
Prepared by Educational Servicesof Digital Equipment Corporation

EK-KDJ1 B-UG-001

KDJ11-B
CPU Module

User's Guide

The material in this manual is for informational purposes and is subject to change without notice. Digital
Equipment Corporation assumes no responsibility for any errors that may appear in this manual .

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software on
equipment that is not supplied by Digital .

The manuscript for this book was created on a VAX-11/780 system and, via a translation program, was
automatically typeset by Digital's DECnet Integrated Publishing System . The book was produced by
Educational Services Development and Publishing in Marlboro, MA.

The following are trademarks of Digital Equipment Corporation :

® Digital Equipment Corporation 1986.
All Rights Reserved.
Printed in U.S.A .

Preliminary Edition, January 1986
1st Edition, November 1986

d0 9 0 a MicroPower/Pascal RSX
DEC MINC-11 RT
DECmate OMNIBUS RT-11
DECnet OS/8 TOPS-10
DECsystem-10 PDP TOPS-20
DECSYSTEM-20 PDT UNIBUS
DECUS P/OS VAX
DECwriter Professional VAXstation
DIBOL Q-Bus VAXstation II
EduSystem Q22-Bus VMS
IAS Rainbow VT
MASSBUS RSTS Work Processor

PREFACE

CHAPTER

1	

ARCHITECTURE

CONTENTS

1 .1 DESCRIPTION .

1-1

1 .2 DCJ11-A

FEATURES

. .

1-2

1 .2 .1 Stack

Limit Protection

. .

1-3

1 .2.2 Kernel

Protection

. .

1-3

1 .2.3 General

Registers

. .

1-4

1 .2.4 Stack

Pointer

. .

1-4

1 .2.5 Program

Counter

. .

1-4

1 .2.6 Processor

Status Word (17 777 776)

. .

1-4

1 .2.7 CPU

Error Register (17 777 766)

. .

1-6

1 .2.8 Program

Interrupt Request Register (17 777 772)

. .

1-7

1 .3 INTERRUPTS .

1-8

1 .3 .1 Sunset

Loops

. .

1-8

1' .3 .2 Red

Stack Aborts

. .

1-10

1 .3 .3 Addressing

Errors

. .

1-10

1 .3 .4 Bus

Timeout Errors

. .

1-10

1 .3 .5 Interrupt

Vector Timeouts

. .

1-10

1 .3 .6 No

SACK Timeouts

. .

1-10

1 .4 MEMORY

MANAGEMENT

. .

1-10

1 .4 .1 Memory

Mapping

. .

1-11

1 .4 .1 .1 16-Bit

Mapping

. .

1-11

1 .4 .1 .2 18-Bit

Mapping

. .

1-12

1 .4 .1 .3 22-Bit

Mapping

. .

1-12

1 .4.2 Compatibility .

1-13

1 .4 .3 Virtual

Addressing

. .

1-13

1 .4 .4 Interrupts

Under Memory Management

. .

1-14

1 .4.5 Construction

of a Physical Address

. .

1-14

1 .4.6 Memory

Management Registers

. .

1-16

1 .4.6.1 Page

Address Registers

. .

1-18

1 .4.6.2 Page

Descriptor Register

. .

1-18

1 .4.7 Fault

Recovery Registers

. .

1-20

1 .4.7 .1 Memory

Management Register 0 (17 777 572)

. .

1-20

1 .4.7 .2 Memory

Management Register 1 (17 777 574)

. .

1-20

1 .4.7 .3 Memory

Management Register 2 (17 777 576)

. .

1-20

1 .4.7 .4 Memory

Management Register 3 (17 772 516)

. .

1-22

1 .4.7 .5 Instruction

Back-Up/Restart Recovery

. .

1-23

1 .4.7 .6 Clearing

Status Registers Following Abort

. .

1-23

1 .4.7 .7 Multiple

Faults

. .

1-23

iv

1 .4.8 Typical

Usage Examples

. .

1-23

1 .4.8 .1 Typical

Memory Page

. .

1-24

1 .4.8 .2 Nonconsecutive

Memory Pages

. .

1-25

1 .4.8 .3 Stack

Memory Pages

. .

1-26

1 .4.9 Transparency .

1-26

1 .5 CACHE

MEMORY

. .

1-27

1 .5.1 Parity .

1-29

1 .5 .1 .1 Parity

Errors

. .

1-29

1 .5 .1 .2 Multiple

Cache Parity Errors

. .

1-29

1 .5 .2 Memory

System Registers

. .

1-30

1 .5 .2 .1 Cache

Control Register (17 777 746)

. .

1-30

1 .5 .2.2 Hit/Miss

Register (17 777 752)

. .

1-32

1 .5 .2.3 Memory

System Error Register (17 777 744)

. .

1-32

1 .6 PRIVATE

MEMORY INTERCONNECT

. .

1-34

1 .6 .1 PMI

Protocol

. .

1-34

1 .6 .1 .1 Bus

Device NPR

. .

1-34

1 .6 .1 .2 Bus

Device Interrupt

. .

1-34

1 .6.2 PMI

Data Transfers

. .

1-34

1 .6.2 .1 Data

In/Data In Pause

. .

1-34

1 .6.2 .2 Block

Data In

. .

1-35

1 .6.2.3 Data

Out/Data Out Byte

. .

1-35

1 .7 TERMINAL

INTERFACE

. .

1-35

1 .7 .1 Receiver

Control/Status Register (17 777 560)

. .

1-36

1 .7.2 Receiver

Buffer Register (17 777 562)

. .

1-37

1 .7 .3 Transmitter

Control/Status Register (17 777 564)

. .

1-38

1 .7 .4 Transmitter

Buffer Register (17 777 566)

. .

1-39

1 .8 BOOT

AND DIAGNOSTIC FACILITY

. .

1-39

1 .8 .1 Control/Status

Register (17 777 520)

. .

1-40

1 .8 .2 Page

Control Register (17 777 522)

. .

1-42

1 .8 .3 Configuration

and Display Register (17 777 524)

. .

1-43

1 .8 .3 .1 Boot

and Diagnostic Configuration Register

. .

1-43

1 .8 .3 .2 Boot

and Diagnostic Display Register

. .

1-43

1 .8 .4 Maintenance

Register (17 777 750)

. .

1-43

1 .9 LINE

TIME CLOCK

. .

1-45

1 .9 .1 Line

Time Clock Register (17 777 546)

. .

1-45

CHAPTER

2

CONFIGURATION

2.1 INTRODUCTION .

2-1

2.2 MODULE

CONFIGURATION

. .

2-1

2.2.1 Jumper

Wires

. .

2-1

2.2.1 .1 W

10 Jumper

. .

2-1

2.2.1 .2 W20

Jumper

. .2-1
2.2.1 .3 W40

Jumper

. .

2-3

2.2.2 Switchpack .

2-3

2.2.2.1 Baud

Rate Selection

. .

2-4

2.2 .2.2 Dialog

Mode

. .

2-5

2.2 .2.3 Device

Bootstrap Programs

. .

2-5

2.2 .2.4 Console

Enable

. .

2-6

2.2.3 Diagnostic

LEDs

. .

2-6

2.3 EEPROM

CONFIGURATION PARAMETERS

. .

2-7

2.3.1 Enable

Halt-on-Break

. .

2-9

2.3 .2 Disable

User Friendly Format

. .

2-9

2.3 .3 ANSI

Video Terminal

. .

2-9

2.3 .4 Power-Up

Modes

. .2-9
2.3 .4 .1 Dialog

Mode

. .

2-9

2.3 .4.2 Automatic

Mode

. .

2-10

2.3 .4.3 ODT

Mode

. .

2-10

2.3 .4.4 Mode

24

. .2-10
2 .3 .5 Restart .

2-10

2.3 .6 Ignore

Battery

. .2-10
2.3 .7 PMG

Count

. .2-10
2.3 .8 Disable

Clock CSR

. .2-10
2.3 .9 Force

Clock Interrupts

. .

2-11

2 .3 .10 Clock

Select

. .

2-11

2.3 .11 Enable

ECC Test

. .

2-11

2.3 .12 Disable

Long Memory Test

. .

2-11

2 .3 .13 Disable

ROM

. .2-11
2 .3 .14 Enable

Trap-on-Halt

. .

2-12

2.3 .15 Allow

Alternate Boot Block

. .2-12
2.3 .16 Disable

Setup Mode

. .

2-12

2 .3 .17 Disable

All Testing

. ..

2-12

2 .3 .18 Enable

Unibus Memory Test

. .2-12
2 .3 .19 Disable

UBA ROM

.. .2-12
2.3 .20 Enable

UBA Cache

. .2-12
2.3 .21 Enable

18-Bit Mode

. .

2-12

2.4 SYSTEM

INSTALLATION

. .2-13
2.4.1 LSI-I

l Based Systems

. .

2-13

2.4.2 Restricted

LSI-11 Systems

. .2-15
2.4.3 Unibus

Based Systems

. .

2-16

2.5 MODULE

CONTACT FINGER IDENTIFICATION

. .

2-18

2.6 MODULE

INSTALLATION PROCEDURE

. .2-21
2.7 SPECIFICATIONS .

2-21

CHAPTER

3

CONSOLE

ON-LINE DEBUGGING TECHNIQUE (ODT)

3 .1 INTRODUCTION.. .

3-1

3 .1 .1 Terminal

Interface

. .

3-1

3 .2 ODT

OPERATION OF THE CONSOLE SERIAL LINE INTERFACE

.

3-2

3 .2 .1 Console

ODT Input Sequence

. .

3-2

3 .2.2 Console

ODT Output Sequence

. .

3-2

3 .3 CONSOLE

ODT ENTRY CONDITIONS

. .

3-2

3 .4 CONSOLE

ODT COMMAND SET

. .

3-3

3 .4 .1 /

(ASCII 057) - Slash

. .

3-4

3 .4.2 <CR>

(ASCII 15) - Carriage Return

. .

3-4

3 .4.3 <LF>

(ASCII 12) - Line Feed

. .

3-5

3 .4.4 $

(ASCII 044) or R (ASCII 122) - Internal Register Designator

. .

3-5

3 .4.5 S

(ASCII 123) - Processor Status Word Designator

. .

3-5

3 .4.6 G

(ASCII 107) - Go

. .

3-6

3 .4.7 P

(ASCII 120) - Proceed

. .

3-6

3 .4.8 <CTRL>

<SHIFT> S (ASCII 23) - Binary Dump

. .

3-6

3 .5 KDJI

I -B ADDRESS SPECIFICATION

. .3-7
3 .5 .1 Processor

I/O Addresses

. .

3-7

3 .5 .2 Stack

Pointer Selection

. .

3-7

3 .5 .3 Entering

Octal Digits

. .

3-8

3 .5 .4 ODT

Timeout

. .

3-8

3 .5 .5 General

Registers

. .

3-8

CHAPTER

4	

BOOT

ROMS AND DIAGNOSTICS

vi

4.1 INTRODUCTION .

4-1

4.2 POWER-UP

OR RESTART

. .

4-1

4.2 .1 Dialog

(Mode 0)

. .

4-1

4.2 .2 Automatic

(Mode 1)

. .

4-2

4.2 .3 ODT

(Mode 2)

. .

4-2

4.2 .4 24/26

(Mode 3)

. .4-2
4.3 FORCED

DIALOG MODE

. .

4-2

4.4 HELP

COMMAND

. .

4-2

4.5 BOOT

COMMAND

. .

4-3

4.6 LIST

COMMAND

. .

4-4

4.7 SETUP

MODE

. .

4-5

4.7.1 Exit

(1)

. .

4-5

4.7.2 Select

Configuration Parameters (2)

. .

4-6

4.7 .3 Select

Bootstrap Translations (3)

. .

4-8

4.7.4 Select

Automatic Boot Sequence (4)

. .

4-8

4.7.5 Select

Console Message (5)

. .4-10
4.7.6 Define

Switchpack Boot Selections (6)

. .

4-11

4.7.7 List

Available Bootstrap Programs (7)

. .

4-12

4.7.8 Setup

Table Initialization (8)

. .

4-12

4.7.9 Save

the Setup Table in the EEPROM (9)

. .

4-12

4.7.10 Load

EEPROM Data Into the Setup Table (10)

. .

4-12

4.7.11 Delete

a Boot Program From the EEPROM (11)

. .

4-12

4.7.12 Load

an EEPROM Boot Program Into Memory (12)

. .

4-12

4.7.13 Edit

or Create a Boot Program in the EEPROM (13)

. .

4-12

4.7.14 Save

a Boot Program in the EEPROM (14)

. .

4-13

4.7.15 Enter

ROM ODT (15)

. .4-14
4.8 MAP

COMMAND

. .4-15
4.9 TEST

COMMAND

. .

4-16

4.10 DIAGNOSTIC

TESTS

. .4-16
4.10.1 CPU

or Halt Switch (Test 77)

. .4-18
4.10.2 CPU

and MMU (Test 76)

. .

4-18

4.10.3 Turn

on MMU, Run CPU and MMU (Test 75)

. .

4-18

4.10.4 Turn

on PMI, Check UBA Reboot Bit (Test 74)

. .

4-18

4.10.5 Power-Up

to Mode 2

:

ODT (Test 73)

. .4-18
4 .10.6 Power-Up

to Mode 3

:

24 (Test 72)

. .

4-19

4 .10.7 EEPROM

Checksum (Test 71)

. .

4-19

4.10 .8 CPU

ROM Checksum and PCR (Test 70)

. .

4-19

4 .10.9 Miscellaneous

CPU and EIS (Test 67)

. .4-19
4 .10 .10 Console

SLU Test 1 (Test 66)

. .4-19
4 .10 .11 Console

SLU Test 2 (Test 65)

. .4-19
4 .10 .12 Console

SLU Test 3 (Test 64)

. .4-19
4.10 .13 MMU

Aborts (Test 63)

. .

4-20

4.10 .14 Cache

Memory (Test 62)

. .

4-20

4.10 .15 Line

Clock (Test 61)

. .

4-20

4.10 .16 Floating-Point

Instruction (Test 60)

. .4-20
4.10.17 Reserved

(Test 57)

. .

4-20

4.10.18 Exit

Standalone Mode (Test 56)

. .4-20
4.10.19 UBA

Register Response (Test 55)

. .4-20
4.10.20 Memory

Sizing Routine (Test 54)

. .

4-21

4.10.21 Memory

Location 0 (Test 53)

. .4-21
4.10.22 Memory

Locations 0 to 4K Words (Test 52)

. .

4-21

4.10.23 Cache

Operation With Memory (Test 51)

. .

4-21

4.10.24 Complete

Memory Data/Byte Exercise (Test 50)

. .

4-21

4 .10 .25 Memory

Parity/ECC (Test 47)

. .

4-21

4 .10 .26 Memory

Address Shorts (Test 46)

. .4-22
4 .10 .27 UBA

Boot ROM (Test 45)

. .4-22
4 .10 .28 UBA

Map Registers Data Path (Test 44)

. .

4-22

4 .10 .29 UBA

Unmapped Diagnostic Data (Test 43)

. .

4-22

4 .10 .30 UBA

Mapped Diagnostic Data (Test 42)

. .

4-22

4 .10 .31 UBA

Floating Address/Data (Test 41)

. .

4-22

4.10 .32 UBA

Address Overflow (Test 40)

. .

4-23

4 .10 .33 UBA

Cache Data (Test 37)

. .

4-23

4.10 .34 UBA

Cache LRU (Test 36)

. .4-23
4.10.35 UBA

Cache Tag Store (Test 35)

. .4-23
4.10.36 UBA

Cache Parity Error (Test 34)

. .

4-23

4.10.37 Unibus

Memory Data/Byte Exercise (Test 33)

. .

4-23

4.10.38 Unibus

Memory Parity (Test 32)

. .

4-23

4.10.39 Unibus

Memory Address Shorts (Test 31)

. .

4-23

4.10.40 Exit

(Test 30)

. .

4-23

4.11 DIAGNOSTIC

TEST ERROR MESSAGES

. .

4-24

4.11 .1 Test

Number

. .

4-24

4.11 .2 Address

of the Error

. .

4-24

4.11 .3 Register

Set 1

. .

4-24

4.11 .4 Optional

User Commands

. .

4-24

4.11 .4 .1 Rerun

Test

. .

4-24

4.11 .4 .2 Loop

on Test

. .

4-24

4.11 .4.3 Map

Memory and I/O Page

. .

4-25

4.11 .4.4 Advance

to the Next Test

. .

4-25

4.11 .5 Typical

Displays

. .

4-25

4.12 ROM

CODE BOOT PROGRAMS

. .

4-26

4.12.1 Error

Messages for Bootstrap Programs

. .4-28
4.12.2 LSI

Bus Selected Error Messages

. .

4-28

4 .13 MESSAGE

DISPLAY CONSTRAINTS

. .4-29

CHAPTER

5

FUNCTIONAL

THEORY

5 .1 INTRODUCTION.. .

5-1

5.2 DCJ11-A

MICROPROCESSOR

.. .

5-2

5.2.1 Initialization .

5-2

5.2.2 Output

Signals

. .

5-2

5.2.2.1 Address

Input/Output (MAIO <3

:0>

H)

. .

5-2

5.2.2.2 Bank

Select (MBS 1 H, MBSO H)

. .

5-4

5.2.2.3 Address

Latch Enable (MALE L)

. .

5-4

5.2.2.4 Stretch

Control (MSCTL L)

. .

5-4

5.2.2.5 Strobe

(MSTRB L)

. .

5-4

5 .2.2.6 Buffer

Control (MBUFCTL L)

. .

5-4

5 .2.2.7 Predecode

Strobe (MPRDC L)

. .

5-5

5 .2.2.8 I/O

Map Enable (JMAP L)

. .

5-5

5 .2.2.9 Clock

(MCLK H)

. .

5-5

5 .2.3 Input

Signals

. .

5-5

5 .2.3 .1 MMISS

L

. .

5-5

5 .2.3 .2 Data

Valid (MDV L)

. .

5-5

5 .2.3.3 Continue

(MCONT L)

. .

5-5

5.2.3.4 DMA

Request (MDMR L)

. .

5-5

5.2.3.5 MIRQ

<7

:4>

H

. .

5-5

5.2.3.6 MHALT

H

. .

5-5

5.2.3.7 MEVNT

H

.. .

5-5

Viii

5 .2 .3 .8 MPWR FAIL L .5-5
5 .2 .3 .9 MPARITY L. 5-5
5 .2 .3 .10 MABORT L ..5-6
5 .2 .3 .11 FPA FPE L . 5-6
5 .2.4 MDAL <21 :01> . 5-6
5 .2 .5 DCJ11-A Transactions . 5-6
5 .2 .5 .1 NOP . 5-6
5 .2 .5 .2 Bus Read . 5-7
5 .2 .5 .3 Bus Write . 5-8
5.2 .5 .4 General Purpose Read . 5-8
5.2 .5 .5 General Purpose Write .5-9
5.2 .5 .6 IACK . 5-10
5.3 BUS ARBITRATOR . 5-10
5.3 .1 PMI Cycle Request . 5-12
5.4 DATA PATH CONTROLLER .5-12
5.4 .1 Cycle Encoder . 5-12
5.4.2 Oscillator . 5-15
5.4.3 Next Address MUX .5-17
5.4.3 .1 Default . 5-17
5.4.3 .2 External Read/Write .. 5-17
5.4.3 .3 LSI/Unibus . 5-18
5 .4 .3 .4 Interrupt Vector , . 5-18
5 .4 .3 .5 DC350/394 Accesses ..5-18
5 .4 .3 .6 Byte Allocation . 5-18
5 .4 .3 .7 DMA Monitor . 5-18
5 .4 .3 .8 Standalone Mode . 5-18
5 .4.4 Control Store . 5-18
5 .5 CACHE MEMORY AND DMA STORE . 5-22
5 .5 .1 Cache Memory . 5-24
5 .5.2 Cache Tag Store . 5-24
5 .5 .3 Cache Data Parity Logic . 5-25
5.5 .4 Valid Tag Bit . 5-26
5.5 .5 DMA Tag Store 5-26. .
5.5 .6 Cache Control. 5-26
5.6 DC350/394 GATE ARRAY . 5-28
5.6 .1 A-Multiplexer . 5-30
5.6 .2 Cache Data Path . 5-30
5.6 .3 Parity Interrupt and Abort .. 5-31
5.6 .4 Address Decode . 5-32
5.6 .5 Cycle Decoder . 5-33
5.6 .6 Miscellaneous . 5-33
5.7 DC351 GATE ARRAY . 5-34
5.7 .1 DMA Tag Data Path . 5-35
5.7 .2 Clock Start Logic .5-35
5.7 .3 Flush Counter . 5-35
5 .7 .4 Main Memory Parity Error . 5-35
5 .8 TIMEOUT. 5-36
5 .8 .1 DMA Requests .5-36
5 .8.2 NXM or Interrupt Requests . 5-36
5 .9 BUS DISTRIBUTION . 5-37
5 .9 .1 Internal Bus Control . 5-37
5 .9.2 LSI-11 Bus Control . 5-38
5 .9 .3 PMI Bus Control . 5-38
5 .10 CONSOLE SERIAL LINE UNIT . 5-38
5 .10.1 Halt-on-Break . 5-41

5.10.2 Console

Interrupt Arbitration

. .

5-41

5.11 CONFIGURATION

AND DISPLAY

. .

5-42

5.12 BOOT

AND DIAGNOSTIC ROMS

. .

5-42

5.13 CONFIGURATION

EEPROM

. .5-43
5.14 FLOATING-POINT

ACCELERATOR

. .

5-44

5.14 .1 FPA

Operation

. .

5-44

CHAPTER

6

EXTENDED

LSI-I1 BUS

6 .1 INTRODUCTION .

6-1

6 .2 BUS

SIGNAL NOMENCLATURE

. .

6-2

6 .3 DATA

TRANSFER BUS CYCLES

. .

6-3

6 .3 .1 Bus

Cycle Protocol

. .

6-4

6 .3 .1 .1 Device

Addressing

. .6-4
6 .3 .1 .2 DATI .

6-5

6 .3 .1 .3 DATO(B). .

6-7

6 .3 .1 .4 DATIO(B) .

6-10

6 .4 DIRECT

MEMORY ACCESS

. .

6-12

6 .5 INTERRUPTS .

6-14

6 .5.1 Device

Priority

. .6-14
6 .5.2 Interrupt

Protocol

. .6-15
6 .5.3 4-Level

Interrupt Configurations

. .6-18
6 .6 CONTROL

FUNCTIONS

. .6-19
6 .6.1 Memory

Refresh

. .

6-19

6 .6.2 Halt .

6-19

6 .6.3 Initialization .

6-19

6 .6.4 Power

Status

. .

6-19

6 .6.4.1 BDCOK

H

. .6-19
6 .6.4.2 BPOK

H

. .

6-19

6 .6 .4.3 Power-Up .

6-20

6 .6 .4.4 Power-Down. .

6-20

6.6 .5 BEVNT

L

. .6-21
6.7 BUS

ELECTRICAL CHARACTERISTICS

. .

6-21

6.7 .1 Signal

Level Specification

. .

6-21

6.7 .2 AC

Bus Load Definition

. .

6-21

6.7 .3 DC

Bus Load Definition

. .

6-21

6.7 .4 120

Q LSI-11 Bus

. .6-21
6.7 .5 Bus

Drivers

. .

6-22

6.7 .6 Bus

Receivers

. .

6-22

6.7 .7 KDJI

I -B Bus Termination

.

6-23

6.7 .7 .1 Bus

Interconnection Wiring

. .6-23
6.7 .7.2 Backplane

Wiring

. .6-23
6.7 .7.3 Intrabackplane

Bus Wiring

. .

6-24

6 .7 .7.4 Power

and Ground

. .

6-24

6 .7.7 .5 Maintenance

and Spare Pins

. .6-24
6 .8 SYSTEM

CONFIGURATIONS

. .

6-24

6 .8.1 Rules

for Configuring Single-Backplane Systems

. .

6-25

6 .8.2 Rules

for Configuring Multiple-Backplane Systems

. .

6-26

6 .8.3 Power

Supply Loading

. .

6-27

CHAPTER 7 PRIVATE MEMORY INTERCONNECT BUS
7.1 DESCRIPTION . 7-1
7.2 PMI INTERFACE . 7-1
7.2.1 PMI Bus Master Signals . 7-1
7.2 .2 PMI Slave Signals . 7-1
7.2 .3 PMI Unibus Adapter Signals . 7-1
7.2.4 LSI Bus Signals . 7-1
7.3 PMI OPERATION IN AN LSI-11 SYSTEM . 7-6
7.4 PMI OPERATION IN A UNIBUS SYSTEM . 7-6
7.4.1 Bus Device NPR or DMA . 7-6
7.4.2 PMI Bus Device Interrupt . 7-8
7.5 PMI DATA TRANSFERS .. 7-9
7.5 .1 PMI Data In/Data In Pause . 7-9
7.5 .2 PMI Block Data In . 7-11
7.5 .3 PMI Data Out/Data Out Byte . 7-13
7.6 PMI INTERRUPT PROTOCOL . 7-15
7.7 PMI POWER-UP/POWER-DOWN . 7-15

CHAPTER 8 ADDRESSING MODES
8.1 INTRODUCTION . 8-1
8.2 ADDRESSING MODES . 8-1
8.2 .1 Single-Operand Addressing . 8-3
8.2.2 Double-Operand Addressing . 8-3
8.2 .3 Direct Addressing . 8-4
8.2.3 .1 Register Mode . 8-6
8.2.3.2 Autoincrement Mode [OPR (Rn)+] . 8-8
8.2.3.3 Autodecrement Mode [OPR -(Rn)] . 8-9
8.2.3.4 Index Mode [OPR X(Rn)] . 8-11
8.2.4 Deferred (Indirect) Addressing . 8-12
8.2.5 Use of the PC as a General Purpose Register . 8-16
8.2.5 .1 Immediate Mode [OPR #n,DD] . 8-16
8.2.5.2 Absolute Mode [OPR @#A] . 8-17
8.2.5.3 Relative Addressing Mode [OPR A or OPR X(PC)] . 8-18
8.2.5.4 Relative-Deferred Addressing Mode [OPR @A or OPR @X(PC)] 8-19
8.2.6 Use of the General Purpose Registers as a Stack Pointer . 8-19

CHAPTER 9 BASE INSTRUCTION SET
9.1 INSTRUCTION SET. .9-1
9.2 INSTRUCTION FORMATS .9-4
9.3 BYTE INSTRUCTIONS . 9-7
9.4 LIST 01= INSTRUCTIONS . 9-8
9.5 SINGLE-OPERAND INSTRUCTIONS . 9-12
9.5 .1 General . 9-12
9.5 .2 Shtf , and Rotates .9-17
9.5 .3 Multiple-Precision . 9-22
9.5 .4 PSW Operators ..9-24
9.6 DOUBLE-OPERAND INSTRUCTIONS ..9-26
9.6 .1 General . 9-26
9 .6 .2 Logical . 9-32

9 .7 PROGRAM

CONTROL INSTRUCTIONS

. .

9-34

9 .7.1 Branches .

9-34

9 .7.2 Signed

Conditional Branches

. .

9-39

9 .7.3 Unsigned

Conditional Branches

. ������ ,

9-41

9 .7.4 Jump

and Subroutine Instructions

. .� ���� ,

9-43

9 .7.5 Traps .

9-47

9.7.6 Miscellaneous

Program Controls

. .��

9-51

9.7 .7 Reserved

Instruction Traps

. .

9-54

9.7 .8 Trace

Trap

. .

9-54

9.8 MISCELLANEOUS

INSTRUCTIONS

. � .�

9-55

9.9 CONDITION

CODE OPERATORS

. .9-59

CHAPTER

10

FLOATING-POINT

ARITHMETIC

10.1 INTRODUCTION .

10-1

10.2 FLOATING-POINT

DATA FORMATS

. .

10-1

10.2.1 Nonvanishing

Floating-Point Numbers

. �

10-1

10.2 .2 Floating-Point

Zero

. .

10-1

10.2 .3 Undefined

Variables

. .

10-2

10.2.4 Floating-Point

Data

. .

10-2

10.3 FLOATING-POINT

STATUS REGISTER (FPS)

. .

10-2

10.4 FLOATING

EXCEPTION CODE AND ADDRESS REGISTERS

.

10-6

10 .5 FLOATING-POINT

INSTRUCTION ADDRESSING

. .

10-7

10.6 ACCURACY .

10-8

10.7 FLOATING-POINT

INSTRUCTIONS

. .�

10-9

CHAPTER

11

PROGRAMMING

TECHNIQUES

11 .1 INTRODUCTION .

11-1

11 .2 POSITION-INDEPENDENT

CODE

.. .

11-1

11 .2 .1 Use

of Addressing Modes in the Construction of Position-Independent Code

. . .

11-1

11 .2 .2 Comparison

of Position-Dependent and Position-Independent Code

.

11-3

11 .3 STACKS. .

11-5

11 .3.1 Pushing

onto a Stack

. .

11-5

11 .3.2 Popping

from a Stack

. .

11-6

11 .3 .3 Deleting

Items from a Stack

. .

11-6

11 .3 .4 Stack

Uses

. .

11-7

11 .3 .5 Stack

Use Examples

. .

11-8

11 .3 .6 Subroutine

Linkage

. .

11-9

11 .3 .6.1 Return

from a Subroutine

. .

11-10

11 .3 .6.2 Subroutine

Advantages

. .

11-10

11 .3 .7 Interrupts .

11-10

11 .3 .7 .1 Interrupt

Service Routines

. .

11-10

11 .3 .7.2 Nesting .

11-11

11 .3.8 Reentrancy. .

11-12

11 .3.8 .1 Reentrant

Code

. .

11-12

11 .3 .8 .2 Writing

Reentrant Code

. .

11-13

11 .3 .9 Coroutines .

11-13

11 .3 .9 .1 Coroutine

Calls

. .

11-13

11 .3 .9.2 Coroutines

Versus Subroutines

. .

11-14

11 .3 .9.3 Using

Coroutines

. .

11-15

11 .3 .10 Recursion .

11-17

11 .3 .11 Processor

Traps

. .

11-19

11 .3.11 .1 Trap

Instructions

. .

11-20

11 .3.11 .2 Use

of Macro Calls

. .

11-20

11 .3.12 Conversion

Routines

. .

11-21

11 .4 PROGRAMMING

THE PROCESSOR STATUS WORD

. .

11-25

11 .5 PROGRAMMING

PERIPHERALS

. .

11-25

11 .6 PDP-11

PROGRAMMING EXAMPLES

. .

11-26

11 .7 LOOPING

TECHNIQUES

. .

11-32

APPENDIX

A

ROM

CODE DIFFERENCES

A.1 GENERAL .

A-1

A.2 V6 .0

AND V7

.0

DIFFERENCES

. .

A-1

A.2.1 Boot

Support for Tape MSCP Devices (TK50/TU81)

. .

A-1

A.2 .2 Disk

MSCP Automatic Boot Routine

. .

A-1

A.2 .3 Dialog

Mode Boot Command for Disk MSCP Boot

. .

A-2

A.2 .4 Disk

MSCP Boot (DU)

. .

A-2

A .2 .5 8-Unit

Restriction for MSCP Automatic Boot

. .

A-2

A .2 .6 Irregular

Monitoring of Keyboard During Automatic Boot Sequence

.

A-2

A.2 .7 Addition

of Single-Letter Mnemonic in Automatic Boot List

. .

A-2

A.2 .8 Setup

Mode Disable

. .

A-3

A .2 .9 Disable

All Testing Parameter

. .

A-3

A.2 .10 Edit/Create

Command

. .

A-3

A.2 .11 Initialize

Command for the PMG Counter

. .

A-4

A.2 .12 PMG

Parameter Warning

. .

A-4

A.2 .13 Setup

Command 4 Printout

. .

A-4

A.2 .14 MU

(TK50/TU81) Device

. .

A-4

A.2 .15 Setup

Command 5

. .

A-5

A.2 .16 Memory

Initialization at Power-Up

. .

A-5

A.2 .17 Power-Up

Option Set to 3 with Battery Backed Up Memory

. .

A-6

A.2 .18 Halt-on-Break .

A-6

A.2.19 Local

Language Support

. .

A-6

A.2 .20 Addition

of Map Command Feature

. .

A-6

A.2 .21 EEPROM

Load Error Before Dialog Mode

. .

A-6

A .2.22 Test

Command Decimal Numbers

. .

A-6

A.2 .23 Test

Command Execution of a Single Test

. .

A-7

A .2.24 Test

Errors in Tests 72 to 75

. .

A-7

A.2 .25 Bypass

Errors for Test Failures

. .

A-7

A.2.26 Test

76 and 75 Error Messages

. .

A-7

A.2 .27 Starting

Automatic Boot Sequence Message

. .

A-7

A.2.28 Device

Name and Number After Message

. .

A-8

A.2 .29 Incorrect

Message for Invalid Unit Number

. .

A-8

A.2.30 Dialog

Mode Header Message

. .

A-8

A.2.31 Map

Command Message

. .

A-8

A.2 .32 List

Device Descriptions

. .

A-8

A.2.33 Loss

of the First Line in a List Header

. .

A-8

A .2 .34 <CTRL>

R and <CTRL> U Echo

. .

A-8

A .2.35 Power-Up

or Restart Mode Set to 3 (LSI Bus Only)

. .

A-10

A.2 .36 Automatic

Boot Misleading Error Message (LSI Bus Only)

. .

A-10

A.2.37 APT

Halt-on-Break Detect (LSI Bus Only)

. .

A-10

A.2 .38 B

Mnemonic for ROM Boots (Unibus Only)

. .

A-10

A.2.39 Error

in List Command When Unknown ROM is Found (Unibus Only)

.

A-10

A.2 .40 Power-Up

or Restart Mode Set to 3 (Unibus Only)

. .

A-10

A.2 .41 Saving

KMCR Bits <5

:0>

in the EEPROM (Unibus Only)

. .

