction with arguments

$JSUBS

	

INTEGER subtraction

$JXII

	

INTEGER ** INTEGER
$LADDS

	

LONGWORD addition
$LCMP

	

LONGWORD comparison
$LCOMP

	

LONGWORD complement
$LCON2

	

LONGWORD and INTEGER conversion
$LCONV

	

LONG INTEGER conversion routines

$LDIV

	

LONGWORD division
$LXLL

	

LONGWORD exponentiation routine

$LMISC

	

ABS-LONGWORD
$LMUL

	

LONGWORD multiplication
(continued on next page)

Object Time System Routines D-5

Table D-4 (Cont.) Common Math Modules

Module
Name

	

Description

$LNEXT

	

LONGWORD next threads
$LSUBS

	

LONGWORD subtraction
$RCMP

	

RFA comparison

$RMOV

	

RFA movement

Table D-5 FPU Math Modules

Module
Name

	

Description

$BFPER

	

Floating-point setup

$BFPEI

	

Floating-point error
$DATAN

	

Double-precision arctangent

$DCON1

	

DOUBLE-to-INTEGER conversion
$DDIV

	

Double-floating divide

$DEXP

	

Double-precision EXP
$DFIX

	

DOUBLE-to-DOUBLE truncation
$DINT

	

INTEGER part of DOUBLE
$DLOG

	

Double-precision LOG
$DMUL

	

Double-floating multiplication
$DSCAL

	

SCALE factor preprocessor
$DSIN

	

Double-precision SIN and COS
$DSQRT

	

Double-precision square root
$DXDI

	

DOUBLE ** INTEGER
$FADD

	

Floating addition
$FADDA

	

Real addition through address
$FADDM

	

Real addition to memory
$FADDP

	

Real addition to pointer
$FATAN

	

Arctangent
$FCON1

	

FLOAT-to-INTEGER conversion

D-6 Object Time System Routines

(continued on next page)

Table D-5 (Cont .) FPU Math Modules

Module
Name

	

Description

$FDIV

	

Floating division

$FEXP

	

Real exponent routine
$FFIX

	

Real-to-real truncation

$FINT

	

INTEGER part of real
$FLOG

	

Single-precision log
$FMUL

	

FLOATING multiplication
$FNEXT

	

FLOATING next threads
$FSIN

	

FLOATING SIN
$FSQRT

	

FLOAT square root
$FXFI

	

FLOATING ** INTEGER
$JCON1

	

INTEGER to FLOAT conversion

$LCON1

	

LONGWORD conversion

$MATII

	

Matrix inversion-INTEGER

Table D-6 Common I/O Modules

Module
Name

	

Description

$ICCRL

	

Shared RMS OPEN code
$ICEOL

	

End I/O list
$ICEND

	

Common end
$ICFLD

	

Field threads
$ICINI

	

UO initializations
$ICIOO

	

AST vector area
$ICMOV

	

Buffer move threads
$ICPRG

	

PRINT USING (all types)
$ICRCL

	

Common close thread
$ICRDD

	

Input DOUBLE
$ICRDL

	

DELETE threads
(continued on next page)

Object Time System Routines D-7

Table D-6 (Cont .) Common I/O Modules

Module
Name

	

Description

$ICRED

	

Common inputs (all types)
$ICRE1

	

New READ routines
$ICRFG

	

FIND/GET threads

$ICRKY

	

FIND/GET key thread
$ICRMP

	

REMAP move threads

$ICRPT

	

PUT threads
$ICRSC

	

SCRATCH thread

$ICRSR

	

RESTORE thread
$ICRUL

	

UNLOCK thread

$ICRUN

	

UPDATE thread
$ICULT

	

Common utility routines
$ICUL1

	

Common utility routines
$ICWRT

	

PRINT (all variables)
$ICWR1

	

PRINT LONGWORD variables
$IVVIR

	

Virtual block
RAD50

	

ASCII string to RAD50 conversion
RQLCB

	

Core block request and release
SAVRG

	

Non-volatile registers save or restore
$OVSG1

	

Overlay SEG 1 routine
$OVSG2

	

Overlay SEG 2 routine
$OVSG3

	

Overlay SEG 3 routine
$OVSG4

	

Overlay SEG 4 routine

Table D-7 RMS I/O Modules

Module
Name

	

Description

$ICFSP

	

Return file information
$IMALL

	

Common code for all RMS

D-8 Object Time System Routines

(continued on next page)

Table D-7 (Cont.) RMS I/O Modules

Module
Name

	

Description

$IMALQ

	

RMS allocation routines
$IMCLS

	

Common CLOSE-RMS
$IMDEL

	

Common DELETE
$IMFGC

	

Common for FIND/GET
$IMGSA

	

RMS allocation routines
$IMOPN

	

Shared RMS OPEN code
$IMPUT

	

Common PUT
$IMRES

	

Common RMS RESTORE
$IMUPD

	

Common UPDATE
$IROPN

	

Relative OPEN
$IRROT

	

Relative root resident module
$ISROT

	

Sequential root resident module
$ISSCR

	

Sequential SCRATCH
$IUROT

	

Undefined root resident module
$IMCLS

	

Indexed CLOSE
$IXOPN

	

Indexed OPEN

$IXROT

	

IDX root resident module
$RMSUP

	

AST vector area

$CMRMS

	

AST vector area

Table D-8 RSTS/E-Specific Modules

Module
Name

	

Description

$BERFS

	

File names for error
$BINIT

	

Run-time initializations
$BXTRA

	

Extra routines
$CCTRP

	

BASIC-PLUS-2 CTRL/C trap
$DEBUG

	

BASIC-PLUS-2 Debugger
(continued on next page)

Object Time System Routines D-9

Table D-8 (Cont.) RSTS/E-Specific Modules

Module
Name

	

Description

$ERROR

	

Error handler
$ERROT

	

Error handler
$FTIME

	

TIME(X%) function
$ICFNS

	

Non-FIP CALL functions
$ICFSS

	

File string scan
$ICIO2

	

I/O impure area (such as FAB)
$ICROP

	

Common OPEN thread
$ICTRM

	

System terminal functions

$IECHN

	

CHAIN thread
$IEMSC

	

I/O functions
$IESPX

	

SPEC function
$IESYS

	

BASIC-PLUS-2 SYS function

$IEULT

	

I/O utilities
$IMATR

	

Read file attributes

$IMERR

	

RMS error handler
$IMROT

	

RMS root resident code
$IMULK

	

RMS UNLOCK (free and release)
$ISCLS

	

Sequential CLOSE-RMS
$ISOPN

	

Sequential OPEN
$IVOPN

	

Virtual OPEN
PATCH

	

Patch space
$START

	

String arithmetic functions
$STPDB

	

Stop processor for debugger
$TIME

	

TIME function
$CMROT

	

Compiler root resident module
$RNROT

	

RUN controller

D-1 0 Object Time System Routines

Table D-9 RSX-Specific Modules

Module
Name

	

Description

$BERFS

	

File names for error
$BINIT

	

Run-time initializations
$CCTRP

	

BASIC-PLUS-2 CTRL/C trap
$DEBUG

	

Debugger for BASIC-PLUS-2
$ERROR

	

Error handler
$ERROT

	

Error handler
$FTIME

	

TIME(X%) function
$ICFNS

	

Non-FIP CALL functions
$ICFSS

	

File string scan
$ICIO2

	

I/O impure area (such as FAB)
$ICROP

	

Common OPEN thread
$ICTRM

	

System terminal functions
$IMATR

	

Read file attributes
$IMERR

	

RMS error handler
$IMROT

	

RMS root resident code
$IMULK

	

RMS unlock (free and release)
$IQCHN

	

CHAIN thread
$IQKIL

	

KILL function
$IQMGT

	

MAGTAPE functions
$IQMSC

	

I/O functions
$IQNMA

	

NAME. .. AS function
$IQROT

	

Terminal PO root
$IQULT

	

I/O utilities
$ISCLS

	

SEQUENTIAL close - RMS
$ISOPN

	

SEQUENTIAL open
$IVOPN

	

VIRTUAL open
PATCH

	

Patch space
$START

	

STRING arithmetic functions
(continued on next page)

Object Time System Routines D-1 1

Table D-9 (Cont.) RSX-Specific Modules

Module
Name

	

Description

$STPDB

	

Stop processor for debug
$TIME

	

TIME function
$IVROT

	

Virtual root resident module
$CMROT

	

Compiler root resident module
$RNROT

	

Run controller

D-1 2 Object Time System Routines

1-11
in DATA statement, 4-33

APPEND command, 2-3 to 2-5
Arc tangent, 4-5
Arithmetic operators, 1-34
Array, 1-19

assigning values to, 4-141, 4-144, 4-150,
4-222

bounds, 4-16, 4-37, 4-57, 4-59, 4-141,
4-144,4-146,4-148,4-150

converting with CHANGE statement,
4-16

creating, 4-56
creating with COMMON statement, 4-20
creating with DECLARE statement, 4-37
creating with MAP statement, 4-134
creating with MAT statement, 4-140,

4-144,4-146,4-148,4-150

Index

size limit, 1-20
static, 4-56, 4-57
subscripts, 4-57
transposing, 4-142
virtual, 1-22, 4-39, 4-56, 4-58

ASCII
character set, 1-11
characters, 1-32, 1-39, 4-18
conversion, 4-16, 4-18
converting to, 4-4
function, 4-4
radix, 1-29

Asterisk (*)
in PRINT USING statement, 4-204
with HELP command, 2-30

ATN function, 4-5

Index-1

A
Array (cont'd)

data type, 4-56
definition of, 1-20
dimensioning, 4-59, 4-141%ABORT directive, 3-2

ABS function, 4-2
ABS% function, 4-3

dimensions, 1-20, 4-56
dynamic, 4-56, 4-57, 4-59

Absolute value element zero, 1-20, 4-58, 4-141, 4-145,
ABS function, 4-2 4-147,4-149,4-150,4-158
ABS% function, 4-3
MAG function, 4-131

ACCESS clause, 4-181,
ALLOW clause, 4-181

4-213

elements, 1-19
elements of, 4-57
errors in, 4-57
initializing, 4-59, 4-141
inversion of, 4-142
naming, 1-19, 1-21