A-11

FIGURES

1-1 Programming

Model

. .

1-2

1-2
1-3
1-4
1-5

Processor

Status Word Register

. .
CPU

Error Register

. .
Program

Interrupt Request Register

. .
16-Bit

Mapping

. .

1-4
1-6
1-7

1-11
1-6 18-Bit

Mapping

. 1-12
1-7 22-Bit

Mapping

. 1-12
1-8 Virtual

Address Mapping into Physical Address

. 1-13
1-9 Interpretation

of a Virtual Address

. 1-14
1-10 Displacement

Field of a Virtual Address

. 1-14
1-11 Construction

of a Physical Address

. 1-15
1-12 Active

Page Register

. 1-16
1-13 Page

Address Register

. 1-18
1-14 Page

Descriptor Register

. 1-19
1-15 Memory

Management Register 0 (MMRO)

. 1-20
1-16 Memory

Management Register 1 (MMR1)

. 1-21
1-17 Memory

Management Register 3 (MMR3)

. 1-22
1-18 Typical

Memory Page

. 1-24
1-19 Nonconsecutive

Memory Pages

. 1-25
1-20 Typical

Stack Memory Page

. 1-26
1-21 Cache

Physical Address

. 1-27
1-22 Cache

Data Format

. 1-27
1-23 Cache

Control Register (CCR)

. 1-30
1-24 Hit/Miss

Register (HMR)

. 1-32
1-25 Memory

System Error Register (MSER)

. 1-32
1-26 Receiver

Control/Status Register

. 1-36
1-27 Receiver

Buffer Register

. 1-37
1-28 Transmitter

Control/Status Register

. 1-38
1-29 Transmitter

Buffer Register

. 1-39

A.3 V7.0

AND V8

.0

DIFFERENCES

. .

A-11

A.3 .1 M9312

MultiROM Bootstrap Support (PDP-11/84 Only)

. .

A-l 1

A.3 .2 Small

Memory Automatic Boot Problem for RQDX3

. .

A-11

A.3 .3 RAnn

Disk Spinup Time Delay for Automatic Boot

. .

A-11

A.3 .4 Addition

of RESET Instruction at Beginning of Code

. .

A-12

A.3 .5 Addition

of New Setup Command 5

. .

A-12

A.3 .6 Memory

Test Coverage Problem

. .

A-12

A.3 .7 List

Command Device Descriptions

. .

A-12

A.3 .8 Manufacturing

Test Loop Problem

. .

A-12

APPENDIX

B

SETUP

PARAMETER WORKSHEETS

B.

I

PURPOSE .

B-1

B.2 FUNCTION .

B-1

APPENDIX

C

MNEMONICS

1-30 Controller

Status Register

. .

1-40

1-31 Configuration

and Display Register

. .

1-43

1-32 Maintenance

Register

. .

1-43

1-33 Line

Time Clock Register

. .

1-45

2-1 KDJ11-B

Module Layout

. .2-2
2-2 Pin

Assignments for Connectors J2 and J3

. .

2-3

2-3 KDJ11-B

Module Contacts

. .2-18
4-1 Help

Commands

. .

4-2

4-2 Booting

an RLO l /RL02

. .

4-3

4-3 Available

Boot Programs

. .

4-5

4-4 Typical

Translation Table

. .

4-9

4-5 Automatic

Boot Sequence Example

. .

4-9

4-6 Select

Console Message Example

. .

4-10

4-7 Switchpack

Boot Selection

. .

4-11

4-8 Edit/Create

an EEPROM Boot

. .4-13
4-9 Typical

Map Mode Display

. .

4-15

4-10 Continuous

Testing Display

. .4-16
4-11 Loop

Test Display

. .

4-16

4-12 Typical

Diagnostic Error Display

. .4-25
4-13 Typical

Memory Test Error Display

. .4-26
4-14 Typical

Unexpected Trap Error Display

. .4-26
4-15 General

Bootstrap Error Messages

. .4-28
4-16 User

Friendly Error Message

. .

4-28

5-1 KDJ

11-B Functional Block Diagram

. .

5-1

5-2 DCJ11-A

Microprocessor Logic

. .

5-3

5-3 NOP

Transaction

. .

5-6

5-4 Stretched

NOP Transaction

. .

5-6

5-5 Bus

Read Transaction

. .

5-7

5-6 Stretched

Bus Read Transaction

. .

5-7

5-7 Bus

Write Transaction

. .

5-8

5-8 General

Purpose Read Transaction

. .

5-9

5-9 General

Purpose Write Transaction

. .

5-9

5-10 Interrupt

Acknowledge Transaction

. .

5-10

5-11 Bus

Arbitrator

. .

5-11

5-12 PMI

Cycle Request

. .5-12
5-13 Data

Path Controller

. .5-13
5-14 Cycle

Encoder

. .

5-13

5-15 Oscillator

Outputs

. .

5-15

5-16 Oscillator

Control

. .

5-16

5-17 Next

Address Multiplexer

. .

5-17

5-18 Control

Store

. .

5-19

5-19 Internal

Bus Control Signals

. .

5-22

5-20 Cache

Memory System

. .

5-23

5-21 Cache

Physical Address

. .

5-23

5-22 Cache

Data Format

. .,., .

5-23

5-23 Cache

Memory

. .

5-24

5-24 Cache

Tag Store

. .

5-24

5-25 Cache

Data Parity Logic

. .

5-25

5-26 V:°lid

Tag Bit

. .

5-27

5-27 DMA

Tag Store

. .

5-27

5-28 Cache

Control Signals

. .

5-27

5-29 DC350/394

Gate Array

. .

5-28

5-30 DC351

Gate Array

. .

5-34

5-31 NXM/Interrupt

Timeout Logic

. .

5-36

5-32 Internal

Bus Control

. .

5-37

xv

5-33 LSI-11

Bus Control Signals

. .

5-38

5-34 PMI

Bus Control Signals

. .

5-39

5-35 Console

Serial Line Logic

. .

5-39

5-36 Console

Interrupt Arbitration

. ���� , . . .�������

5-41

5-37 Configuration

and Display Circuits

. � . .� . . .����� ,

5-42

5-38 Boot

and Diagnostic ROM Logic

. .

5-43

5-39 Configuration

EEPROM Logic

. .

5-43

5-40 Floating-Point

Accelerator

. .

5-44

6-1 DATI

Bus Cycle

. .6-5
6-2 DATI

Bus Cycle Timing

. .

6-6

6-3 DATO

or DATO(B) Bus Cycle

. .

6-8

6-4 DATO

or DATO(B) Bus Cycle Timing

. .

6-9

6-5 DATIO

or DATIO(B) Bus Cycle

. .

6-10

6-6 DATIO

or DATIO(B) Bus Cycle Timing

. � .

6-11

6-7 DMA

Request/Grant Sequence

. .

6-12

6-8 DMA

Request/Grant Bus Cycle Timing

. .

6-13

6-9 Interrupt

Request/Acknowledge Sequence

. � �

6-15

6-10 Interrupt

Protocol Timing

. .6-16
6-11 Position-Independent

Configuration

. .

6-18

6-12 Position-Dependent

Configuration

. � � ,_6-18
6-13 Power-Up/Power-Down

Timing

. .

6-20

6-14 Bus

Line Termination

. .

6-23

6-15 Single-Backplane

Configuration

. .

6-25

6-16 Multiple-Backplane

Configuration

. � � , . .6-26
8-1 Single-Operand

Addressing

. .

8-3

8-2 Double-Operand

Addressing

. .

8-3

8-3 Mode

0, Register

. .

8-4

8-4 Mode

2, Autoincrement

. .

8-5

8-5 Mode

4, Autodecrement

. .

8-5

8-6 Mode

6, Index

. .

8-5

8-7 INC

R3 Increment

. .

8-6

8-8 ADD

R2,R4 Add

. .

8-7

8-9 COMB

R4 Complement Byte

. .

8-7

8-10 CLR

(R5)+ Clear

. .

8-8

8-11 CLRB

(R5)+ Clear Byte

. .

8-8

8-12 ADD

(R2)+,R4 Add

. .

8-9

8-13 INC

-(RO) Increment

. .

8-9

8-14 INCB

-(RO) Increment Byte

. .

8-10

8-15 ADD

-(R3),RO Add

. .

8-10

8-16 CLR

200(R4) Clear

. .

8-11

8-17 COMB

200(R1) Complement Byte

. .

8-11

8-18 ADD

30(R2),20(R5) Add

. .8-12
8-19 Mode

1, Register-Deferred

. .

8-12

8-20 Mode

3, Autoincrement-Deferred

. .

8-13

8-21 Mode

5, Autodecrement-Deferred

. .

8-13

8-22 Mode

7, Index-Deferred

. .

8-13

8-23 CLR

@R5 Clear

. .8-14
8-24 INC

@(R2)+ Increment

. .

8-14

8-25 COM

@-(RO) Complement

. .

8-15

8-26 ADD

@ 1000(R2),R l Add

. .

8-15

8-27 ADD

10,RO Add

. .

8-17

8-28 CLR

@#I100 Clear

. .8-17
8-29 ADD

C#2000 Add

. .

8-18

8-30 INC

A Increment

. .

8-18

8-31 CLR

CA Clear

. .

8-19

9-1 Single-Operand

Group

. .9-4
9-2 Double-Operand

Group 1

. .

9-4

9-3 Double-Operand

Group 2

. .

9-4

9-4 Program

Control Group Branch

. .

9-4

9-5 Program

Control Group JMP

. .

9-5

9-6 Program

Control Group JSR

. .

9-5

9-7 Program

Control Group RTS

. .

9-5

9-8 Program

Control Group Traps

. .

9-5

9-9 Program

Control Group Subtract

. .

9-5

9-10 Mark .

9-6

9-11 Call

to Supervisor Mode

. .

9-6

9-12 Set

Priority Level

. .

9-6

9-13 Operate

Group

. .

9-6

9-14 Condition

Group

. .9-6
9-15 Move

To and From Previous Instruction/ Data Space Group

. .

9-7

9-16 Byte

Instructions

. .9-7
10-1 Single-Precision

Format

. .

10-2

10-2 Double-Precision

Format

. .

10-3

10-3 2's

Complement Format

. .

10-3

10-4 Floating-Point

Status Register

. .

10-3

10-5 Floating-Point

Addressing Modes

. .

10-9

11-1 Word

and Byte Stacks

. .

11-5

11-2 Push

and Pop Operations

. .

11-6

11-3 Byte

Stack Used as a Character Buffer

. .

11-9

11-4 JSR

Stack Condition Example

. .

11-9

11-5 Nested

Interrupt Service Routines and Subroutines

. .

11-11

11-6 Reentrant

Routines

. .

11-12

11-7 Sharing

Control of a Routine

. .

11-13

11-8 Coroutine

Example

. .

11-14

11-9 Coroutines

Versus Subroutines

. .

11-15

11-10 Coroutine

Path

. .

11-16

11-11 Coroutine

Interaction

. .

11-16

11-12 Recursive

Routine Flow

. .

11-17

A-1 Program

for Continuous Loop

. .

A-3

A-2 PMG

Count Value Warning Message

. .

A-4

A-3 Single-Letter

Description for Command 4

. .

A-5

A-4 Automatic

Boot Sequence Message

. .

A-7

A-5 V6 .0

Incorrect Message

. .

A-8

A-6 V7 .0

Correct Error Message

. .

A-9

A-7 V6 .0

List Header Error

. .

A-9

A-8 V7 .0

Correct List Header

. .

A-9

TABLES

1-1 General

Purpose Registers

. .

1-3

1-2 Stack

Pointer (PSW <15

:14>

or <13

:12>) .

1-4

1-3 Processor

Status Word Bit Description

. .

1-5

1-4 CPU

Error Register Bit Description

. .

1-6

1-5 Program

Interrupt Request Bit Description

. .

1-7

1-6 KDJ11-B

Interrupts

. .

1-8

1-7 KDJ11-B

Compatibility

. .

1-13

1-8 Memory

Management Register Addresses

. .

1-17

1-9 Page

Descriptor Register Bit Description

. .

1-19

1-10 MMRO

Bit Description

. .

1-21

1-11 MMR3

Bit Description

.

1-22

1-12 Cache

Response Matrix

. .

1-28

1-13 Cache

Parity Errors

. .

1-29

1-14 Cache

Control Register Description

. .

1-31

1-15 Memory

System Error Register Description

. .

1-33

1-16 Baud

Rate Selection

. .

1-35

1-17 RCSR

Bit Description

. .

1-36

1-18 RBUF

Bit Description

. .

1-37

1-19 XCSR

Bit Description

. .

1-38

1-20 XBUF

Bit Description

. .

1-39

1-21 Control/Status

Register Bit Description

. .

1-40

1-22 Maintenance

Register Bit Description

. .

1-44

1-23 Line

Time Clock Register Bit Description

. .

1-45

2-1 Jumper

Wire Functions

. : .2-2
2-2 J2

and J3 Connectors

. .2-4
2-3 Baud

Rate Selections

. .

2-4

2-4 Bootstrap

Program Selection

. .

2-5

2-5 Diagnostic

and System Status LED Display

. .

2-6

2-6 Configuration

Parameters

. .

2-8

2-7 LSI-11

Compatible Options

. .

2-13

2-8 Unibus

Compatible Options

. .

2-16

2-9 KDJ11-B

Module and LSI-11 Bus Signals

. .2-19
2-10 Module

PMI Signal Assignments

. .

2-20

3-1 Console

ODT Commands

. .

3-3

4-1 Setup

Mode Commands

. .4-6
4-2 Configuration

Parameters

. .

4-6

4-3 Switchpack

Selections

. .4-11
4-4 ROM

ODT Commands

. .4-14
4-5 Diagnostic

LED Displays

. .4-17
4-6 Bootstrap

Error LED Displays

. .4-27
5-1 MAIO

Coding

. .

5-3

5-2 Bank

Select Address Codes

. .

5-4

5-3 General

Purpose Read Codes

. .

5-8

5-4 General

Purpose Write Codes

. .

5-9

5-5 Control

Signals

. .

5-11

5-6 Cycle

Encoder Status

. .

5-14

5-7 Transactions

Selected by LCYCCD Outputs

. .

5-14

5-8 Oscillator

Control Signals

. .

5-16

5-9 Selection

of NA <1

:0>

Status

. .5-17
5-10 Control

Store Outputs

. .

5-20

5-11 Cache

Parity

. .5-26

5-12 LTC

Interrupts

. .

5-29

5-13 AMUX

Selections

. .

5-30

5-14 Parity

Interrupt and Abort Logic

. .

5-31

5.15 CCR

Register Selections

. .

5-31

5-16 Address

Decoding

. .

5-32

5-17 DEVCD

Outputs

. .

5-32

5-18 Cycle

Decoding

. .5-33
5-19 Register

Selection

. .

5-40

5-20 Baud

Rate Selections

. .

5-40

6-1 Summary

of Signal Line Functions

. .

6-1

6-2 Data

Transfer Bus Cycles

. .

6-3

6-3 Data

Transfer Bus Signals

. .

6-4

6-4 Position-Independent,

Multilevel Device Requirements

. .

6-17

7-1 PMI

Bus Master Signals

. .

7-2

7-2 PMI

Slave Signals

. .

7-3

7-3 PMI

Unibus Adapter Signals

. .

7-4

7-4 LSI

Bus Signals

. .

7-5

8-1 Sample

KDJI I -B Instructions

. .8-4
9-1 Instruction

Set

. ..

9-1

10-1 FPS

Register Bit Description

. .

10-4

A-1 ROM

Part Numbers

. .

A-1

A-2 Setup

Command 4 Automatic Boot Lists

. .

A-5

A-3 ROM

Code Test Selections

. .

A-6

A-4 New

List Command Device Descriptions

. .

A-13

PREFACE

This

user's guide contains descriptions of the KDJ11-B CPU module architecture, configuration, system

requirements

and programming

.

The module architecture is described in Chapter 1 and is supported by

the

description of functional theory in Chapter 5

.

The configuration requirements are described in Chapter

2

and are selected from the preprogrammed ROMs described in Chapter 4

.

These ROMs also contain the

bootstrap

programs and diagnostic testing for the module

.

Additional testing can be accomplished by using

the

ODT techniques found in Chapter 3

.

The

system requirements for the extended LSI-11 bus (Q22-Bus) are covered in Chapter 6 and the private

memory

interconnect bus operation is described in Chapter 7

.

The

base instruction set is described in Chapter 9 and the floating-point instruction set in Chapter 10

.

The

addressing

modes are covered in Chapter 8 and some of the programming techniques for the instruction

sets

are given in Chapter 11

.

Appendix

A details the changes incorporated in V7

.0

and V8

.0

of the ROM code

.

Appendix B provides

worksheets

to record the configuration being used for a system

.

Appendix C lists the mnemonics fre-

quently

used in this guide

.

CHAPTER

1

ARCHITECTURE

1 .1

DESCRIPTION

The

KDJI I -B is a quad-height processor module for LSI-11 bus systems

.

It is designed for use in high

speed,

real-time applications and for multiuser, multitasking environments

.

The module can also function

as

a CPU in PDP-II Unibus systems, when it is used in conjunction with the KTJI l -B Unibus adapter

module .

The

module interfaces to the standard 22-bit LSI bus and has the additional control signals necessary for

communication

via the Private Memory Interconnect (PMI)

.

The PMI protocol uses the C/D interconnect

bus

and allows high speed data transfers across the bus, including double word reads

.

The LSI bus can

address

up to 4 Mbytes of main memory

.

Block mode Direct Memory Access (DMA) transfers - allowed

on

the extended bus, are supported by the KDJ 11-B module

.

The MSV 1 1-J memory module and the

KTJ

1 l -B Unibus adapter module are compatible with the PMI protocol

.

The

KDJII-B module executes the complete PDP-11/70 base instruction set, including the Extended

Instruction

Set (EIS) and the MTPS, MFPS, MFPT, CSM, TSTSET, and WRTLCK instructions

.

It also

supports

the FP I I floating-point instruction set that is compatible with FP I 1-A, -C, -E, and -F floating-

point

processors

.

Full 22-bit memory management is provided for both instruction references and data

references

in three protection modes

:

kernel, supervisor, and user

.

The

three protection modes provide the ability to implement layered software protection

.

Memory

management

separately manages the three modes, allowing each one to access different sections of main

memory.

Furthermore, each section can have different access protection rights

.

Each mode uses a separate

system

stack pointer that offers an additional degree of isolation

.

The protection modes are organized so

that

a higher protection mode can always enter a lower protection mode, while a lower protection mode

can

never accidentally enter a higher protection mode

.

Kernel mode has full privileges and can execute all

instructions .

Supervisor mode and user mode, the two lower privileged modes, cannot execute certain

instructions .

The

module uses a DCJ 11-A microprocessor chip as a central processor having memory management and

floating-point

processing capability

.

It also has an 8-Kbyte cache memory, a line time clock, a console

serial

line unit, and a boot facility with diagnostics

.

The

8-Kbyte write-through direct map cache has a dual tag store that allows concurrent operations of the

CPU

and DMA

.

The cache is transparent to user programs and acts as a high speed buffer between the

processor

and main memory

.

The data stored in the cache represents the most active portion of the main

memory

in use

.

The processor accesses main memory only when data is not available in the cache

.

The

full-duplex console serial line unit provides an interface for the console terminal

.

The unit is a DC319

Digital

Link Asynchronous Receiver/Transmitter (DLART) that partially supports the RS-423, and fully

supports

the RS-232-C EIA standards

.

The KDJ11-B module supports console emulation (micro-ODT) . This allows users to interrogate and writemain memory and CPU registers as if a console switch panel and display lights were available .
The boot and diagnostic facility features two sockets for Read-Only Memory (ROM) chips that containthe boot and diagnostic programs . It also has a third socket for an Electrically Erasable ProgrammableROM (EEPROM) chip that contains configuration data and space for the user's loadable boot code . Theoperation of the boot and diagnostic facility is described in detail in Chapter 4 .
The KDJ11-BB and -BF modules provide sockets for the installation of the optional FPJ11 Floating-PointAccelerator (FPA) chip . This is a coprocessor that significantly improves the execution speed of floating-point instructions . The KDJ 11-BC (M8190-00) version of the module cannot use the FPJ11 optional FPAchip .
Self-diagnostic display LEDs are provided on the KDJ11-B module . They indicate the status of the moduleand system when the module is powered up . The LEDs aid in troubleshooting module failures .
The user-visible registers are shown in Figure 1-1 and are classified as general purpose, system control,memory system, floating-point and Memory Management Registers (MMRs) .
1 .2 DCJ11-A FEATURESThe DCJ11-A microprocessor operates in three modes : kernel, supervisor, and user . A program operatingin the kernel mode has complete control of the system and incorporates protection mechanisms against anyexternal interferences . Programs operating in the supervisor and user modes can be inhibited fromexecuting certain instructions and can be denied direct access to the system peripherals . This feature isused to provide complete executive protection in a multiprogram environment .
There are 16 general purpose registers, as listed in Table 1-1, but only 8 are visible to the user at any giventime . The general purpose registers provide a Stack Pointer (SP) for each of the three operating modes anda Program Counter (PC) . The remaining 12 registers are divided into two groups of general purposeregisters, RO-R5 and RO'-R5' . All of these registers can be used as accumulators, deferred addresses,index references, autoincrement, autodecrement, and stack pointers .

Figure 1-1

	

Programming Model

MMR1 I

	

I MMR2

8 I SPACE AND 8 D SPACE

PAGE REGISTERS (32 BIT)KERNEL (00)

	

SUPERVISOR (01)

	

USER (11)PA R

71

ACCUMULATORS (64 BIT)

	

BOUT AND DIAGNOSTICSCONTROL/STATUS
PAGE CONTROL
CONF AND DISP

MR -16833

GENERAL PURPOSE SYSTEM CONTROL MEMORY SYSTEM SLU CONSOLERO RO' KSP PSW LINE CLOCK CACHE CTRL RCSRR1 R1' SSPR2 R2' LISP PIRO MAINT MEM SYS ERR RBUFR3 R3'R4 R4' PC CPU ERROR HIT/MISS XCSRR5 R5' RBUFFLOATING POINT MEMORY MANAGEMENTFPS FEC FEA MMRO MMR3

The

system control registers are the Processor Status Word (PSW), the Program Interrupt ReQuest

(PIRA,

and the CPU error register

.

1 .2.1

	

Stack

Limit Protection

The

DCJ 11 monitors the kernel stack references against the fixed limit of 400

.

A yellow stack trap occurs

at

the end of the current instruction when the address of the stack reference is less than 400

.

A yellow

stack

trap can only occur in the kernel mode during a stack reference

.

This is defined as a mode 4 or 5

reference

through R6, a JSR trap, or an interrupt stack push

.

The

microprocessor also checks for kernel stack aborts during interrupts, traps, and abort sequences

.
When

a kernel stack push causes an abort during one of these conditions, a red stack trap occurs

.

This type

of

stack trap sets bit 2 in the CPU error register and loads virtual address 4 into the kernel stack pointer

(R6).

A trap through location 4 in the kernel space now occurs and the old PC and PSW are saved in

locations

0 and 2, respectively, of the kernel space

.

1.2.2

	

Kernel

Protection

The

following mechanisms are used to protect the kernel operating system against external interference

.

"

	

In

the kernel mode, the HALT, RESET, and SPL instructions are executed as specified

.

In the

supervisor

or user modes, the HALT instruction causes a trap through location 4, but the

RESET

and SPL instructions are treated as NOPs

.

"

	

In

the kernel mode, the RTI and RTT instructions can freely change bits <15

:1

1 > and <7

:5>
of

the PSW register

.

In the supervisor or user modes, these instructions can only change bits

<

15

:11

> of the PSW register

.

"

	

In

the kernel mode, the MTPS instruction can change bits <7

:5>

of the PSW register

.

In the

supervisor

or user modes, the MTPS instruction cannot change bits <7

:5>

of the PSW register

.

"

	

All

the trap and interrupt vector addresses are classified as kernel space addresses, no matter

what

memory management mode the system is using or the contents of the PSW at the time the

interrupt

or trap occurs

.

"

	

The

kernel stack references are checked for stack overflow, but the supervisor and user stack

references

are not checked

.

Table

1-1

Register
Number

General

Designation

Purpose

Registers

0 RO RO' -
1 R1 R1' -
2 R2 R2' -
3 R3 R3' -
4 R4 R4' -
5 R5 R5' -
6 KSP SSP USP
7 PC -

1 .2.3

	

General

Registers

There

are two groups of six registers designated RO-R5 and RO'-R5'

.

The group currently in use is

selected

by bit 11 in the PSW

.

When bit 11 is set (1), the RO'-R5' group is selected, and when bit 11 is

cleared

(0), the RO-R5 group is selected

.

1.2.4

	

Stack

Pointer

Register

six (R6) is designated as the system stack pointer

.

There are three stack pointers available, one for

each

corresponding protection mode

.

However, only one is visible to the user at a given time

.

Processor

status

bits 14 and 15 select the active stack pointer used for all instructions except MFPI, MFPD, MTPI,

and

MTPD

.

When these instructions select R6 as the destination register, bits 12 and 13 of the PSW select

the

active stack pointer

.

In both cases, the 2-bit selection codes described in Table 1-2 are used to select

the

active register

.

1 .2.5

	

Program

Counter

The

PC contains the 16-bit address of the next instruction stream word to be accessed

.

It is designated as

R7

and controls the sequencing of instructions

.

The PC is directly addressable by single- and double-

operand

instructions and is a general purpose register, although it is normally not used as an accumulator

.

1 .2.6

	

Processor

Status Word (17 777 776)

The

PSW provides the current and previous operational modes, the general purpose register group being

used,

the current priority level, the condition code status, and the trace trap bit used for program

debugging .

The PSW is initialized at power-up and is cleared with a console start

.

The PSW register is

defined

in Figure 1-2 and is described in Table 1-3

.

Table

1-2	

Stack

Pointer (PSW <15

:14>

or <13

:12>)

Code

	

Selected

R6

00

	

Kernel

Stack Pointer (KSP)

01

	

Supervisor

Stack Pointer (SSP)

10

	

Illegal

- User stack pointer selected

11

	

User

Stack Pointer (USP)

15

14 13 12 11 10 09 08 07	

05

04 03 02 01 00

CURRENT

PREY REG NU SI

MODE

MODE SET 0 0 0

PRIORITY
LEVEL

Figure 1-2

	

Processor

Status Word Register

.R

11042

Status

Word Bit Description

Function

Indicates

the current operating mode and is coded

as

follows

.

Indicates

the previous operating mode and is coded

the

same as bits <15

:14> .

Selects

the group of general purpose registers being

used .

When the bit is set, the RO'-R5' group is

selected

and when cleared, the RO-R5 group is

selected .

Read

as zeros

.

Reserved .

Indicates

the current priority level of the processor

and

is coded as follows

.

The

trap bit is inactive when it is cleared

.

When set,

the

processor traps to location 14 at the end of the

current

instruction

.

It is useful for debugging pro-

grams

and setting breakpoints

.

Condition

code N is set when the previous opera-

tion

result was negative

.

Condition

code Z is set when the previous operation

result

was zero

.

Condition

code V is set when the previous operation

resulted

in an arithmetic overflow

.

Condition

code C is set when the previous operation

caused

a carry out

.
*

	

The

T-bit cannot be set by explicitly writing to the PSW

.

It can only be changed by the RTI/RTT instructions

.

Table

1-3

Processor

Bit(s) Name Status

<15 :14> Current

mode

R/W

<13 :12> Previous

mode

R/W

11 Register

set

R/W

<10:9> Not

used

R

8 Suspended

information

R/W

<7 :5> Priority R/W

4 Trap* R/W

3 Negative R/W

2 Zero R/W

1 Overflow R/W

0 Carry R/W

Bits
7 6 5 Priority

Level

1 1 1 7
1 0 0 6
1 0 1 5
1 0 0 4
0 1 1 3
0 1 0 2
0 0 1 1
0 0 0 0

Bits
15 14 Mode

0 0 Kernel
0 1 Supervisor
1 0 Illegal
1 1 User

1 .2.7

	

CPU Error Register (17 777 766)
The CPU error register identifies the source of any trap or abort condition that caused a trap through
location 4 . Six separate error conditions are identified in Figure 1-3 and are described in Table 1-4 . The
register is cleared by any write reference, by power-up, or by console start . It is not changed by the
RESET instruction .

Figure 1-3

	

CPU Error Register

07 06 05 04 03 02 01 00

M R 9326

Table 1-4 CPU Error Register Bit Description

Bit(s) Name Status Function

<15 :8> Not used Read Read as zeros .

7 Illegal HALT Read Set when execution of a HALT instruction is
attempted in user or supervisor mode.

6 Address error Read Set when word access to an odd byte address or an
instruction fetch from an internal register is
attempted .

5 Nonexistent Read Set when a reference to main memory times out .
memory

4 1/O bus Read Set when a reference to the 1/O page times out .
timeout

3 Yellow stack Read Set on a yellow stack overflow trap . (Kernel mode
violation stack reference less than 400 octal) .

2 Red stack Read Set on a red stack trap - a kernel stack push abort
violation during an interrupt, abort, or trap sequence .

<1 :0> Not used Read Read as zeros .

1.2.8

	

Program Interrupt Request Register (17 777 772)
The PIRQ register implements a software interrupt facility . A request is initiated by setting one of the bits
<15 :9>, which corresponds to a program interrupt request for priority levels 7 through 1 . Bits <7 :5> and
<3:1> are set by hardware to the encoded value of the highest pending request set . When the interrupt is
acknowledged, the processor vectors to address 240 for a service routine . It is the responsibility of the
service routine to clear the interrupt request . The PIRQ register is defined in Figure 1-4 and is described in
Table 1-5 . The PIRQ register is cleared at power-up, by a console start, or by the RESET instruction .

15 14 13 12 11 10 09 08

Figure 1-4 Program Interrupt Request Register

07

	

05 04 03

	

01 00
PIR I

	

PPIR I

	

PIR I

	

4
R I

	

P IR I

	

PIR I

	

PIR

	

I

	

NNU ENCODED NU ENCODED NU
VALUE O VALUE 0

%'R OOia

Table 1-5 Program Interrupt Request Bit Description

Bit(s) Name Status Function

15 Level 7 R/W Requests an interrupt priority of level 7 .

14 Level 6 R/W Requests an interrupt priority of level 6 .

13 Level 5 R/W Requests an interrupt priority of level 5 .

12 Level 4 R/W Requests an interrupt priority of level 4 .

11 Level 3 R/W Requests an interrupt priority of level 3 .

10 Level 2 R/W Requests an interrupt priority of level 2 .

9 Level 1 R/W Requests an interrupt priority of level 1 .

<7 :5> Encoded value R/W Bits <7 :5> represent the encoded value of the high-
est priority level set in bits <15 :9> .

<3 :1 > Encoded value R/W Bits <3 :1 > represent the encoded value of the high-
est priority level set in bits <15:9> . It is the same
value as bits <7:5> .

0 Not Used Read as zero .

1.3

INTERRUPTS

The

KDJI 1-B module uses a variety of trap, hardware, and software interrupts

.

Their order of priority is

given

in Table 1-6

.

Four interrupt request lines allow external hardware to interrupt the processor on four

interrupt

levels using an externally supplied vector

.

Seven levels of software interrupt requests are

supported

through use of the PIRQ register

.

A variety of internally vectored traps are provided to flag

error

conditions, and certain instructions result in a trap condition

.

Interrupts

and traps are requests that cause the KDJII-B to temporarily suspend the execution of the

current

program and service the device or condition that caused the interrupt or trap

.

The KDJI1-B has

eight

levels of interrupt priority and the current priority level is defined by bits <7

:5>

of the processor

status

register

.

Therefore, only interrupts with a higher priority than the current priority can interrupt the

current

program

.

The only exception to this is the nonmaskable interrupt or trap that occurs independent

of

the processor priority

.

These nonmaskable interrupts have their own priority structure (Table 1-6)

.

1 .3.1

	

Sunset

Loops

A

sunset loop is an infinite loop caused by illegally mapped vectors

.

The following sunset loops can be

exited

by asserting the BHALT input

.

Interrupts

	

Cause

Parity

error	

Bad

parity in the parity vector

Trace

trap	

Trace

vector has T-bit set

All

PIRQs	

PIRQ

vector priority level does not block that level

Aborts

	

Any

abort that occurs during a service routine such as reading the vector or

pushing

onto the stack

.

These include nonexistent memory, I/O timeouts,

MMU

aborts, parity aborts, and odd address aborts

.

Sunset

loops that cannot be exited are caused by external inputs that are not being reset or cleared

.

These

can

be MPWRF L, MFPE L, MIRQ <3

:0>

H, and MEVNT L

.

Table

1-6 KDJ11-B Interrupts

Internal/ Vector Priority
Interrupt External Address Level

Red

stack trap

Internal 4 NM*
(CPU

error register, bit 2)

Address

error

Internal 4 NM
(CPU

error register, bit 6)

Memory

management violation

Internal 250 NM
(MMRO,

bits <13

:15>)

Timeout/nonexistent

memory

Internal 4 NM
(CPU

error register, bits <4

:5>)

Parity

error (PARITY, ABORT)

External 114 NM

Trace

(T-bit) trap (PSW, bit 4)

Internal 14 NM

Yellow

stack trap

Internal 4 NM

(CPU

error register, bit 3)

Interrupt

Power

fail (PWRF)

FP

exception (FPE)

PIR

7 (PIRQ, bit 15)

IRQ

7

PIR

6 (PIRQ, bit 14)

BEVNT

(LTC)

IRQ

6

PIR

5 (PIRQ, bit 13)

IRQ

5

PIR

4 (PIRQ, bit 12)

IRQ

4

PIR

3 (PIRQ, bit 11)

PIR

2 (PIRQ, bit 10)

PIR

1 (PIRQ, bit 9)

Halt

line (HALT)t

FP

instruction exception

TRAP

(trap instruction)

EMT

(emulator trap instruction)

IOT

(I/O trap instruction)

BPT

(breakpoint trap instruction)

CSM

(call to supervisor mode instruction)

HALT

instruction

WAIT

(wait-for-interrupt instruction)

t

Table

1-6	

KDJ11-B

Interrupts (font)

Internal/

Vector Priority

External

Address Level

External

24	

NM

External

244	

NM

Internal

240	

7

External

	

User

defined	

7

Internal

240	

7

External

100	

6

External

	

User

defined	

6

Internal

240	

5

External

	

User

defined	

5

Internal

240	

4

External

	

User

defined	

4

Internal

240	

3

Internal

240	

2

Internal

240	

1

External

None

244

34

30

20

14

10

4

Does

not trap, but frees the bus when

waiting

for external interrupt

.