Alphanumeric label, 1-2
See also Labels

ALTERNATE KEY clause, 4-187
Ampersand (&)

as a continuation character, 1-5, 1-6,

redimensioning, 4-150
redimensioning with MAT statement,

4-141,4-144,4-146

disabling, B-21
setting, B-1, B-2

BRLRES command, 2-6
Bucket

creating with BUCKETSIZE clause,
4-181

locking, 4-102
unlocking, 4-102

BUCKETSIZE clause, 4-181
BUFFER clause, 4-182
BUFSIZ function, 4-6

Index-2

CHANGE statement, 4-16 to 4-17
CHANGES clause, 4-187
Character

ASCII, 1-32, 1-39, 4-4, 4-18
data type suffix, 1-15
formatting with PRINT USING statement,

4-204 to 4-208
lowercase, 2-26, 4-206
nonprinting, 1-31
position

CCPOS function, 4-13
of substring, 4-115, 4-197

B
BUILD command, 2-8

BYTE qualfier, 2-9
/DSKLIB qualifier, 2-10
/EXTEND qualifier, 2-10
/LIBRARY qualifier, 2-11
/[NO]CLUSTER qualfier, 2-10
/[NO]DUMP qualifier, 2-10
/[NO]IDS qualifier, 2-11
/[NO]INDEX qualifier, 2-11
/[NO]MAP qualifier, 2-11
/[NO]RELATIVE qualifier, 2-12
/[NO]SEQUENTIAL qualifier, 2-12
/[NO]VIRTUAL qualifier, 2-13
/ODLRMS qualifier, 2-12

Backslash (\)
in continued lines, 1-6
in multi-statement lines, 1-6
in PRINT USING statement, 4-207
statement separator, 1-6

BASIC-PLUS-2 character set, 1-11
Binary radix, 1-29
Blank-if-zero field

in PRINT USING statement, 4-205
Block

CASE, 4-245
SELECT, 4-245

Block I/O file
finding records in, 4-83

/RMSRES qualifier, 2-12
BYTE data type, 1-13

opening, 4-185
4-101 Cretrieving records sequentially in,

writing records to, 4-213
Block statement

C formatting character
in PRINT USING statement, 4-207

ending, 4-64
exiting, 4-71

BLOCKSIZE clause, 4-181

CALL statement, 4-7 to 4-11
Caret (A)

in PRINT USING statement, 4-204
Bounds

default for implicit arrays, 4-58, 4-141,
CASE clause, 4-245
CASE ELSE clause, 4-245

4-144,4-146,4-148,4-150 CAUSE ERROR statement, 4-12
definition of, 1-19
maximum, 1-20
upper bounds with DECLARE statement,

CCPOS function, 4-13
CD formatting character

in PRINT USING statement, 4-204
4-38 Centered field

BREAK debugger command, B-1, B-3 in PRINT USING statement, 4-207
Breakpoint CHAIN statement, 4-14

Character (cont'd)
processing, 1-12
uppercase, 2-26, 4-206
wildcard, 2-30

CHARACTER data type, 1-31
Character set

ASCII, 1-11
BASIC-PLUS-2, 1-11
translating with XLATE$ function, 4-288

CHR$ function, 4-18
Clauses

ACCESS, 4-181, 4-213
ALLOW, 4-181
ALTERNATE KEY, 4-187
BLOCKSIZE, 4-181
BUCKETSIZE, 4-181
BUFFER, 4-182
BY, 4-8, 4-76, 4-263
CASE, 4-245
CASE ELSE, 4-245
CHANGES, 4-187
CLUSTERSIZE, 4-182
CONNECT, 4-182
CONTIGUOUS, 4-182
COUNT, 4-212, 4-281
DEFAULTNAME, 4-180, 4-183
DUPLICATES, 4-187, 4-214
ELSE, 4-106
END IF, 4-106
EXTENDSIZE, 4-183
FILESIZE, 4-183
FOR, 4-180
KEY, 4-81, 4-100, 4-234
MAP, 4-136, 4-184
MODE, 4-184
NOREWIND, 4-185
[NOISPAN, 4-185
ORGANIZATION, 4-185
OTHERWISE, 4-174, 4-176
PRIMARY KEY, 4-187
RECORD, 4-81, 4-100, 4-212, 4-213
RECORDSIZE, 4-136, 4-188, 4-212
RECORDTYPE, 4-188
RFA, 4-80, 4-99
STEP, 4-88

Clauses (cont'd)
TEMPORARY, 4-189
UNTIL, 4-89
USEROPEN, 4-189
WHILE, 4-89
WINDOWSIZE, 4-189

CLOSE statement, 4-19
CLUSTERSIZE clause, 4-182
Colon (:)

in labels, 1-2
Comma (,)

in DATA statement, 4-34
in DELETE command, 2-21
in EXTRACT command, 2-29
in INPUT LINE statement, 4-112
in INPUT statement, 4-109
in LINPUT statement, 4-125
in LIST command, 2-36
in MAT PRINT statement, 4-148
in PRINT statement, 4-199
in PRINT USING statement, 4-204

Command file
generating, 2-8

Comment
field, 1-8
in DATA statement, 1-9, 4-33
in REM statement, 4-227
processing, 1-12
REM statement, 1-10
terminating, 1-9
transferring control to, 1-9

Common
area, 4-23

COMMON area
size of, 4-23

COMMON statement, 4-20 to 4-24
FILL keywords, 4-21
with FIELD statement, 4-79

COMP% function, 4-25
Compilation

conditional, 3-6, 3-20
control of, 1-8, 2-64
control of listing, 3-3, 3-11, 3-12, 3-13,

3-14,3-15,3-16,3-18
controlling with OPTION statement,

4-192

Index-3

%VARIANT, 3-20

Index-4

Compilation (cont'd)
including source code, 1-8

CON keyword, 4-141
Concatenation

of COMMON areas, 4-23listing, 2-14
line numbers in, 1-7 string, 1-6, 1-34, 1-37

terminating with %ABORT directive, 3-2 Conditional branching
COMPILE command, 2-14 to 2-20 IF statement, 4-106

ON . . .GOSUB statement, 4-174
ON . . .GOTO statement, 4-176

/BYTE qualifier, 2-16
/DOUBLE qualifier, 1-16,2-17
/LONG qualifier, 2-18
/[NO]BOUND qualifier, 2-15
/[NO]CHAIN qualifier, 2-16
/[NO]CROSS_REFERENCE qualifier,

SELECT statement, 4-245
Conditional compilation, 1-8

with %IF directive, 3-6
with %VARIANT directive, 3-20

2-16
/[NO]DEBUG qualfier, 2-16
/[NO]FLAG qualifier, 2-17

Conditional expression, 1-37
definition of, 1-37
FOR statement, 4-88
IF statement, 4-106/[NO]LINE qualifier, 2-17, 4-67

/[NO]LIST qualifier, 2-17 %LET directive, 3-10
UNLESS statement, 4-277
UNTIL statement, 4-279
WHILE statement, 4-286

/[NO]MACRO qualifier, 2-18
/[NO]OBJECT qualifier, 2-18
/[NO]SCALE qualifier, 2-18
/[NO]SYNTAX-CHECK qualifier, 2-19 Conditional loop, 4-88, 4-279, 4-286
/[NO]WARNINGS qualifier, 2-19 CONNECT clause, 4-182

Constant, 1-22/PAGE SIZE qualifier, 2-18
/SINGLE qualifier, 2-19
/TYPE DEFAULT qualifier, 1-15,2-19

declaring, 1-28, 4-38
default data type, 1-22
definition of, 1-22
external, 4-75

/VARIANT qualifier, 2-19, 3-20

Compiler

Compiler

/WIDTH qualifier, 2-20
/WORD qualifier, 2-20

commands
See Environment commands

directives, 1-8, 3-1 to 3-20
%ABORT, 3-1

floating-point, 1-23
integer, 1-24
lexical, 3-6, 3-10
named, 1-27

1-27naming, 1-23,
%CROSS, 3-3
%IDENT, 3-4

numeric, 1-23
string, 1-25
type of, 1-22
with OPTION CONSTANT TYPE, 4-192

%IF-%THEN-%ELSE-%END %IF, 3-6
%INCLUDE, 3-8
%LET, 3-10 CONTIGUOUS clause, 4-182
%LIST, 3-11
%NOCROSS, 3-12
%NOLIST, 3-13

Continuation characters
ampersand, 1-6
backslash, 1-6

%PAGE,
%PRINT,
%SBTTL,
%TITLE,

3-14
3-15
3-16
3-18

CONTINUE debugger command, B-3, B-4
Control

transferring into DEF functions, 4-174,
4-176

4-105,4-174,4-176
transferring to a label, 4-104, 4-105
transferring with CALL statement, 4-7
transferring with CHAIN statement,

4-14
transferring with GOSUB statement,

4-104
transferring with GOTO statement,

4-105
transferring with IF statement, 4-106
transferring with ON . ..GOSUB statement,

4-174
transferring with ON . . .GOTO statement,

4-176
transferring with RESUME statement,

4-113,4-126,4-236
transferring with RETURN statement,

4-238
Conversion

array to string variable, 4-16
CVT$% function, 4-30
CVT$F function, 4-30
CVT%$ function, 4-30
CVTF$ function, 4-30
INTEGER function, 4-118
NUM$ function, 4-165
NUM1$ function, 4-167
RAD$ function, 4-218
REAL function, 4-224
STR$ function, 4-260
string variable to array, 4-16
VAL function, 4-283
VAL% function, 4-284
XLATE$ function, 4-288

CORE debugger command, B-4, B-5
COS function, 4-26

Cross-reference table
%CROSS directive, 3-3
%NOCROSS directive, 3-12

Ctrl/C function
trapping, 4-220
with RECOUNT function, 4-225

CTRLC function, 4-27
See also RCTRLC function

Ctrl/C key, 4-27
Ctrl/Z function, 2-28

with INPUT LINE statement, 4-113
with INPUT statement, 4-111
with LINPUT statement, 4-126