NM

= Nonmaskable

The

halt line usually has the lowest priority

.

However, it has highest priority during vector reads

.

This allows the user to break

out

of potential infinite loops called sunset loops

.

A sunset loop could occur if a vector has not been properly mapped during

memory

management operations

.

1.3.2

	

Red

Stack Aborts

A

red stack abort happens when an abort occurs while pushing the PC and PSW onto the kernel stack

while

in the process of servicing an interrupt, an abort or a trap routine

.

This type of abort sets bit 2 of the

CPU

error register, loads the kernel stack pointer (R6) with virtual address 4, and then traps through

location

4 in the kernel space

.

The old PC and PSW are saved in locations 0 and 2 of the kernel space

.

The

service routine to clear bit 2 of the CPU error register reads the vector at virtual address 4 in the

kernel

space

.

An emergency stack is then set up in the new mode at virtual address 4 and executes a trap

through

virtual address 4

.

This insures that the old PC and PSW are saved in kernel space locations 0

and

2

.

1.3.3

	

Addressing

Errors

An

addressing error occurs when an odd address is used with a word reference (odd address error), or an

instruction

stream fetch attempts to access an internal processor register

.

The internal processor registers

are

the PDRs, PARs, CPU error, PSW, PIRQ, MMRO-MMR3, Hit/Miss, and CCR

.

When an address-

ing

error happens, it sets bit 6 of the CPU error register and traps through virtual address 4 of the kernel

data

space

.

1.3.4

	

Bus

Timeout Errors

A

bus timeout error occurs if the BRPLY L bus signal is not asserted within 10 Aseconds after the

KDJ11-B

asserts the BDIN L or BDOUT L signals

.

The I/O page timeout error sets bit 4 of the CPU

error

register if the address references the I/O page

.

The nonexistent memory timeout error sets bit 5 of

the

CPU error register for all other address errors

.

As a result of the error condition, the KDJI I -B traps

through

virtual address 4 of the kernel space

.

In a Unibus system, the KDJ 11-B does not time out, but

relies

on the Unibus adapter module to assert the PMI timeout signal

.

1.3.5

	

Interrupt

Vector Timeouts

An

interrupt vector timeout occurs if the BRPLY L bus signal is not asserted within 10 pseconds after the

KDJ11-B

acknowledges an interrupt by asserting the BIAK L bus signal

.

The timeout is ignored by the

KDJI

I -B and it continues as if the interrupt request did not occur

.

In a Unibus system, the KDJI I -B does

not

time out, but relies on the Unibus adapter module to assert the PMI timeout signal

.

1.3.6

	

No

SACK Timeouts

The

no SACK timeout occurs when the BSACK L bus signal is not asserted within 10 ,seconds after the

KDJ11-B

grants a DMA request by asserting BDMG L

.

The timeout is ignored by the KDJI I-B and it

continues

as if the DMA request did not occur

.

1 .4

MEMORY MANAGEMENT

KDJ11-B

memory management provides the hardware for complete memory management and protection

.
It

is designed to be a memory management facility for accessing all of physical memory and for multiuser,

multiprogramming

systems where memory protection and relocation facilities are necessary

.

In

multiprogramming environments, several user programs are resident in memory at any given time

.

The

tasks

of the supervisory program include the following

.

Control

the execution of the various user programs

Manage

the allocation of memory and peripheral device resources

Safeguard

the integrity of the system as a whole by control of each user program

In a multiprogramming system, memory management provides the means for assigning memory pages to a
user program and for preventing that user from making any unauthorized access to pages outside his
assigned area . Thus, a user can effectively be prevented from accidental or willful destruction of any other
user program or the system executive program.

The following are the basic characteristics of KDJ11-B memory management .

"

	

16 user mode memory pages
"

	

16 supervisor mode memory pages
"

	

16 kernel mode memory pages
"

	

8 pages in each mode for instructions
"

	

8 pages in each mode for data
"

	

Page lengths from 64 to 8192 bytes
"

	

Each page provided with full protection and relocation
"

	

Transparent operation
"

	

3 modes of memory access control
"

	

Memory access to 4 Mbytes

1 .4 .1

	

Memory Mapping
The processor can perform 16-, 18-, or 22-bit address mapping. The 1/O page, which is the uppermost 4K
words of memory, always uses the physical address locations 17 760 000 to 17 777 777 .

1.4.1 .1

	

16-Bit Mapping - There is a direct mapping relocation from virtual to physical addresses . The
lowest 28K virtual addresses are the same corresponding physical addresses . The I/O page physical
addresses are located in the upper 4K block as shown in Figure 1-5.

Figure 1- 5

	

16-Bit Mapping

MR -11045

17777777
4K

17760000

177777
160000 -- 00157777VIRTUAL(16 BITS) 28 K
000000 00000 ,000
INCOMING PHYSICAL ADDRESSADDRESS SPACE (22 BITS)

1 .4.1 .2

18-Bit Mapping - Each of the three modes

:

kernel, supervisor, and user, are allocated 32K

addresses

that are mapped into 128K words of physical address space

.

The lowest 124K words of physical

memory,

or the I/O page, can be referenced as shown in Figure 1-6

.

1.4.1.3

	

22-Bit

Mapping - This mode uses the full 22-bit address to access all of the physical memory

.
The

upper 4K block is still the 1/O page as shown in Figure 1-7

.

Figure

1-6	

18-Bit

Mapping

177777

VIRTUAL
(16

BITS)

000000

Figure

1-

7

	

22-Bit

Mapping

MEM
MGMT

17777777
4K

17760000

00757777

17757777

00000000

17777777
4K

17760000

2044K

INCOMING

	

PHYSICAL

ADDRESS

ADDRESS

	

SPACE

(22 BITS)

MR-1

1045

MR

11047

177777
124

K

VIRTUAL MEM
(16

BITS)

MGMT

000000 00000000

INCOMING PHYSICAL

ADDRESS

ADDRESS SPACE

(22 BITS)

1.4.2

Compatibility

The

operation of 16-, 18-, and 22-bit mapping can be used to provide compatibility among other PDP-11

computers .

This means that software written and developed for any PDP-11 computer can be run on the

KDJ11-B

without modification

.

Refer to Table 1-7

.

1 .4.3

	

Virtual

Addressing

When

memory management is operating, the normal 16-bit address is no longer interpreted as a direct

physical

address, but as a virtual address containing information to be used in constructing a new 22-bit

physical

address

.

The information contained in the virtual address is combined with relocation information

contained

in the page address register to yield a 22-bit physical address, as shown in Figure 1-8

.

Using

memory

management, memory can be dynamically allocated in pages, each composed of from 1 to 128

integral

blocks of 64 bytes

.

The

starting physical address for each page is an integral multiple of 64 bytes, and each page has a

maximum

size of 8192 bytes

.

Pages may be located anywhere within the physical address space

.

The

determination

of which set of 16 page registers is used to form a physical address is made by the current

mode

of operation (i

.e .,

kernel, supervisor, or user mode) and by whether the reference is for instructions

or

data

.

Mapping

16-bit

18-bit22-bit

32

K

VIRTUAL
INSTRUCTION/DATA
ADDRESS

SPACE

VIRTUAL

ADDRESS

(16

BITS)

Table

1-7	

KDJ11-B

Compatibility

PAGE

ADDRESS REGISTERS

PAR=PAGE

ADDRESS REGISTER

Figure

1-8	

Virtual

Address Mapping into Physical Address

1-1 3

PHYSICAL
ADDRESS

SPACE

PHYSICAL

ADDRESS

(22

BITS)

MR-11048

Memory
Management System

Off PDP-11/05,

11/10, 11/15, 11/20, 11/03

On PDP-11/35,

11/40, 11/45, 11/50, 11/23

On PDP-11/70,

11/44, 11/24, 11/23 PLUS

1.4.4

	

Interrupts Under Memory Management

Memory management relocates all addresses. When it is enabled, all traps, aborts, and interrupt vectors

are mapped using the kernel mode data space mapping registers. Therefore, when a vectored transfer

occurs, the new PC and PSW are obtained from two consecutive words physically located at the trap

vector, and are mapped using kernel mode data space registers.

The stack used for the "push" of the current PC and PSW is specified by bits <15:14> of the newPSW.

The PSW mode bits also determine the new mapping register set . This allows the kernel mode program to

have complete control over servicing all traps, aborts or interrupts . The kernel program may assign the

service of some of these conditions to a supervisor or user mode program by simply setting the mode bits of

the new PSW in the vector to return control to the appropriate mode .

1 .4.5

	

Construction of a Physical Address

All addresses with memory relocation enabled either reference information in instruction (I) space or data

(D) space. I space is used for all instruction fetches, index words, absolute addresses, and immediate

operands ; D space is used for all other references . I space and D space each have eight Page Address

Registers (PARs) in each mode of CPU operation (kernel, supervisor, and user). MMR3 can disable

D space and map all references (instructions and data) through I space, or can enable D space and map all

references through both I and D space.

The basic information needed for the construction of a physical address comes from the virtual address,

which is illustrated in Figure 1-9, and the appropriate PAR set.

The Virtual Address (VA) consists of the following.

"

	

The Active Page Field (APF). This 3-bit field determines which of the eight page address

registers from the set PARO-PAR7 is used to form the physical address.

"

	

The displacement field . This 13-bit field contains an address relative to the beginning of a page .

The longest page length is 8 Kbytes as determined by the 13 bits . The displacement field is

further subdivided into two fields as shown in Figure .1-10.

APF

ACTIVE PAGE

	

DISPLACEMENT FIELD
FIELD

Figure 1-9

	

Interpretation of a Virtual Address

12

BLOCK NUMBER

	

DISPLACEMENT IN BLOCK
M H-+ 1050

Figure 1-10

	

Displacement Field of a Virtual Address

.8-11049

The displacement field consists of the following .

"

	

The block number . This 7-bit field is interpreted as the block number within the current page .

"

	

The displacement in block . This 6-bit field contains the displacement within the block referred
to by the block number .

The remainder of the information needed to construct the physical address comes from the contents of the
PAR referenced by the Page Address Field (PAF) . This 16-bit register specifies the starting address of the
memory page . The PAF is actually a block number in the physical memory . For instance, PAF = 3
indicates a starting address of 96 (3 X 32 words in physical memory) .

The construction of the Physical Address (PA) is illustrated in Figure 1-11 . The logical sequence involved
in constructing a PA is as follows .

1 .

	

Select a set of PARs. This depends on the space being referenced and the protection mode being
used .

2 .

	

The APF of the VA selects one of eight page address registers (PARO-PAR7) from the
appropriate set .

3 .

	

The PAF of the selected PAR contains the starting address of the currently active page as a
block number in physical memory .

4 .

	

The block number from the VA is added to the PAF to yield the number of the block in
physical memory . These are bits <21 :6> of the PA being constructed .

5 .

	

The displacement in block from the displacement field of the VA is joined to the physical block
number to yield a true 22-bit PA.

VIRTUAL ADDRESS

SELECT PAR

OFFSETINTO
PAGE (VA)

PHYSICAL ADDRESS

I

	

I

1

	

1

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

~ __ . . .1

	

1

	

I

	

1

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

1

15 14 13

	

05 04 03 02 01 00

I

	

I

	

i

	

-

	

r-

	

r

	

1.

	

1

	

l

	

r

	

i

1

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

1-. . t

	

I

	

I

Figure 1- 1 1

	

Construction of a Physical Address

MR 11051

1.4.6

	

Memory Management Registers
Memory management implements 3 sets of 32 16-bit registers as shown in Figure 1-12 . One set of registers
is used in kernel mode, another in supervisor mode, and the third in user mode. The protection mode in use
determines which set is to be used . Each set is subdivided into two groups of 16 registers . One group is
used for references to instruction (I) space, and one to data (D) space . The I space group is used for all
instruction fetches, index words, absolute addresses, and immediate operands . The D space group is used
for all other references, providing it has not been disabled by MMR3 . Each group is further subdivided
into two parts of eight registers . One part is the PAR whose function was described previously . The other
part is the Page Descriptor Register (PDR) . PARs and PDRs are always selected in pairs by the top three
bits of the virtual address . A PAR/PDR pair contains all the information needed to describe and locate a
currently active memory page .

The MMRs are located in the uppermost 8 Kbytes of physical address space, which is designated as the
I/O page . The addresses allocated to the MMRs are listed in Table 1-8 .

15 14

Figure 1-12 Active Page Register

1-16

PROCESS STATUS WORD

MR - ~ 1052

I SPACE

D SPACE

KERNEL_ (00) SUPERVISOR (01) USER (11)

PAR PDR PAR PDR PAR PDR

PAR PDR PAR PDR PAR PDR

Table

1-8	

Memory

Management Register Addresses

Register Address

Memory

management register 0 (MMRO)

17 777 572
Memory

management register 1 (MMR1)

17 777 574
Memory

management register 2 (MMR2)

17 777 576
Memory

management register 3 (MMR3)

17 772 516

User

I space descriptor register (UISDRO)

17 777 600

User

I space descriptor register (UISDR7)

.17
777 616

User

D space descriptor register (UDSDRO)

17 777 620

User

D space descriptor register (UDSDR7)

.17
777 636

User

I space address register (UISARO)

17 777 640

User

I space address register (UISAR7)

17 777 656

User

D space address register (UDSARO)

17 777 660

User

D space address register (UDSAR7)

17 777 676

Supervisor

I space descriptor register (SISDRO)

17 772 200

Supervisor

I space descriptor register (SISDR7)

.17
772 216

Supervisor

D space descriptor register (SDSDRO)

17 772 220

Supervisor

D space descriptor register (SDSDR7)

17 772 236

Supervisor

I space address register (SISARO)

17 772 240

Supervisor

I space address register (SISAR7)

17 772 256

1.4.6.1

	

Page Address Registers - The PAR contains the PAF, a 16-bit field that specifies the starting
address of the page as a block number in physical memory .

The PAR (Figure 1-13) contains the PAF that may be alternatively thought of as a relocation register
containing a relocation constant, or as a base register containing a base address . These registers are not
changed by either console starts or by the RESET instruction . They are undefined at power-up .

1 .4.6.2 Page Descriptor Register - The PDR contains information relative to page expansion, page
length, and access control . The register is shown in Figure 1-14 and is described in Table 1-9 .

15

Figure 1-13

	

Page Address Register

1-18

00

MR -11053

Table 1-8 Memory Management Register Addresses (Copt)

Register Address

Supervisor D space address register (SDSARO) 17 772 260

Supervisor D space address register (SDSAR7) 17 772 276

Kernel I space descriptor register (KISDRO) 17 772 300

Kernel I space descriptor register (KISDR7) .17 772 316

Kernel D space descriptor register (KDSDRO) 17 772 320

Kernel D space descriptor register (KDSDR7) 17 772 336

Kernel I space address register (KISARO) 17 772 340

Kernel I space address register (KISAR7) 17 772 356

Kernel D space address register (KDSARO) 17 772 360

Kernel D space address register (KDSAR7) .17 772 376

BYPASS
CACHE

r- I

	

.	I

	

T

	

I
PAGE LENGTH FIELD (PLF)

PAGE LENGTH
FIELD

W

Bit(s) Name

	

Status Function

0 ED

Figure 1-14

	

Page Descriptor Register

Table 1-9

	

Page Descriptor Register Bit Description

ACF

e EXPANSION C-EPAG CONTROLWRITTEN DIRECTION FIELD

0

MR -8920

15

	

Bypass

	

R/W

	

This bit implements a conditional cache bypasscache

	

mechanism . If the PDR accessed during a reloca-tion operation has this bit set, the reference goesdirectly to main memory . Read or write hits resultin invalidation of the accessed cache location .
<14:8>

	

Page length

	

R/W

	

This field specifies the block number that definesfield

	

the page boundary . The block number of the vir-tual address is compared against the page lengthfield to detect length errors . An error occurs whenexpanding upwards, if the block number is greaterthan the page length field, and when expandingdownwards, if the block number is less than thepage field .
Read as zero .
The written into (W) bit indicates whether the pagehas been written into since it was loaded inmemory. When this bit is set, it indicates a modi-fied page . The W-bit is automatically cleared whenthe PAR of that page is written .
Read as zeros .
This bit specifies the direction in which the pageexpands. If it = 0, the page expands upward fromblock number 0 to include blocks with higheraddresses ; if it = 1, the page expands downwardfrom block number 127 to include blocks withlower addresses .
This field contains the access code for this particu-lar page . The access code specifies the manner inwhich a page may be accessed and whether or not agiven access should result in an abort of the currentoperation . Implemented codes are as follows .

0

	

Not used

	

RO

	

Read as zero .
1-19

00

	

Nonresident - abort all accesses01

	

Read only - abort on write10

	

Not used - abort all accesses11

	

Read/write access

7 Not used RO
6 Page ROwritten

<5 :4> Not used RO
3 Expansion R/Wdirection

<2 : I > Access control R/Wfield

1 .4.7

	

Fault

Recovery Registers

Aborts

generated by the memory management hardware are vectored through kernel virtual location 250

.
MMRs

0, 1, 2, and 3 are used to determine why the abort occurred and to allow for program restarting

.

NOTE
An

abort to a location which is itself an invalid

address

causes another abort

.

Thus, the kernel pro-

gram

must ensure that kernel virtual address 250 is

mapped

into a valid address

.

Otherwise, a loop

requiring

console intervention occurs

.

1 .4.7.1

	

Memory

Management Register 0 (17 777 572) - MMRO provides control and records memory

management

unit status

.

The register contains abort and status flags as shown in Figure 1-15 and described

in

Table 1-10

.

1 .4.7.2

Memory Management Register 1 (17 777 574) - MMRI records any autoincrement or

autodecrement

of a general purpose register, including explicit references through the PC

.

The increment

or

decrement amount by which the register was modified is stored in 2's complement notation

.

The lower

byte

is used for all source operand instructions and the destination operand may be stored in either byte,

depending

on the mode and instruction type

.

The register is cleared at the beginning of each instruction

fetch .

The register is defined in Figure 1-16

.

1.4.7.3

	

Memory

Management Register 2 (17 777 576) - MMR2 is loaded with the program counter of

the

current instruction and is frozen when any abort condition is posted in MMRO

.

15

14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 0 0

ABORT

READ-ONLY

ACCESS

VIOLATION

ABORTPAGE
LENGTH

ERROR

0 0 0

ABORT
NON-RESIDENT

	

PAGE

ADDRESS	

ENABLE

RELOCATION

SPACE

I/D

Figure

1-

1 5

	

Memory

Management Register 0 (MMRO)

-8926

MMRO

Bit Description

Bits

<15

:13>

can be set by an explicit write

.

However, such an action does not cause an abort

.

Whether set explicitly or by an

abort,

setting any bit in bits <15

:13>

causes memory management to freeze the contents of MMRO <6

:1>,

MMR1, and

MMR2 .

The status registers remain frozen until MMRO <15

:13>

is cleared by an explicit write

.

15

14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I
AMOUNTCHANGED

t

	

I

	

I

	

I

i
REGISTER
NUMBER AMOUNT

CHANGED

1

~ I I

REGISTER
NUMBER

Figure

1-

1 6

	

Memory

Management Register 1 (MMRI)

Function

Bit

15 is set by attempting to access a page with an

access

control field key equal to 0 or 2

.

It is also set

by

attempting to use memory relocation with a

processor

mode (PSW <15

:14>)

of 2

.

Bit

14 is set by attempting to access a location in a

page

with a block number (virtual address bits

<

12

:6>)

that is outside the area authorized by the

page

length field of the PDR for that page

.

Bit

13 is set by attempting to write in a read-only

page .

Read-only pages have access keys of 1

.

Read

as zeros

.

Bits

<6

:5>

indicate the processor (kernel, supervi-

sor,

user, illegal) associated with the page causing

the

abort (kernel = 00, supervisor = 01, user = 11,

illegal

= 10)

.

If the illegal mode is specified, an

abort

is generated and bit 15 is set

.

Bit

4 indicates the address space (I or D) associated

with

the page causing the abort (0 = I space, 1 = D

space) .

Bits

<3

:1>

contain the page number of the page

causing

the abort

.

Bit

0 enables relocation

.

When it is set to 1, all

addresses

are relocated

.

When it is set to 0, mem-

ory

management is inoperative and addresses are

not

relocated

.

M

N-8924

Table

1-10

Bit(s) Name Status

15* Nonresident R/W
abort

14* Page

length

R/W
abort

13* Read

only

R/W
abort

<

12

:7> Not

used

RO

<6:5> Processor RO
mode

4 Page

space

RO

<3 :1

>

Page

number

RO

0 Enable R/W
relocation

1.4.7.4

	

Memory Management Register 3 (17 772 516) - MMR3 enables the data space for the kernel,
supervisor, and user operating modes. It also selects either 18- or 22-bit mapping and enables the request
for the supervisor macroinstruction (CSM). MMR3 is cleared during power-up, by a console start, or by a
RESET instruction. The register is shown in Figure 1-17 and is defined in Table 1-11 .

15
0

14
0

13
0

12 11 10 09 08 07 06 05 04 03 02 00
0 I 0 I 0 I 0 I 0 I 0 I 0 I

	

I

	

I

	

I

	

MODE

UNINTERPRETED ---'
ENABLE 22-BIT MAPPING

ENABLE CSM INSTRUCTION
ENABLE KERNEL DATA SPACE -

ENABLE SUPERVISOR DATA SPACE -
ENABLE USER DATA SPACE -

Figure 1-17

	

Memory Management Register 3 (MMR3)

MR-8925

Table 1-11 MMR3 Bit Description

Bit(s) Name Status Function

<15 :6> Not used RO Read as zeros.

5 Uninterpreted R/W This bit can be set or cleared under program con-
trol, but it is not interpreted by the KDJ11-B.

4 Enable 22-bit R/W This bit enables 22-bit memory addressing (the
mapping default is 18-bit addressing) .

3 Enable CSM R/W This bit enables recognition of the Call Supervisor
instruction Mode (CSM) instruction .

2 Kernel data R/W This bit enables the data space mapping for the
space kernel operating mode .

1 Supervisor R/W This bit enables the data space mapping for the
data space supervisor operating mode .

0 User data R/W This bit enables the data space mapping for the
space user operating mode .

1.4.7.5

	

Instruction

Back-Up/Restart Recovery - The process of "backing up" and restarting a partially

completed

instruction involves the following

.

1 .

	

Performing

the appropriate memory management tasks to alleviate the cause of the abort (e

.g .,
loading

a missing page)

.

2 .

	

Restoring

the general purpose registers indicated in MMR 1 to their contents at the start of the

instruction,

by subtracting the "modify value" specified in MMR 1

.

3 .

	

Restoring

the PC to the "abort-time" PC by loading R7 with the contents of MMR2, which

contains

the value of the virtual PC at the time the "abort-generating" instruction was fetched

.

Note

that this back-up/restart procedure assumes that the general purpose register used in the program

segment

will not be used by the abort recovery routine

.

This is automatically the case if the recovery

program

uses a different general purpose register set

.

1.4.7.6

	

Clearing

Status Registers Following Abort - At the end of a fault service routine, bits <15

:13>
of

MMRO must be cleared (set to 0) to resume error checking

.

On the next memory reference following

the

clearing of these bits, the various registers resume monitoring the status of the addressing operations

.
MMR2

is then loaded with the next instruction address, MMR 1 stores the register change information,

and

MMRO logs the memory management status information

.

1 .4.7.7

Multiple Faults - Once an abort occurs, any subsequent errors occurring while the memory

management

registers are still frozen does not change MMRO, MMR 1, or MMR2

.

The information saved

in

MMRO-MMR2 always refers to the first abort that it detected

.

1 .4.8

Typical Usage Examples

The

memory management unit provides a general purpose memory management tool

.

It can be used in a

manner

as simple or as complex as desired

.

It can be anything from a simple memory expansion device to a

complete

memory management facility

.

The

variety of meaningful ways to use the facilities offered by the memory management unit means that

both

single-user and multiprogramming systems have complete freedom to make whatever memory

management

decisions best suit their individual needs

.

Although a knowledge of what most types of

computer

systems seek to achieve may indicate that certain methods of using the memory management

unit

are more common than others, there is no limit to the ways to use these facilities

.

In

typical applications, the control over the actual memory page assignments and their protection resides in

a

supervisory program that operates in kernel mode

.

This program sets access keys in such a way as to

protect

itself from willful or accidental destruction by other supervisor or user mode programs

.

The

facilities

are also provided in such a way that the kernel mode program can dynamically assign memory

pages

of varying sizes in response to system needs

.

1 .4.8.1

	

Typical Memory Page - When the memory management unit is enabled, the kernel, supervisor,
and user mode programs each have eight active pages described by the appropriate PARs and PDRs for
data and eight pages for instructions . Each segment is made up of from 1 to 128 blocks and is pointed to
by the PAF of the corresponding PAR as illustrated in Figure 1-18 .

The memory segment illustrated in Figure 1-18 has the following attributes .

"

	

Page length : 40 blocks
"

	

Virtual address range : 140000-144777
"

	

Physical address range : 312000-316777
"

	

Nothing has been modified (i.e ., written) in the page
"

	

Read-only protection
"

	

Upward expansion

These attributes were determined according to the following scheme .

Page address register (PAR6) and page descriptor register (PDR6) were selected by the APF of
the VA. (Bits <15 :13> of the VA = 68 .)

VA 140000

VA 157777

VA 144777

PAR 6

PDR 6

~ li	nrinn~~nnmu r

PENN
BLOCK 478 (3910)

BLOCK 1
BLOCK 0

3120

3910
PAF

PLF W

Figure 1-18 Typical Memory Page

1-24

ED ACF

PA 331777

PA 316777

PA 312000

MR -11054

2.

	

The initial address of the page was determined from the PAF of PAR6 (312000 = 31208
blocks X 408 (3210) words per block X 2 bytes per word).

NOTE
The PAR that contains the PAF constitutes what is
often referred to as a base register containing a base
address or a relocation register containing a reloca-
tion constant .

3 .

	

The page length (478 + 1 = 4010 blocks) was determined from the Page Length Field (PLF)
contained in PDR6 . Any attempt to reference beyond the 4010 blocks in this page causes a
page length error, which results in an abort, vectored through kernel virtual address 250.

4.

	

The PAs were constructed according to the scheme illustrated in Figure 1-11 .

5 .

	

The W-bit indicates that no locations in this page have been modified (i .e ., written) . If an
attempt is made to modify any location in this particular page, an access control violation abort
occurs . If the page is involved in a disk swapping or memory overlay scheme, the W-bit is used
to determine whether the page has been modified and therefore requires saving before overlay.

6 .

	

The page is read-only protected (i .e ., no locations in the page may be modified). The mode of
protection was specified by the access control field of PDR6 .

7 .

	

The expansion direction is upward (ED bit set to 0) . If more blocks are required in this segment,
they must be added by assigning blocks with higher relative addresses.

The attributes that describe the page shown in Figure I-18 are determined under software control. The
parameters describing the page are loaded into the appropriate PAR and PDR under program control. In a
normal application, the page, which itself contains these registers, is assigned to the control of a kernel
mode program.

1 .4.8.2 Nonconsecutive Memory Pages - Higher virtual addresses do not necessarily map to higher
physical addresses. It is possible to set up the PAFs of the PARs so that higher virtual address blocks may
be located in lower physical address blocks as illustrated in Figure 1-19 .

Although a single memory page must consist of a block of contiguous locations, consecutive virtual
memory pages do not have to be located in consecutive physical address locations. The assignment of
memory pages is not limited to consecutive nonoverlapping physical address locations.

PAR 7

PAR t
PAR 0

Figure 1-19

	

Nonconsecutive Memory Pages

1-25

1 .4 .8 .3

	

Stack Memory Pages - When constructing programs, it is often desirable to isolate all programvariables from pure code (i .e ., program instructions) by placing them on a register indexed stack . These
variables can then be "pushed" or "popped" from the stack area as needed . Since stacks expand by adding
locations with lower addresses, when a memory page containing "stacked" variables needs more room, it
must "expand down" by adding blocks with lower relative addresses to the current page . This mode of
expansion is specified by setting the expansion direction bit of the appropriate PDR to a l . Figure 1-20
illustrates a typical stack memory page and has the following parameters .

PARE : PAF = 3120
PDR6 : PLF = 1758 or 12510 (12810-3)
ED = 1W=0or 1
ACF = mm (to be determined by programmer as necessary)

In this case the stack begins 128 blocks above the relative origin of the memory page and extendsdownward for a length of three blocks . A page length error abort is generated by the hardware wheneveran attempt is made to reference any location below the assigned area (i .e ., when the block number fromthe VA is less than the PLF of the appropriate PDR).

1.4.9 Transparency
In a multiprogramming application, it is possible for memory pages to be allocated so that a program
appears to have a complete 64 Kbyte memory configuration . Using relocation, a kernel mode supervisory-
type program can perform all memory management tasks entirely transparent to a supervisor or user mode
program . In effect, a system can use its resources to provide maximum throughput and response to a
number of users, each of whom seems to have a powerful system all to himself .

PAR 6
PDR 6

NOTE
The W-bit is set by hardware.

PAF

ACF
MR-1 `056

Figure 1-20

	

Typical Stack Memory Pags

1-26

VA 157777 PA 331777
BLOCK 1778 (12710)
BLOCK 1768 (12610)
BLOCK 1758 (12510)VA 157500 PA 331500

VA 140000 PA 312000

1.5 CACHE MEMORY
The statistics from executing programs clearly indicate that at any given moment, a program spends most
of its time within a relatively small section of code . The KDJ 11 -B cache memory exploits this phenomenon
by using a small amount of high speed memory to store the most recently accessed memory locations .
Cached code executes much faster than noncached code because of the large difference between the access
times of the cache memory and the LSI-11 bus main memory .

Figure 1-21 illustrates how the KDJ11-B cache is constructed . It is a direct map (set size one; block size
one), 8-Kbyte cache. Each physical address is logically subdivided into a 9-bit label, 12-bit index, and 1-bit
byte select field .

The index field is used to select one of 4096 separate cache entries. Each cache entry contains a 9-bit tag
field (TAG), tag parity bit (P), tag valid bit (V), two bytes of cache data (BO and BI) and two
corresponding byte parity bits (PO and Pl). (See Figure 1-22 .)

A physical address is considered cached when the tag field of the cache entry specified by the index field
equals the label field, the valid bit is set, and no parity errors are seen . When a cache mead hit occurs (i .e .,
the address is cached during a read operation), B1 and BO are used as the source of the data . When a cache
read miss occurs (i .e ., the address is not cached), main memory is accessed to obtain the data .

A physical address is stored in the cache whenever the cache is allocated. To allocate the cache, the tag
field of a cache entry specified by the index field is set equal to the label field, the V-bit is set, B1 and BO
are loaded with the fresh data, and the parity bits are correctly calculated . This guarantees that the next
access to this address will report a cache hit. It should be noted that allocating the cache typically destroys
a previously allocated valid cache entry. The cache is allocated whenever a read miss or word write miss
occurs .

P1

21

	

13 12

	

01 00
LABEL

	

INDEX

Figure 1-21

	

Cache Physical Address

F_PFTy TAG I

B1

Figure 1-22 Cache Data Format

BYTE SELECT
MR-11057

MR 11058

Write

cycles are separated into word write and byte write operations

.

Main memory is always updated

during

writes

.

A cache hit causes the proper byte(s) to be written in both the cache and in main memory

.
This

is called writing through the cache

.

A cache miss during a word write allocates the cache, but because

two

bytes are allocated together, a byte write only updates main memory

.

The cache response matrix is

summarized

in Table 1-12

.

The

I/O page (top 8 Kbytes) is never cached and therefore always reports misses

.

This is because the I/O

page

contains dynamic status registers, which, when read, must always convey the latest information

.

When

the system is powered up, the cache must be cleared and correct parity written into each entry

.

This

is

called flushing the cache

.

A

potential stale data problem can occur when a DMA device writes to a cached location

.

Therefore, a

DMA

TAG store, which is an identical copy of the cache TAG store, is maintained and monitors each

DMA

transaction

.

When DMA writes references to a cache stored location, the processor is interrupted

and

the overwritten cache entry is invalidated

.

Table

1-12	

Cache

Response Matrix

Operation DMA

Hit

DMA

Miss

CPU

Hit

CPU

Miss

Read Read

memory,

Read

memory,

Read

cached

Read

memory

no

cache

no

cache

data,

allocate

change change cache

Write Invalidate Update

memory,

Write

through

Write

memory,

word cache,

update

no

cache

cache

to

allocate
memory change memory cache

Write Invalidate Update

memory,

Write

through

Write

memory,

byte cache,

update

no

cache

cache

to

no

cache

memory change memory change

Read N/A N/A Read

memory,

Read

memory,

bypass invalidate no

cache

cache change

Write N/A N/A Write

memory,

Write

memory,

bypass invalidate no

cache

cache change

Read N/A N/A Read

memory,

Read

memory,

force no

cache

no

cache

miss change change

Write N/A N/A Write

memory,

Write

memory,

force no

cache

no

cache

miss change change

For both diagnostic and availability reasons, it is important to be able to turn off the cache via software .
The cache is disabled by setting either of the force cache miss bits (2 and 3) in the cache control register .
When disabled, all references are forced to miss the cache. That is, main memory is always accessed,
cache parity errors are ignored, and no cache allocation is performed. The cache is essentially removed
from the system . This is different from bypassing the cache. Bypass references access the main memory,
check cache parity, and invalidate the cache entry if previously allocated . Read references that bypass the
cache check for parity errors and invalidate any address hits .