Cursor position
CCPOS function, 4-13
TAB function, 4-271

CVT$$ function, 4-29
See also EDIT$ function

CVTxx function, 4-30
with FIELD statement, 4-78

D
Data

transferring with MOVE statement,
4-156

DATA statement, 4-33 to 4-34
See also READ statement
comment fields in, 1-9
in DEF function, 4-43
in DEF* function, 4-49
in multi-statement lines, 1-7
terminating, 4-33
with MAT READ statement, 4-150
with READ statement, 4-222
with RESTORE statement, 4-234

Index-5

Control (cont'd)
transferring into FOR . . . NEXT loops,

Cosine, 4-26
COUNT clause, 4-212

4-104,4-105,4-174,4-176
transferring into SELECT blocks, 4-174,

with fixed-length records, 4-281
with variable-length records, 4-281

4-176 CPU time, 4-273
transferring into UNTIL loops, 4-104, Credit-debit field

4-105,4-174,4-176 in PRINT USING statement, 4-204
transferring into WHILE loops, 4-104, %CROSS directive, 3-3

Data types, 1-12
BYTE, 1-13, 2-53
CHARACTER, 1-31
default, 1-14
defaults, 1-16
DOUBLE, 1-13, 2-54, 2-55
floating-point, 2-54, 2-55
in LET statement, 4-123
in logical expressions, 1-41
in numeric expressions, 1-35
INTEGER, 1-12
INTEGER function, 4-118
integer overflow, 1-24, 2-53, 2-54,

2-56
keywords, 1-12, 1-13
LONG, 1-13
LONGWORD, 2-55
numeric literal notation, 1-30
precision, 1-13
precision in PRINT statement, 4-200
precision in PRINT USING statement,

4-203
promotion rules, 1-35
range, 1-13
REAL, 1-13
REAL function, 4-224
results in expressions, 1-36
RFA, 1-13
setting defaults with OPTION statement,

4-192
SINGLE, 1-13, 2-55
size, 1-13
storage of, 1-12, 1-13
STRING, 1-13
suffix characters, 1-15
WORD, 1-13, 2-56

Data typing
explicit, 1-16
implicit, 1-15
with declarative statements, 1-16
with suffix characters, 1-15

Date and time functions
TIME function, 4-273
TIME$ function, 4-275

Index-6

breakpoint disabling, B-21
breakpoint setting, B-1
exiting, B-8

Debugger commands
BREAK, B-1
CONTINUE, B-4

I/O BUFFER, B-11
LET, B-12
PRINT, B-14
RECOUNT, B-15
REDIRECT, B-16
STATUS, B-17
STEP, B-19
STRING, B-20
TRACE, B-21
UNBREAK, B-22
UNTRACE, B-24

Decimal radix, 1-29

MAP statement, 4-135
DECLARE CONSTANT statement, 1-33
DECLARE statement, 4-37 to 4-40

CONSTANT, 1-28
DEF function

ending, 4-64
error handling in, 4-43, 4-169, 4-171,

4-236
exiting, 4-71
recursion in, 4-44

2-55, CORE, B-4
ERL, B-6
ERN, B-7
ERR, B-8
EXIT, B-9
FREE, B-10

DATE$ function, 4-35
DCL command

specifying from environment, 2-2
Debit-credit field

in PRINT USING statement, 4-204
Debugger

Declarative statements
COMMON statement, 4-24
DECLARE statement, 4-37
EXTERNAL statement, 4-74

DEF function (cont'd)
transferring control into, 4-44, 4-174,

4-176
DEF statement, 4-41 to 4-45

multi-line, 4-42
parameter, 4-42, 4-43
single-line, 4-42

DEF* function
error handling in, 4-64
multi-line, 4-47
parameter, 4-47, 4-48
recursion in, 4-49
single-line, 4-47

DEF* statement, 4-46 to 4-50
Default

compiler, 2-64
data type, 1-14, 4-192
environment, 2-64
error handling, 4-169
parameter-passing mechanisms, 4-8 to

4-9,4-76
scale factor, 4-192
setting with OPTION statement, 4-191

DEFAULTNAME clause, 4-180, 4-183
DEFINE editing mode command, C-2
DELETE command, 2-21 to 2-22
DELETE statement, 4-51

with UNLOCK statement, 4-278
Delimiter

comma (,), 4-200
double quotation mark ("), 4-200
in DATA statement, 4-34
PRINT statement, 4-200
semicolon (;), 4-200
single quotation mark ('), 4-200
string literal, 1-25

Descriptor, 4-11, 4-76, 4-263
DET function, 4-53
Determinant, 4-53
DIF$ function, 4-55
DIMENSION statement, 4-56 to 4-60

executable, 4-57, 4-59
nonexecutable, 4-57
nonvirtual, 4-57
virtual, 4-57

DIMENSION statement (cont'd)
with MAT statement, 4-141, 4-144,

4-146,4-149,4-150
Documentation

program, 1-8
Dollar sign ($)

in DECLARE statement, 4-38
in DEF names, 4-41
in DEF* statement names, 4-46
in PRINT USING statement, 4-204
in variable names, 1-17, 1-18
suffix character, 1-15

DOUBLE data type, 1-13
DSKLIB command, 2-23
DUPLICATES clause, 4-187, 4-214
Dynamic array, 4-56, 4-57, 4-59
Dynamic mapping, 4-78, 4-137, 4-229
Dynamic storage, 4-137, 4-229, 4-230

E
E formatting character

in PRINT USING statement, 4-207
E mathematical constant, 4-73
E notation, 1-23

See Exponential notation
field in PRINT USING statement, 4-204
numbers in, 1-24t
with STR$ function, 4-260

ECHO function, 4-61
See also NOECHO function

EDIT command, 2-25 to 2-27
editing mode commands, 2-25

EDIT$ function, 4-62
values, 4-62 to 4-63

Editing mode, 2-25
adding program lines, C-5
exiting, C-3
locating string, C-5
string substitution, C-7

Editing mode commands, C-2 to C-9
DEFINE, C-2
EXECUTE, C-2
EXIT, C-3
FIND, C-5

Index-7

/[NO]LINE qualifier, 4-67
with labels, 1-3

Index-8

of numeric relational expressions, 1-37
of operators, 1-45
of SELECT statement, 4-246

Editing mode commands (cont'd) ERN debugger command, B-6, B-7
INSERT, C-5
SUBSTITUTE, C-7

ERN$ function, 4-68
ERR debugger command, B-7, B-8

ELSE clause, 4-106
END statement, 4-64 to

SUB subprograms, 4-263
Environment

4-66
ERR function, 4-69
Error handling

determining error number,
determining line number,

B-7
B-5

online help, 2-30
Environment commands, 2-1 to 2-73

determining program name, B-6
disabling, 4-173

APPEND, 2-4
BRLRES, 2-6
BUILD, 2-8
DELETE, 2-21
DSKLIB, 2-23
EDIT, 2-25
EXIT, 2-28
EXTRACT, 2-29
HELP, 2-30

ERL command, B-5
ERL function, 4-67
ERN command, B-6
ERN$ function, 4-68
ERR command, B-7
ERR function, 4-69
ERT$ function, 4-70
in DEF functions, 4-43, 4-64, 4-169,

4-171
IDENTIFY, 2-32
INQUIRE, 2-33

in FOR . . . NEXT loops, 4-236
in subprograms, 4-65, 4-72, 4-96, 4-169

LIBRARY, 2-33
LIST, 2-36

in UNTIL loops, 4-236
in WHILE loops, 4-236

LISTNH, 2-36
LOAD, 2-38
LOCK, 2-40
NEW, 2-41

ON ERROR GO BACK statement, 4-169
ON ERROR GOTO 0 statement, 4-173
ON ERROR GOTO statement, 4-171
recursion in, 4-171

ODLRMS, 2-43 RESUME statement, 4-236
OLD, 2-45
RENAME, 2-47
REPLACE, 2-49
RMSRES, 2-50

Error handling functions
CTRLC function, 4-27
ERL function, 4-67
ERN$ function, 4-68

RUN, 2-52
SAVE, 2-58
SCALE, 2-59
SCRATCH, 2-61
SEQUENCE, 2-62

ERR function, 4-69
ERT$ function, 4-70
RCTRLC function, 4-220

Error number
displaying, 4-69

SET, 2-64
SHOW, 2-72
$ system-command,
UNSAVE, 2-73

ERL debugger command,

2-2

B-5, B-6

Error text
displaying, 4-70

ERT$ function, 4-70
Evaluation

of expressions, 1-45
ERL function, 4-67 of logical expressions, 1-43

Evaluation (cont'd)
of string relational expressions, 1-39

Exclamation point (!)
in comment fields, 1-9
in PRINT USING statement, 4-207

Executable statement, 1-3
EXECUTE editing mode command, C-2
Execution

continuing, B-3
of multi-statement lines, 1-6
of statements, 1-6
of system commands, 2-2
program, 2-52
resume, 2-53
stopping, 2-53, 4-258, B-1
stopping to debug, B-18
suspending, 4-252, 4-285
tracing program, B-20

EXIT command, 2-28
EXIT debugger command, B-8, B-9
EXIT editing mode command, C-3
EXIT statement, 4-71 to 4-72
EXP function, 4-73
Explicit

creation of arrays, 4-56
data typing, 1-16, 4-191
declaration of variables, 1-19
literal notation, 1-29
loop iteration, 4-119
record locking, 4-51, 4-102

Exponential notation, 1-23
in PRINT USING statement, 4-204
numbers in, 1-24t
PRINT statement, 4-200

Exponentiation, 4-73
Expressions, 1-34

conditional, 1-37

Expressions (cont'd)
operator precedence in, 1-45, 1-46
parentheses in, 1-45
relational, 1-37
string, 1-36
string relational, 1-39
types of, 1-34

Extended field
in PRINT USING statement, 4-207

EXTENDSIZE clause, 4-183
External

constant, 4-75
function, 4-75
subprogram, 4-96
subroutine, 4-75
variable, 4-75

EXTERNAL CONSTANT statement, 1-28
External constants, 1-28

naming, 1-29
EXTERNAL statement, 4-74 to 4-77

parameter, 4-75
External variables

naming, 1-17
EXTRACT command, 2-29

F
Field

asterisk-filled, 4-204
blank-if-zero, 4-205
centered, 4-207
comment, 1-8
credit or debit, 4-204
exponential, 4-204
extended, 4-207
floating dollar sign, 4-204
left-justified, 4-206
multiple fields within a format string,

4-205
one-character, 4-207
right-justified, 4-207
trailing minus sign, 4-204
zero-filled, 4-204

FIELD statement, 4-78 to 4-79
File

accessing, 4-99

Index-9

conditional in %LET directive,
definition of, 1-34
evaluation of, 1-45

3-10

lexical, 3-6, 3-10, 3-20
logical, 1-41
mixed-mode, 1-35
numeric, 1-34
numeric relational, 1-37

File (cont'd)
block 1/O, 4-83, 4-101, 4-185
closing, 4-19
deleting, 2-73, 4-120
deleting records in, 4-51
finding buffer size, 4-6
%INCLUDE, 3-8
indexed, 4-51, 4-83, 4-101, 4-181,

4-184,4-185
locating, 4-79
magnetic tape, 4-132, 4-181
ODL, 2-42, 2-44
opening, 4-178
relative, 4-51, 4-82, 4-101, 4-181, 4-185
renaming, 4-159

BLOCKSIZE clause, 4-181
CONTIGUOUS clause, 4-182
EXTENDSIZE clause, 4-183
FILESIZE clause, 4-183
magnetic tape, 4-181

File organization
indexed, 4-185
relative, 4-186
sequential, 4-186
undefined, 4-185
virtual, 4-186

File-related functions
BUFSIZ function, 4-6
CCPOS function, 4-13
FSP$ function, 4-92
GETRFA function, 4-103
RECOUNT function, 4-225
STATUS function, 4-255

Files
block I/O, 4-213
deleting, 4-189
deleting records in, 4-242
indexed, 4-213, 4-234, 4-282
magnetic tape, 4-234
relative, 4-189, 4-213, 4-281

Index-10

Files (cont'd)
restoring data, 4-234
sequential, 4-188, 4-199, 4-213, 4-242,

4-281
terminal-format, 4-188, 4-199
virtual, 4-189, 4-234

FILESIZE clause, 4-183
FILL keywords, 4-21

in MAP statement, 4-135
in MOVE statement, 4-156
in REMAP statement, 4-230

FIND editing mode command, C-5
FIND statement, 4-80 to 4-83

with UNLOCK statement, 4-278
with UPDATE statement, 4-281

constants, 1-23
data types, 1-13
overflow, 1-34
promotion rules, 1-35
variables, 1-18

FNEND statement
See also END statement

FNEXIT statement, 4-86
See also EXIT statement

FOR clause, 4-180
FOR statement, 4-87 to 4-90
FOR . . . NEXT loops, 4-87 to 4-90, 4-161

conditional, 4-88
error handling in, 4-236
explicit iteration of, 4-119
nested, 4-88
transferring control into, 4-88, 4-104,

4-105,4-174,4-176
unconditional, 4-88

Format
characters in PRINT USING statement,

4-204
combination of characters in PRINT

USING statement, 4-205
E-format, 4-200

retrieving information about, B-16
sequential, 4-82, 4-101, 4-185
terminal-format, 4-109, 4-112, 4-125,

4-144, 4-146,
File attributes

4-148

FIX function, 4-84
compared with INT function, 4-117

Floating dollar sign field
in PRINT USING statement, 4-204

Floating-point

Format (cont'd)
exponential, 4-200
FILL, 4-21
multiple print fields with PRINT USING

statement, 4-205
of data in DATA statement, 4-34
of keywords, 1-4
of labels, 1-2
of multi-line REM statement, 4-227
of multi-statement lines, 1-6, 1-8
of program lines, 1-1
of statements, 1-3
Radix-50, 4-218

FORMAT$ function, 4-91
FOR NEXT loops

exiting, 4-71
FREE debugger command, B-9, B-10

Functions (cont'd)
CHR$, 4-18
COMP%, 4-25
COS, 4-26
CTRLC, 4-27
CVT$$, 4-29
CVTxx, 4-30
DATE$, 4-35
DET, 4-53
DIF$, 4-55
ECHO, 4-61
EDIT$, 4-62
ERL, 4-67
ERN$, 4-68
ERR, 4-69
ERT$, 4-70
EXP, 4-73

FSP$ function, 4-92 FIX, 4-84
FSS$
Function

function, 4-94 FORMAT$, 4-91
FSP$, 4-92

built-in, 3-6, 3-10, 3-20 FSS$, 4-94
declaring, 4-38, 4-41, 4-46 GETRFA, 4-103
external, 4-75

4-43, 4-49
INSTR, 4-115
INT, 4-117initialization of,

invocation of, 4-43, 4-48 INTEGER, 4-118
LEFT$, 4-121lexical, 3-6, 3-10, 3-20

4-41, 4-46naming, LEN, 4-122
parameter, 4-42, 4-47 LOG, 4-128
user-defined, 4-41, 4-46 LOG10, 4-129

FUNCTION statement, 4-95 to 4-96 MAG, 4-131
FUNCTION subprogram MAGTAPE, 4-132

parameter, 4-95 MAX, 4-152
FUNCTION subprograms MID$, 4-153

naming, 4-95 MIN, 4-154
FUNCTIONEND statement, 4-97 MOD, 4-155

See also END statement
FUNCTIONEXIT statement, 4-98

NOECHO, 4-162
NUM, 4-163

See also EXIT statement NUM$, 4-165
NUM1$, 4-167Functions NUM2, 4-164ABS, 4-2

ABS%, 4-3
ASCII, 4 4

ONECHR, 4-177
PLACE$, 4-194
POS, 4-197ATN, 4-5 PROD$, 4-209BUFSIZ, 4-6

CCPOS, 4-13 QUO$, 4-216

Functions (cont'd)

G
GET statement, 4-99 to 4-102

with UNLOCK statement, 4-278
with UPDATE statement, 4-281

GETRFA function, 4-103
GOSUB statement, 4-104

with RETURN statement, 4-238
GOTO statement, 4-105

Index-12

3-6, 3-7
IF. . .THEN . . . ELSE statement, 4-106 to

4-108
labels in, 1-3
multi-line format, 1-7

Immediate mode, 2-53
Implicit

continuation of lines, 1-6
creation of arrays, 4-58, 4-141, 4-144,

4-146,4-148,4-150

RAD$, 4-218
RCTRLC, 4-220
RCTRLO, 4-221
REAL, 4-224
RECOUNT, 4-225
RIGHT$, 4-239
RND, 4-240
SEG$, 4-243
SGN, 4-250
SIN, 4-251

I/O
buffer space, B-10
characters transferred, 4-225
closing files, 4-19, 4-65
deleting records, 4-51

B-14determining character transfer,
directing, B-15
dynamic mapping, 4-229

SPACE$, 4-253
SQR, 4-254

finding records, 4-81
matrix, 4-163, 4-164

STATUS, 4-255
STR$, 4-260

moving data, 4-156
opening files, 4-178

STRING$, 4-261
SUM$, 4-267

retrieving records, 4-101
unlocking records, 4-278

SWAP%, 4-269 updating records, 4-281
SYS, 4-270 with CHAIN statement, 4-15
TAB, 4-271 writing records, 4-213
TAN, 4-272 I/O BUFFER debugger command, B-10,
TIME, 4-273 B-11
TIME$, 4-275 %IDENT directive, 3-4, 3-5
TRM$, 4-276 IDENTIFY command, 2-32
VAL, 4-283 Identity matrix, 4-141
VAL%, 4-284 IDN keyword, 4-141
XLATE$, 4-288 %IF-%THEN-%ELSE-%END %IF directive,

H
data typing, 1-15
declaration of variables, 1-17

%INCLUDE directive, 3-9
Indexed files, 4-185

ALTERNATE KEY clause, 4-187
BUCKETSIZE clause, 4-181
CHANGES clause, 4-187
deleting records in, 4-51

HELP command, 2-30 to 2-31
Hexadecimal radix, 1-29
Hyphen (-)

in DELETE command,
in EXTRACT command,

2-21
2-29

in LIST command, 2-36

Indexed files (cont'd)
DUPLICATES clause, 4-187
finding records in, 4-83
MAP clause, 4-184
opening, 4-185
PRIMARY KEY clause, 4-187
restoring data in, 4-234
retrieving records sequentially in, 4-101
segmented keys in, 4-187
updating, 4-282
writing records to, 4-213

Initialization
in subprograms, 4-96, 4-263
of arrays, 4-141
of DEF functions, 4-43
of DEF* functions, 4-49
of dynamic arrays, 4-59
of variables, 1-21, 4-39
of variables in COMMON statement,

4-24
of virtual arrays, 4-59

INPUT LINE statement, 4-112 to 4-114
INPUT statement, 4-109 to 4-111
INQUIRE command, 2-33
INSERT editing mode command, C-5
INSTR function, 4-115 to 4-116

See also POS function
INT function, 4-117
Integer

constants, 1-24
overflow, 1-24, 1-34, 4-40
promotion rules, 1-35
suffix character, 1-15
variables, 1-18

INTEGER data type, 1-12
INTEGER function, 4-118
Integer overflow

loop variable, 4-88
Internal variables

naming, 1-17
INV keyword, 4-143
ITERATE statement, 4-119
Iteration

of FOR loops, 4-88
of loops, 4-119

RESTORE statement, 4-234
segmented keys, 4-187

Keywords
data type, 1-12
definition of, 1-4
function of, 1-4
list of, A-1 to A-10
reserved and unreserved, A-1
restrictions, 1-4
spacing requirements, 1-4
VAX BASIC, A-9

KILL statement, 4-120

L

with ITERATE statement, 4-119
LEFT$ function, 4-121

See also SEG$ function
Left-justification

PRINT USING statement, 4-206
with LSET statement, 4-130

LEN function, 4-122
Length

of labels, 1-2
of STRING data, 1-13
variable names, 1-17

LET debugger command, B-11, B-13

Index-13

Iteration (cont'd)
of UNTIL loops, 4-279
of WHILE loops, 4-286

K
KEY clause, 4-81, 4-100

FIND statement, 4-81
GET statement, 4-100

L formatting character
in PRINT USING statement, 4-206

Labels
defining, 1-2
format of, 1-2
function of, 1-2
referencing, 1-2
transferring control to, 4-104, 4-105