1 .5 .1 Parity
The KDJ11-B module has a main memory parity error detection mechanism that is in the DC351 gate
array . The BDAL 16 and 17 data lines are sampled by the negation of either TDIN H or RDSTRB H
when the 16 bits of data are read into the module . These parity bits are used to generate the MEM PERR
H output that initiates an abort via the DC350/394 gate array. BDAL bit 16 is the parity error signal and
BDAL bit 17 is the parity abort error signal . When both are asserted (1), an abort occurs through the
vector at virtual address 114 in kernel space.

The cache memory also has a parity error detection mechanism . A parity error in the cache is not
considered fatal because the main memory system has a backup copy of the data . The cache uses even
parity for the even data bytes stored in the cache memory and odd parity for the odd data bytes stored in
the cache memory. It also uses even parity for the tag field stored in the cache memory .

1.5 .1 .1

	

Parity Errors - A parity error is indicated when a single bit error occurs . Parity errors can occur
in either the main memory or the cache memory . A main memory parity error is always fatal since the
data stored in this memory is wrong and it cannot be restored . This type of parity error always causes an
abort through virtual address 114 in the kernel space. Cache parity errors are not considered to be fatal
since the data in the cache memory can be updated with the correct data from the main memory . When
they occur, the KDJ11-B module aborts, interrupts, or continues without an abort or interrupt. The action
is determined by the state of bits 7 and 0 in the cache control register as defined in Table 1-13 .

1 .5 .1 .2

	

Multiple Cache Parity Errors - If a cache parity error occurs before the error status from a
previous cache parity error is cleared from the memory system error register, then no abort or interrupt
occurs . The main memory is accessed again to retrieve the correct data and the corrupted cache entry data
is updated with the correct data . This prevents a cache hardware failure from generating an infinite series
of interrupt or abort service loops .

*

	

X = Either 1 or 0.

Table 1-13 Cache Parity Errors

CCR <7> CCR <0> Action

0 0 Update cache, interrupt through 114

0 1 Update cache only

1 X* Update cache, abort through 114 used only for
diagnostics

1 .5.2

	

Memory

System Registers

The

memory system registers consist of the Cache Control Register (CCR), the Memory System Error

Register

(MSER), and the Hit/Miss Register (HMR)

.

These registers are used by modules to control the

memory

system and report any errors that occur

.

1.5.2.1

	

Cache

Control Register (17 777 746) - The CCR controls the operation of the cache memory

.
The

cache bypass, abort, and force miss functions can be controlled by software via this register

.

The CCR

is

shown in Figure 1-23 and is described in Table 1-14

.

The register is cleared by either a power-up or a

console

start

.

It is unaffected by the RESET instruction

.

10

FLUSH

CACHE

PARITY

ERROR ABORT

WRITE

WRONG DATA PARITY

UNINTERPRETED
FORCE

CACHE MISS

DIAGNOSTIC

MODE

DISABLE

CACHE PARITY INTERRUPT

Figure

1-23	

Cache

Control Register (CCR)

09

08 07 06 05 04 03 02 01 00

M

R-11059

Table

1-14	

Cache

Control Register Description

Bit(s)

Name	

Status

Function

<15 :1

1 >	

Not

used	

R

	

Read

as zeros

.

10

	

Write

wrong	

R/W

	

When

set (1), this bit causes the cache tags to be

tag

parity	

written

with wrong parity on all update cycles

.

This

causes

a cache tag parity error to occur on the next

access

to that location

.

9

	

Bypass

cache	

R/W

	

When

set (1), this bit forces all CPU memory refer-

ences

to go directly to main memory

.

Read hits

result

in invalidation of accessed locations in the

cache .

8

	

Flush

cache*	

W

	

When

set (1), this bit causes the entire contents of

the

cache to be declared invalid

.

Writing a 0 into

this

bit has no effect

.

7

	

Enable

parity	

R/W

	

This

bit is used with bit 0 to define the action taken

error

abort	

as

a result of a parity error

.

This bit is reserved for

diagnostic

purposes

.

6

	

Write

wrong	

R/W

	

When

set (1), this bit causes high and low parity

data

parity	

bytes

to be written with wrong parity on all update

cycles .

This causes a cache parity error to occur on

the

next access to that location

.

<5 :4>

	

Uninterpreted

	

R/W

	

These

bits can be set or cleared under program

control,

but are not interpreted by the KDJ11-B

.

<3 :2>

	

Force

miss	

R/W

	

When

either bit is set, all CPU memory references

go

directly to main memory

.

The cache tag and

data

stores are not changed

.

The parity is not

checked .

When set (1), these bits remove the cache

memory

from the system

.

1

	

Diagnostic

mode	

R/W

	

When

set (1), all nonbypass and nonforced miss

word

writes allocate the cache, irrespective of

NonExistent

Memory (NXM) errors

.

In addition,

NXM

writes do not trap

.

0

	

Disable

cache	

R/W

	

Bits

<7

:0>

specify the action to take following a

parity

interrupt	

cache

parity error

.

If both bits are cleared (0) and a

parity

error occurs, an interrupt through vector 114

is

generated

.

If bit 7 is cleared and bit 0 is set, a

cache

parity error neither aborts the reference nor

generates

an interrupt

.

In any case, all cache parity

errors

force a memory reference, and update the

cache

with the fresh data

.

*

	

It

takes approximately I millisecond to flush the cache

.

During this time DMA and interrupt requests are not serviced and no

data

processing occurs

.

1-31

1.5.2.2

Hit/Miss Register (17 777 752) - The HMR records the status of the most recent cache

accesses .

The HMR is a shift register that records a hit as a 1 and a miss as a 0 for the most recent

memory

reads

.

A hit represents data located in the cache memory and a miss means the data is located in

the

main memory

.

Bit 0 represents the most recent memory access and is shifted to the left on successive

memory

access

.

The HMR is a read-only register and is shown in Figure 1-24

.

1 .5.2.3

	

Memory

System Error Register (17 777 744) - The MSER is a read-only register

.

The register

monitors

parity error aborts and records the type of parity error

.

The MSER is shown in Figure 1-25 and is

described

in Table 1-15

.

The MSER is cleared by any write reference, during power-up, and by a console

start .

It is unaffected by the RESET instruction

.

15

14 13 12 11 10 09 08 07 06 05	

00

Figure

1-24	

Hit/Miss

Register (HMR)

15

14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

T 1

	

t
NOT

USED

1 .

	

L .

I

HF[I

t

t	

I
NOT

USED

1

	

L

	

.

1

PARITY
ERROR
ABORT DTS

C

IVI P

DTSPAR PARITYERROR
HIGH

TAGPARITY
ERROR

PARITY

DMA

ERROR

TAG

LOW

PARITY

ERROR

Figure

1-25	

Memory

System Error Register (MSER)

MR

-8899

MR

-16834

ystem

Error Register Description

Function

This

bit is set (1) when a cache or main memory

parity

error aborts on instruction

.

Cache parity

errors

cause an abort only when bit 7 of the CCR is

set .

Main memory parity errors always cause an

abort .

The

DTS CMP bit is set by the output of the DMA

tag

store comparator when a cache miss occurred

for

the previous non-1/0 page reference while in

the

standalone mode (BCSR bit 8 set)

.

When

BCSR

bit 8 is clear, DTS CMP is also clear

.

The

DTS PAR bit is set by the output of the DMA

tag

store parity check logic when an error occurred

for

the previous non-1/0 page reference while in

the

standalone mode (BCSR bit 8 set)

.

When

BCSR

bit 8 is clear, DTS PAR is clear

.

Read

as zeros

.

The

cache high byte parity error bit is set when a

parity

error is detected in the high byte data during

a

CPU cache read

.

This bit is also set by a low byte

parity

error and by the set conditions of MSER bits

5

or 4, when bit 7 of the CCR is cleared

.

The

cache low byte parity error bit is set when a

parity

error is detected in the low byte data during

a

CPU cache read

.

This bit is also set by a high

byte

parity error and by the set conditions of

MSER

bits 5 or 4, when bit 7 of the CCR is

cleared .

The

cache CPU tag parity error bit is set when a

parity

error is detected in the CPU tag field during

a

CPU cache read

.

MSER bits 6 or 5 are also set

by

a high or low byte parity error, when bit 7 of the

CCR

is cleared

.

The

cache DMA tag parity error bit is set when a

parity

error is detected in the DMA tag field during

a

DMA write operation

.

Read

as zeros

.

*

	

If

a force miss condition is set by CCR bits 3 or 2, or if the CPU tag valid bit is cleared, then cache parity errors and cache

DMA

parity errors are ignored by MSER bits <7

:4> .

Table

1-15

Memory

Bit(s) Name Status

15 CPU

abort

R

14 DTS

CMP

R

13 DTS

PAR

R

<

12

:8> Not

used

7* Cache

high byte

R
parity

error

6* Cache

low byte

R
parity

error

5* Cache

CPU

R
tag

parity error

4* Cache

DMA

R
tag

parity error

<3:0> Not

used

1.6

PRIVATE MEMORY INTERCONNECT

The

PMI is a unique Q22-Bus protocol that provides a high performance data path between the KDJI 1-B

module

and the MSVI I -J memory modules

.

These modules comprise the private memory and interface

with

the KDJ I 1-B via a backplane structure that uses the Q22-Bus as the A/B slots and an interconnecting

interface

as the C/D slots

.

This backplane structure allows data and address information to be multiplexed

and

transmitted via the Q22-Bus BDAL <21

:0>

data/address lines, while the PMI protocol nonmulti-

plexed

control lines use the C/D interconnecting interface

.

The PMI protocol functions in a Unibus system

by

using the KTJI1-B Unibus adapter module designed to interface with a PMI system

.

The PMI

interface

consists of 14 control signals used on the C/D interface, 6 Q22-Bus control signals, the bank 7

select

signal (BBS7) and the 22 data/address lines (BDAL <22

:0>) .

A complete description of the PMI

operation

is provided in Chapter 7

.

1 .6.1

PMI Protocol

In

a Q22-Bus system, the KDJ 1 1-B CPU is the default Q22-Bus master and PMI master

.

Any device on

the

Q22-Bus that has the capability to be a bus master can take control of the bus and execute normal data

transfers

over the Q22-Bus

.

However, it does not become the PMI master

.

In

a Unibus system, the KDJI I -B CPU is the default PMI master and the KTJI 1-B Unibus adapter is the

default

Unibus master

.

When the CPU addresses the Unibus memory or I/O page as the PMI master,

the

Unibus adapter responds as a slave to the CPU and controls the Unibus side of the transaction as the

Unibus

master

.

The

Unibus adapter can become the PMI master when the CPU issues a DMA grant or performs an

interrupt

transaction

.

The DMA or interrupt grant is accepted by the Unibus adapter and it becomes the

PMI

master and the Unibus slave

.

It also passes the DMA or interrupt grant onto a Unibus device, which

then

becomes the Unibus master

.

In Unibus systems, the bus master and PMI master can be requested by

a

NonProcessor Request (NPR) or interrupt request from a Unibus device, or a DMA or interrupt request

.

1 .6.1 .1

	

Bus

Device NPR - Any Unibus device that is capable of being a bus master can issue an NPR

request

and become the bus master to control data transfers

.

During these data transfers, the Unibus

adapter

is the PMI master and responds as a slave if the device accesses the PMI memory, the PMI 1/O

page

or the Unibus adapter I/O page

.

1 .6.1 .2

	

Bus

Device Interrupt - Any Unibus device that is capable of being a bus master can issue a BR7

through

4 request and become the bus master to control data or interrupt vector transfers

.

In both cases,

the

Unibus adapter is the PMI master and responds as a slave if the device performs an interrupt vector

transaction

or accesses the PMI memory, the PMI 1/O page or the Unibus adapter 1/O page

.

1.6.2

	

PMI

Data Transfers

There

are three general categories for the PMI data transfer cycles

.

These are the Data In/Data In Pause

(DATI/DATIP),

the Block Data In (DATBI), and the Data Out/Data Out Byte (DATO/DATOB) cycles

.
They

are described in the following paragraphs

.

On

the Q22-Bus, the bus master can perform a read-modify-write cycle that transmits an address, reads a

data

word or byte and then writes the data word or byte

.

The PMI read-modify-write is performed by a

DATIP

cycle that is followed by a DATO/DATOB cycle

.

The PMI bus master has the responsibility to

control

the bus for the duration of both cycles

.

1.6.2.1

	

Data

Inr/Data In Pause - The DATI and DATIP cycles are used to read one or two words when

the

PMI bus master accesses the PMI memory

.

When the PMI bus master accesses the I/O page or the

Unibus

memory it can only read one word

.

The PMI bus master detects an I/O page reference by the

assertion

of TBS7 and a Unibus memory reference by the assertion of RPUBMEM

.

The

PMI DATIP is identical to the DATI cycle except that TPBYT is asserted with TADDR to indicate

that

the cycle immediately following the current cycle is going to be a DATO cycle to the same address

.

1-34

1 .6.2.2

	

Block Data In - The DATBI cycle is used to read up to 16 words of data when the PMI bus
master accesses the PM1 memory. The PM1 bus master cannot use the DATBI cycle when accessing the
I/O page or the Unibus memory. The PMI bus master detects an .I/O page reference by the assertion of
TBS7, and a Unibus memory reference by the assertion of RPUBMEM.

The PM1 bus master can only start DATBI transfers on even word boundaries . This means that address
bits <1 :0> must be equal to zeros. The PM1 bus master cannot use the DATBI cycle to transfer across 16-
word address boundaries . This means that the PM1 bus master must terminate DATBI data transfers when
it reaches a memory location where the address bits <4 :1 > are all equal to ones .

1 .6.2.3

	

Data Out/Data Out Byte - The DATO and DATOB cycles are used by the PMI bus master to
transfer a single word or byte to a PM1 slave.

1 .7 TERMINAL INTERFACE
The KDJII-B provides a DLART serial line interface on the module . The console is connected to the
module directly or via an interfacing panel . The transmit and receive baud rates are always identical and
are determined by the status of bits <2:0> of the Boot and diagnostic facility Configuration Register
(BCR) . These bits can be selected directly by the configuration switches (8, 7 and 6), or remotely via an
external connector that is mounted on the module . The bit settings to select the baud rate are described in
Table 1-16 .

The DLART uses four registers designated as the Receiver Control/Status Register (RCSR), Receiver
BUFfer (RBUF), Transmitter Control/Status Register (XCSR), and the Transmitter BUFfer (XBUF).
These registers are described below.

1 = switch off; 0 = switch on .

Switches (Bits)

Table 1-16

	

Baud Rate Selection*

6
(2)

7
(1)

8
(0) Baud Rate

1 1 1 300
1 1 0 600
1 0 1 1,200
1 0 0 2,400
0 1 1 4,800
0 1 0 9,600
0 0 1 19,200
0 0 0 38,400

1 .7.1

	

Receiver Control/Status Register (17 777 560)
The RCSR is used to receive console On-line Debugging Technique (ODT) commands and input charac-
ters . The console ODT does not execute output bus cycles to this address ; the RCSR responds only to input
bus cycles . The system software may affect certain bits, such as interrupt enable (bit 6), but the console
ODT ignores this . The RCSR is shown in Figure 1-26 and is described in Table 1-17 .

15 14 13 12 11 10 09

Figure 1-26

	

Receiver Control/Status Register

08 07 06 05 04 03 02 01 00
0

	

~

	

0

	

0

	

0

	

0

	

~

	

0

	

04

	

~

	

0

	

0

	

0

	

0

	

0

	

0

RCV ACT

	

RX DONE

	

j

RCSR Bit Description

Function

RX IE

Read as zeros .

The RCV ACT bit is set by the start bit of the serial input
data and is cleared by the stop bit at the end of the serial
input data . The RX DONE bit is set by the next bit time
after RCV ACT is cleared .

Read as zeros .

The RX DONE bit is set when a character is received and
is ready to be read from the RBUF register . The bit is
cleared by reading the RBUF register and by power-up .

The RX IE bit is set when RXIRQ is enabled and a
program interrupt is requested while RX DONE is set
with this bit . The bit is cleared by BUS INIT and by
power-up .

Read as zeros .

MR-16825

Table 1-17

Bit(s) Name Status

<15 :12> Not used RO

I1 RCV ACT RO

<10:8> Not used RO

7 RX DONE RO

6 RX IE RW

<5 :0> Not used RO

1 .7.2

	

Receiver

Buffer Register (17 777 562)

The

RBUF is used to receive console ODT commands and input data

.

The console ODT does not execute

output

to this address

;

the RBUF responds only to input bus cycles

.

The system software operates

similarly,

but the diagnostics may cause output cycles and may not operate properly

.

The RBUF is shown

in

Figure 1-27 and is described in Table 1-18

.

15

14 13 12 11 10 09

0

ERR

FRNtERR

OVR

ERR	

RCV

BRK

0 0

08

07 06 05 04 03 02 01 00

0

INPUT

DATA

M

H-16826

Figure

1-27 Receiver Buffer Register

Table

1-18 RBUF Bit Description

Bit(s) Name Status Function

15 ERR RO The

ERR bit is set when the OVR ERR bit or the FRM

ERR

bit is set

.

This bit does not generate a program

interrupt

and is clear when both of these bits are clear

.

14 OVR

ERR

RO The

OVR ERR bit is set when a previous character was

received

but was not read before it was overwritten by the

current

character

.

13 FRM

ERR

RO The

FRM ERR bit is set when the current character has

no

stop bit

.

This bit is used to detect breaks

.

12 Not

used

RO Read

as zero

.

11 RCV

BRK

RO The

RCV BRK bit is set when the end of the serial data

input

remains in the space condition for all 11 bits

.

The

bit

remains set until the serial data input returns to the

mark

condition

.

<10 :8> Not

used

RO Read

as zeros

.

<7 :0> Input

data

RO These

eight bits are an ASCII character read as input

when

RCSR bit 7 is set

.

1 .7.3

	

Transmitter Control/Status Register (17 777 564)
The XCSR is used to transmit data for the console ODT. The console ODT does not execute input bus
cycles to this address ; the XCSR responds only to output bus cycles . The system software may cause
output cycles that affect certain bits, such as interrupt enable (bit 6), but the console ODT ignores this .
The XCSR is shown in Figure 1-28 and described by Table 1-19 .

14 13 12 11 10 09
0 0

08 07 06 05 04 03 02 01 00
0 0

t 1

	

1

	

1TX RDY

	

MAINT

	

XMIT BRK
TX IE

MR -16827

forced into the space condition . The bit is cleared by BUS
INIT and by power-up .

Figure 1-28 Transmitter Control/Status Register

Table 1-19 XCSR Bit Description

Bit(s) Name Status Function

<15:8> Not used RO Read as zeros .

7 TX RDY RO The TX RDY bit is set when the XBUF is cleared and

can receive another character. The bit is cleared when the

XBUF is full . It is also set by power-up and by BUSINIT.

6 TX IE RW The TX IF bit is set when TXIRQ is enabled and a

program interrupt is requested while TX RDY is set with

this bit. The bit is cleared by BUS INIT and by power-up .

<5 :3> Not used RO Read as zeros.

2 MAINT RW The maintenance bit is set during a self-test that discon-

nects the external serial input and connects it to the inter-

nal serial output. This bit is cleared by BUS INIT and by

power-up .

1 Not used RO Read as zero .

0 .MIT BRK RW The XMIT BRK bit 1s : : 1,",, hcr, 'lic :,tape : serial data is

1.7.4

	

Transmitter Buffer Register (17 777 566)
The XBUF is used to transmit data for the console ODT. The console ODT does not execute input bus
cycles to this address ; the XBUF responds only to output bus cycles . The system software operates
similarly, but the diagnostics may cause input cycles and may not operate properly . The XBUF is shown in
Figure 1-29 and is described in Table 1-20 .

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
0 0 0 0

I

	

I

	

I

	

T

I

	

I

	

I

	

I

	

I ~ . 1

1.8 BOOT AND DIAGNOSTIC FACILITY

The boot and diagnostic facility consists of two sockets that accommodate 8K, or 16K words of 16-bit
ROM and another socket that can accommodate 2, 4, or 8 Kbytes of either 8-bit ROM or 8-bit EEPROM
memory. The Control/Status Register (CSR), Page Control Register (PCR), maintenance register, Con-
figuration and Display Register (CDR), and the boot and diagnostic facility are described in detail in
Chapter 4.

The KDJ11-B module populates the first two sockets with 16K words of 16-bit ROM. This ROMcontains
the standalone diagnostics, the configuration routines, the memory diagnostics, and the boot programs
for the various standard devices. This ROM can be replaced by the user for special purpose applications,
but the user should include the configuration routines and the standalone diagnostics in the new ROM.

The remaining socket is normally populated with 2 Kbytes of 8-bit EEPROM containing the module
configuration data and space for optional user provided boot programs . The configuration data uses 105
bytes of space. The remaining space is left available for user programs . This EEPROM can be replaced
with 4 or 8 Kbytes of EEPROM and when the application does not require the erasable feature, the user
can provide an 8 Kbyte ROM.

Figure 1-29 Transmitter Buffer

OUTPUT DATA M R-16828
Register

Table 1-20 XBUF Bit Description

Bit(s) Name Status Function

<15 :8> Not used NA Read as zeros .

<7:0> Output data WO These eight bits are an ASCII character transmitted as
output when XCSR bit 7 is set .

1.8 .1

	

Control/Status Register (17 777 520)
The CSR allows the ROMs to test battery backup and reboot status . It can set the parameters for the
Processor Mastership Grant (PMG) counter and the Line Time Clock (LTC). It also enables the console
halt-on-break feature, and controls the entry and exit to the standalone mode . The CSR is shown in Figure
1-30 and is described in Table 1-21 .

The CSR allows the programs to selectively disable the ROM response to addresses 17 765 000 through
17 765 776 and/or 17 773 000 through 17 773 776 and to control the read/write access to the EEPROM.
Any program that accesses the 1/O page can use the CSR to alter the PMG and the LTC parameters and
also to control access to the ROM and EEPROM memory .

15 14 13 12 11 10

BBRBE

	

FRC LCIE
I

	

CLK SELECT
RBT PLS

	

DIS LKS

	

ENB

Figure 1-30

	

Controller Status Register

09 oS CI Oo C5 04 u3 C2 01 00

Function

SA MODE T

	

DIS bb

	

i RON13 V'vE
HOB

	

DIS 73

	

ROM3 65

Control/Status Register Bit Description

7 I
PMG CNT

I

PMG
MR -16829

When this bit is set (1), it indicates that the battery backup
voltage failed to maintain the memory system during the last
powv .. r failure . When this bit is clear (0), it indicates that the
battery backup voltage maintained the system memory during
the last power failure or that there is no battery backup for the
system .

This read-only bit is set (1) when the DCOK input is pulsed while
the POK input remains asserted . This condition can only occur in
Q22-Bus systems and indicates that a system reboot was requested
by the control panel switch or by a special Q22-Bus device . This
bit is cleared (0) by the negation of the POK input . A similar bit
for Unibus systems is used in the KTJ 1 1-B CSR .

This bit is set (l) to enable the clock selected by bits <l 1 :10> to
unconditionally request interrupts . When this bit is clear (0), the
selected clock can only be enabled by setting bit 6 of the LTC
register under program control to request interrupts . This bit is
cleared by the negation of the DCOK input .

This bit is set (1) to disable the 1.TC register. When cleared (0),
the LTC is enabled and responds to address 11 777 546 . This bit
is cleared by the negation of the DCOK input .

Table 1-21

Bit(s) Name

15 Battery backup
reboot enable

14 Reboot pulse

13 Force line
clock interrupt
enable

12 Line clock
status register
disable

Table 1-21

	

Control/Status

Register Bit Description (Cont)

Bit(s)

Name	

Function

<1

1

:10>

	

Clock

	

These

read/write bits select the clock used by the LTC as an

select

	

interrupt

request

.

These bits are cleared by the negation of the

DCOK

input

.

The clock is selected as follows

.

9

	

Enable

	

This

read/write bit is set (I) to enable the console Serial Line Unit

Halt-on-Break

	

(SLU)

halt-on-break feature

.

When clear (0), this feature is dis-

abled .

This bit is cleared by the negation of the DCOK input

.

8

	

Standalone

mode	

This

read/write bit is set (l) to enable the standalone mode by

which

the KDJ11-B operates using only the cache memory

.

The

external

memory and peripherals are disabled

.

When this bit is

clear

(0), the standalone mode is disabled and the system is opera-

tional .

This bit is reset by the negation of the DCOK input

.

7

	

Disable

	

When

this read/write bit is set (1), the ROM memory addresses

17

773 000	

17

773 000 through 17 773 776 are disabled

.

An external ROM

responds

to these addresses

.

When this bit is clear (0), the on-

board

ROMs respond to these addresses using the high byte of the

PCR

as the most significant address bits

.

This bit is cleared by the

negation

of the DCOK input

.

6

	

Disable

	

When

this read/write bit is set (1), the ROM memory addresses

17

765 000 through 17 765 776 are disabled

.

An external ROM

responds

to these addresses

.

When this bit is reset (0), the boot

and

diagnostic ROM memory is enabled

.

This allows the ROM

memory

selected by bit 5 of the CSR to use the low byte of the

PCR

as the most significant address bits

.

This bit is cleared by the

negation

of the DCOK input

.

5

	

ROM

socket 3 at	

When

this read/write bit is set (1), the 8-bit ROM in socket 3

17

765 000	

responds

to addresses 17 765 000 through 17 765 776, provided

that

bit 6 of the CSR is clear

.

When this bit is clear (0), the 16-bit

ROM

is selected to respond to these addresses

.

In either case, the

low

byte of the PCR provides the most significant bits of the

address .

This bit is cleared by the negation of the DCOK input

.

4

	

ROM

socket 3	

When

this read/write bit is set (1), and CSR bit 5 is set while

write

enable	

CSR

bit 6 is clear, the program can write to ROM socket 3, which

normally

contains the EEPROM

.

This bit is cleared by the power-

up

and initialize routines

.

Bits
11 10 Clock

Selection

0 0 External

BEVNT line

0 1 On-board

50 Hz*

1 0 On-board

60 Hz*

1 1 On-board

800 Hz

Bit(s)

Name

3

	

Not

used

<2:0>

Processor

mastership
grant

count

Table

1-21	

Control/Status

Register Bit Description (Cont)

Function

Read

as zero

.

These

read/write bits are coded to select the length of time for the

PMG

counter to overflow

.

If any bit is set (1), the PMG counter

begins

counting whenever the KDJ11-B accesses the I/O page or

external

memory

.

When the counter overflows, the KDJ11-B has

bus

mastership during the next DMA arbitration cycle and it

suppresses

all DMA requests

.

When bits <2

:0>

are clear (0), the

PMG

counter is disabled, and the KDJ11-B is blocked from bus

mastership

as long as DMA requests are pending

.

These bits are

cleared

by the negation of DCOK

.

PMG

Count Bits

*

	

Recommended

for clock

.
t

	

The

PMG count of zero (disabled) is not recommended for most systems and is reserved for special applications

.

1 .8.2

	

Page

Control Register (17 777 522)

The

PCR is a read/write register that is word and byte addressable

.

Only bits <14

:9>

and <6

:1>

can be

used

and the remaining bits are always read as zero

.

The high byte provides the most significant bits of the

16-bit

ROM address (sockets 1 and 2) when accessed by bus addresses 17 773 000 through 17 773 776

.
The

low byte provides the most significant bits of the 8-bit EEPROM or 16-bit ROM (socket 3) when

accessed

by bus addresses 17 765 000 through 17 765 776

.

The CSR register bits <7

:4>

control access to

the

ROM and EEPROM sockets and memory

.

The

PCR bits <14

:9>

are used as address bits <14

:9>

for addresses within 17 773 000 through

17

773 776 and the actual address bits <8

:0>

are used to form a 15-bit address for the ROM memory in

sockets

1 and 2

.

The PCR bits <6

:1>

are used as address bits <14

:9>

for addresses within 17 765 000

through

17 765 766 and the actual address bits <8

:0>

are used to form a 15-bit address for the ROM

memory

in socket 3

.

When the 8-bit EEPROM is used in socket 3, the PCR bits <5

:1>

are used as

address

bits <13

:9>

for addresses within 17 765 000 to 17 765 776 and bits <8

:0>

of the actual address

are

used to form a 14-bit address

.

This register is cleared by the negation of the DCOK input

.

2 1 0 Count

Time

0 0 0 Disabledt
0 0 1 0.4 .seconds
0 1 0 0.8

seconds

0 1 1 1 .6

Aseconds

1 0 0 3 .2

Aseconds

1 0 1 6 .4

seconds

1 1 0 12 .8

tcseconds

1 1 1 25.6

,seconds

1 .8 .3
	

Configuration and Display Register (17 777 524)The CDR (Figure 1-31) consists of two independent registers : the read-only boot and diagnostic configura-tion register and the write-only boot and diagnostic display register . These registers are accessed by thesame address and are described in the following paragraphs .1 .8 .3.1

	

Boot and Diagnostic Configuration Register - This read-only register reflects the status of theconfiguration switchpack (switches 8 to 1) located on the module . The status of switches 5 to 8 can beremotely controlled via the J2 connector of the module and a cable connecting it to an external controlpanel . The status of switches 1 to 4 can be remotely controlled via the J3 connector .1 .8 .3 .2 Boot and Diagnostic Display Register - The display register allows the boot and diagnosticprograms to control and update the eight LEDs mounted on the module . These LEDs can also be used toenable a display on an external control panel via the J2 connector . The register uses bits <7 :0> to drive theLEDs. A 0 written into one these bits causes the respective LED to be illuminated . Writing a 1 into one ofthese bits turns off the respective I.ED . All bits <7:0> are cleared by the negation of DCOK and then allthe LEDs are illuminated .1 .8 .4

	

Maintenance Register (17 777 750)The maintenance register is a 16-bit word that is read by the DCJ 1 1-A during the power-up sequence,where the CPU executes a general purpose read . The word contains the power-up code, the halt/trapoption bit, and the FPA (if this option is installed) . This data is used by the DCJ 1 l -A microprocessor ; theremaining bits provide information on the module and system parameters for use by the operating systemand the diagnostics . The read-only maintenance register is shown in Figure 1-32 and is described inTable 1-22 .The code for the power-up mode is hardwired as mode 2 to use the standard bootstrap operation . This setsthe PSW to 340 and begins program execution at 173 000 . This address starts the boot and diagnosticcode that runs the standalone diagnostics before initiating the user specified, power-up option stored in theEEPROM as part of the configuration data . Since the bootstrap address is always the same, bits <15 :9>of this register are not used to reference a bootstrap program and are now available to define some of thesystem parameters .
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 000

	

0

	

0

	

0

	

0

	

0

	

0

	

0

	

0

	

0

	

F

	

6 BIT DISPLAYI

	

~

	

~

	

I

	

I
Figure 1-31

	

Configuration and Display Register CONFIGURATION R/O
M F 16830

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 0 0 0 0 0

UNIBUS SYSTEM

FPA AVAILABLE -

Figure 1-32 Maintenance Register

MODULE TYPE
(FIXED)

v

	

1

0 0 1 0
l .

	

1

	

1 .

HALT/TRAP OPTION

	

BPOK

MP 16831

Bit(s)

Name Function

<15:1

1 >	

Not

used	

Read

as zeros

.

Table

1-22	

Maintenance

Register Bit Description

10

	

Reserved

	

Reserved

for future use

.

9

	

Unibus

	

This

read-only bit monitors the status of the external Unibus adapter line

.
system

	

When

set (1), it indicates that the system includes a Unibus adapter

module .-

When reset (0), it indicates that it is a Q22-Bus system

.

8

	

FPA

	

This

read-only bit is set (1) only if an FPA chip is installed on the module

.
available

<7 :4>

	

Module

ID	

The

0010 code identifies this module as a KDJ11-B microprocessor

.

3

	

Halt/Trap

	

This

read/write bit determines how the HALT instruction is used in the

option

	

kernel

mode

.

When set (1), the trap option is selected causing the CPU to

trap

to location 4

.

When reset (0), the halt option is selected and the CPU

halts

and enters the console ODT mode

.

The trap option is not intended

for

normal use and is reserved for controller applications

.

This bit is

cleared

by the negation of the DCOK input and is set when the boot and

diagnostic

code selects the trap option by setting a bit in the configuration

ROM.

<2 :1>

	

Power-up

	

These

two bits are hardwired to always read as 2

.

At power-up, these bits

code

	

cause

the microprocessor to set the PSW to 340 and start executing the

program

at address 173 000

.

This is the starting address for the boot and

diagnostic

ROM program

.

These programs execute diagnostics to check

the

functions of the module and to implement the user's selected power-up

routine

as specified by the configuration daia

.

0

	

BPOK

H	

This

bit is set (1), when the Q22-Bus signal BPOK H is asserted, indicat-

ing

that the ac power is okay

.

NOT USED

	

NOT USEDF I 7 I

	

I

	

I

	

I

	

I

	

1 1

	

- 1 1 j

1 .9 LINE TIME CLOCKThe LTC provides the system with a timing reference of fixed intervals that are determined by theQ22-Bus BEVNT line or by one of the on-board clock frequency signals, as programmed by bits <11 :10>of the CSR . The BEVNT line cycles at the ac line frequency and produces intervals of 16 .7 millisecondsfor a 60 Hz input or 20 .0 milliseconds for a 50 Hz input . The three on-board clock frequencies are 50 Hz,60Hz, and 800 Hz. When enabled, these clocks are used to generate a program interrupt request with apriority level of BR6 and an interrupt vector address of 100 . The on-board clock is recommended .1 .9 .1

	

Line Time Clock Register (17 777 546)The LTC register allows line clock interrupts to be enabled or disabled under program control . These lineclock interrupts can be unconditionally enabled by setting bit 13 of the CSR register . Program recognitionof the LTC register can be disabled by setting bit 12 of the CSR register . The normal configuration usedfor the KDJ1 1-B has both of these bits cleared . They are set by the boot and diagnostic ROM programs asselected by the configuration data . The LTC register is shown in Figure 1-33 and is described byTable 1-23 .