%LET directive, 3-10
LET statement, 4-123
Letters

assigning values to, 3-10
naming, 3-10

expression , 3- , 3-1 , 3-20
functions, 3-6, 3-10, 3-20
operators, 3-6, 3-10
order, 1-11

Library
memory-resident, 2-6, 2-33,
object module, 2-23
RMS, 2-44
specifying, 2-6, 2-33
types, 2-6

LIBRARY command, 2-33
Line numbers

generating, 2-62
in %INCLUDE file, 3-8
of error, B-5
tracing, B-20

Line terminator
with DATA statement, 4-33
with INPUT LINE statement, 4-113
with INPUT statement, 4-110
with LINPUT statement, 4-126

Lines
continuing, 1-6
elements of, 1-1
format of, 1-1
multi-statement, 1-6
order of, 1-11
single-statement, 1-5
terminating, 1-11, 1-12

LINPUT statement, 4-125 to 4-127
LIST command, 2-36 to 2-37
%LIST directive, 3-11
Listing file

control of, 1-8, 3-3, 3-11, 3-12, 3-13,
3-14

%CROSS directive, 3-3

Index-14

Listing file (cont'd)
default, 2-14
included code, 3-8
line numbers, 1-7
%LIST directive, 3-11
%NOCROSS directive, 3-12
%NOLIST directive, 3-13
%PAGE directive, 3-14
%PRINT directive, 3-15
%SBTTL directive, 3-16
subtitle, 3-16
title, 3-18

numeric, 1-23
string, 1-6, 1-12, 1-25, 1-41, 4-205,

4-207
LOAD command, 2-38 to 2-39

with RUN command, 2-53
with SCRATCH command, 2-61

Local copy, 4-11
LOCK command, 2-40
LOG function, 4-128
LOG10 function, 4-129
Logarithms

common, 4-129
natural, 4-128

Logical expressions, 1-41
compared with relational, 1-41, 1-43
data types in, 1-41
definition of, 1-37
evaluation of, 1-43
format of, 1-41
logical operators, 1-41
truth tables, 1-42
truth tests, 1-42

Logical operators, 1-41
LONG data type, 1-13
Loop

conditional, 4-88
exiting, 4-71
FOR . . .NEXT, 4-87

%TITLE directive, 3-18
version identification, 3-4

2-49 LISTNH command, 2-36
Literal

explicit notation, 1-29

lowercase, 1-12, 2-26, 4-206
uppercase, 1-12, 2-26, 4-206

Lexical
constants, 3-6, 3-10

Index-15

unconditional, 4-88
Loops

with DET function, 4-53
with FIELD statement, 4-79

iteration of, 4-279,
UNTIL statement,
WHILE statement,

4-286
4-279
4-286

Matrix, 1-20
arithmetic, 4-142
assigning values, 4-144, 4-146, 4-150

Lowercase letters
in EDIT command, 2-26

functions
DET function, 4-53
NUM function, 4-163
NUM2 function, 4-164

I/O, 4-163,4-164

in PRINT USING statement, 4-206
processing of, 1-12

LSET statement, 4-130

M
4-146, 4-148,

identity, 4-141
inversion, 4-53, 4-143

Macro definition
printing, 4-148
redimensioning, 4-144,

creating, C-2 4-150
executing, C-2

Macro subprogram
passing mechanism, 4-7

scalar multiplication, 4-142
transposition, 4-142

MAX function, 4-152
Memory

allocation, B-4, B-9, B-10, B-19
MAG function, 4-131
Magnetic tape files

BLOCKSIZE clause, 4-181
MAGTAPE function, 4-132
NOREWIND clause, 4-185
RESTORE statement, 4-234

available, B-9
clearing, 2-61
extending, B-9
overlaying, 4-23

Memory-resident library
default, 2-34
selecting, 2-49

MAGTAPE function, 4-132 to 4-133
Map

allocation, 4-136
size, 4-136 MID$ function, 4-153

MAP
area, 4-134

See also SEG$ function
MIN function, 4-154

clause, 4-136, 4-184
FILL format and storage, 4-23

Minus sign (-)
in PRINT USING statement, 4-204statement, 4-134 to 4-136

FILL keywords, 4-21
with FIELD statement, 4-79
with MAP DYNAMIC statement,

4-138

Mixed-mode expressions, 1-35
MOD function, 4-155
MODE clause, 4-184
Modifiable parameters, 4-10

with REMAP statement, 4-229
MAP DYNAMIC statement, 4-137 to 4-139

with REMAP statement, 4-229, 4-230

Modifiers
FOR statement, 4-87
IF statement, 4-106
UNLESS statement, 4-277

Loop (cont'd) MAT INPUT statement, 4-144 to 4-145
integer overflow, 4-88 MAT LINPUT statement, 4-146 to 4-147
iteration of, 4-88, 4-119 MAT PRINT statement, 4-148 to 4-149
nested FOR . . . NEXT, 4-88
single-line, 4-286

MAT READ statement, 4-150 to 4-151
MAT statement, 4-140 to 4-143

processing of, 1-12
using, 1-12

Index-16

Numeric literal notation, 1-29

Modifiers (cont'd)
UNTIL statement, 4-279
WHILE statement, 4-286

NOREWIND clause, 4-185
NOT operator

evaluation of, 1-46
MOVE statement, 4-156 to 4-158

FILL keywords, 4-21
Notation

E, 1-23, 1-24t, 4-204, 4-206
explicit literal, 1-29with FIELD statement, 4-79

Multi-line exponential, 1-23, 4-200
DEF statement, 4-42
DEF* functions, 4-47

[NOISPAN clause, 4-185
NUL$ keyword, 4-142
NUM function, 4-163Multi-statement lines, 1-6

backslash in, 1-6
branching to, 1-7
execution of, 1-6
format of, 1-6, 1-8
implicit continuation, 1-6
transferring control to, 1-6

after MAT INPUT statement,
after MAT LINPUT statement,
after MAT READ statement,

4-145
4-147

4-150
NUM$ function, 4-165
NUM1$ function, 4-167
NUM2 function, 4-164

N
after MAT INPUT statement, 4-145
after MAT LINPUT statement, 4-147

NAME . . . AS statement, 4-159
after MAT READ statement,

Number
4-151

Named constants, 1-27
changing, 1-27

E notation, 1-24t
random, 4-219, 4-240

external, 1-28, 4-75 sign, 4-250
internal, 1-27, 4-38

NEW command, 2-41 to 2-42 4-204
Number sign (#)

in PRINT USING statement,
NEXT statement, 4-161

with FOR statement, 4-89
with WHILE statement, 4-286

%NOCROSS directive, 3-12
NOECHO function, 4-162

See also ECHO function
%NOLIST directive, 3-13
Nonexecutable statements, 1-3, 1-11

COMMON statement, 4-23
DATA statement, 4-33
DECLARE statement, 4-39
EXTERNAL statement, 4-76
MAP DYNAMIC statement, 4-138
MAP statement, 4-135

Numeric constants, 1-23
Numeric conversion, 4-16
Numeric expressions, 1-34

format of, 1-35
promotion rules, 1-35
result data types, 1-36

Numeric functions, 4-30
ABS function, 4-2
ABS% function, 4-3
FIX function, 4-84
INT function, 4-117
LOG function, 4-128
LOG10 function, 4-129
MAG function, 4-131

REM statement, 4-227 RND function, 4-240
UNLESS statement, 4-277 SGN function, 4-250

Nonmodifiable parameters, 4-10 SQR function, 4-254
Nonprinting characters SWAP% function, 4-269

with PRINT USING statement, 4-203
Numeric relational expressions

evaluation of, 1-37
operators, 1-38

VAL function, 4-283
VAL~7r function, 4-284

Numeric strings
comparing, 4-25
precision, 4-55, 4-194, 4-209, 4-216,

4-267
rounding, 4-194, 4-209, 4-216
rounding and truncation values, 4-195 to

4-196
truncating, 4-194, 4-209, 4-216

Object module
creating, 2-14
default, 2-14
loading, 2-38
version identification, 3-4

Object module library
default, 2-23, 2-34
disk-resident, 2-23
selecting, 2-23

Object Time System (OTS) routines
See OTS routines

name, 2-44
RMS library, 2-44
selecting, 2-42
type of, 2-44

4-174
with RETURN statement, 4-238

ON. . .GOTO statement, 4-176
ON. . .GOTO . . .OTHERWISE statement,

4-176
ONECHR function, 4-177
Online help, 2-30
OPEN statement, 4-178 to 4-190

with STATUS function, 4-255
Opening files

with USEROPEN clause, 4-189
Operator precedence, 1-34, 1-45, 1-46
Operators

arithmetic, 1-34
evaluation of, 1-45
lexical, 3-6, 3-10
logical, 1-41
numeric operator precedence, 1-46
numeric relational, 1-38
precedence of, 1-34, 1-45, 1-46
string relational, 1-40

OPTION statement, 4-191 to 4-193
ORGANIZATION clause, 4-185

Index-17

Numeric string functions ODLRMS command, 2-42
CHR$ function, 4-18
COMP% function, 4-25
DIF$ function, 4-55

OLD command, 2-45 to 2-46
ON ERROR GO BACK statement, 4-169 to

4-170
FORMAT$ function, 4-91 with END statement, 4-65
INTEGER function, 4-118
NUM$ function, 4-165
NUM1$ function, 4-167
PLACE$ function, 4-194
PROD$ function, 4-209

within a handler, 4-169
ON ERROR GOTO 0 statement, 4-173

with END statement, 4-65
ON ERROR GOTO statement, 4-171 to

4-172
QUO$ function, 4-216 with END statement, 4-65
REAL function, 4-224
STR$ function, 4-260
SUM$ function, 4-267

within a handler, 4-171, 4-173
ON . . .GOSUB statement, 4-174 to 4-175
ON. . .GOSUB . ..OTHERWISE statement,