Bit(s) Name<15 :8>

	

Not used7 LCM
6 LCIE

15 14 13 12
Figure 1-33

	

Line Time Clock Register

<5 : 0>

	

Not used

11 10 09 08 07 06 05 04 03 02 01 00

Table 1-23

	

Line Time Clock Register Bit Description
Function

LINE CLOCK MONITOR

	

LINE CLOCK INTERRUPT EN

Read as zeros .

Read as zeros .

M R-16832

The LCM bit is set (1) by the leading edge of the external BEVNT Lsignal, the bus INIT signal, or one of the three on-board clocks . The bit iscleared automatically by processor interrupt acknowledges . It is alsocleared by writing a 0 into it .When the LCIE read/write bit is set (1), it allows the set condition of bit 7to initiate a program interrupt request . When this bit is cleared (0), theline clock interrupts are disabled . This bit is forced when bit 13 of theBoot and diagnostic Control/Status Register (BCSR) is set . This bit iscleared by power-up and by the bus INIT signal .

CHAPTER

2

CONFIGURATION

2.1

INTRODUCTION

This

chapter discusses the configuration requirements and other factors to consider when configuring the

KDJI

1-B module and installing it into an LSI-11 system

.

The module must be installed in a backplane that

has

the extended LSI-11 bus in the A/B rows and the interconnecting bus in the C/D rows

.

A 22-bit LSI

bus

utilizes the full capability of the module and the interconnecting bus is required because of the PMI

feature

of the module

.

The

H9278-A backplane is designed to accommodate the module in LSI-1 I based systems

.

The H9277-A

backplane

is designed to accommodate the module and adapt it to a Unibus based system

.

The Unibus

Adapter

module (UBA) provides the interface requirements necessary to interface Unibus modules with

the

LSI-11 bus

.

In addition, the MSVII-J memory modules are designed to function with the PMI

capability

of the module

.

The

user must consider the following items to determine the configuration requirements for the module

.

If

the

module is installed in a prepackaged system, the user should be aware of the system components and

their

intended use

.

1 .

	

Select

the features controlled by the jumpers and switches located on the module

.
2 .

	

Define

the type of system and the mass storage devices being supported

.
3 .

	

Select

the desired configuration parameters available in the EEPROM

.
4 .

	

Determine

the bootstrap programs necessary to support the system

.
5 .

	

Know

the system differences if an existing system is being upgraded

.

2.2

MODULE CONFIGURATION

The

KDJI 1-B module has 3 jumper wires and 8 switches mounted in a switchpack on the module as shown

in

Figure 2-1

.

Also, there are six red LEDs to monitor the diagnostic testing and a green LED to monitor

the

5 Vdc applied to the module

.

The six red LEDs and switches 5 through 8 are wired to the J2 connector

.
Switches

1 through 4 are wired to the J3 connector

.

This allows the user to remotely monitor and control

their

status

.

2.2.1

	

Jumper

Wires

The

3 jumper wires are designated as W10, W20 and W40

.

The W10 jumper uses TP10 and TP1 l to

connect

the on-board oscillator to the SLU

.

The W20 jumper is reserved and uses TP20, TP21 and TP22

.
The

W40 jumper uses TP40, TP41 and TP42 to select the size of the EEPROM

.

The jumper is a push-on

connector

that provides a connection between two of the test points

.

The jumper configurations and uses

are

defined below and are summarized in Table 2-1

.

2.2.1 .1

	

W

10 Jumper - The W 10 jumper is used by manufacturing personnel to disable the on-board

oscillator

and connect an external oscillator during final test

.

This jumper is not optional to the user and is

always

used to connect TP 10 to TP 11

.

2.2.1 .2

	

W20

Jumper - The W20 jumper is always connected to TP20 and TP21

Standard factory configuration .

100000000

Figure 2-1

	

KDJ11-B Module Layout

Jumper

	

Function
Table 2-1

	

Jumper Wire Functions

W 10 installed*

	

The on-board 614 .4 kHz oscillator drives the SLU .(TP 10 and TP 1 1)
W 10 removed

	

This condition is reserved for factory testing .(TP10 and TPI1)
W20 installed*

	

The module is a single processor .(TP20 and TP21)
W20 installed

	

This condition is reserved .(TP21 and TP22)
W40 installed*

	

The standard 2K EEPROM is used .(TP40 and TP41)
W40 installed

	

The user selects an 8K EEPROM.(TP41 and TP42)

2-2

MR 11058

2.2.1.3

W40 Jumper - The W40 jumper is used to provide an additional address bit when the user

wishes

to use an 8K EEPROM in place of the standard 2K EEPROM

.

When the jumper connects TP40

and

TP41, the standard 2K EEPROM is installed in the socket, and when the jumper connects TP41 to

TP42,

the user can install either a 4K or 8K EEPROM in the socket

.

Note that when a 2K EEPROM is

used,

it is offset in the socket by two pins

.

2.2.2

Switchpack

The

switchpack contains 8 individual switches that are used to select the baud rate of the console SLU, a

device

bootstrap program, the dialog mode and the operating mode at power-up

.

The switches are wired to

the

read-only configuration register, where bit 7 corresponds to switch 1 and bit 0 corresponds to switch 8

.
A

switch placed in the on position is read as a 0 and a switch placed in the off position is read as a 1

.

The

switches are wired to connectors J2 and J3 to allow the user to remotely monitor the status of the

switches .

They can also be remotely controlled or selected via these connectors

.

When using this mode, all

the

switches must be placed in the off position

.

Then the user can remotely turn a switch on by grounding

the

corresponding pin on the connector cabling

.

The pin identifications for the J2 and J3 connectors are

shown

in Figure 2-2 and are listed in Table 2-2

.

The functions controlled by the switches are described in

the

paragraphs that follow

.

J2

Figure

2-2	

Pin

Assignments for Connectors J2 and J

3

MR

17059

2.2.2.1

	

Baud

Rate Selection - The baud rate for the SLU is selected by switches 6, 7 and 8

.

The baud

rate

selections and the switch conditions are listed in Table 2-3

.

Table

2-3	

Baud

Rate Selections

Switches

6

7

8

Register

2

1

Bits

0 Baud

Rate

On On On 0 0 0 38,400
On On Off 0 0 1 19,200
On Off On 0 1 0 9,600
On Off Off 0 1 1 4,800
Off On On 1 0 0 2,400
Off On Off 1 0 1 1,200
Off Off On 1 l 0 600
Off Off Off 1 1 1 300

Table

2-2

J2

and J3 Connectors

J2 Connector J3

Connector

Pin Signal Pin Signal

1 +5.0

V fused

1 Switch

4

2 Switch

8

2 Switch

3

3 Switch

7

3 Switch

2

4 Switch

6

4 Switch

1

5 NC 5 NC
6 Switch

5

6 GND
7 NC 7 GND
8 NC
9 GND
10 GND
I

1

LED

05 MSB

12 LED

04

13 LED

03

14 GND
15 LED

02

16 LED

01

17 LED

00 LSB

18 GND
19 NC
20 GND

2.2.2.2

	

Dialog

Mode - Setting switch 5 in the off position sets BCR register bit 3 and unconditionally

forces

the ROM code to enter the dialog mode when the diagnostic tests are completed

.

The switch in the

off

position also disables the automatic boot sequence and the bootstrap options associated with switches 2,

3,

and 4

.

The dialog mode allows the user to establish a dialog with the system via the console terminal by

using

the six dialog commands that are described in Chapter 4

.

When switch 5 is set in the on position,

register

bit 3 is reset and the user can select any one of the power-up routines

.

2.2.2.3

	

Device

Bootstrap Programs - Up to six programs used to boot the mass storage devices in the

system

can be predetermined and stored in the EEPROM

.

The user determines the types of devices that

need

bootstrap programs and is able to select these programs by using setup command 4

.

This procedure is

described

in detail in Chapter 4

.

The following example shows the selections for typical LSI-1 1 and Unibus

systems .

When

enabled by setup command 6, switches 2, 3 and 4 are used to select a single bootstrap program for a

device

in the system

.

When switches 2 through 4 are set from 1 to 6 as shown in Table 2-4, the ROM code

enters

the auto boot mode and attempts to boot only the device selected by the switches

.

If the boot is

unsuccessful,

the ROM code displays the normal error message and enters the dialog mode

.

If

all three switches are on and the console is enabled by switch 1 off, the module immediately powers up

in

the ODT mode

.

If the console is disabled by switch 1 on, the module loops on the standalone mode tests

.
If

all three switches are off and the console is enabled by switch 1 off, the module powers up in dialog,

automatic,

ODT or 24 mode, as determined by the configuration parameter selected in the EEPROM

.

If

all

three switches are off and the console is disabled by switch 1 on, the ROM code automatically tries to

boot

the devices in the sequence determined by setup command 4

.

NOTE
When

the dialog mode is selected by switch 5, the

bootstrap

program options are disabled and the sys-

tem

enters the dialog mode

.

Table

2-4	

Bootstrap

Program Selection

2-5

Switches

2

3

4

Register

6

5

Bits

4 EEPROM

Boot

On On On 0 0 0 Determines

power-up status

On On Off 0 0 1 Selects

boot # 1

On Off On 0 1 0 Selects

boot #2

On Off Off 0 1 1 Selects

boot #3

Off On On 1 0 0 Selects

boot #4

Off On Off 1 0 1 Selects

boot #5

Off Off On 1 1 0 Selects

boot #6

Off Off Off 1 1 1 Determines

boot status

Boot
Selection LSI-11 System

Device

Unibus System

Device

Boot

1

A MSCP

sniffer

A MSCP

sniffer

Boot

2

DLO RLO

1 /RL02

DLO RLO

1 /RL02

Boot

3

MSO TSV05/TK25 MSO TS

I I /TU80

Boot

4

E End

auto boot

E End

auto boot

Boot

5

Blank Not

used

Blank Not

used

Boot

6

Blank Not

used

Blank Not

used

2.2.2.4

	

Console

Enable - The system console is enabled by setting switch 1 to the off position

.

This also

sets

a 1 in register bit 7

.

If the switch is in the on position, the system console is disabled and bit 7 is reset

to

0

.

If the system console is disabled, the output line to the console is suppressed

.

Any input from the

console

results in an error message to inform the user that the console is disabled

.

2.2.3

	

Diagnostic

LEDs

The

six red LEDs are mounted on the module edge in order to be visible to the user

.

They are also wired to

connector

J2 so they can be remotely monitored

.

The LEDs are coded as two octal numbers to represent

the

diagnostics or the system status listed in Table 2-5

.

A complete description of the diagnostics is in

Chapter

4

.

LED

Code

77
76
75
74
73
72
71
70,
67
66
65
64
63
62
61
60
57
56
55
54
53
52
51
50
47
46
45
44
43
42
41
40
37
36
35
34
33
32
31
30

Table

2-5	

Diagnostic

and System Status LED Display

Diagnostic

CPU

or halt switch

CPU

and MMU

Turn

on MMU, run CPU and MMU

Turn

on PMI, check UBA reboot bit

Power-up

to mode 2

:

ODT

Power-up

to mode 3

:

24

EEPROM

checksum

CPU

ROM checksum and PCR

Miscellaneous

CPU and EIS

Console

SLU test 1

Console

SLU test 2

Console

SLU test 3

MMU

aborts

Cache

memory

Line

clock

Floating-point

instruction

Reserved
Exit

standalone mode

UBA

register response

Memory

sizing routine

Memory

location 0

Memory

locations 0 to 4K words

Cache

operation with memory

Complete

memory data/byte exercise

Memory

parity/FCC

Memory

address shorts

UBA

boot ROM

UBA

map registers data path

UBA

unmapped diagnostic data

UBA

mapped diagnostic data

UBA

floating address/data

UBA

address overflow

UBA

cache data

UBA

cache LRU

UBA

cache tag store

UBA

cache parity error

Complete

Unibus memory data/byte exercise

Unibus

memory parity

Unibus

memory address shorts

Exit

2-6

LED

Code

Table

2-5	

Diagnostic

and System Status LED Display (Copt)

System

Status

27

	

Not

used

26

	

Not

used

25

	

Not

used

24

	

DECNET

boot (DLV11-E/F, DUV11) waiting

23

	

XON

not received after XOFF, type <CTRL> Q to correct

22

	

Xmit

ready bit does not set

21

	

Drive

error

20

	

Controller

error

17

	

Invalid

boot device selection (i

.e .,

AA)

16

	

Invalid

unit number selection

15

	

Nonexistent

drive

14

	

Nonexistent

controller

13

	

No

tape

12

	

No

disk

11

	

Invalid

boot block

10

	

Drive

not ready

07

	

No

bootable device found in automatic boot mode

06

	

Console

disabled by switch 1 on, and no force dialog or APT

ROM

code has entered ODT for APT

Not

used

Dialog

mode

UBA

ROM boot in progress

EEPROM

boot in progress

CPU

ROM boot in progress

Start

secondary boot with display blanked

05
04
03
02
01
00

2-7

for

host reply

break

received

;

2.3

EEPROM CONFIGURATION PARAMETERS

The

general configuration parameters are stored in the EEPROM and can be modified or changed by the

user

to meet the requirements necessary for the intended use of the module

.

The user can determine the

parameters

by entering the dialog mode and selecting the setup command

.

The dialog mode is entered by

setting

switch 5 to the off position and powering up the system, or by typing a <CTRL> C while running

the

diagnostics

.

The setup mode is entered by typing S followed by <RETURN>

.

The system then prints

a

list of all the setup commands with a short description of each

.

The second command provides a list of all

the

parameters available and the current status of these parameters

.

The second command is selected by

typing

2 and pressing <RETURN>

.

The system then prints a list of the parameters as shown in Table 2-6

.
The

last column provides the current status

.

The status described represents the default status

.

When

the setup mode command 2 is executed and the list of parameters with the current status is printed

out,

the first parameter is repeated for the user's approval or change

.

To change the parameter, the user

types

in the new value and presses the Return key

.

Note that the first two parameters apply only to LSI-11

systems

and the last four parameters apply only to Unibus systems

.

Therefore, the parameters printed out

are

dependent on the type of system, but they are printed sequentially from A to B to C, etc

.

The

user can select the next parameter by pressing <RETURN> repeatedly until the parameter to be

changed

is reached

.

Another way to reach the desired parameter is to type the item reference letter

(Table

2-6) and press the Return key

.

The user can proceed to the next parameter by pressing <Return>,

<Line

Feed> or <

.

>, and can return to the preceding parameter by typing < A > or < - >

.

The setup

mode

command 2 is exited by typing <CTRL> Z

.

2-8

Table

2-6

Configuration

Parameters

Item Parameter Selections Status

A Enable

halt-on-break

(0)

= No (1) = Yes

=

1

B Disable

user friendly

(0)

= No (1) = Yes

=

1

format

C ANSI

video terminal

(0)

= No (1) = Yes

=

1

D Power-up (0)

= Dialog

=

1

(1)

= Automatic

(2)

= ODT

(3)

= 24

E Restart Same

as power-up

=

1

F Ignore

battery

(0)

= No (1) = Yes

=

0

G PMG

count

Select

from 0-7

=

7

H Disable

clock CSR

(0)

= No (1) = Yes

=

0

I Force

clock interrupts

(0)

= No (1) = Yes

=

0

J Clock

frequency

(0)

= Power supply

=

0

(1)

=50 Hz

(2)

= 60 Hz

(3)

= 800 Hz

K Enable

EEC test

(0)

= No (1) = Yes

=

1

L Disable

long memory test

(0)

= No (1) = Yes

=

0

M Disable

ROM

(0)

= No

=

0

(1)

= Disable 165

(2)

= Disable 173

(3)

= Disable both

N Enable

trap-on-halt

(0)

= No (1) = Yes

=

0

O Allow

alternate boot block

(0)

= No (1) = Yes

=

0

P Disable

setup mode

(0)

= No (1) = Yes

=

0

Q Disable

all testing

(0)

= No (1) = Yes

=

0

R Enable

Unibus memory test

(0)

= No (1) = Yes

=

1

S Disable

UBA ROM

(0)

= No (1) = Yes

=

0

T Enable

UBA cache

(0)

= No (1) = Yes

=

1

2.3.1

	

Enable

Halt-on-Break

When

this parameter is set to 1, it enables the processor to halt if the console SLU detects a break

condition .

When it is reset to 0, the processor ignores console break conditions

.

This parameter is enabled

only

when the first break or valid character is received after the system is powered up or restarted

.

This

parameter

only applies to LSI-I I systems

.

The Unibus systems enable the halt-on-break parameter by

setting

the front panel key switch to the enable position

.

2.3.2

	

Disable

User Friendly Format

The

type of messages sent to the console during power-up is determined by this parameter

.

Both conditions

of

this parameter provide user friendly messages, but the messages are more friendly when the parameter

is

set to 0

.

The user friendly mode is normally used when the automatic boot mode is selected

.

The

standard

format is always selected for Unibus systems

.

This parameter is only used for LSI-1 I systems

.

2.3.3

	

ANSI

Video Terminal

When

this is set to 1, it indicates that the console terminal is an ANSI video terminal

.

If it is reset to 0, the

console

terminal must be a hard-copy terminal or a non-ANSI video terminal

.

When an ANSI video

terminal

is selected, use of the Delete key erases the previous character on the screen

.

This is accomplished

by

the ROM code sending a backspace, a space and then another backspace to the console terminal

.

If a

hard-copy

terminal is selected, the Delete key is interpreted by the ROM code as a slash character and the

deleted

character is identified by the slash character

.

When the system is powered up and an ANSI video

terminal

is selected, the ROM code clears the video screen and positions the cursor at line 9 and column 1

.
This

parameter is only used by the ROM code and not by the operating system

.

NOTE
A

VT52 terminal is not an ANSI video terminal and

if

a VT52 is selected, the parameter must be set to 0

in

order to prevent the clear screen command from

locking

up the VT52

.

2.3.4

	

Power-Up

Modes

There

are four power-up mode selections available to the user

.

When the system is started, the ROM code

checks

a status bit to determine if the system is powering up or being restarted

.

The ROM code then

checks

the status of the selected parameter and uses the mode selected for that parameter

.

The same

modes

are used by both the power-up parameter and the restart parameter

.

2.3.4.1

	

Dialog

Mode - After the diagnostics are completed, the ROM code enters the dialog mode

.

This

mode

is selected by keying in a 0

.

Table

2-6 Configuration Parameters

(font)

Item

Parameter Selections

Status

U

Enable 18-bit mode (0) = No

(1)=Yes =0

Type

<CTRL> Z to exit or press <RETURN> to proceed

.

A

Enable halt-on-break (0) = No

(1)

= Yes

=

I

2.3.4.2

	

Automatic

Mode - At the completion of the diagnostics, the ROM code enters the automatic

boot

routine and tries to boot the predetermined device or devices

.

The devices are previously selected and

loaded

into the EEPROM

.

The user can select up to six individual devices to be automatically booted

.

The

system

attempts to sequentially boot the devices on the list until a device is successfully booted or the end

of

the list is reached

.

The factory setting or default list consists of A, DLO and MSO

.

The A device is a

special

mnemonic letter that tries to boot a Mass Storage Control Protocol (MSCP) device in the range of

0

to 7

.

This mode is selected by keying in a 1

.

2.3.4.3

	

ODT

Mode - In this mode, a limited set of diagnostics is run and the ROM code executes a halt

instruction

and passes control to the DCJI1-A micro-ODT code

.

The user can continue the diagnostic

testing

and enter the dialog mode by typing P, as long as none of the register data was changed

.

This mode

is

normally used only for debugging and is selected by keying in a 2

.

2.3.4.4

	

Mode

24 - After a limited set of diagnostics is run, the ROM code loads the contents of location

26

into the PSW and then transfers control to the address referenced by the contents of location 24

.

This

mode

is used when the memory uses battery backup or when nonvolatile memory is present and it is

necessary

to recover from a power fail condition

.

This mode is selected by keying in a 3

.

2.3.5

Restart

The

selections for the restart mode are identical to those used in the power-up mode

.

However, these

selections

are independent of each other and the selection for the restart mode can be different than that

selected

for the power-up mode

.

2,3.6

Ignore Battery

This

parameter is used in conjunction with mode 24 during power-up or restart

.

When the user selects 0,

the

battery OK signal must be present in order to execute mode 24

.

When a I is selected, mode 24 is

executed

regardless of the battery status

.

If this parameter is reset to 0, and the battery OK signal is not

present

for power-up mode 24, the restart mode then determines the action taken

.

If the restart mode is

also

mode 24, the system defaults to the dialog mode

.

2.3.7

PMG Count

This

parameter has a range of 0 to 7, and it determines the value of the PMG counter in the BCSR

.

When

a

0 is selected, the counter is disabled

.

The counter enables the KDJ 1 1-B to suppress DMA requests and

make

the processor the busmaster during the next DMA arbitration cycle after the counter overflows

.

The

different

values of the PMG counter are listed below

.

This parameter is normally set to 7, and it is

recommended

that the 0 value not be used because it may cause erratic operation

.

Value

	

Overflow

Time

0

	

Disabled
1

	

0.4

seconds

2

	

0.8

pseconds

3

	

1 .6

gseconds

4

	

3 .2

gseconds

5

	

6.4

pseconds

6

	

12 .8

Wseconds

7

	

25.6

Wseconds

2.3.8

	

Disable

Clock CSR

The

LTC status register DIS LKS function is controlled by the status of this parameter

.

The BCSR

register

uses bit 12 for this feature and when the parameter is set to 1, the feature is disabled

.

When reset

to

0, the bit is cleared and the LTC register responds with address 17 777 546

.

This parameter is normally

set

to 0

.

2.3.9

	

Force Clock Interrupts
FRC LCIE bit 13 of the BCSR register is controlled by this parameter . When set to 1, the clock
unconditionally requests interrupts provided that the priority of the processor is 5 or less . When reset to 0,
the clock can request interrupts only when the clock CSR is enabled, bit 6 of the LTC register is set to l ,
and the priority of the processor is 5 or less . This parameter is normally reset to 0 . If this parameter is set
to 1, it is recommended that the user disable the clock CSR parameter .

2.3.10

	

Clock Select
This parameter selects the frequency used to drive the clock interrupts . This function is also controlled by
bits <I 1 :10> of the BCSR register . The 4 selections are described in the following chart .

Select

	

Clock Frequency

0

	

External BEVNT LSI-11 bus input
1

	

Internal 50 Hz clock
2

	

Internal 60 Hz clock
3

	

Internal 800 Hz clock

2.3.11

	

Enable ECC Test
The ECC memory test is enabled when this parameter is set to 1 . This test uses bit 4 of the memory CSR
to determine if the type of memory is ECC or parity . The test is automatically aborted if parity memory
exists . The test tries to read and write into bit 4 and if it is successful, the ROM code assumes that it is an
ECC memory . When the parameter is reset to 0, the ECC test is bypassed . Normally the ECC test is
always enabled - even when the system only has parity memory . The ECC test is never used for Unibus
memory.

2.3.12

	

Disable Long Memory Test
This test checks the memory addresses for shorts in reading data from memory. When the parameter is set
to 1, the tests are limited to only the first 256 Kbytes of memory, and if it is reset to 0, the test is executed
on all available memory . This parameter is normally reset to 0 to test all the memory for the system .

NOTE
If the long memory test is disabled and parity type
memory exists above the 256 Kbyte limit, then
parity errors are very likely to occur in the memory
above 256 Kbytes .

2.3.13

	

Disable ROM
The user is allowed to selectively disable all or part of the boot ROM code . The ROM code uses two pages
of 256 words in the I/O page . One page responds to the 17 773 000 through 17 773 777 addresses and the
other page responds to the 17 765 000 through 17 765 777 addresses . These pages are automatically
enabled during power-up and restart . One or both of these pages can be disabled by the ROM code . The
user can select a choice as described below, but normally none of the pages are disabled .

* Default .
t Recommended .

Value

	

Disabled ROM Pages

0

	

None*
1

	

Page 17 765 00t
2

	

Page 17 773 00t
3

	

Both pages

2-11

2.3.14

	

Enable

Trap-on-Halt

When

this parameter is set to 1, the processor traps to location 4 when a halt instruction is executed in the

kernel

mode

.

If the parameter is reset to 0, then the processor enters the DCJ11-A micro-ODT mode when

a

halt instruction is executed in the kernel mode

.

Normally this parameter is reset to 0

.

2.3.15

	

Allow

Alternate Boot Block

During

the boot process, the boot block of the device is loaded into memory and the ROM code checks

location

0 to determine if the device is bootable

.

If set to 0 and the data is incorrect, the ROM code types

out

an error message indicating that the device is not bootable

.

When this parameter is set to 1, the ROM

code

checks location 0 for any value other than 0

.

If it is reset to 0, the ROM code checks location 0 for a

value

within the range 240 to 277 and then checks location 2 for a value within the range 400 to 777

.

This

parameter

is normally reset to 0 for standard bootstraps, but may be set to 1 to allow the proper booting

requirements

for some users' operating systems

.

2.3.16

	

Disable

Setup Mode

This

parameter is used to enable the user to enter the setup mode from the dialog mode when set to 0, and

it

disables this feature when set to 1

.

The setup mode command is not available

.

This parameter is set to 1

.
Setup

mode is unconditionally enabled, regardless of how this parameter is set, if the force dialog mode is

enabled .

This parameter is used to prevent unauthorized entry into the setup mode and assumes that the

forced

dialog switch or switch 5 on the module is on to prevent entry into forced dialog mode

.

This

parameter

is only available for the V7

.0

version of the ROM code

.

2.3.17

	

Disable

All Testing

This

parameter is set (1) to prevent the diagnostic testing by the ROM code, provided that the forced

dialog

mode is not selected

.

The ROM code does not change any memory locations unless they are

changed

by the selected boot program

.

This parameter was installed because there are times when the user

needs

an almost immediate response at power-up or needs the memory to remain unaltered

.

This parame-

ter

should only by used when necessary

.

NOTE
If

the testing is disabled and memory parity is being

used,

then memory parity errors are possible after

power-up.

2.3.18

	

Enable

Unibus Memory Test

This

parameter is set (1) specifically to test any Unibus memory in the system and is disabled when reset to

0 .

This feature is only used in Unibus systems

.

2.3.19

Disable UBA ROM

This

parameter is used to control the ROMs located on the UBA by copying its status into bit 3 of the

UBA

Diagnostic Control/Status Register (DCSR) after a normal boot

.

When it is set to 1, the ROMs on

the

UBA are disabled and ROMs located on other Unibus modules are enabled

.

If it is reset to 0, the UBA

ROMs

are enabled

.

This parameter is normally reset to 0, and only applies to Unibus systems

.

It is ignored

when

the user tries to boot the UBA or the M9312 boot ROMs

.

2.3.20

	

Enable

UBA Cache

The

cache located on the UBA is enabled and tested by the ROM code when this parameter is set to 1

.

If a

failure

occurs during the testing of the cache, then the cache is disabled

.

When the parameter is reset to 0,

the

UBA cache is a'~ways disabled

.

This parameter is normally set to 1 and is only used for Unibus systems

.

2.3.21

	

Enable

18-Bit Mode

This

parameter is used to select 18- or 22-bit addressing modes and its status is copied into bit 5 of the

UBA

KTJI l Memory Configuration Register (KMCR)

.

When set to 1, the memory uses 18-bit address-

ing

and when reset to 0, the memory uses 22-bit addressing

.

This parameter is normally reset to 0, and is

only

used for Unibus systems

.

2-12

2.4

SYSTEM INSTALLATION

The

KDJI 1-B module can be used in any system that incorporates a backplane with the extended LSI-11

bus

in rows A and B, and the interconnecting bus in rows C and D

.

The Micro PDP-11/73 system is a

prepackaged

LSI-11 based system that uses the H9278-A backplane

.

The PDP-11/84 system is a

prepackaged

Unibus system that uses the H927 7-A backplane

.

Both of these systems use the MSVII-J

memory

modules as a private memory and utilize the PMI feature of the KDJI I -B module

.

2.4.1

	

LSI-11

Based Systems

An

LSI-11 based system can be custom designed using the KDJII-B module and compatible LSI-11

components .

These systems can incorporate the PMI feature by using the MSV 11-J memory modules

.

A

list

of compatible LSI-11 options is provided in Table 2-7

.

NOTE
It

is recommended that the ac and do loading for the

final

configuration be checked for conformance with

the

LSI-11 bus loading rules

.

It is also recommended

to

check for overloading on the +5 V and +12 V

power

supplies

.

2-13

Memory

MCV

1 1-D

M8631 CMOS

nonvolatile memory

MSV11-L M8059 MOS

memory

MSV11-J M8637 MOS

memory

MSVI1-P M8067 MOS

memory

MSV1l-Q M7551 MOS

memory

MRV11-D M8578 PROM/ROM

module

Options

AAV

11-C

A6008 D/A

converter

ADV

11-C

A8000 A/D

converter

AXV11-C A0026 D/A

and A/D combination converter

DEQNA-K M7504 Adapter,

Q22-Bus to Ethernet

DLV

11

M7940 Asynchronous

serial line interface

DLV

1 1-E

M8017 Asynchronous

serial line interface

DLV11-F M8028 Asynchronous

serial line interface

DLV

11-J

M8043 Four

asynchronous serial line interfaces

(CS

Rev

.

E or later, ECO M8043-MR002 installed)

DZQ

11-M

M3106 4-line

asynchronous multiplexer

DI_VJ

1-M

M8043 4-line

asynchronous multiplexer

DHV11-M M3104 8-line

asynchronous multiplexer

Table

2-7 LSI-11 Compatible Options

Name Option Identification

Backplanes

H9276 4

x 9

LSI-11

/CD

H9278-A 4

X 8

3

LSI-1 1 /CD slots and

5

LSI-11/LSI-11 slots

When

building a custom LSI-11 system, the placement of the KDJ I 1-B module is dependent upon the use

of

the MSV11-J module and the following rules

.

1 .

	

When

two MSV 1 1-J modules are used in the system, they are inserted into the first two slots,

and

the KDJ11-B module is inserted into the third slot of the backplane

.

2 .

	

When

one MSV 1 1-J module is used in the system, it is inserted into the first slot, and the

KDJ

1 1-B module is inserted into the second slot of the backplane

.

3 .

	

If

no MSVII-J modules are used, the KDJII-B module is inserted into the first slot of the

backplane .

Table

2-7

LSI-11

Compatible Options (Cont)

Name Option Identification

DMV

l 1-AC

M8053-MA Synchronous

communications interface

DMVI

I -AF

M8064-MA Synchronous

communications interface

DPV

11

M8020 Programmable

synchronous EIA line

DRV

I 1

M7941 Parallel

interface

DRV

11-J

M8049 Parallel

interface

DUV

1 1

M7951 Programmable

synchronous EIA line

DZV

I 1

M7957 4-line

asynchronous EIA multiplexer

IBV

I I-A

M7954 IEEE

instrument bus interface

KLESI-Q M7740 Adapter,

Q22-Bus to LESI

KPV11-A M8016 Power-fail

and LTC generator

(KPVI

1-B and -C are not compatible)

KWV

1 1-C

M4002 Programmable

real-time clock

LAV

11

M7949 LA

180 line printer interface

LPV

11

M8027 LA

180/LP05 printer interface

RLV12 M8061 RI-01/2

controller

RQDX1 M8639 MSCP

controller for RX50 floppy disk and RD51 Winchester

drive
KDA50-QA M7164/ Adapter,

Q22-Bus to SDI

M7165
RDQXI-E M7512 RD/RX

extender

RXV21 M8029 RX02

controller

TQK25 M7605 TK25

controller

TQK50 M7503 TK50

controller

TSV05 M7196 Magnetic

tape interface

RQDX2 M8639-YB Controller,

MicroPDP-11 systems

RQDX3-M M7555 Controller,

MicroPDP-11 and MicroVAX II systems

Bus

Cable Cards

M9404 Cable

connector

M9405 Cable

connector

Any

additional LSI-I 1 options are inserted below the KDJI I -B module and must conform to the following

rules .

1 .

	

All

options must be inserted below the KDJI 1-B module

.

2 .

	

No

dual options may be inserted in the C and D rows used as the interconnecting bus

.

3 .

	

Dual

options can only be inserted in slots designated as A and B rows

.

4 .

	

Any

open A rows, or C and D rows of a slot must be filled with an M9047 grant module if any

modules

follow the grant chain

.

5 .

	

The

terminating resistors on the backplane should be removed when using an extended back-

plane

system

.

2.4.2

Restricted LSI-11 Systems

There

are many LSI-11 options that are not compatible because they were designed primarily for 16- and

18-bit

systems or for a particular application

.

The LSI-1 1 options not compatible are backplanes, memo-

ries,

or 1/O devices that are not capable of 22-bit addressing

.

They may generate or decode erroneous

addresses

if used in systems that implement 22-bit addressing

.

Memory and memory addressing devices

that

implement only 16- or 18-bit addressing may be used in a 22-bit backplane, but the size of the system

memory

must be restricted to the address range of these devices (64 Kbytes for systems with a 16-bit

device,

256 Kbytes for systems with an 18-bit device)

.

Consider the following when adding restricted

LSI-1

1 options to the system

.

I .

	

The

option must not use pins BC 1, BD 1, BE1 or BFI except as the required BDAL 18-21

connections .

Some early LSI-11 options were allowed to use these pins as test points or for user

provided

interconnections

.

2 .

	

If

the option is a DMA device, it must support the full 22-bit addressing requirement

.

3 .

	

If

the option responds to non-1/0 page addresses, it must also decode the BDAL 18-21 address

lines

as part of the address

.

4 .

	

The

power requirements for each option must be considered to avoid overloading the power

supply .

5 .

	

The

switching and electrical parameters of the option must conform to the LSI-11 specification

of

DEC STD 160

.

6 .

	

The

speed differences between the KDJ 11-B and other Q22-Bus processors, operating systems,

and

diagnostics may cause problems

.

NOTE
DMA

devices having 18 bits can potentially work in

a

22-bit system by buffering I/O in the 18-bit

address

space

.

2.4.3

	

Unibus

Based Systems

A

Unibus based system can be custom designed by using the KDJII-B CPU module, the MSV11-J

memory

module, the KTJ11-B UBA and compatible Unibus components

.

This type of system must be

installed

in the H9277-A backplane and incorporates the PMI feature

.

A list of compatible Unibus

modules

is provided in Table 2-8

.

The

following requirements must be considered when adding a Unibus option to the system

.

Name

l .

	

The

timing and electrical parameters of the option must conform to the Unibus specification of

DEC

STD 158

.

2 .

	

The

ac and de loading of the Unibus must be within the allowable specifications

.

3 .

	

The

power requirements must not exceed the ratings of the power supply and hardware

.

The

speed

differences between Unibus processors, diagnostics, and operating systems may cause

problems .

Communications

DHU

l l -AP

DL11-XP
DN

11-XP

DUP11-AP
DMPI

I -XP

DMR

1 1-XP

DEUNA-AA
KMC

11-MP

KMS

11-BX

DZS

I 1-EA

Disk

and Tape

RC25-XA
RA60-CX
RA81-AX/CX
RA80-AX/CX
TU80-AX
TU81-AX
TK50

Table

2-8	

Unibus

Compatible Options

Identification

16-line

DMA multiplexer

Single

channel modem

Auto

dial unit

Synchronous

interface

Synchronous

multidrop interface

DDCMP

interface

Ethernetinterface
I/O

processor

X .25

packet switch interface

Statistical

multiplexer

Table

2-8 Unibus Compatible Options (Copt)

Name Identification

Options

DH11-XP 16-channel

DMA multiplexer

DZ11-XP 16-channel

multiplexer

DMC11-AL,

AR, DA

DDCMP

channel interface

DR

11-B

DMA

parallel interface

DR11-K Digital

I/O bit interrupt

IEC11-AB,

BA

IEEE

interface

KG11-A CRC

arithmetic unit

KMC

11-B

I/O

processor

DV11-AP,

1P, 2P, 3P

Synchronous

multiplexer

KW

11-A

Dual

programmable clock

PCLll-B Interprocessor

bus

RX211-BX
RH

11

RP05,

6 and RM02 disks

RK611 RK07

disk

RL211-AK
TS11-AA Tape

unit

TJE16
TJU77
AAIl-KT Real-time

I/O

ADl

l-KT

AM11-K
AR

11-KT

RA80
TU58-DX
DB11-MP Unibus

repeater

BA11-K,

L

Expansion

boxes

BA23-CC/CD FCC

expander cabinet

H9642-XX Option

cabinet

2.5

MODULE CONTACT FINGER IDENTIFICATION

The

LSI-l 1 type modules, including the KDJ I 1-B, all use the same contact (pin) identification system

.
The

contacts used on a quad-height module are identified in Figure 2-3

.

The LSI-11 bus signals are

assigned

to rows A and B, each with 18 contacts on the component side and the solder side

.

The KDJI I -B

bus

signals are identified along with the LSI-I 1 bus signals in Table 2-9 and the pins are identified as

follows .

AE2

	

Module

side, identifier side (solder side)

Pin

identifier (Pin E)

Row

identifier (Row A)

The

positioning notch between the two rows of pins mates with a protrusion on the connector block for

correct

module positioning

.

A complete description of the backplane and bus operation is provided in

Chapter

6

.

Figure

2-3	

KDJl

1-B Module Contacts

2-18

The

SRUN L signal is primarily used to drive a panel run light indicator

.

It is used for BA I I -N and later systems

.

It indicates

that

the processor is executing instructions

.

Table

2-9 KDJ11-B

Module

and LSI-11 Bus Signals

Component

Side

Solder Side

Pin LSI-11

Bus

KDJ11-B Pin LSI-I1

Bus

KDJ11-B

AA1 BIRQ

5 L

BIRQ

5 L

AA2 +5

V

+5

V

ABl BIRQ

6 L

BIRQ

6 L

AB2 -12

V

Not

used

AC

I

BDAL

16 L

BDAL

16 L

AC2 GND GND
AD] BDAL

17 L

BDAL

17 L

AD2 +12

V

Not

used

AEI SSPARE

1

Not

used

AE2 BDOUT

L

BDOUT

L

AF1 SSPARE

2

SRUN

L*

AF2 BRPLY

L

BRPLY

L

AHl SSPARE

3

Not

used

AH2 BDIN

L

BDIN

L

AJ

1

GND GND AJ2 BSYNC

L

BSYNC

L

AKl MSPARE

A

Not

used

AK2 BWTBT

L

BWTBT

L

ALI MSPARE

A

Not

used

AL2 BIRQ

4 L

BIRQ

4 L

AM1 GND GND AM2 BIAKI

L

Not

used

AN1 BDMR

L

BDMR

L

AN2 BIALO

L

BIAK

L

API BHALT

L

BHALT

L

AP2 BBS

7 L

BBS

7 L

AR1 BREF

L

Not

used

AR2 BDMGI

L

Not

used

AS1 +12

V

Not

used

AS2 BDMGO

L

BDMGO

L

AT] GND GND AT2 BINIT

L

BINIT

L

AU

I

PSPARE

1

Not

used

AU2 BDAL

0 L

BDAL

0 L

AV1 +5

V

+5

V

AV2 BDAL

1 L

BDAL

1 L

BA1 BDCOK

H

BDCOK

H

BA2 +5

V

+5

V

BB1 BPOK

H

BPOK

H

BB2 -12

V

Not

used

BC

I

SSPARE

4

BDAL

18 L

BC2 GND GND
BDl SSPARE

5

BDAL

19 L

BD2 +12

V

Not

used

BEl SSPARE

6

BDAL

20 L

BE2 BDAL

2 L

BDAL

2 L

BFI SSPARE

7

BDAL

21 L

BF2 BDAL

3 L

BDAL

3 L

BH1 SSPARE

8

Not

used

BH2 BDAL

4 L

BDAL

4 L

BJ1 GND GND BJ2 BDAL

5 L

BDAL

5 L

BK1 MSPARE

B

Not

used

BK2 BDAL

6 L

BDAL

6 L

BL1 MSPARE

B

Not

used

BL2 BDAL

7 L

BDAL

7 L

BM1 GND GND BM2 BDAL

8 L

BDAL

8 L

BN1 BSACK

L

BSACK

L

BN2 BDAL

9 L

BDAL

9 L

BPI BIRQ

7 L

BIRQ

7 L

BP2 BDAL

10 L

BDAL

10 L

BR1 BEVNT

L

BEVNT

L

BR2 BDAL

11 L

BDAL

11 L

BSI PSPARE

4

Not

used

BS2 BDAL

12 L

BDAL

12 L

BT

I

GND GND BT2 BDAL

13 L

BDAL

13 L

BUI PSPARE

2

Not

used

BU2 BDAL

14 L

BDAL

14 L

BV

I

+5

V

+5

V

BV2 BDAL

15 L

BDAL

15 L

The

KDJI I -B module also uses rows C and D in the backplane for the PMI feature

.

The C and D rows

provide

an interconnection between modules placed in adjacent slots

.

The signals assigned to the C and D

rows

are identical for the KDJ1 l -B CPU module, the MSVI I -J memory module and the KTJ11-B UBA

.
The

module signals are identified in Table 2-10

.

Table

2-10

Module

PMI Signal Assignments

Component

Side

Solder Side

Pin KDJ11-B Pin KDJ11-B

CAI Not

used

CA2 +5

V

CBI PSSEL

L

CB2 Not

used

CC

I

SRUN

L

CC2 GND
CD1 PUBMEM

L

CD2 Not

used

CE

I

PBCYC

L

CE2 Not

used

CFI PUBSYS

L

CF2 Not

used

CHI PHBPAR

L

CH2 Not

used

CJ

l

PSBFUL

L

02 Not

used

CK

1

PLBPAR

L

CK2 Not

used

CL

I

Not

used

CL2 Not

used

CM

I

PRDSTB CM2 Not

used

CN

1

Not

used

CN2 Not

used

CPI PBLKM

L

CP2 Not

used

CR

1

PBSY

L

CR2 Not

used

CS1 Not

used

CS2 Not

used

CTI GND CT2 Not

used

Cu

l

Not

used

CU2 Not

used

CV1 PUBTMO

L

CV2 Not

used

DA

I

Not

used

DA2 +5

V

DB1 PWTSTB

L

DB2 Not

used

DC

I

PBYT

L

DC2 GND
DD1 PMAPE

L

DD2 Not

used

DE

I

Not

used

DE2 Not

used

DF

1

Not

used

DF2 Not

used

DH1 Not

used

DH2 Not

used

DJ

I

Not

used

DJ2 Not

used

DK1 Not

used

DK2 Not

used

DL1 Not

used

DL2 Not

used

DM1 Not

used

DM2 Not

used

DN

1

CNSL

LOCK L

DN

2

Not

used

DPI Not

used

DP2 Not

used

DRI Not

used

DR2 Not

used

DS

I

Not

used

DS2 Not

used

DTI G

N I)

DT2 Not

used

DU

I

Not

used

DU2 Not

used

DV

1

Not

used

DV2 Not

used

2.6

MODULE INSTALLATION PROCEDURE

Certain

guidelines should be followed when installing or replacing the KDJ11-B module or any LSI-11

option

used in the system

.

They are as follows

.

1 .

2 .

3 .

4 .

5 .

AC

Bus Loads

DC

Bus Loads

Environmental :

Storage

Verify

do power before inserting the module in a backplane

.

Ensure

that no do power is applied to the backplane when removing or inserting the module

.

Verify

the configuration of the module jumpers

.

Insert

the KDJ11-B module into the backplane with the component side facing up

.

Ensure

that either the module or the selected system components

protocol .

Use

a single switch to apply all power to the system

.6 .

2.7

SPECIFICATIONS

Identification

Size

Dimensions

Power

Consumption

Operating

M8190

Quad

26 .5

cm X22

.8

cm (10

.5

in X8

.9

in)

+5

V ± 5% at 5

.5

A (maximum)

+12

V ± 5% at 0

.1

A (maximum)

1

unit load

1

unit load

-40°C

to +65°C (-40°F to 150°F), 10% to 90% relative humid-

ity,

noncondensing

For

ambient temperatures above +55°C, sufficient air flow must

be

provided to limit the module temperature to less than +65°C

.
For

inlet temperatures below +55°C, air flow must be provided to

limit

temperature rise across the module to +10°C

.

Derate

maximum temperature by I 'C (1

.8°F)

for each 305 m

(1000

ft) above 2440 m (8000 ft)

.

provide

the power-up

CHAPTER

3

CONSOLE

ON-LINE DEBUGGING TECHNIQUE (ODT)

3.1

INTRODUCTION

The

console octal debugging technique, normally called the console ODT, allows the KDJ11-B to respond

to

commands and information entered via a console terminal connected to the module

.

The console

interface

uses addresses 17 777 560 through 17 777 566 to communicate with the DCJ 1 1 microprocessor

.
The

addresses of the console terminal are generated in the microcode and cannot be changed

.

Communica-

tion

between the microprocessor and the user is a stream of ASCII characters interpreted as console

commands.

'These commands are a subset of the commands used in the ODT-11 software for

microcomputers .

This

feature is called the microcode on-line debugging technique, or micro-ODT

.

The KDJ 11-B micro-

ODT

accepts 22-bit addresses, allowing it to access 4088 Kbytes of memory, plus the 8 Kbyte 1/O page

.
Micro-ODT

provides a more sophisticated range of debugging techniques, including access to memory

locations

by virtual address

.

3.1.1

	

Terminal

Interface

The

KDJl1-B provides a DLART serial line interface on the module

.

The console is connected to the

module

directly or via an interfacing panel

.

This allows the console to communicate with the KDJ11-B

.
The

DLART uses four registers designated as the RCSR, RBUF, XCSR and XBUF

.

These registers are

described

in Chapter 1

.

Console

ODT uses bit 7 of the RCSR and the XCSR registers and the low bytes of the RBUF and XBUF

registers .

The other bits used by these registers are ignored with the following exceptions

.

The

XCSR maintenance bit 2 and the XMIT break bit 0 must be cleared in order for the console ODT to

function .

The interrupt enable bits 6 of the XCSR and RCSR registers have no effect during

console

ODT

.

CAUTION
The

user must not write any data into the XCSR

that

will set bits 2 or 0 to a 1

.

That is, no data that

ends

with 1, 3, 4, 5, 6 or 7 may be entered into this

register .

If this is done, the user has to cycle the

power-up

sequence or hit the restart switch

.

3.2

ODT OPERATION OF THE CONSOLE SERIAL LINE INTERFACE

The

processor microcode operates the serial line interfac

.-

in half-duplex mode by using program 1/O

techniques

rather than interrupts

.

This means that when the ODT microcode is busy printing characters

using

the output side of the interface, the microcode is not monitoring the input side for incoming

characters .

Any characters coming in while the ODT microcode is printing are lost

.

Overrun errors

detected

by the DLART are ignored because the microcode does not check any error bits in the serial line

interface

registers

.

Therefore,

the user should not "type ahead" to ODT because those characters will not be recognized

.

If

another

processor is at the end of the serial line, it must obey half-duplex operation

.

In other words, no

input

characters should be sent until the processor output is finished

.

3.2.1

	

Console

ODT Input Sequence

The

input sequence for ODT is as follows

.

1 .

	

Test

RCSR bit 7 (DONE flag) at 17 777 560 using a DATI bus cycle

.

If it is a 0, continue

testing .

2 .

	

If

RCSR bit 7 is a 1, read the low byte of RBUF at 17 777 562 using a DATI bus cycle

.

3.2.2

	

Console

ODT Output Sequence

The

output sequence of ODT is as follows

.

1 .

	

Test

bit 7 (DONE flag) of the XCSR at 17 777 564 using a DATI bus cycle

.

If it is a 0,

continue

testing

.

2 .

	

If

XCSR bit 7 is a 1, write to the XBUF at 17 777 566 using a DATO bus cycle

.

The desired

character

is in the low byte

.

3.3

CONSOLE ODT ENTRY CONDITIONS

The

ODT console mode can be entered in the following ways

.

"

	

Execution

of a HALT instruction in kernel mode, provided the trap option is not selected in the

maintenance

register (address 17 777 750, bit 3)

.

The trap option is reset by the negation of

DCOK.

Assertion

of the BHALT signal on the bus

.

Note that the signal must be asserted long enough to

be

seen at the end of a macroinstruction by the service state in the processor

.

BHALT is

asserted

if the halt-on-break feature is enabled by setting BCSR bit 9 to a 1, and then the SLU

console

receives a break character

.

"

	

At

power-up when the power-up option is selected or at power-up and restart if the halt switch is

depressed .

ODT

causes the following conditions upon entry

.

1 .

	

Performs

a DATI from RBUF (input data buffer at 17 777 562) and then ignores the character

present

in the buffer

.

This operation prevents the ODT from interpreting erroneous characters

or

uses

:irograrn

characters as a command

.

2 .

	

Prints

a carriage return (<CR>) and line feed (<LF>) on the console terminal

.

3 .

	

Prints

the contents of the PC (program counter R7) in six digits

.

4 .

	

Prints

a <CR> and <LF>

.

5 .

	

Prints

the prompt character @

.

6 .

	

Enters

a wait loop for the console terminal input

.

The DONE flag (bit 7) in the RCSR at

17

777 560 is constantly being tested for a 1 via a DATI by the processor

.

If bit 7 is a 0, the

processor

keeps testing

.

3.4

CONSOLE ODT COMMAND SET

The

ODT command set is listed in Table 3-1 and is described in the following paragraphs

.

The commands

are

a subset of ODT-11 and use the same command characters

.

ODT has 10 internal states and each state

recognizes

certain characters as valid input and responds with a question mark (?) to all others

.

The

parity bit (bit 7) on all input characters is ignored (i

.e .,

not stripped) by console ODT, and if the input

character

is echoed, the state of the parity bit is copied to the output buffer (XBUF)

.

Output characters

internally

generated by ODT (e

.g .,

<CR>) have the parity bit equal to 0

.

All commands are echoed except

for

<LF>

.

In

order to describe the use of a command, other commands are mentioned before they have been defined

.
For

the novice user, these paragraphs should be scanned first for familiarization and then reread for detail

.
The

word "location," as used in the following paragraphs, refers to a bus address, processor register, or

PSW.

The

descriptions of the ODT commands include examples of the printouts that the processor outputs to the

console

terminal in response to the commands entered by the user

.

In the examples that follow, the

processor

output portions are boldface

.

Table

3-1 Console ODT

Commands

Command Symbol Function

Slash / Prints

the contents of a specified location

.

Carriage

return

<CR> Closes

an open location

.

Line

feed

<LF> Closes

an open location and then opens the

next

contiguous location

.

Internal

register

$

or R

Opens

a specific processor register

.
designator

PSW

designator

S Opens

the PSW

;

must follow a $ or R

command .

Go G Starts

execution of a program

.

Proceed P Resumes

execution of a program

.

Binary

dump

<CTRL>

<SHIFT> S

Manufacturing

use only

.

3.4.1

	

/

(ASCII 057) - Slash

This

command is used to open a bus address, processor register, or PSW and is normally preceded by other

characters

that specify a location

.

In response to /, ODT prints the contents of the location (six characters)

and

then a space (ASCII 40)

.

After printing is complete, ODT waits for either new data for that location

or

a valid close command

.

The space character is issued so that the contents of the location and possible

new

contents entered by the user are legible on the terminal

.

Example :

	

@00001000/012525

<SPACE>

Where:

	

G

= ODT prompt character

.

Example :

octal

location in the Q22-Bus address space desired

by

the user (leading Os are not required)

.

second

line

Example :

	

@R

1 /004321 <SPACE> <CR> <CR> <LF>

G

command

to open and print contents of location

.

contents

of octal location 1000

.

space

character generated by OUT

.

The

/ command can be used without a location specifier to verify the data just entered into a previously

opened

location

.

The / produces this result only if it is entered immediately after a prompt character that

follows

a location previously closed by a <CR>

.

A / issued immediately after the processor enters ODT

mode

causes `? <CR> <LF> to be printed because a location has not yet been opened

.

@1000/012525

<SPACE> 1234 <CR> <CR> <LF>

@/001234

<SPACE>

Where :

	

first

line	

=

	

new

data of 1234 entered into location 1000 and

location

closed with <CR>

.

a

/ entered without a location specifier and the

previous

location opened to reveal the new contents

correctly

entered into memory

.

3.4.2

	

<CR>

(ASCII 15) - Carriage Return

This

command is used to close an open location

.

If the contents of a location are to be changed, the user

must

precede the <CR> with the new data

.

If no change is desired, <CR> closes the location without

altering

its contents

.

Processor

register R 1 was opened and no change was desired, so the user issued <CR>

.

In response to the

<CR>,

ODT printed <CR> <LF> @

.

Example :

	

@R

1 /004321 <SPACE> 1234 <CR> <CR> <_LF>

In

this case, the user desired to change R1

.

The new data, 1234, was entered before the <CR>

.

ODT

deposited

the new data into the open location and then printed <CR> <LF> (a

.

ODT echoes the <CR>

entered

by the user before it prints <CR> <LF> G

.

00001000 =

012525 =

<SPACE> =

3.4.3

	

<LF>

(ASCII 12) - Line Feed

This

command is used to close an open location and then open the next contiguous location

.

Bus addresses

and

processor registers are incremented by two and one, respectively

.

If the PSW is open when an <LF> is

issued,

it is then closed, <CR> <LF> G is printed, and no new location is opened

.

If the open location

contents

is to be changed, the new data must precede the <LF>

.

If no data is entered, the location is closed

without

being altered

.

Example :

	

@R2/123456

<SPACE> <LF> <CR> <LF>

@R3/054321

<SPACE>

In

this case, the user entered <LF> with no data preceding it

.

In response, ODT closed R2 and then

opened

R3

.

When a user has the last register, R7, open, and issues <LF>, ODT "rolls over" to the first

register,

R0

.

ODT opens location 0 if the last location in the 1/O page (17 777 776) is open and the user

issues

an <LF>

.

Unlike

other commands, console ODT does not echo the <LF>

.

Instead, it prints <CR>, then <LF>, so

that

terminal printers operate properly

.

In order to make this easier to decode, console ODT does not echo

ASCII

characters in the range 0 to 17 (octal), but responds with ? <CR> <LF> G

.

3.4.4

	

$

(ASCII 044) or R (ASCII 122) - Internal Register Designator

Either

character, $ or R, when followed by a register number (0 to 7) or PSW designator (S), opens the

processor

register specified

.

The $ character is recognized to be compatible with ODT-1 1

.

The R character

was

introduced as a one-key-stroke representation of its function

.

Lower case r (ASCII 162) is treated the

same

as R

.

Examples :

	

@$0

/000123 <SPACE>

Example :

@R7/000123

<SPACE> <LF>

@RO/054321

<SPACE>

If

more than one character (digit or S) follows the R or $, ODT uses the last character as the register

designator .

An exception

:

if the last three digits are 077 or 477, ODT opens the PSW rather than R7

.

3.4.5

	

S

(ASCII 123) - Processor Status Word Designator

This

designator is for opening the PSW and must be used after the user has entered an R or $ register

designator .

Lower case s (ASCII 163) is treated the same as S

.

@RS/100377

<SPACE> 0 <CR> <CR> <LF>

@/000010

<SPACE>

Note

that the trace bit (bit 4) of the PSW cannot be modified by the user

.

This is to prevent the PDP-11

program

debugging utilities (e

.g .,

ODT-11) that use the T-bit for single-stepping from being accidentally

harmed

by the user

.

If the user issues an <I-F> while the PSW is open, the word is closed and ODT prints

<CR>

<LF> G

.

No new location is opened in this case

.

3.4.6

	

G

(ASCII 107) - Go

This

command is used to start program execution at a location entered immediately before the G

.

This

function

is equivalent to the Load Address and Start switch sequence on other PDP-11 consoles

.

Example :

	

@200

G <NULL> <NULL>

The

ODT sequence for a G, after echoing the command character, is as follows

.

1 .

	

Print

two nulls (ASCII 0) so the bus initialize that follows does not flush the G character from

the

double buffered DART chip in the serial line interface

.

2 .

	

Load

R7 (PC) with the entered data

.

If no data is entered, 0 is used

.

(In the above example, R7

equals

200 and that is where program execution begins

.)

3 .

	

The

Floating-Point Status register (FPS) and the PSW are cleared to 0

.

4 .

	

The

LSIA I bus is initialized by the processor asserting BINIT L for 12

.6

useconds, negating

BINIT

L, and then waiting for 110 Aseconds

.

5 .

	

The

service state is entered by the processor

.

Anything to be serviced is processed

.

If the

BHALT

L bus signal is asserted, the processor reenters the console ODT state

.

This feature is

used

to initialize a system without starting a program (R7 is altered)

.

If the user wants to single

step

a program, he/she issues a G and then successive P commands, all with the BHALT L bus

signal

asserted

.

3.4.7

	

P

(ASCII 120) - Proceed

This

command is used to resume execution of a program and corresponds to the Continue switch on other

PDP-1

I consoles

.

No machine state visible to the programmer is altered using this command

.

Example :

@P

Program

execution resumes at the place pointed to by R7

.

After the P is echoed, the ODT state is left and

the

processor immediately enters the state to fetch the next instruction

.

If a halt request is asserted, it is

recognized

at the end of the instruction (during the service state) and the processor then enters the ODT

state .

Upon entry, the contents of the PC (R7) is printed

.

In this fashion, a user can single-step through a

program

and get a PC "trace" displayed on the terminal

.

3.4.8

	

<CTRL>

<SHIFT> S (ASCII 23) - Binary Dump

This

command is used for test purposes by manufacturing and is not a normal user command

.

The

command

is normally received from another computer and not the system console

.

It is recommended that

this

command not be issued from the terminal because the console ODT echoes back the ASCII 23 code,

and

this may cause the keyboard to lock up, preventing data from being displayed on the screen

.

There is

no

reason to issue this command from a terminal because it then dumps the binary data

.

The terminal is

intended

to receive ASCII data

.

This command is intended to more efficiently display a portion of the

memory,

as compared to using the / and <LF> commands

.

This

command can accidentally be entered on many terminals by typing <CTRL> S, <CTRL> s,

<CTRL>

3, or in many cases by pressing <NO SCROLL>, since all these conditions normally generate

the

ASCII 23 code If theyuser accidentally enters this command, it is recommended that the user reset the

terminal

and type an "a" at least three times in order to ensure that the console ODT is ready to accept

commands

again

.

The command protocol is as follows

.

1 .

	

After

a prompt character, ODT receives a <CTRL> <SHII~ T> S command and echoes it

.

2 .

	

The

host system at the other end of the serial line must then send two 8-bit bytes, which ODT

interprets

as a starting address

.

These two bytes are not echoed

.

The first byte specifies starting

address

<15

:08>,

and the second byte specifies starting address <07

:00> .

Bus address bits

<21 :16>

are always forced to 0

;

the dump command is restricted to the first 32K words of

address

space

.

The starting address may be even or odd

.

3 .

	

After

the second address byte is received, ODT outputs 10 bytes to the serial line, starting at the

address

previously specified

.

When the output is finished, ODT prints <CR> <LF> @

.

3.5

KDJ11-B ADDRESS SPECIFICATION

The

KDJ1 1-B micro-ODT accepts 22-bit addresses, allowing it to access 4088 Kbytes of memory, plus the

8

Kbyte 1/O page

.

All I/O page addresses must be entered by users with the full 22 bits specified

.

For

example,

to open the RCSR of the SL

.U

(DLART), the user must enter 17 777 560, not 17 7 560 or

777

560

.

3.5.1

	

Processor

I/O Addresses

Certain

processor and memory management registers have I/O addresses assigned to them for program-

ming

purposes

.

If referenced in ODT, the PSW responds to its bus address, 17 777 776

.

Processor registers

RO

through R7 do not respond (i

.e .,

timeout occurs) to bus addresses 17 777 700 through 17 777 707 if

referenced

in ODT

.

The

MMRs and PAR/PDR pairs can be accessed from ODT by entering their bus address

.

Example :

	

@17777572/000001

<SPACE>

In

this case, MMRO is opened to show the memory management enable bit set

.

The

FP 11 accumulators cannot be accessed from ODT

.

Only FP 11 instructions can access these registers

.

3.5.2

	

Stack

Pointer Selection

Accessing

kernel, supervisor and user stack pointer registers is accomplished in the following way

.
Whenever

R6 is referenced in ODT, it accesses the SP specified by the PSW current mode bits

(PSW

<15

:14>) .

This is done for convenience

.

If a program operating in kernel mode

(PSW

< 15

:14>

= 00) is halted and R6 is open, the KSP is accessed

.

Similarly,

if a program is operating in user mode (PSW < 15

:14>

= 11), the R6 command accesses the

USP.

If a different SP is desired, PSW <15

:14>

must be set by the user to the appropriate value, and then

the

R6 command can be used

.

If an operating program has been halted, the original value of

PSW

<15

:14>

must be restored in order to continue execution

.

Example :

	

PS

= 140000

@R6/123456

<SPACE>

The

USP has been opened

.

@RS/140000

<SPACE> 0 <CR> <CR> <LF>

@R6/

123456 <SPACE> <CR> <CR> <LF>

@RS/000000

<SPACE> 140000 <CR> <CR> <LF>

@P

In

this case, the KSP was desired

.

The PSW was opened and PSW <15

:14>

was set to 00 (kernel mode)

.
Then

R6 was examined and closed

.

The original value of PSW < 15

:14>

was restored, and then the

program

was continued using the P command

.

3-7

3.5.3

	

Entering

Octal Digits

When

the user is specifying an address, console ODT uses the last eight digits if more than eight have been

entered .

When the user is specifying data, console ODT uses the last six octal digits if more than six were

entered .

The user need not enter leading Os for either address or data

;

console ODT forces Os as the

default .

If an odd address is entered, console ODT responds to the error by printing ? <CR> <LF> or @

.

3.5.4

	

ODT

Timeout

If

the user specifies a nonexistent address or causes a parity error, ODT responds to the bus timeout by

printing

? <CR> <LF> or @

.

3.5.5

General Registers

Whenever

RO through R5 are referenced in console ODT, they access the general register set currently

specified

by PSW bit 11

.

If a program is operating in general register set 0 (PSW bit 11 set to 0), the

program

is halted

.

A general register is opened and register set 0 is accessed

.

Similarly, if a program is

operating

in register set l , references to RO through R5 access register set 1

.

If

a specific register set is desired, PSW bit I 1 must be set by the user to the appropriate value, and then

the

RO through R5 commands can be used

.

If an operating program has been halted, the original value of

PSW

bit 1 l must be restored in order to continue execution

.

Example :

	

PSW

= 000000

R4

in register set 0 has been opened

.

@R4/052525<SPACE>

<CR> <CR> <LF>

@RS/000000<SPACE>

4000 <CR> <CR> <LF>

@R4/177777<SPACE>

<CR> <CR> <I-F>

@RS/004000<SPACE>

0 <CR> <CR> <LF>

@P

In

this case, R4 in register set 1 was desired

.

The

.

PSW was opened and PSW bit 11 was set to 1 (selecting

register

set 1)

.

Then R4 was examined and closed

.

The original value of PSW bit 11 was restored and the

program

was continued by using the P command

.

CHAPTER

4

BOOT

ROMS AND DIAGNOSTICS

4.1

INTRODUCTION

The

boot and diagnostic ROMs consist of two Erasable Programmable ROMs (EPROMs) and one

EEPROM

that provides either 2 Kbytes or 8 Kbytes of memory

.

The two EPROMs contain the basic boot

and

diagnostic code used for the diagnostics, the standard boot programs, the EEPROM setup programs

and

the general support routines

.

The EEPROM stores all the variable parameters, such as the hardware

configuration,

boot device selections and any special user bootstrap programs

.

During

power-up or restart, the KDJ I I -B passes control to the ROM code

.

This code establishes the

configuration

of the module, runs the diagnostics to test the KDJI l -B, tests all available memory and tests

the

UBA in Unibus systems

.

After all the diagnostics are complete, the ROM code determines if a

previously

selected device is ready to be booted or to enter the dialog mode, which will allow the user to

input

the device to be booted via the console terminal

.

The

user is able to select and edit the contents of the EEPROM by using the commands established by the

dialog

mode

.

In this mode, the Help, Boot, List, Setup, Map, and Test commands allow the user to custom

select

the features of the ROM code to meet the boot and diagnostic requirements of any LSI bus or

Unibus

based system that can support a variety of devices

.

The commands used in the dialog mode and the

diagnostics

are described in detail in this chapter

.

NOTE
There

are three versions of the ROM code

.

Version

V6.0

was used with some of the earlier modules

.
Versions

V7

.0

and V8

.0

are currently being used

.
The

differences between these code revisions are

described

in Appendix A

.

4.2

POWER-UP OR RESTART

The

ROM code checks a status bit to determine if the system is powering up or being restarted

.

The

system

checks the status of the reboot pulse bit in the BCSR for LSI bus operation and the same bit in the

KMCR

for Unibus operation

.

When this bit is set, the system enters the restart routine and if it is clear,

the

system powers up

.

There are four selections for the power-up or restart routines available to the user

that

can be designated by the configuration parameters

.

The ROM code checks the status of the selected

mode

and enters the mode selected for either the power-up or the restart routine

.

The selections for the

restart

mode are identical to those used in the power-up mode

.

However, these selections are independent

of

each other and the selection for the restart mode can be different than that selected for the power-up

mode .

4.2.1

	

Dialog

(Mode 0)

The

ROM code executes the diagnostics as determined by the EEPROM and then automatically enters

the

dialog mode

.

The user is now able to boot a device, select the setup mode or run more diagnostics

.

4.2.2

	

Automatic (Mode 1)
At the completion of the diagnostics, the ROM code enters the automatic boot routine and then tries to
boot the predetermined device or devices . The devices are previously selected and loaded into the
EEPROM. The user can select up to six individual devices to be automatically booted . The system
attempts to sequentially boot the devices on the list until a device is successfully booted or the end of the
list is reached. The factory setting or default list consists of A, DLO and MSO. The A device tries to boot
an MSCP device in the range of 0 to 7 .
4.2.3

	

ODT (Mode 2)
In this mode, a limited set of diagnostics is run and the ROM code executes a halt instruction and passes
control to the DCJ11-A micro-ODT code as described in Chapter 3 . The user can continue the diagnostic
testing and enter the dialog mode by typing P and pressing the Return key, provided none of the register
data was changed . This mode is normally used for debugging .

4.2.4

	

24/26 (Mode 3)
After a limited set of diagnostics is run, the ROM code loads the contents of location 26 into the PSW and
then transfers control to the address referenced by the contents of location 24 . This mode is used when the
memory uses battery backup or when nonvolatile memory is present and it is necessary to recover from a
power fail condition .
4.3 FORCED DIALOG MODE
The forced dialog mode allows the user to enter the dialog mode when the module is powered up in a mode
other than the dialog mode. The user can select the forced dialog mode when the module is powered up in
the ODT, 24/26 or the automatic mode by using switch 5 (BCR bit 3) of the module switchpack . When
this switch is off, BCR bit 3 is set (1), and the module automatically enters the dialog mode when the
diagnostics are complete . When this switch is on, BCR bit 3 is cleared, and the module does not enter
dialog mode.