Numeric operator precedence, 1-46 Octal radix, 1-29
Numeric precision ODL file

file name, 2-43with PRINT statement, 4-200

EXTERNAL statement, 4-75
function, 4-42, 4-47
FUNCTION subprogram, 4-95
modifiable, 4-10
nonmodifiable, 4-10
SUB subprogram, 4-262

Parameter-passing mechanisms
BASIC-PLUS-2, 4-8 to 4-9
CALL statement, 4-7
DEF statement, 4-43
DEF* function, 4-48
EXTERNAL statement, 4-76
SUB statement, 4-263

Parentheses
in array names, 1-19
in expressions, 1-34, 1-45

Passing mechanisms
See parameter-passing mechanisms

Percent sign (%)
in DATA statement, 1-25, 4-33

Index-18

Percent sign (%) (cont'd)
in DECLARE statement, 4-38
in PRINT USING statement, 4-205
in variable names, 1-17, 1-18
suffix character, 1-15

Period (.)
in PRINT USING statement, 4-204
in variable names, 1-17

PLACE$ function, 4-194 to 4-196
rounding and truncation values, 4-195 to

4-196
Plus sign (+)

in string concatenation, 1-37
POS function, 4-197 to 4-198
Precision

in PRINT statement, 4-200
in PRINT USING statement, 4-203
NUM$ function, 4-165
NUM1$ function, 4-167
of data types, 1-13
of numeric strings, 4-55, 4-194, 4-209,

4-216,4-267
Predefined constants, 1-32
PRIMARY KEY clause, 4-187
PRINT debugger command, B-13, B-14
%PRINT directive, 3-15
PRINT statement, 4-199 to 4-202

with TAB function, 4-271
PRINT USING statement, 4-203 to 4-208
Print zones

in MAT PRINT statement, 4-148
PRINT statement, 4-199

PROD$ function, 4-209 to 4-210
rounding and truncation values, 4-195 to

4-196
Program

appending, 2-3
breakpoint disabling, B-21
breakpoint setting, B-1, B-2
compiling, 2-14
continuing, 2-53
debugging, 2-53
deleting, 2-73
documentation, 1-8
elements, 1-1

OTHERWISE clause, 4-174, 4-176
OTS routines, D-1 to D-12
Output

formatting with FORMAT$ function,
4-91

formatting with PRINT USING statement,
4-203 to 4-206

Output listing
cross-reference table, 3-3, 3-12
%LIST directive, 3-11
%NOLIST directive, 3-13
%PAGE directive,
%PRINT directive,
%SBTTL directive,
%TITLE directive,

3-14
3-15
3-16
3-18

Overflow checking, 1-34, 4-40
Overlay Description Language file

See ODL file

P
%PAGE directive, 3-14
Parameter

DEF statement, 4-42, 4-43
DEF* function, 4-47, 4-48

Program (cont'd)
ending, 4-64
environment editing, 2-25, 2-45
environment editing commands, C-2
executing, 2-52
library, 2-23
naming, 2-41
passing-mechanism, 4-7
renaming, 2-47
replacing, 2-49
saving, 2-58
stopping, 2-53, 4-258

Program control statements

INPUT statement, 4-109
LINPUT, 4-125
waiting for, 4-285

Program lines
deleting, 2-21
displaying, 2-36
elements of, 1-1
environment editing, 2-25
extracting, 2-29
format of, 1-1
numbering, 1-2
order of, 1-11
terminating, 1-11, 1-12

PROGRAM statement, 4-211
Promotion rules

data type, 1-35
floating-point, 1-35
integer, 1-35

Prompt
after STOP statement, 4-258
INPUT LINE statement, 4-112
INPUT statement, 4-109
LINPUT statement, 4-125
MAT INPUT statement, 4-144
MAT LINPUT statement, 4-146

PSECT, 4-20, 4-23, 4-134
PUT statement, 4-212 to 4-215

0
QUO$ function, 4-216 to 4-217

rounding and truncation values, 4-195 to
4-196

Quotation marks
in string literals, 1-26

R
R formatting character

in PRINT USING statement, 4-207
RAD$ function, 4-218
Radix

ASCII, 1-29
binary, 1-29
decimal, 1-29
default, 1-29
hexadecimal, 1-29
in explicit literal notation, 1-29

Index-19

END statement, 4-64
EXIT statement, 4-71
FOR statement, 4-87
GOSUB statement, 4-104
GOTO statement, 4-105
IF statement, 4-106
ITERATE statement, 4-119
ON . . .GOSUB statement, 4-174
ON. . .GOTO statement, 4-176
RESUME statement, 4-236
RETURN statement, 4-238
SELECT statement, 4-245
SLEEP statement, 4-252
STOP statement, 4-258
UNTIL statement, 4-279
WAIT statement, 4-285
WHILE statement, 4-286

Program execution
2-53, B-3continuing,

disabling breakpoints, B-21
initiating, 2-52
setting breakpoints, B-1, B-2
stopping, 2-53, 4-258, B-24
stopping for debugging, B-18
suspending, 4-252
tracing, B-20
waiting for input, 4-285

Program input
INPUT LINE statement, 4-112

Radix (cont'd)
octal, 1-29

See also CTRLC function, 4-220
RCTRLO function, 4-221
READ statement, 4-222 to 4-223

See also DATA statement
with DATA statement, 4-33, 4-34

REAL data type, 1-13
REAL function, 4-224
Record attributes

DATA pointers, 4-234
MAP DYNAMIC pointers, 4-138, 4-231
moving data, 4-156
REMAP pointers, 4-229, 4-230
setting size, 4-182

RECORD clause, 4-81, 4-100, 4-212, 4-213
Record file address (RFA), 1-13, 4-80, 4-99,

4-103
Record Management Services

See RMS
Record pointers

after FIND statement, 4-82, 4-83
after GET statement, 4-101, 4-102
after PUT statement, 4-213
after UPDATE statement, 4-281
REMAP statement, 4-230
RESTORE statement, 4-234
WINDOWSIZE clause, 4-189

Records
deleting with DELETE statement, 4-51
deleting with SCRATCH statement,

4-242

Index-20

Records (cont'd)
finding RFA of, 4-81, 4-100

locking, 4-102
processing, 4-99, 4-182
retrieving by KEY, 4-100, 4-102
retrieving by RECORD number, 4-100
retrieving by RFA, 4-99, 4-102
retrieving randomly, 4-102
retrieving sequentially, 4-99, 4-101
retrieving with GET statement, 4-99
size of, 4-212
stream, 4-186
unlocking, 4-51, 4-102
unlocking with UNLOCK statement,

4-278
writing by RECORD number, 4-212
writing sequentially, 4-213
writing with PRINT statement, 4-199
writing with PUT statement, 4-212
writing with UPDATE statement, 4-281

RECORDSIZE clause, 4-136, 4-188, 4-212
RECORDTYPE clause, 4-188
RECOUNT debugger command, B-14, B-15
RECOUNT function, 4-225 to 4-226

after GET statement, 4-102
after INPUT LINE statement, 4-113
after INPUT statement, 4-111
after LINPUT statement, 4-126

Recursion
in DEF functions, 4-44
in DEF* functions, 4-49
in error handlers, 4-171

Redimensioning arrays
with executable DIM statement, 4-58

REDIRECT debugger command, B-15, B-16

RAD-50, 1-29
Radix-50, 4-218
Random numbers, 4-219, 4-240
RANDOMIZE statement, 4-219

See also RND statement
Range

locating by KEY, 4-83, 4-100, 4-102
locating by RECORD number, 4-100
locating by RFA, 4-80, 4-83, 4-100,

4-102
locating randomly, 4-83
locating sequentially, 4-80, 4-82, 4-99,

of data types, 1-13 4-101
of subscripts, 1-20 locating with FIND statement, 4-80

RCTRLC function, 4-220 locating with GET statement, 4-99

MAP clause, 4-184
RECORDSIZE clause, 4-184, 4-188
RECORDTYPE clause,

Record buffer
4-188

Relational expressions, 1-37
compared with logical, 1-41, 1-43
definition of, 1-37
format of, 1-37
in SELECT statement, 4-245, 4-246
numeric, 1-37
string, 1-39
truth tests, 1-37, 1-39

Relational operators
numeric, 1-38
string, 1-40

Relative files, 4-186
BUCKETSIZE clause, 4-181
deleting records in, 4-51
finding records in, 4-82
opening, 4-185
record size in, 4-189
retrieving records sequentially in, 4-101
updating, 4-281
writing records to, 4-213

REM statement, 4-227 to 4-228
in multi-statement lines, 1-7
multi-line format, 1-10, 4-227
terminating, 1-11, 4-227
transferring control to, 1-10

REMAP statement, 4-229 to 4-232
FILL keywords, 4-21
with MAP DYNAMIC statement, 4-138

RENAME command, 2-47 to 2-48
REPLACE command, 2-49

with RENAME command, 2-47
Reserved words, 1-4
RESET statement, 4-233, 4-234

See also RESTORE statement
RESTORE statement, 4-234 to 4-235
Result data types

mixed-mode expressions, 1-36
RESUME statement, 4-236 to 4-237

END statement, 4-65
ERL function, 4-67
ERN$ function, 4-68
ERR function, 4-69
INPUT LINE statement, 4-113
INPUT statement, 4-111
LINPUT statement, 4-126

RETURN statement, 4-238
RFA

See Record file address
RFA clause, 4-80, 4-99
RFA data type

allowable operations, 1-13
RIGHT$ function, 4-239

See also SEG$ function
Right justification

PRINT USING statement, 4-207
with RSET statement, 4-241

RMS
accessing records, 4-99
deleting records, 4-51
library file, 2-44
library names, 2-51
locating records, 4-79
memory-resident library, 2-49
opening files, 4-178
overlay structure, 2-42
replacing records, 4-281