However, if the switch is on and the module is powered up in the automatic mode while the diagnostics are
enabled, the user may force entry into the dialog mode by typing <CTRL> C or <CTRL> P. The
<CTRL> C or <CTRL> P commands are keyed after the "Testing in progress - Please wait" message is
displayed, but before the "1 2 3 4 5 6 7 8 9" message is completely displayed. The <CTRL> C and
<CTRL> P entries are not echoed and after the diagnostics are complete, the dialog mode is entered .
<CTRL> C is the preferred command. Recognition of the <CTRL> P command provides compatibility
with the PDP-11 ROM code .
4.4 HELP COMMAND
A complete list and brief descriptions of all the help commands are shown in Figure 4-l . A command is
executed by typing H and pressing the Return key or by keying ? only . The system returns to the dialog
mode after the list is displayed.

Commands are : [Help, Boot, List, Setup, Map, Test]
Type a command then press the RETURN key: H
Command Description
Help

	

Type this message
Boot

	

Load and start a program from a device
List

	

List boot programs
Setup

	

Enter Setup mode
Map

	

Mapmemory and I/O page
Test

	

Continuous self test - Type CTRL C to exit

Figure 4-1

	

Help Commands

4-2

,MR -17235

4.5 BOOT COMMAND
This command allows the user to boot a device . The command is executed by typing B, pressing the space
bar, then typing the device name followed by the unit number of the device . The command uses arguments
for the device name and the unit number to assist the user . When the name of the device is not used, the
program prompts the user for it, and if the unit number is not used, the program assumes that it is zero .
The unit numbers can range from 0 to 255, depending on the device and the boot program. Figure 4-2 is
an example of how to boot an RL01 or RL02 device with the name DL and the unit number 2.
The boot command also uses three qualifiers to further define the situation when a nonstandard condition
is used in booting a device . The qualifiers use a slash with a letter, as follows .

/A

	

Identifies that the CSR address is nonstandard and requests the user for the actual address .
/O

	

Identifies that the unit number given is an octal number rather than a decimal number for unit
numbers above 7.

/U

	

In a Unibus system, if the boot exists in the base ROM and also in the UBA, the base ROM
boot is overridden and the boot from the UBA module or the M9312 module is used .

The format used for a qualifier is to type the device name, the unit number followed by a / and the type of
qualifier . If more than one qualifier is being used, only one / is used as shown in the examples .
When the ROM code has a device name, it searches for the first boot program with the same device name.
The ROM code sequentially searches in the areas listed below while attempting to match the device name.
If the /U qualifier is used, the first two areas are skipped because the boot program is located on the UBA
or M9312 module.

1st area

	

Searches the EEPROM
2nd area

	

Searches the KDJI I -B ROM code
3rd area

	

Searches the UBA module (Unibus only)
4th area

	

Searches the M9312 module (Unibus only)

Commands are : [Help, Boot, List, Setup, Map, Test]Type a command then press the RETURN key : B DI-2
Trying DI-2
Starting system
RT-1 1 FB (S) V05.01
.SET TT QUIET
.R DATIME
Date? [dd-mmm-yy]?

Figure 4-2

	

Booting an RLO 1 /RL02
MR-17236

The

following examples of the boot mode commands are provided to show the user how to interpret the

variations .

If the user types a colon after the unit number, it is ignored as shown in the last example

.

B

DL	

Boot

DLO

B

DL I	

Boot

DL 1

B

DU8	

Boot

DU unit 8

B

DU 10/O	

Boot

DU unit 8

B

DU/A

Address

= 17 760 400	

Boot

DUO with nonstandard CSR address of 17 760 400

B

DU3/U

B

DU 11 /UO

B

DU3	

Boot

DU unit 3

Boot

DU3 using boot from UBA or M9312 module, instead of

KDJ

11-B module

Boot

DU unit 9 using UBA or M9312 boot, instead of

KDJ

11-B boot

B

DU 11 /U/O	

Invalid

format

;

causes an invalid entry error message

The

single letter B implements a method of supporting non-Digital boot devices on the LSI bus or Unibus

.
If

either one of the following cases does not meet all of the conditions, then the ROM code prints out an

invalid

device message

.

In

an LSI bus system, the letter B causes the ROM code to disable the KDJ1 1-B ROM and check location

17

773 000 for the existence of a ROM on the bus

.

If one is located, and location 17 773 000 of the ROM

is

not 0 (halt), then the ROM code passes control to location 173 000, memory management is turned off

and

RO is set to the unit number of the bus device

.

In

a Unibus system, the letter B causes the ROM code to transfer control to the address stored in location

17

773 024 of a ROM located on the Unibus, provided there is a stored address and it is 165 000 or

greater .

4.6

LIST COMMAND

A

list of the bootstrap programs available to the user is displayed by using the list command in the dialog

mode.

The command is executed by typing L and pressing the Return key

.

This command provides a

listing

of the available bootstrap programs and returns to the dialog mode after the list is completed

.

The

user

can change the contents of the EEPROM by using the setup commands and thereby changing the list

of

available programs

.

The

list contains all the bootstrap programs available in the ROM code and also those stored in the

EEPROM

as shown in Figure 4-3

.

The information in the list describes the device name, the range of unit

numbers,

the type of device and where the program is stored

.

The device name is normally a two-letter

mnemonic,

but in some cases it may only be a single letter

.

This name must always use the letters from A

to

Z

.

Any lower case letters are automatically converted to upper case letters by the ROM code

.

The unit

number

range is a list of valid unit numbers that can be used with a particular boot program

.

The range

varies

from a single device designated as 0, up to as many as 255 multiple devices, depending on the type

of

device

.

The type of device that is associated with a name is usually the actual name of the device

.

For

example,

a device named as a DL would actually be an RLOI or RL02

.

Commands are: [Help, Boot, List, Setup, Map, Test]Type a command then press the RETURN key: L

RD51/52, RX50, RC25,)

Figure 4-3

	

Available Boot Programs
MR-17237

In a Unibus system, the list also contains any bootstrap programs that are stored on the UBA and the
M9312 module (if it is present in the system) . These programs are identified in the source listing as either
UBA ROM or M9312 .
4.7 SETUP MODE
The setup mode is entered by the user keying S and pressing the Return key. This mode allows the user to
list and change most of the configuration parameters and the bootstrap programs . These commands are
used to select the configuration parameters and the bootstrap programs required for the system devices .
The ROM code loads the first 105 bytes of the EEPROM into memory, starting at location 2000 . This
area of memory is referred to as the setup table and it contains all the configuration parameters described
in Chapter 2 . The EEPROM also contains the resident boot programs and various types of information
used by the system . The first 105 bytes of information are needed by the ROM code to determine the
configuration of the module, the boot program for the device, and the test selections and modes. Setup
mode allows the user to change the setup table and the bootstrap programs .
Setup mode has fifteen commands that allow the user to select, edit, create and change the contents of the
EEPROM. Whenever the setup mode is entered, the commands are listed and described as shown in
Table 4-1 . To execute a command, the user keys the command number (1 to 15) and presses the Return
key. A description of these commands is included in this section . Command 1 is the exit command that
returns the user to the dialog mode . The user can also exit the setup mode by typing <CTRt-> C . To exit a
command and remain in the setup mode, the user types <CTRL> Z. When in the process of editing or
changing the contents of the EEPROM, always terminate the process by keying the Return character . If
the process is terminated by a <CTRL> C or <CTRL> Z, the changes are ignored and lost .
4.7.1

	

Exit (1)
The exit command (1) allows the user to exit the setup mode and return to the dialog mode . This can also
be accomplished by typing <CTRL> C .

Device Unitname Numbers Source Device Type
DU 0-255 CPU ROM MSCP (RA80/81/60,DL 0-3 CPU ROM RL01/RL02DX 0-1 CPU ROM RX01DY 0-1 CPU ROM RX02DD 0-1 CPU ROM TU57DK 0-7 CPU ROM RK05MS 0-3 CPU ROM TK25, TS05XH 0-1 CPU ROM DECNET DEQNA
NU 0-15 CPU ROM DECNET DUV1 1
NE 0-15 CPU ROM DECNET DLV11 -E
NF 0-15 CPU ROM DECNET DLV1 1-F

Command

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Table

4-1	

Setup

Mode Commands

Description

Exit
Select

configuration parameters

Select

bootstrap translations

Select

automatic boot sequence

Select

console message

Define

switchpack boot selections

List

available boot programs

Setup

table initialization

Save

the setup table in the EEPROM

Load

EEPROM data into the setup table

Delete

a boot program from the EEPROM

Load

an EEPROM boot program into memory

Edit

or create boot program in the EEPROM

Save

a boot program in the EEPROM

Enter

ROM ODT

4.7.2

	

Select

Configuration Parameters (2)

The

configuration parameters controlled by this command are listed in Table 4-2 and are printed out when

command

2 is entered

.

The user is then able to change the configuration parameters to meet the desired

system

requirements

.

Chapter 2 defines the parameters and explains how they are changed or selected

.

Table

4-2

Configuration

Parameters

Item Parameter Selections Status

A Enable

halt-on-break

(0)

= No (1) = Yes

=

1

B Disable

user friendly

(0)

= No (1) = Yes

=

1

format

C ANSI

video terminal

(0)

= No (1) = Yes

=

1

D Power-up (0)

= Dialog

=

1

(1)

= Automatic

(2)

= ODT

(3)

= 24

E Restart Same

as power-up

=

1

F Ignore

battery

(0)

= No (1) = Yes

=

0

Table

4-2

Configuration

Parameters

(font)

Item Parameter Selections Status

G PMG

count

Select

from 0-7

=

7

H Disable

clock CSR

(0)

= No

(1)

= Yes

=

0

1 Force

clock interrupts

(0)

= No

(1)

= Yes

=

0

J Clock

frequency

(0)

= Power supply

=

0

(1)

= 50 Hz

(2)

= 60 Hz

(3)

= 800 Hz

K Enable

EEC test

(0)

= No

(1)

= Yes

=

1

L Disable

long memory test

(0)

= No

(1)

= Yes

=

0

M Disable

ROM

(0)

= No

=

0

(1)

= Disable

165
(2)

= Disable

173
(3)

= Disable both

N Enable

trap-on-halt

(0)

= No

(1)

= Yes

=

0

O Allow

alternate boot block

(0)

= No

(1)

= Yes

=

0

P Disable

setup mode

(0)

= No

(1)

= Yes

=

0

Q Disable

all testing

(0)

= No

(1)

= Yes

=

0

R Enable

Unibus memory test

(0)

= No

(1)

= Yes

=

1

S Disable

UBA ROM

(0)

= No

(1)

= Yes

=

0

T Enable

UBA cache

(0)

= No

(1)

= Yes

=

1

U Enable

18-bit mode

(0)

= No

(1)

= Yes

=

0

Type

<CTRL> Z to exit or press the Return key to proceed

.

A

Enable halt-on-break (0) = No

(1)

= Yes

=

1

4.7.3

	

Select

Bootstrap Translations (3)

The

bootstrap translation table lists the devices in a system that use a nonstandard CSR address

.

The table

is

needed to allow multiple MSCP devices with different controllers to be booted

.

When a bootstrap

program

is entered, the device unit number is stored in RO and the device name (mnemonic) is stored in

R2.

The translation table is referenced by the bootstrap program trying to find a match for the device

name

and unit number

.

If a match is found, the CSR address is defined in the table, and if no match is

found,

the bootstrap program defaults to the standard CSR address

.

The translation table is printed out

when

command 3 is executed and then the user can change the table based on the particular system

requirements .

An

example of a translation table is shown in Figure 4-4

.

In this system, the user has an RD52 and an

RX50

using an RQDX1 controller at the standard address of 172 150

.

The system also has an RC25 with

a

KLESI controller

.

Since the RQDX 1 and KLESI controllers both use the same standard CSR address,

one

of them must respond to a different address

.

In this example, the KLESI controller is set to respond to

CSR

address 17 760 500

.

The RC25 has a unit number plug set for units 4 and 5, requiring that there be

two

entries into the translation table

.

The RD52 is unit 0 and the RX50 is units 1 and 2

.

The

user can select an entry by pressing the Return key

.

If there are no changes required for that entry,

pressing

the Return key again selects the next entry

.

When a new entry is required, the user keys the

device

name, the unit number and the nonstandard CSR address

.

4.7.4

	

Select

Automatic Boot Sequence (4)

The

automatic boot sequence is created by selecting up to six devices and listing the order in which they

are

to be booted

.

The list is printed out when command 4 is executed

.

The user can change the list to meet

the

particular system requirements

.

If there is no existing list, the code prompts the user for a device name

.
The

user responds by typing in the single- or double-letter mnemonic associated with the selected device

.
The

code then prompts for the unit number of the device and the user responds by typing the unit number

.
This

prompting continues until there are six devices entered or until the letter E is entered after the last

device .

Each entry in the list is defined by a device name and a unit number

.

If the same device is used

more

than once with a different unit number, each unit number requires a separate entry

.

A, B and E are

special

characters and are interpreted by the ROM code as follows

.

A

	

The

ROM code searches for up to eight MSCP devices, unit numbers 0-7, at the standard CSR

address

and then determines if they have fixed or removable media

.

First, it attempts to boot

the

removable media devices one at a time, and then to boot the fixed media devices one at a

time .

Any MSCP devices that use nonstandard CSR addresses are not included in this sequence

and

must be individually selected by a separate entry

.

B

	

The

ROM code checks for a ROM located off the KDJ I I module and responds to address

17

773 000

.

If the ROM exists and the first location is riot zero, the ROM code aborts its

internal

code and jumps to location 17 773 000 in the external ROM

.

E

	

When

the user lists five or fewer devices in the automatic boot sequence, the sixth or next entry

must

use the letter E

.

The ROM code interprets an E as the end of the automatic boot sequence

and

does not try to boot any other devices

.

An

example of the automatic boot sequence is shown in Figure 4-5

.

The prompt sequence used to add a

DY

device with the unit number 0 is also shown

.

Note how the list is terminated by the letter E

.

TT1 blank
Device name

	

= DU <CR>
Unit number

	

= 4 0 <CR>
CSR address

	

= 17760500 <CR>TT1

	

DU 4 =address 17760500
TT2 blankDevice name

	

= DU <CR>Unit number

	

= 5 <CR>
CSR address

	

= 17760500 <CR>
TT2

	

DU5 =address 17760500
TT3 blankDevice name

	

= <CTRL> Z

Figure 4-4

	

Typical Translation Table

Figure 4-5

	

Automatic Boot Sequence Example

4-9

MR -17238

KDJ 11 -B Setup mode
Press the RETURN key for Help
Type a command then press the RETURN key: 4
List/change the Automatic boot selections in the Setup table
Boot 1 = A

	

MSCP Automatic boot
Boot 2 = DLO
Boot 3 = MSOBoot 4 = E

	

Exit Automatic bootBoot 5 = blankBoot 6 = blank
Type CTRL Z to exit or press the RETURN key for No change
Boot 1 = A

	

MSCP Automatic boot
Device name

	

=
Boot 2 = DLO

	

=
Device name
Boot 3 = MSO
Device name

Boot 6 = blankDevice name

Boot 4 = DYDevice name

	

=Unit number

	

= 0
Boot 5 = E

	

= Exit Automatic boot
Device name

KDJ 1 1-B Setup modePress the RETURN key for Help
Type a command then press the RETURN key :

MR -1 7239

4.7.5

	

Select Console Message (5)
The user is allowed to select a console message to be sent to the terminal at the start of the ROM code and
at any time a <CTRL> Q is received by the console that is not a normal response to a previous
<CTRL> Q (i.e ., not an XON or XOFF). This message is normally used for systems having terminals that
do not power up with the current language characters selected . There are two messages - one for English
and another for the resident foreign language (if there is one) . Only one message is sent and that is the one
that matches the current selected language . Each message is allowed to contain up to ten bytes and these
are listed when command 5 is executed . A typical listing is shown in Figure 4-6 . The user must enter the
message in octal code . Therefore an A is entered as 101 and an ESCape (ESC) character is entered as 033 .
The default code for both messages is all ten bytes set to 000, and the first byte of 000 terminates the
message . Any time the current language is changed, the appropriate message is also changed .

Type a command then press the RETURN key : 5
List/change the terminal Setup message in the Setup table

Non

Non ENGLISH0=000 New=1 = 000 New =2=000 New=3=000 New=4=000 New=5 = 000 New =6 = 000 New =7=000 New=8=000 New=9=000 New=

NOTE
This feature is seldom used .

Type CTRL Z to exit or press the RETURN key for No change

031042
ENGLISH0=000 New=1 = 000 New =2=000 New=3=000 New=4=000 New=5=000 New=6=000 New=7=000New=8=000 New=9=000 New=

Figure 4-6

	

Select Console Message Example
M R-1 7240

ENGLISH ENGLISH0 = 000 0 = 0001 = 000 1 = 0002 = 000 2 = 0003 = 000 3 = 0004 = 000 4 = 0005 = 000 5 = 0006 = 000 6 = 0007 = 000 7 = 0008 = 000 8 = 0009 = 000 9=000

4.7.6

	

Define Switchpack Boot Selections (6)
The user can select the bootstrap program for a device by setting switches 2, 3 and 4 of the switchpack
located on the module . These switches can be set on the module or remotely controlled via the J3
connector . The selected bootstrap programs are designated as SB 1 through SB6, and any bootable device
can be assigned to these designations . When a program is selected via SB1 through SB6, the ROM code
attempts to boot only the device selected . When command 6 is executed, the switch selections are enabled
as shown in Table 4-3 . The typical types of devices assigned are shown in Figure 4-7 . The special
configuration is used for the automatic boot sequence .

KDJ 11 -B Setup modePress the RETURN key for HelpType a command then press the RETURN key : 6
List/change the switch boot selections in the

Type CTRL Z to exit or press the RETURN key for No change
= DXO

Figure 4-7

	

Switchpack Boot Selection

Setup table

= DL2

MR-1 7241

Table 4-3 Switchpack Selections

SW2 SW3 SW4 Selected Device
On On On Special configuration
On On Off SB1
On Off On SB2
On Off Off SB3
Off On On SB4
Off On Off SB5
Off Off On SB6
Off Off Off EEPROM selects ODT mode or loops the diagnostic tests at power-up.

Switches 2,3,4 on on off = DXOSwitches 2,3,4 on off on = DL2Switches 2,3,4 on off off = DLO
Switches 2,3,4 off on on = EOSwitches 2,3,4 off off off = blankSwitches 2,3,4 off on on = blank

Switches 2,3,4 on on off
Device name
Switches 2,3,4 on off onDevice name

4.7.7

	

List Available Bootstrap Programs (7)
A list of the bootstrap programs available to the user is displayed when command 7 is executed . This list
contains all the bootstrap programs available in the ROM: code and also those stored in the EEPROM . The
information in the list describes the device name, the range of unit numbers, the type of device and where
the program is stored . The device name is normally a two-letter mnemonic, but in some cases it may only
be a single letter . This name must always use the letters from A to Z. Any lower case letters are
automatically converted to upper case letters by the ROM code . The unit number range is a list of valid
unit numbers that can be used with a particular boot program . The range varies from a single device
designated as 0, up to as many as 255 multiple devices, depending on the type of device . The type of
device that is associated with a name is usually the actual name of the device . For example, a device
named as a DL would actually be an RI-01 or RL02 .

4.7.8

	

Setup Table Initialization (8)
The setup table is initialized to the default values when command 8 is executed . This command does not
change the contents of the table stored in the EEPROM, but the contents do change if the save command
is also executed .

4.7.9

	

Save the Setup Table in the EEPROM (9)
The current contents of the setup table in memory is stored in the EEPROM when command 9 is
executed . This is the only command that can actually write anything into the first 105 bytes of the
EEPROM .

4.7.10

	

Load EEPROM Data Into the Setup Table (10)
The setup table data that is stored in the EEPROM is read into the current setup in memory when
command 10 is executed .

4.7.11

	

Delete a Boot Program From the EEPROM (11)
The user is prompted for the device name of the bootstrap program to be deleted when command 11 is
executed . After the device name is keyed, the ROM code searches for that boot program in the EEPROM
and deletes it when it is found . All the boot programs that follow the deleted program are then automati-
cally moved up into the space made available by the deleted boot program .

4.7.12

	

Load an EEPROM Boot Program Into Memory (12)
The user is prompted for the device name of the bootstrap program to be loaded into memory when
command 12 is executed . After the device name is keyed, the ROM code searches for that boot program
and loads it into the memory when it is found . This command is used to allow access to the EEPROM boot
program so that it can be reviewed and edited .

4.7.13

	

Edit or Create a Boot Program in the EEPROM (13)
A boot program listing stored in the EEPRON1 can be edited or changed by updating its parameters . A list
of' parameters and the current status are displayed, along with the amount of space available for boot
programs in the EEPROM (Figure 4-8), when command 13 is executed The user can change the device
name and description, the beginning and ending address of the program in memory, and the start address
of the program . When the changes are complete, the ROM code enters ROM ODT, which is a code
version of the micro-ODT .

The beginning address is the first location used by the program in memory and the ending address is the
address of the last byte of code in memory . If in doubt, use the address -r- 2 of the last byte of code . Using
larger numbers wastes valuable space in the EEPROM . The start address is the address to which the ROM
code transfers control .

KDJ 1 1-B Setup modePress the RETURN key for HelpType a command then press the RETURN key: 1 3
Edit/create an EEPROM boot
Type CTRL Z to exit or press the RETURN key for No change
1410 Bytes free in the EEPROM

ROM ODT> 010000/000000

	

012705ROM ODT> 010002/000000

	

101ROM ODT> 010004/000000

	

012706ROM ODT> 010006/000000

	

1000

Figure 4-8

	

Edit/Create an EEPROM Boot
MR-17242

The highest unit number defines the range of valid unit numbers for a particular device . If this value is set
at 3, then the range for that device is 0 to 3 . The maximum range for any device is 0 to 255 . An invalid
unit number error occurs at boot time, if a unit number that is not within the defined range is used .
The description of a device is optional, but use of a device description is recommended . The description is
normally the physical name located on the outside of the device, such as RX02 or RK05 . The description
is limited to I 1 characters or spaces .
4.7.14

	

Save a Boot Program in the EEPROM (14)
The user can take a boot program that is stored in memory and write it into the EEPROM by executing
command 14 . This is the only command that can actually write a program into the EEPROM. The other
commands are used to edit programs that reside in memory . The device name of a boot program that is
being written or stored in the EEPROM must not match the name of an existing program already stored
in the EEPROM . If this condition occurs, the user must delete the existing program or change the name of
the new program being stored . When there are two or more programs with the same name in the
EEPROM, only the first program is used to boot a device .

Device name = AA New = EA
Beginning address = 000600 New =10000
Last byte address = 000615 New= 10177
Start address = 000600 New =10000
Highest Unit number = 3 New = 255
Device Description = EA BOOT New = RM02/03

4.7.15

	

Enter ROM ODT (15)
The user enters the ROM ODT mode when command 15 is executed . The ROM code opens up the
addresses defined by the beginning address of the program . The ROM ODT is not the same as the console
ODT described in Chapter 3 . The only addresses that can be accessed in ROM ODT are the memory
addresses from 0 to 28K words (0-157 776) . Any attempt to address the 1/O page, the internal registers or
any other address is not allowed . The commands used by the ROM ODT and their functions are listed in
Table 4-4 .

Command Symbol

Table 4-4 ROM ODT Commands

Function

Displays the contents of a specified location or if no address is specified,
it displays the contents of the last location opened . If the open location is
an odd number, then the contents display is a byte . If the open location
is an even number, then the contents display is a word . Leading zeros are
assumed and only the last six octal digits are interpreted .

Closes an open location .

Closes an open location and opens the next location. The location is
incremented by 2 if a word was read and by 1 if a byte was read .

Alternate character for <LF>. It is useful for a VT2XX terminal and
convenient when using a keypad .

Closes an open location and opens the previous location . The location is
decremented by 2 if a word was read and by 1 if a byte was read .

Alternate character for T . It is useful for a VT2XX terminal and conve-
nient when using a keypad.

Deletes the previous character typed .

Slash /

Return <CR>

Line feed <LF>

Period

Up arrow T

Minus

Delete DELETE

4.8 MAP COMMAND
The entire memory system is identified and all valid addresses in the 1/O page are displayed as shown inFigure 4-9 . The command is executed by typing M and pressing the Return key. The system returns tothe dialog mode after the memory is mapped and the valid 1/O page addresses are displayed .
The entire memory from location 0 to 17 756 000 is mapped in 1,024-byte increments, but not everylocation is identified due to the amount of time required . The routine attempts to identify the size by thestart and end address of each memory, the CSR address for each memory (if applicable), the CSR type(ECC or parity), and the general type of bus (PMI or Q22-Bus) . The map command does not work if twomemories share some common addresses or have CSRs with the same address . After the memory ismapped, all the addresses in the 1/O page that respond to an inquiry are displayed . The address range ofthe 1/O page is from 17 760 000 to 17 777 776. All the addresses displayed that are on the KDJ11-Bmodule and those that are on the KTJ11-B module are briefly described . Addresses that are assigned tothe external bus have no descriptions unless a memory CSR is present .

Commands are: [Help, Boot, List, Setup, Map, Test]Type a command then press the RETURN key: M
Memory MapStarting

	

Ending

	

Size in

	

CSR

	

CSR

	

BusAddress

	

address

	

K Bytes

	

address

	

type

	

type
00000000 -00777776 256

	

17772100 Parity

	

PMI01000000 -02777776 512

	

17772102 Parity

	

Qbus
Press the RETURN key when
I/0 page Map

ready to continue

Figure 4-9

	

Typical Map Mode Display
MR-17243

StartingAddress Endingaddress
17765000 -17765776 CPU ROM or EEPROM17772100 -17772102 Memory CSR's17772200 -17772276 Supervisor I E D PDR/PAR's17772300 -17772376 Kernel 1 E D PDR/PAR's17772516 - MMR317773000 -17773776 CPU ROM17774400 -1777441617777170 -1777717217777520 -17777524 BCSR, PCR, BCR/BDR17777546 - Clock CSR17777560 -17777566 Console SLU17777572 -17777576 MMR0,1,217777600 17777676 User I E D PDR/PAR's17777744 17777752 MSER, CCR, MREG, Hit/Miss17777766 CPU Error17777772 PIRA17777776 PSW

4.9 TEST COMMAND
This command runs the diagnostic tests in a continuous loop until the user exits the loop by typing
<CTRL> C. The command is executed by typing T and pressing the Return key . If the user wishes to loop
on an individual test, the command is executed by keying T followed by the test number, and then pressing
the Return key . The loop continues until an error is detected or the user stops it by typing <CTRL> C. If
the test number selected is not a loopable test, then the general test loop is run for all the tests .

The ROM code starts the loop at test 70, runs all the applicable tests to the end at test 30 and continues
the loop until the user exits by typing <CTRL> C. The system then displays the total number of loops
completed and if any errors are detected, the total number of errors is also displayed (Figure 4-10) . If the
user loops on a single test, the display is as shown in Figure 4-11 .

NOTE
The <CTRL> C commands are not echoed by the
ROM code on the console terminal .

4.10 DIAGNOSTIC TESTS
The diagnostic tests contained in the ROM code are executed as part of the power-up sequence or when
restarting the K DJ 11-B module . Control is passed to the ROM code and the diagnostics check the module
and the available memory before passing control on to the boot program for a previously selected device .
These diagnostics are capable of testing both LSI-l l systems and Unibus systems that use the KDJ11-13
module as the CPU .
The diagnostic tests are numbered in octal from 77 to 30 and the diagnostic error messages are numbered
in octal from 27 to 00 . The LEDs display the test number being executed and it a test fails, the LEDs blink
the failing test number . A complete list of all the tests and their LED codes is given in Table 4-5 . If the
console device is working, an error message is displayed and the user is advised to take some appropriate
action .

Commands are : [Help, Boot, List, Setup, Map, Test]
Type a command then press the RETURN key : T
Continuous self test - Type CTRL C to exit
Total Passes = 4
Total Errors = 0

Figure 4-10

	

Continuous Testing Display
MR-1 7244

Commands are : [Help, Boot, List, Setup, Map, Test]
Type a command then press the RETLIRN key : T 60
Looping on test 60 - Type CTRL C to exit
Total Passes = 1876Total Errors = 0

Figure 4-11

	

Loop Test Display

4-16

MR-17245

LED

Code	

Diagnostic

Table

4-5	

Diagnostic

LED Displays

77

	

CPU

or halt switch

76

	

CPU

and MMU

75

	

Turn

on MMU, run CPU and MMU

74

	

Turn

on PMI, check UBA reboot bit

73

	

Power-up

to mode 2

:

ODT

72

	

Power-up

to mode 3

:

24

71

	

EEPROM

checksum

70

	

CPU

ROM checksum and PCR

67

	

Miscellaneous

CPU and EIS

66

	

Console

SLU test 1

65

	

Console

SLU test 2

64

	

Console

SLU test 3

63

	

MMU

aborts

62

	

Cache

memory

61

	

Line

clock

60

	

Floating-point

instruction

57

	

Reserved
56

	

Exit

standalone mode

55

	

UBA

register response

54

	

Memory

sizing routine

53

	

Memory

location 0

52

	

Memory

locations 0 to 4K words

51

	

Cache

operation with memory

50

	

Complete

memory data/byte exercise

47

	

Memory

parity/ECC

46

	

Memory

address shorts

45

	

UBA

boot ROM

44

	

UBA

map registers data path

43

	

UBA

unmapped diagnostic data

42

	

UBA

mapped diagnostic data

41

	

UBA

floating address/data

40

	

UBA

address overflow

37

	

UBA

cache data

36

	

UBA

cache LRU

35

	

UBA

cache tag store

34

	

UBA

cache parity error

33

	

Complete

Unibus memory data/byte exercise

32

	

Unibus

memory parity

31

	

Unibus

memory address shorts

30

	

Exit

4.10.1

	

CPU

or Halt Switch (Test 77)

The

LEDs are set to 77 when the module is powered up or restarted

.

The LEDs continue to display 77 if

the

DCJ 11 microprocessor is not able to execute an instruction out of the ROM, or if the halt switch is on

to

force a halt condition

.

4.10.2

	

CPU

and MMU (Test 76)

The

LEDs are set to 76, indicating that the first instruction was executed

.

The CPU enters the standalone

mode,

sets the PSW to priority 7, turns off the MMU, clears the PCR and sets up the SP

.

The CPU jumps

to

the high page of the ROM, address 173 XXX, if not already there

.

The

switchpack on the module is read

.

If switch 1 is off and switches 2 and 3 are on, the CPU halts

immediately .

If the switches are not set to produce a halt, the test continues

.

The CPU executes some

simple

tests such as reading and writing the general register, branch instructions and a JSR instruction

.

All

48

PARs are tested using a rotating ones pattern and a unique address pattern

.

PDR read/write bits

<

14

:8>

and <3

:1

> are checked using a rotating ones pattern and a unique address pattern

.

At the end, all

the

PDRs are set to 077 406 and KISDRO is set to 077 402

.

The

second page of the ROM is selected in the low byte of the PCR

.

The CPU jumps to the second page

of

ROM at address 165 XXX

.

In all, the following functions are performed

.

1 .

	

All

three SPs are tested

.
2 .

	

MMR2

logs the address if the fetch instruction is verified

.
3 .

	

MMR3

bits <5

:0>

are decremented from 77 to 0

.
4 .

	

The

CPU jumps to the high page at 173 XXX

.
5 .

	

The

CPU enables the trap area in the low page at 165 XXX

.
6 .

	

The

CPU turns on the MMU and enables 22-bit mapping

.
7 .

	

The

CPU verifies that the trap area is available with MMU on

.

4.10.3

	

Turn

on MMU, Run CPU and MMU (Test 75)

This

test verifies the ability to write data with MMU using all three modes and both spaces

.

It sets the

W-bit

properly in a PDR and initializes all the free PARs and PDRs

.

For the remaining tests, the MMU

stays

on, but only the kernel I space is used

.

All free PARs and PDRs are then used as flag storage, input

keyboard

storage, the stack, etc

.

The

IOT, trap, BPT, and EMT instructions are tested and verify that the central subroutine call program

and

the change page program function properly

.

The ROM now executes virtually all the tests from the

high

page addresses (17 773 XXX), and uses the low page addresses (17 765 XXX) to handle all traps and

other

instructions to virtual addresses 0 through 276

.

Jumping to another page and calling up a routine

from

another page are accomplished by executing the EMT, trap, and BPT instructions, which also

transfer

control to the lower page

.

The

routines transmit a null character to the system console and if the console address times out, that time

out

is ignored for the moment

.

The next page of the ROM is read

.

4.10.4

	

Turn

on PMI, Check UBA Reboot Bit (Test 74)

If

power-up mode 3 (24/26) is selected, the ignore battery status bit in the EEPROM is checked

.

When

the

ignore battery parameter is selected, power-up mode 3 is unconditionally executed

.

When the ignore

battery

mode parameter is not selected and the current condition is power-up, the restart mode is used to

determine

the current mode

.

If the restart mode is also mode 3, the default is to the dialog mode

.

If the

current

condition is restart, then the default is to the dialog mode

.

4.10.5

	

Power-Up

to Mode 2

:

ODT (Test 73)

The

selected mode is ODT and this is indicated by the LED display

.

If the user proceeds from the ODT

without

changing any registers, the ROM code continues to run selected tests and enters the dialog mode

when

completed

.

4-18

4.10.6

	

Power-Up

to Mode 3

:

24 (Test 72)

The

contents of location 24 is saved in memory and a rotating ones test is executed at location 24

.

The

original

data is restored to location 24 if the test passes, and control is transferred to the address stored in

that

location

.

The contents of location 26 is used to set the PSW

.

The display is blanked before the control

is

transferred

.

4.10.7

	

EEPROM

Checksum (Test 71)

This

test sets bit 5 of the BCSR to select the 8-bit EEPROM while the program is running out of the high

byte

PCR area (17 773 000-17 773 776)

.

The 8-bit EEPROM is enabled into address area 17 765 000-

17

765 776

.

This is verified by reading location 165 314 in the area and checking that the low byte is read

back

as 252

.

The test verifies that the contents of location 165 022 is zero

.