RMSRES command, 2-49
RND function, 4-240

See also RANDOMIZE statement
RSET statement, 4-241
RUN command, 2-52 to 2-57

/BYTE qualfier, 2-53
/DOUBLE qualifier, 2-54
/LONG qualifier, 2-55
/[NO]CHAIN qualfier, 2-54
/[NO]DEBUG qualfier, 2-54
/[NO]FLAG qualifier, 2-54
/[NO]LINE qualifier, 2-55
/[NO]SCALE qualifier, 2-55
/[NO]SYNTAX-CHECK qualifier, 2-56
/SINGLE qualifier, 2-55
STOP statement, 2-53
/TYPE DEFAULT qualifier, 2-56
/VARIANT qualifier, 2-56
/WORD qualifier, 2-56

Index-21

in PRINT statement, 4-199
SEQUENCE command, 2-62 to 2-63
Sequential files, 4-186

deleting records in, 4-242
finding records in, 4-82
fixed-length, 4-186
[NO]SPAN clause, 4-185
opening, 4-185
record size in, 4-188
retrieving records in, 4-101
stream, 4-186
updating, 4-281
variable-length, 4-186
writing records to, 4-199, 4-213

SET command, 2-64 to 2-71
/BYTE qualfier, 2-65
defaults, 2-64
/DOUBLE qualifier, 2-66
/EXTEND qualifier, 2-67
/LONG qualifier, 2-68
/[NO]CHAIN qualfier, 2-65
/[NO]CLUSTER qualfier, 2-65
/[NO]CROSS REFERENCE qualifier,

2-66

Index-22

SET [NO] PROMPT statement, 4-248 to
4-249

SGN function, 4-250
SHOW command, 2-72

defaults, 2-72
SIN function, 4-251
Sine, 4-251
SINGLE data type, 1-13
Single-line

DEF statement, 4-42
DEF* functions, 4-47
loops, 4-87, 4-279, 4-286

Single-statement lines, 1-5
Size

of numeric data, 1-13
of STRING data, 1-13

SLEEP statement, 4-252
Source text

copying, 1-8
SPACE$ function, 4-253
SQR function, 4-254
SQRT function, 4-254
Square root, 4-254
Statement

S
SET command (cont'd)

/[NO]DEBUG qualfier, 2-66
/[NO]DUMP qualifier, 2-66
/[NO]FLAG qualifier, 2-67SAVE command, 2-58

with RENAME command, 2-47 /[NO]IDS qualifier, 2-67
/[NO]INDEX qualifier, 2-68
/[NO]LINE qualifier, 2-68
/[NO]LIST qualifier, 2-68
/[NO]MACRO qualifier, 2-68
/[NO]OBJECT qualifier, 2-68
/[NO]RELATIVE qualifier, 2-69
/[NO]SEQUENTIAL qualifier, 2-69
/[NO]SYNTAX-CHECK qualifier, 2-69
/[NO]VIRTUAL qualifier, 2-70

%SBTTL directive, 3-16, 3-17
SCALE command, 2-59 to 2-60
Scale factor, 2-55, 2-59

setting with OPTION statement, 4-192
setting with SCALE command, 2-59

SCRATCH command, 2-61
SCRATCH statement, 4-242
SEG$ function, 4-243 to 4-244
Segmented keys, 4-187
SELECT block, 4-174, 4-176, 4-245 /[NO]WARNINGS qualifier, 2-70

/PAGE SIZE qualifier, 2-69
/SINGLE qualifier, 2-69
/TYPE DEFAULT qualifier, 1-15, 2-69
/VARIANT qualifier, 2-70, 3-20
/WIDTH qualifier, 2-70
/WORD qualifier, 2-71

SELECT statement, 4-245 to 4-247
Semicolon (;)

in INPUT LINE statement, 4-112
in INPUT statement, 4-109
in LINPUT statement, 4-125
in MAT PRINT statement, 4-148

Statement (cont'd)
backslash separator, 1-6
block, 4-64, 4-71, 4-88, 4-106, 4-246
components of, 1-3
continued, 1-5, 1-6
data typing, 1-16
declarative, 4-37
empty, 1-10
executable, 1-3
execution of, 1-6, B-18
format of, 1-3
labeling of, 1-2
multi-statement lines, 1-6
nonexecutable, 1-3, 1-11, 4-23, 4-33,

4-39, 4-57, 4-76, 4-135, 4-138,
4-227

order of, 1-11
processing of, 1-11
single-line, 1-5

Statement modifiers
FOR statement, 4-87
IF statement, 4-106
UNLESS statement, 4-277
UNTIL statement, 4-279
WHILE statement, 4-286

Statements
CALL, 4-7
CAUSE ERROR, 4-12
CHAIN, 4-14
CHANGE, 4-16
CLOSE, 4-19
COMMON, 4-20
DATA, 4-33
DECLARE, 4-37
DEF, 4-41
DEF*, 4-46
DELETE, 4-51
DIMENSION, 4-56
END, 4-64
EXIT, 4-71
EXTERNAL, 4-74
FIELD, 4-78
FIND, 4-80
FNEND, 4-85
FNEXIT, 4-86

Statements (cont'd)
FOR, 4-87
FUNCTION, 4-95
FUNCTIONEND, 4-97
FUNCTIONEXIT, 4-98
GET, 4-99
GOSUB, 4-104
GOTO, 4-105
IF. . .THEN . . . ELSE, 4-106
INPUT, 4-109
INPUT LINE, 4-112
ITERATE, 4-119
KILL, 4-120
LET, 4-123
LINPUT, 4-125
LSET, 4-130
MAP, 4-134
MAP DYNAMIC, 4-137
MAT, 4-140
MAT INPUT, 4-144
MAT LINPUT, 4-146
MAT PRINT, 4-148
MAT READ, 4-150
MOVE, 4-156
NAME. . . AS, 4-159
NEXT, 4-161
ON ERROR GO BACK, 4-169
ON ERROR GOTO, 4-171
ON ERROR GOTO 0, 4-173
ON. ..GOSUB, 4-174
ON . . .GOTO, 4-176
OPEN, 4-178
OPTION, 4-191
PRINT, 4-199
PRINT USING, 4-203
PROGRAM, 4-211
PUT, 4-212
RANDOMIZE, 4-219
READ, 4-222
REM, 4-227
REMAP, 4-229
RESET, 4-233
RESTORE, 4-234
RESUME, 4-236
RETURN, 4-238

4-136
dynamic, 4-137, 4-229, 4-230
FILL keywords, 4-21, 4-156, 4-230
for arrays, 4-58
in COMMON statement, 4-24
in MAP statement, 4-136
of data, 1-13
of RFA data, 1-13

Index-24

String literals, 1-41
continuing, 1-6
delimiter, 1-25
in PRINT statement, 4-200
in PRINT USING statement, 4-207
numeric, 1-29
processing of, 1-12
quotation marks in, 1-26

Statements (cont'd) Storage (cont'd)
of STRING data, 1-13
shared, 4-20, 4-134
static, 4-21, 4-134, 4-230

STR$ function, 4-260
Stream

record format, 4-186
String arithmetic functions

RSET, 4-241
SCRATCH, 4-242
SELECT, 4-245
SET [NO] PROMPT, 4-248
SLEEP, 4-252
STOP, 4-258
SUB, 4-262
SUBEND, 4-265
SUBEXIT, 4-266
UNLESS, 4-277
UNLOCK, 4-278

DIF$ function, 4-55
PLACE$ function, 4-194
PROD$ function, 4-209
QUO$ function, 4-216
SUM$ function, 4-267

String constant, 1-25
String data

UNTIL, 4-279
UPDATE, 4-281
WAIT, 4-285
WHILE, 4-286 assigning with LSET statement, 4-130

Static assigning with RSET statement, 4-241
mapping,
storage,

4-134
4-21, 4-134, 4-230

STRING data type, 1-13
length, 1-13

STATUS debugger command, B-16, B-18
STATUS function, 4-255 to 4-257

storage of, 1-13
STRING debugger command, B-19, B-20

STEP clause, 4-88
STEP debugger command, B-18, B-19
STOP statement, 4-258 to 4-259

See also CONTINUE debugger command
debugger control, 4-258
line number, 4-258
module name, 4-258
resuming execution, 4-258

STOP statement>number sign (#) prompt,
4-258

String expressions, 1-36
relational, 1-39

String functions, 4-30
ASCII function, 4-4
EDIT$ function, 4-62
INSTR function, 4-115
LEFT$ function, 4-121
LEN function, 4-122
MID$ function, 4-153
POS function, 4-197

Storage
allocating with MAP DYNAMIC

statement, 4-137
allocating with MAP statement, 4-135
allocating with REMAP statement, 4-229
COMMON area and MAP area, 4-23,

RIGHT$ function, 4-239
SEG$ function, 4-243
SPACE$ function, 4-253
STRING$ function, 4-261
TRM$ function, 4-276
XLATE$ function, 4-288

String relational expressions
evaluation of, 1-39
operators, 1-40
padding, 1-39

String variables, 1-19
formatting storage, 4-130, 4-241
in INPUT LINE statement, 4-113
in INPUT statement, 4-110
in LET statement, 4-123
in LINPUT statement, 4-126

STRING$ function, 4-261
Strings

See also Substrings
comparing, 1-39, 4-25
concatenating, 1-6, 1-34, 1-37
converting, 4-16
creating, 4-253, 4-261
editing, 4-62, 4-276
extracting substrings, 4-121, 4-153,

4-239,4-243
finding length, 4-122
finding substrings, 4-115, 4-197
justifying with FORMAT$ function, 4-91
justifying with LSET statement, 4-130
justifying with PRINT USING statement,

4-206
justifying with RSET statement, 4-241
numeric, 4-25, 4-55, 4-118, 4-194,

4-209,4-216,4-224,4-267,4-283,
4-284

replacing substrings, 4-153
storage of, B-19
suffix character, 1-15

SUB statement, 4-262 to 4-264
parameter, 4-262
parameter-passing mechanisms, 4-8 to

4-9
SUBEND statement, 4-265

See also END statement
SUBEXIT statement, 4-266

See also EXIT statement
Subprogram

calling, 4-7
declaring, 4-74
ending, 4-64, 4-96

Subprogram (cont'd)
error handling in, 4-65, 4-72, 4-96,

4-169
exiting, 4-71
FUNCTION statement, 4-95
naming, 4-7

Subprograms
creating, 4-262
ending, 4-263
naming, 4-262
returning from, 4-238
SUB statement, 4-262

Subroutines
external, 4-75
GOSUB statement, 4-104
RETURN statement, 4-238

Subscripts, 1-19
range of, 1-20

SUBSTITUTE editing mode command, C-7
Substrings

extracting, 4-153, 4-243
extracting with LEFT$ function, 4-121
extracting with MID$ function, 4-153
extracting with RIGHT$ function, 4-239
extracting with SEG$ function, 4-243
finding, 4-115, 4-197
replacing, 4-153

Suffix character
dollar sign ($), 1-15
percent sign (%), 1-15

SUM$ function, 4-267 to 4-268
SWAP% function, 4-269
SYS function, 4-270
$ system-command, 2-2 to 2-3

T
TAB function, 4-271
TAN function, 4-272
Tangent, 4-272
Task

overlaying, 4-23
Task Builder

command file, 2-8
library, 2-6
object module library, 2-23

Index-25

Task Builder (cont'd)
ODL file, 2-8

TEMPORARY clause, 4-189
Tensor, 1-20
Terminal

printing to, 4-199
Terminal control functions

TIME function, 4-273 to 4-274
function values, 4-273 to 4-274

in relational expressions, 1-37
in string relational expressions, 1-39

Index-26

U

4-144,4-146,4-150,4-222
assigning to variables, 4-123
assigning with LET statement, 4-123
assigning with LINPUT statement, 4-125
assigning with LSET statement, 4-130
assigning with MAT INPUT statement,

4-144

UNBREAK debugger command, B-21, B-23
Unconditional branching

with GOSUB statement, 4-104
with GOTO statement, 4-105

Unconditional loop, 4-88
Underscore ()

in PRINT USING statement, 4-205
in variable names, 1-17

UNLESS statement, 4-277
UNLOCK statement, 4-278
UNSAVE command, 2-73
UNTIL clause, 4-89
UNTIL loops, 4-161

error handling in, 4-236
TIME$ function, 4-275
%TITLE directive, 3-18, 3-19

exiting, 4-71
explicit iteration of, 4-119
transferring control into, 4-104, 4-105,

4-174,4-176
UNTIL statement, 4-279 to 4-280
UNTRACE debugger command, B-23, B-24

TRACE debugger command, B-20, B-21
Trailing minus sign field

in PRINT USING statement, 4-204
Trigonometric functions

ATN function,
COS function,
SIN function,
TAN function,

TRM$ function,

4-5
4-26
4-251
4-272

4-276

UPDATE statement, 4-281 to 4-282
with UNLOCK statement, 4-278

Uppercase letters
in EDIT command, 2-26
in PRINT USING statement, 4-206

TRN keyword, 4-142 processing of, 1-12
Truncation

in numeric strings, 4-194, 4-195 to
User-defined functions, 4-41, 4-46
USEROPEN clause, 4-189

4-196,4-209,4-216
in PRINT USING statement, 4-206, V4-207
with FIX function, 4-84 VAL function, 4-283

VAL% function, 4-284
Values

assigning to array elements, 4-141,

Truth tables, 1-42
Truth tests

in logical expressions, 1-42

ECHO function, 4-61
NOECHO function, 4-162
RCTRLO function, 4-221
TAB function, 4-271

Terminal-format files, 4-188
input from, 4-109, 4-112, 4-125, 4-144,

4-146
writing records to, 4-148, 4-199

assigning, 1-16
in COMMON statement, 4-24
in MAP DYNAMIC statement, 4-138
in MAP statement, 4-135
in REMAP statement, 4-229

Variables, 1-16
assigning values to, 4-109, 4-112, 4-123,

4-125,4-222
changing values, B-11
comparing, 4-81
declaring, 4-37
definition of, 1-16
displaying during debugging, B-13
explicitly declared, 1-19
external, 4-75
floating-point, 1-18
implicitly declared, 1-17
in MOVE statement, 4-156
in SUB subprograms, 4-263
initialization of, 1-21, 4-24, 4-39
integer, 1-18
loop, 4-88
string, 1-19, 4-110, 4-113, 4-123, 4-126
subscripted, 1-19

%VARIANT directive, 3-20
in %IF directive, 3-6
in %LET directive, 3-10
/VARIANT qualifier, 3-20

Vector, 1-20
Version identification, 3-4
Virtual array, 4-56, 4-58

declaring, 4-39
initialization of, 1-22, 4-59
LSET statement, 4-130
padding in, 4-59
RSET statement, 4-241

error handling in, 4-236
exiting, 4-71
explicit iteration of, 4-119
transferring control into, 4-104, 4-105,

4-174,4-176
WHILE statement, 4-286 to 4-287
WINDOWSIZE clause, 4-189
WORD data type, 1-13

X
XLATE$ function, 4-288 to 4-289

Z
ZER keyword, 4-142
Zero

array element, 1-20, 4-58, 4-141, 4-145,
4-147,4-149,4-150,4-158

blank-if-zero field, 4-205
fill field in PRINT USING statement,

4-204

Index-27

Values (cont'd)
assigning with MAT LINPUT statement,

Virtual file, 4-186
record size, 4-189
with RESTORE statement, 4-2344-146

assigning with MAT READ statement,
4-150

assigning with READ statement, 4-222 W
assigning with RSET statement,
comparing, 4-81

Variable names

4-241 WAIT statement, 4-285
WHILE clause, 4-89
WHILE loops, 4-161

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040
before placing your electronic, telephone, or direct mail order .

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using
a 1200- or 2400-baud modem. If you need assistance using the Electronic Store,
call 800-DIGITAL (800-344-4825) .

Telephone and Direct Mail Orders

'For internal orders, you must submit an Internal Software Order Form (EN-01740-07) .

Your Location Call Contact

Continental USA, 800-DIGITAL Digital Equipment Corporation
Alaska, or Hawaii P.O. Box CS2008

Nashua, New Hampshire 03061

Puerto Rico 809-754-7575 Local Digital subsidiary

Canada 800-267-6215 Digital Equipment of Canada
Attn: DECdirect Operations KAO2/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

International Local Digital subsidiary or
approved distributor

Internal' USASSB Order Processing - WMO/E15
or
U.S. Area Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

Reader's Comments

Please use this postage-paid form to comment on this manual . If you require a written
reply to a software problem and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form .
Thank you for your assistance .

BASIC-PLUS-2
Reference Manual

AA-JP30B-TK

I rate this manual's : Excellent Good Fair Poor

Accuracy (software works as manual says) 0 0 0 0
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) El 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual :
Page

	

Description

Additional comments or suggestions to improve this manual :

I am using Version of the software this manual describes .

Name/ Title Dept .
Company Date
Mailing Address

Phone

- Do Not Tear - Fold Here and Tape	

da 9no a fl TM

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO . 33 MAYNARD MASS .

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Information Products
NUO1-1/G10
55 NORTHEASTERN BLVD
NASHUA, NH 03062-9934

No Postage
Necessary

If Mailed
in the

United States

-- Do Not Tear - Fold Here	

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146
	page 147
	page 148
	page 149
	page 150
	page 151
	page 152
	page 153
	page 154
	page 155
	page 156
	page 157
	page 158
	page 159
	page 160
	page 161
	page 162
	page 163
	page 164
	page 165
	page 166
	page 167
	page 168
	page 169
	page 170
	page 171
	page 172
	page 173
	page 174
	page 175
	page 176
	page 177
	page 178
	page 179
	page 180
	page 181
	page 182
	page 183
	page 184
	page 185
	page 186
	page 187
	page 188
	page 189
	page 190
	page 191
	page 192
	page 193
	page 194
	page 195
	page 196
	page 197
	page 198
	page 199
	page 200
	page 201
	page 202
	page 203
	page 204
	page 205
	page 206
	page 207
	page 208
	page 209
	page 210
	page 211
	page 212
	page 213
	page 214
	page 215
	page 216
	page 217
	page 218
	page 219
	page 220
	page 221
	page 222
	page 223
	page 224
	page 225
	page 226
	page 227
	page 228
	page 229
	page 230
	page 231
	page 232
	page 233
	page 234
	page 235
	page 236
	page 237
	page 238
	page 239
	page 240
	page 241
	page 242
	page 243
	page 244
	page 245
	page 246
	page 247
	page 248
	page 249
	page 250
	page 251
	page 252
	page 253
	page 254
	page 255
	page 256
	page 257
	page 258
	page 259
	page 260
	bp2v27rm_b.pdf
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146
	page 147
	page 148
	page 149
	page 150
	page 151
	page 152
	page 153
	page 154
	page 155
	page 156
	page 157
	page 158
	page 159
	page 160
	page 161
	page 162
	page 163
	page 164
	page 165
	page 166
	page 167
	page 168
	page 169
	page 170
	page 171
	page 172
	page 173
	page 174
	page 175
	page 176
	page 177
	page 178
	page 179
	page 180
	page 181
	page 182
	page 183
	page 184
	page 185
	page 186
	page 187
	page 188
	page 189
	page 190
	page 191
	page 192
	page 193
	page 194
	page 195
	page 196
	page 197
	page 198
	page 199
	page 200
	page 201
	page 202
	page 203
	page 204
	page 205
	page 206
	page 207
	page 208
	page 209
	page 210
	page 211
	page 212
	page 213
	page 214
	page 215
	page 216
	page 217
	page 218
	page 219
	page 220
	page 221
	page 222
	page 223
	page 224
	page 225
	page 226
	page 227
	page 228
	page 229
	page 230
	page 231
	page 232
	page 233
	page 234
	page 235
	page 236
	page 237
	page 238
	page 239
	page 240
	page 241
	page 242
	page 243
	page 244
	page 245
	page 246
	page 247
	page 248
	page 249
	page 250
	page 251
	page 252
	page 253
	page 254
	page 255
	page 256
	page 257
	page 258
	page 259
	page 260
	page 261
	page 262
	page 263
	page 264
	page 265
	page 266
	page 267
	page 268
	page 269
	page 270
	page 271
	page 272
	page 273
	page 274
	page 275
	page 276
	page 277
	page 278
	page 279