If either of these locations is

incorrect,

the first 105 bytes of the EEPROM are automatically initialized to the factory defaults

.

This

allows

a module in production to automatically initialize itself

.

When this is complete, an 8-bit checksum is

read

and accumulated for the first 105 bytes of the EEPROM and the result is verified as zero

.

If an error

occurs,

the error is printed out in the selected language

.

4.10.8

	

CPU

ROM Checksum and PCR (Test 70)

Using

the high byte PCR area (17 773 000-17 773 776) as the program area, the ROM is checksummed

by

using the low byte of the PCR to select the 64 pages of ROM

.

The low byte of the PCR writes the

pages

of ROM into address area 17 765 000-17 765 776

.

The PCR is validated each time it is loaded by

checking

the next to the last location in each page and verifying that each byte contains the selected page

number.

The only exceptions to this are pages 70 through 76(8), which do not contain page numbers, but

store

ASCII text

.

Using

the low byte PCR area (17 765 000-17 765 776) as the program area, the 64 pages of ROM are

written

into the high byte PCR area at 17 773 000-17 773 776

.

The page number is verified in each byte

of

the next to the last word in each page

.

4.10.9

	

Miscellaneous

CPU and EIS (Test 67)

The

JSR, RTI, RTS and the ASHC instructions are tested

.

4.10.10

	

Console

SLU Test 1 (Test 66)

All

four of the console registers are tested for responses

.

4.10.11

	

Console

SLU Test 2 (Test 65)

The

console DLART is set in the maintenance mode and a delay is allowed to settle any incoming

characters .

The receive buffer is cleared, and two characters, 0 and 377, are transmitted and verified

.

NOTE
When

the DLART is in the internal loopback mode,

the

transmit output is still connected to the EIA

output

driver

.

In order to prevent "garbage" charac-

ters

from being printed on the console, the SLU test

transmits

a null character and deletes characters

that

are nonprinting

.

4.10.12

	

Console

SLU Test 3 (Test 64)

The

transmitter and receiver are checked so that they can cause interrupts at the correct priority level

.

The

transmit

logic is used to set receiver error bits and verifies that the error bits can be cleared

.

If

the terminal type in the EEPROM is ANSI video and the dialog mode is not forced, the screen is then

cleared

and the cursor is positioned at line 8, column 1

.

The `Testing in progress - please wait' message is

then

sent to the screen

.

4.10.13

	

MMU

Aborts (Test 63)

The

protection bits in the PDRs are tested to cause aborts when the conditions are violated

.

This test

verifies

that aborts occur through virtual address 250 and that changes in the general purpose registers

affected

by the abort are properly recorded in MMRL

4.10.14

	

Cache

Memory (Test 62)

The

cache is not tested to see if it is flushed after power-up

.

The upper address bits of the CCR are loaded

into

the cache tag fields at power-up

.

Since this address is in the I/O page, any access to it causes a miss

regardless

of the valid bit

.

The following tests are run and any trap to location 114 is a parity error on the

CPU

tag store

.

1 .

	

Check

the CCR read/write bit

2 .

	

Check

the MSER timeout

3 .

	

Check

the cache data path word

4 .

	

Check

the hit/miss register timeout

5 .

	

Check

the cache data pattern

6 .

	

Check

the 4K word cache

7 .

	

Check

the DMA tag store comparator

8 .

	

Check

the CPU and DMA tag store timeouts

9.

	

Check

the cache flush

10 .

	

Check

the hit/miss register

11 .

	

Check

the cache tag store floating 1 s and Os

12 .

	

Check

the CPU and DMA tag store shorts and data

13 .

	

Check

the unconditional bypass on reads and writes

14 .

	

Check

data store parity errors

15 .

	

Check

CPU/DMA tag store parity errors

4.10.15

	

Line

Clock (Test 61)

If

the EEPROM indicates that the LTC register is enabled, bits 6 and 7 are checked so that they can be

set

and cleared

.

The clock interrupt to location 100 is checked and the correct BR level is verified

.

When

an

interrupt occurs and the clock is in sync, the test verifies that LCM bit 7 is cleared by the interrupt

.

4.10.16

	

Floating-Point

Instruction (Test 60)

Some

of the floating-point instructions are executed

.

4.10.17

	

Reserved

(Test 57)

This

test space is reserved for future expansion

.

4.10.18

	

Exit

Standalone Mode (Test 56)

In

the 22-bit mode, the exit standalone mode is checked by using the guaranteed timeout address of

17

760 000 to verify that the timeout logic works without hanging up the CPU

.

4.10.19

	

UBA

Register Response (Test 55)

The

DCSR, KMCR and DDR registers in the UBA are addressed to verify that they respond properly via

the

Unibus

.

With the UBA in the diagnostic mode, the test verifies that the address, data and control lines

available

via the DDR register are turned off

.

4.10.20

	

Memory

Sizing Routine (Test 54)

The

system is first tested for any memory available in a Unibus system

.

If there is a Unibus memory, the

KMCR

register is set to the correct value to properly map the memory

.

The memory is sized in 4K word

increments

and the testing is based on 4K word increments

.

The

LSI based memory is sized in 1 K word increments from 0 to 2 megawords

.

This is done on a word

basis

every 1 K words

.

The routine starts at location 0 and sizes the memory consecutively upward

.

The

routine

reads the contents of each location and writes the data back into that location

.

This is a

nondestructive

sizing routine that proceeds upward until a timeout occurs or address 17 776 000 is

reached .

When

the first 128K word boundary is reached (while operating in the 22-bit mode), the routine verifies

that

the first two locations, 0 and 2, can be uniquely addressed in the second 128K word boundary

.

If these

locations

cannot be uniquely addressed, memory is defined as 18-bit mode and memory size is set at 124K

words .

If

there is any nonconsecutive memory found, the ROM code displays a message indicating that gaps are

present,

but no errors occur because of the gaps

.

The routine displays the applicable memory size messages

when

the routine is completed, unless a user friendly mode is selected to suppress these messages

.

4.10.21

	

Memory

Location 0 (Test 53)

Memory

location 0 is checked for a response without timing out

.

4.10.22

	

Memory

Locations 0 to 4K Words (Test 52)

The

first 4K words of memory are completely verified before the main memory tests are loaded and

executed .

A test of rotating ones and zeros is performed on physical address 0, and the ability to write

separate

bytes into the word locations is verified

.

A short/data address test on address bits 0 to 10 is

executed

for physical addresses from 0 to 17 776

.

4.10.23

	

Cache

Operation With Memory (Test 51)

This

test verifies that the cache is allocated during a read to memory and that the cache is bypassed when

the

cache bypass bit is set

.

4.10.24

	

Complete

Memory Data/Byte Exercise (Test 50)

The

first two word locations for each 4K word block are sequentially tested as follows

.

1 .

	

The

physical addresses are tested using a rotating ones pattern and then a rotating zeros pattern

.
2 .

	

The

locations are tested for byte operation by using the 252 and 125 data patterns

.

NOTE
The

Unibus memory is not tested unless it is enabled

in

the EEPROM

.

If it is enabled, then the testing is

delayed

until the UBA tests are completed and the

UBA

exits the diagnostic mode

.

4.10.25

	

Memory

Parity/ECC (Test 47)

The

first two locations of each 4K word block are tested to determine which CSR controls the current

address

range

.

If there is a CSR, its ability to log the address during an error is verified

.

The ability to

abort

due to an error is also verified

.

When

ECC testing is enabled by the EEPROM and if bit 4 of the CSR is a read/write bit, then the ability

of

the ECC logic to correct single bit errors for all 16 bits of a floating ones and zeros test is verified

.
When

this test is enabled, it is only run on 32K word boundaries

.

4.10.26

	

Memory

Address Shorts (Test 46)

This

test can be looped on with the dialog mode test command

.

The test is relocated to the first 4K words

of

memory

.

This allows the test to execute out of the cache to improve its speed

.

The MMU is set up so

that

any memory address being tested has the cache bypass bit set in its PDR to prevent the cache from

responding

to that memory location

.

During the test, PDR 1 is set up to prevent any writes to the first 4K

words

of memory, thus protecting the test in the cache memory

.

The following steps are performed

.

1 .

	

From

physical address 0 to the top of memory, test in 4K blocks

.

From first to last address in

block,

test by 1 word

.

Write location with 125 252 pattern

.

2 .

	

From

physical address 0 to the top of memory, test in 4K blocks

.

From first to last address in

block,

test by 1 word

.

Read 125 252 and write location with 025 252 pattern

.

3 .

	

From

physical address 0 to the top of memory, test in 4K blocks

.

From first to last address in

block,

test by 1 word

.

Read location for 025 252 pattern

.

4 .

	

At

the end of the test, verify that none of the memory CSRs has bit 15 set to a one, indicating

that

an error occurred

.

4.10.27

	

UBA

Boot ROM (Test 45)

All

256 words of the UBA ROM are verified by responding to the addresses from 17 773 000 to

17

773 776

.

The UBA ROM is then disabled and a check is made for the presence of a ROM module on

the

Unibus

.

A flag is set if a ROM module responds to all these locations

.

This flag is used later to allow

the

ROM code to search for a boot program on an M9312 module on the Unibus

.

4.10.28

	

UBA

Map Registers Data Path (Test 44)

All

32 Unibus map register pairs are tested with a rotating ones and zeros pattern and a unique address

pattern .

4.10.29

	

UBA

Unmapped Diagnostic Data (Test 43)

With

mapping disabled, a floating ones and zeros test is executed through a floating address pattern, using

diagnostic

DATI and DATO cycles for 124K words of memory

.

NOTE
Tests

42 to 34 are not executed if the 22-bit mode is

disabled

in the KMCR by the EEPROM, or if the

Unibus

memory is limited to 124K words

.

4.10.30

	

UBA

Mapped Diagnostic Data (Test 42)

This

test verifies that each mapping register can be indirectly selected and can relocate a physical address

from

the CPU

.

It also checks to ensure that if Unibus memory is present, the applicable mapping register

is

disabled

.

4.10.31

	

UBA

Floating Address/Data (Test 41)

With

mapping enabled, a floating ones and zeros test is executed through a floating address pattern using

diagnostic

DATI and DATO cycles for up to 2044K words of memory

.

This test floats a I and 0 across

both

inputs of the UBA address summing logic

.

4.10.32

	

UBA

Address Overflow (Test 40)

This

test verifies that a carry can be rippled across the adder

.

PA is set to 2, the map register is set to

17

777 776 and the resulting address is 0

.

NOTE
Tests

37 to 34 are executed only if the cache enable

bit

is set in the KMCR

.

4.10.33

	

UBA

Cache Data (Test 37)

The

32 cache locations are tested with a floating ones and zeros pattern, and the cache valid bits and the

hit

logic are checked

.

4.10.34

	

UBA

Cache LRU (Test 36)

All

24 valid combinations of the Least Recently Used (LRU) logic in the cache are checked

.

4.10.35

	

UBA

Cache Tag Store (Test 35)

A

floating ones and zeros pattern test is executed through the cache tag store

.

4.10.36

	

UBA

Cache Parity Error (Test 34)

This

test verifies that if an ECC error occurs during a read from memory, the applicable set is invalidated

.

4.10.37

	

Unibus

Memory Data/Byte Exercise (Test 33)

The

first two word locations for each 4K word block are sequentially tested as follows

.

1 .

	

The

physical addresses are tested using a rotating ones pattern and then a rotating zeros pattern

.
2 .

	

The

locations are tested for byte operation by using the 252 and 125 data patterns

.

4.10.38

	

Unibus

Memory Parity (Test 32)

The

first two locations of each 4K word block are tested to determine which CSR controls the current

address

range

.

If there is a CSR, then its ability to log the address during an error is verified

.

The ability to

abort

due to an error is also verified

.

4.10.39

	

Unibus

Memory Address Shorts (Test 31)

Every

location in memory is tested for shorts in its address

.

The test is relocated to the first 4K words of

memory.

This allows the test to execute out of the cache memory to improve its speed

.

The MMU is set up

so

that any memory address being tested has the cache bypass bit set in its PDR to prevent the cache from

responding

to that memory location

.

During the test, PDR1 is set up to prevent any writes to the first 4K

words

of memory, thus protecting the test in cache memory

.

The following steps are performed

.

l .

	

From

physical address 0 to the top of memory, test in 4K blocks

.

From first to last address in

block,

test by 1 word

.

Write location with 125 252 pattern

.

2 .

	

From

physical address 0 to the top of memory, test in 4K blocks

.

From first to last address in

block,

test by 1 word

.

Read 125 252 and write location with 025 252 pattern

.

3 .

	

From

physical address 0 to the top of memory, test in 4K blocks

.

From first to last address in

block,

test by 1 word

.

Read location for 025 252 pattern

.

4 .

	

At

the end of the test, verify that none of the memory CSRs has bit 15 set to a one, indicating

that

an error occurred

.

4.10.40

	

Exit

(Test 30)

This

is the test exit routine

.

4.11

DIAGNOSTIC TEST ERROR MESSAGES

A

diagnostic test error message is displayed when an error is detected during the execution of a diagnostic

test .

When an error occurs, the ROM code displays the following data for the user and then waits for the

user's

response

.

1 .

	

The

number of the test that failed

.
2 .

	

The

test description

.
3 .

	

A

reference to the troubleshooting documentation

.
4 .

	

The

address of the error

.
5 .

	

The

contents of register set 0 (RO-R6) and kernel PAR3

.
6 .

	

The

failing address, good and bad data for some memory tests

.
7 .

	

Up

to four command options for the user

.

4.11 .1

	

Test

Number

The

error number is the number of the test that the ROM code is executing when failure occurs

.

The only

exception

is when an unexpected trap occurs

.

In this case, the error is the test number plus 100

.

An

unexpected

trap occurring during test 62 displays an error number of 162

.

Unexpected traps are always

considered

fatal errors

.

4.11 .2

	

Address

of the Error

The

address of the error is broken down to the actual PC, the page number in the ROM and the reference

address

in the program listing

.

In the case of an unexpected trap, the error address is the address following

the

unexpected error trap

.

4.11 .3

	

Register

Set 1

"The

tests do not use register set 1 because this set is mainly used by the ROM code support routines

.

4.11 .4

	

Optional

User Commands

'There

are up to four optional commands available to the user

.

They are displayed in the chart that follows

.
To

execute one of the commands, the user keys in the command number and presses the Return key

.

Command

Description

1

	

Rerun

test

2

	

Loop

on test

3

	

Map

memory and 1/O page

4

	

Advance

to the next test

4 .11 .4.1

	

Rerun

Test - If the test passes, the ROM code continues the testing routine

.

If all the other tests

successfully

pass, the ROM code displays the total number of errors and enters the dialog mode, regardless

of

the EEPROM mode selection

.

4.11 .4.2

	

Loop

on Test - This command causes the ROM code to continuously loop on the failed test

.
The

loops are generally very large and are not intended to be used as scope loops

.

The test continues to run

even

if an error occurs or the end of the test is reached

.

In either case, the test is started again and loops

until

the user types <CTRL> C at the console

.

At this time, the display contains the total number of errors

and

the total number of successful passes

.

Both the error counter and the pass counter have a maximum

value

of 65,535

.

If either counter reaches its maximum value, it locks up at that value and does not

overflow .

4.11 .4.3

	

Map Memory and 1/O Page - This command is normally used when a memory error occurs .
The map command may point to where the memory is not configured properly . In a multimemory system
where one of the memories fails, this command can identify the failing memory if it has a CSR. This
command is not available for tests 76 through 56 because the bus is not turned on .
4.11 .4.4 Advance to the Next Test - The user can bypass the failing test by using this command to
continue the testing . This command is only allowed for errors that are generally considered nonfatal . If the
error is fatal and the user wants to bypass the error, the command is executed by typing <CTRL> 0,
typing 4 and pressing the Return key .

NOTE
It is important to warn the user that bypassing any
error, fatal or nonfatal, is an assumed risk .

4.11.5 Typical Displays
Three typical displays of diagnostic errors are shown in the following figures . A general type of error is
shown in Figure 4-12 . A memory test error in which the failing address, good data and bad data are
displayed in addition to the standard error information, is shown in Figure 4-13 . An unexpected trap error
is shown in Figure 4-14 .

Testing in progress - Please wait
Memory Size is 256 K Bytes9 Step memory testStep 1 2345678
Error 46Memory CSR Error
See troubleshooting documentation
Error PC = 173436

	

PCR page = 15

	

Program listing address = 015436
RO =060000

	

R1= 052525

	

R2 =172100

	

R3 =172344
R4 =100000

	

R5= 040000

	

R6 =172300

	

Par3 = 010000
Command Description

1

	

Rerun test2

	

Loopon test3

	

Map memory and I/0 page4

	

Advance to the next test
Type a command then press the RETURN key :

Figure 4-12

	

Typical Diagnostic Error Display
MR-17246

Testing in progress - Please waitMemory Size is 256 K Bytes9 Step memory testStep 1 2 3
Error 46Memory Error
Error PC = 173256

	

PCR page = 15

	

Program listing address = 015256
RO = 060000

	

R1 =125252

	

R2= 000002

	

R3= 052525R4 =000100

	

R5 =040000

	

R6 =172300

	

Par3 = 001000
Expected data

	

= 125252Bad data

	

= 000002Address

	

= 00100000
Command Description

1

	

Rerun test2

	

Loop on test3

	

Mapmemory and I/0 page
Type a command then press the RETURN key:

Figure 4-13

	

Typical Memory Test Error Display

Testing in progress - Please wait
Error 162Unexpected trap to location 250 MMU
See troubleshooting documentation
Updated PC = 173436

	

PCR page = 15

	

Program listing address = 015436
RO = 101365

	

R1 = 076410

	

R2 =177746

	

R3 =177744R4 = 101367

	

R5 =000250

	

R6 =172276

	

Par3 = 052400
Command Description

1

	

Rerun test2

	

Loop on test
Type a command then press the RETURN key:

Figure 4-14

	

Typical Unexpected Trap Error Display

MR-17247

M R-1 7 248

4.12 ROM CODE BOOT PROGRAMS
The boot and diagnostic ROMs provide the following primary bootstrap programs for Unibus devices and
LSI bus devices .

The

primary bootstrap program normally reads 256 words from the device into memory, starting at

location

0

.

When the secondary bootstrap program is loaded without any errors, the ROM code transfers

control

to location 0 with the MMU turned off

.

The contents of RO is the unit number of the device, and

the

contents of R 1 is the base address of the device CSR

.

Sometimes the contents of R 1 is the base address

plus

an offset

.

After secondary bootstrap program loading is complete, the display is blanked

.

Then the

ROM

code displays the `Starting system' message before transferring control to the secondary bootstrap

program .

During

the execution of the bootstrap program, the ROM code attempts to detect any errors and take

appropriate

action

.

A list of errors often detected by the ROM code is given in Table 4-6, along with the

associated

LED displays

.

LED

Code

05
04
03
02
01
00

Module

Function

Table

4-6	

Bootstrap

Error LED Displays

27

	

Not

used

26

	

Not

used

25

	

Not

used

24

	

DECNET

boot (DLV11-E/F, DUV11) waiting for host reply

23

	

XON

not received after XOFF, type <CTRL> Q to correct

22

	

Xmit

ready bit does not set

21

	

Drive

error

20

	

Controller

error

17

	

Invalid

boot device selection (i

.e .,

AA)

16

	

Invalid

unit number selection

15

	

Nonexistent

drive

14

	

Nonexistent

controller

13

	

No

tape

12

	

No

disk

11

	

Invalid

boot block

10

	

Drive

not ready

07

	

No

bootable device found in automatic boot mode

06

	

Console

disabled by switch 1 on, and no force dialog or APT break

ROM

code has entered ODT for APT

Not

used

Dialog

mode

UBA

ROM boot in progress

EEPROM

boot in progress

CPU

ROM boot in progress

Start

secondary boot with display blanked

4-27

received ;

LSI

Bus Bootstrap

Programs Unibus

Bootstrap

Programs

Mnemonic Device Mnemonic Device

DU MSCP DU MSCP
DK RK05 DK RK05
DL RLO

1 /02

DL RL02
DX RXO1 DX RXO1
DY RX02 DY RX02
DD TU58 DD TU58
XH DEQNA NU DUV

11

NE DLV

11-E

NF DLV

l l-F

MS TS05/TK25 MU TK50

4.12.1

	

Error Messages for Bootstrap Programs
When an error is detected, the ROM code displays an error message on the console device . These error
messages are applicable to all CPU ROM resident boot programs and any EEPROM boot programs that
were written to pass these error messages back to the CPU ROM. Typical messages are shown in
Figure 4-15 . Messages 14, 16 and 17 apply only to UBA or M9312 ROM boots .
4.12.2

	

LSI Bus Selected Error Messages
The LSI bus systems can select user friendly mode with the automatic boot mode and receive error
messages that assist the user in determining what caused the error . These messages may request the user to
insert a disk, tell the user that the drive is nonexistent or explain where to seek help . A sample of this type
of message is shown in Figure 4-16 .

Trying DU 1Message 14Nonexistent controller, address! 7772152
Commands are : [Help, Boot, List, Setup, Map, Test]Type a command then press the RETURN key :

Figure 4-15 General Bootstrap Error Messages

Commands are : [Help, Boot, List, Setup, Map, Test]
Type a command then press the RETURN key : B DL 1
Trying DL1Message 12No disk present, or drive is not loaded
Command Description

1 Reboot2

	

Go to Dialog mode
Type a command then press the RETURN key : 2

Figure 4-16

	

User Friendly Frror Message

M R-1 7249

MR-17250

4.13

MESSAGE DISPLAY CONSTRAINTS

As

a result of self-testing diagnostics being designed into the newer terminals, it may take up to 5 seconds

after

power-up before a terminal is ready

.

This condition imposes constraints on the output of software

messages .

The terminal must indicate that it is ready to accept data by transmitting an XON character

after

the diagnostics are complete

.

Any data sent to the terminal before it is ready is ignored

.

Sometimes

the

terminal may already be powered up and no XON character is transmitted

.

Older terminals may not

support

the XON protocol

.

The

KDJI1-B ROM code executes various tests upon power-up

.

A console test is executed using the

DLART

maintenance feature and when it is complete (within a half second), the first message is sent to

the

console

.

The ROM code assumes that the console is ready to receive messages

.

If the ROM code

receives

an XON while it is testing, it retypes or sends only the most important message to the console

.

If,

during

an error, the ROM code receives an XON, the error message is retyped or sent

.

The user can get

the

current message retyped or sent by pressing the Return key

.

The XON feature is ignored once the

dialog

mode is entered

.

5.1

INTRODUCTION

The

KDJ11-B is a quad-height microprocessor module that is designed for use in the LSI-l l based systems

and

can be adapted to operate in a Unibus based system

.

The module is a multilayered printed circuit

board

that uses both the LSI-1 1 bus (A and B rows) and the interconnecting bus (C and D rows) of the

LSI-11

backplane

.

Figure 5-1 shows the variety of interconnecting data paths between the primary and

secondary

functional blocks of the module

.

These functional blocks include the following

.

Primary

DCJ

11 microprocessor

Cache

memory

Bus

arbitrator

Data

path controller

DC350/394

gate array

DC351

gate array

Bus

distribution

Secondary

Figure

5-1	

KDJ11-B

Functional Block Diagram

Console

SLU

Boot

and diagnostic ROMs

Configuration

EEPROM

Configuration

switches and LEDs

FPA

option

CHAPTER

5

FUNCTIONAL

THEORY

C'NFi

G

SWITCHES

The

primary control system is the DCJI I -A with cache memory, the bus arbitrator and the data path

controller .

The DCJt 1-A is a microprocessor chip that provides the memory management function and

executes

the associated PDP-11 instruction set

.

All the KDJ11-B operations and data transfers are

initiated

by the DCJ 11-A

.

The cache memory is an on-board 8-Kbyte direct map cache memory

.

The

DC350/394

gate array contains the cache data path logic to support the cache memory

.

The cache

memory

is transparent to all programs and is designed with high speed Random-Access Memory (RAM)

.
The

memory locations currently being accessed by the DCJ 1 1-A are automatically stored in the cache

memory

from the PMI

.

The next time these locations are accessed, the data is retrieved from

the

cache memory, eliminating the time-consuming LSI-11 bus transaction

.

Full parity protection is

provided

for the cache memory

.

Many of the parity calculations are done by the DC350/394 cache data

path

logic

.

The

DCJ 11-A microprocessor normally operates with the cache memory to provide high speed execution

of

the current program

.

While this is occurring, the data path controller monitors the DMA writes into the

private

memory from the main memory system

.

The DMA tag store checks each DMA write address to

ensure

that the data contained in the cache memory is riot being updated

.

If the DMA address is cached,

then

the DCJ 1 1-A is interrupted and the cache memory is updated with the new data

.

The DC351 gate

array

contains the DMA data path logic used to check the DMA address with the DMA tag store

.

The

bus arbitrator monitors the DCJ1 1-A operation and when a transaction requires it to access external

or

internal data that is not cached, the bus arbitrator passes control over to the data path controller while

the

DCJII-A waits for the data

.

The data path controller recognizes the type of transaction being

executed

and provides the control signals for the data to be routed from its source to the DCJI 1-A or to a

destination

selected by the DCJII-A

.

The data is routed by the data path controller via the MDAL,

XDAL,

YDAL, and the ZDAL busses while the IADR, DADR, DTAG, CTAG and IDAT busses are

controlled

by the DC350/394 and DC351 gate arrays

.

In this way, all the internal and external addresses

can

be accessed

.

This includes all the registers described in Chapter 1

.

The

secondary functional blocks allow the user to connect the system console and configure the module for

the

user's requirements

.

The boot programs contained in the ROMs allow an automatic boot procedure to

be

executed during power-up

.

The diagnostics evaluate the performance of the module at this time

.

Any

errors

detected by the diagnostics are reported to the user by the system console and are displayed in the

LED

codes on the module

.

This data, as well as the baud rate selection and the dialog mode, can be

remotely

monitored and controlled through the connectors on the module

.

The module also has a socket

that

accepts the optional EPA chip

.

5.2

DCJ11-A MICROPROCESSOR

The

DCJI I -A is a microprocessor contained on a 60-pin VLSI chip

.

It provides many of the system timing

signals

and performs all the arithmetic and logic functions

.

The I/O pins are shown in Figure 5-2

.

The

signals

and bus transactions are described in the following paragraphs

.

5.2.1

Initialization

The

CDCOK H input is driven by the RDCOK H input, which is asserted by the LSI bus input BDCOK

H .

The BDCOK H bus signal is asserted when stable do power is applied to the bus

.

5.2.2

	

Output

Signals

The

DCJ 11-A output signals control the various module functions and are described in Paragraphs 5

.2.2 .1
through

5

.2 .2.9 .

5.2.2 .1

	

Address

Input/Output (MAIO <3

:0>

H) - These four signals classify the current transaction as

a

bus read, bus word write, bus byte write, general purpose read, general purpose write, interrupt

acknowledge,

or NOP, as shown in 'Table 5-1

.

'These signals are buffered as the JAIO <3

:0>

inputs to the

FPA

socket

.

The JAIO <3

:0>

outputs are also latched as the LAID <3

:0>

inputs to the DC350/394 gate

array

and the cycle encoder logic

.

5-2

SAMODE

H

BIR07

L

JBS1

H

1BS0

H

Figure

5-2	

DCJII-A

Microprocessor Logic

Table

5-1	

MAIO

Coding

MAIO

Signals

5-3

JA10<0>

H

H
JAI0<2>

H

JA10<3>H_
JALE

L

An

NOP transaction is an internal operation that does not require a bus transfer

.
A

general purpose transaction is used to access interface devices that are not directly addressable by the DAL bus

.
Interrupt

acknowledge (LACK) transactions are in response to the DO I I -A granting an interrupt request

.
A

bus transaction uses the DAL bus to access memory, I/O devices or explicit addressable registers

.

3 2 1 0 Transaction

Type

1 1 1 1 Non-1/0

(NOP)*

1 1 1 0 General

purpose read-

1 1 0 1 Interrupt

acknowledge (read vector)$

1 1 0 0 Instruction

stream request read

1 0 1 1 Read-Modify-Write,

no bus lock§

1 0 1 0 Read-Modify-Write,

bus lock§

1 0 0 1 Data

stream read

1 0 0 0 Instruction

stream demand read

0 1 1 - General

purpose byte write'

0 1 0 - General

purpose word write'

0 0 1 - Bus

byte write§

0 0 0 - Bus

word write§

5.2.2.2

	

Bank

Select (MBS1 H, MBSO H) - These signals are time multiplexed during the transaction

.
During

the first portion of a bus transaction, they are used to define the type of address on the MDAL bus

.
The

MBS1 H and MBSO H signals are inputs to the DC350/394 gate array and are buffered as the

JBS1

H and JBSO H outputs

.

These are ORed together and the output becomes the I/O page signal TBS7

via

the M to X bus latches

.

The addresses identified by the MBSO H and MBS1 H signals are defined in

Table

5-2

.

The

memory types are all addresses below 17 600 000

.

The system board register types are bus

addressable

registers in the range of 17 777 740 to 17 777 751

.

The internal register types are addressable

registers

that reside within the DCJI I -A

.

The external 1/O types are addresses greater than 17 577 777

that

are neither internal registers nor system registers

.

During

the second half of the transaction, the MBS1 H signal indicates the cache bypass status and the

MBSO

H signal indicates the cache force miss status as described below

.

MBS1

H asserted - Cache bypass

MBS1

H negated - No cache bypass

MBSO

H asserted - Cache force miss

MBSO

H negated --- No cache force miss

5.2.2.3

	

Address

Latch Enable (MALE L) - The MALE L output is buffered and driven as the JALE L

output .

It is asserted at the start of a transaction and latches the physical address from the MDAL bus to

the

XDAL bus

.

It also latches the address, the MAIO <3

:0>

code and the MBS1 H, MBSO H code in the

FPA

and the DC350/394 gate array

.

5.2.2.4

	

Stretch

Control (MSCTL L) - The MSCTL L output is buffered and driven as the JSCTL L

output

to the FPA socket and the DC350/394 gate array

.

1t is asserted for the stretched portion of a

transaction

and negated when the DCJI I -A receives the MCONT L input

.

The JSCTL L is used by the

bus

arbitration controller to enable the control store functions

.

It also activates the ABORT L 1/O signal

.

5.2.2.5

	

Strobe

(MSTRB L) - The MSTRB L output is buffered and driven as the JSTRB H and the

JSTRB

L outputs

.

The signal is asserted at the end of the second DCJI I -A clock period and is negated at

the

end of the transaction

.

The STRB H output goes to the FPA socket and it latches the MCONT L input

from

the control store

.

The STRB L output latches the XDAL address register, the DCJI I -A outputs, the

XDAL

to the YDAL, and is used by the DC350/394 and DC351 gate arrays

.

5.2.2.6

	

Buffer

Control (MBUFCTL L) - The MBUFCTL L is buffered and driven as the JBUFCTL L

output .

This output is negated to enable the MDAL bus output data on the XDAL bus and is asserted to

enable

the ZDAL bus input data on the MDAL bus

.

Table

5-2	

Bank

Select Address Codes

MBS1

	

MBSO

	

Address

Type

0 0 Memory
0 1 System

board register

1 0 External

1/0

1 1 Internal

register

5.2.2.7

	

Predecode

Strobe (MPRDC L) -This signal is asserted for the first two DCJI l-A clock periods

of

any transaction that decodes a PDP-11 instruction

.

It goes to the FPA socket

.

The MPRDC L output is

also

inverted and drives the SRUN L output of the module

.

5.2.2.8

	

1/O

Map Enable (JMAP L) - This signal is asserted when the DO I1-A receives the DMA

request

input MDMR L to stretch the next transaction

.

The JMAP L output goes to the DC350/394 gate

array .

5.2.2.9

	

Clock

(MCLK H) - The MCLK H output is buffered and driven as the JCLK H output

.

This

signal

is used by many of the functions as a timing reference

.

5.2.3

	

Input

Signals

The

DO11-A receives status and control information from a variety of input signals

.

These signals and

their

associated functions are described below

.

5.2.3.1

	

MMISS

L - The MMISS I, input reports the cache memory hit and miss status during bus read

and

write transactions

.

This input is enabled by either the HB PERR H or the LB PERR H output from

the

cache data parity logic or the CTG MISS H output from the DC350/394 gate array

.

5.2.3.2

	

Data

Valid (MDV L) - The MDV L input is generated by the control store and is used to latch in

read

data from the MDAL bus

.

5.2.3.3

	

Continue

(MCONT L) - The MCONT L input is generated by the control store to indicate that

the

current stretched transaction can end

.

5.2.3.4

	

DMA

Request (MDMR L) -The MDMR L input is used to stall the 1301 1-A by stretching the

next

transaction

.

It is asserted by the FPA STL H signal from the FP

.A

socket or by the DMA HIT H

output

from the DC351 gate array

.

The input is sampled at the beginning of the current transaction, and,

when

present, it asserts the JMAP L output and stretches the next transaction until the MCONT L input is

received .

5.2.3.5

	

MIRQ

<7

:4>

H - These inputs are coded priority levels from the external devices that drive the

LSI-11

bus signals BIRQ <7

:4>

L

.

The BIRQ <7

:4>

L inputs are inhibited by the SAMODE H input that

is

asserted when the module is in the standalone mode

.

The XIRQ H input is asserted by the on-board

DLART

and is a level 4 interrupt

.

The MIRQ <7

:4>

H inputs are interrupt requests to the DO11-A and

are

coded to determine a priority level

.

The acknowledgment of these inputs is dependent on the current

priority

level of the PSW

.

5.2.3.6

	

MHALT

H -The MHALT H input is driven by the LSI-11 bus signal BHALT L or the HOB H

input

from the on-board DLART logic

.

This input is the lowest interrupt priority for an internal or

external

device

.

5.2.3.7

	

MEVNT

H - The MEVNT H input is driven by the DC350/394 gate array and causes a trap to

location

100

.

This input is the line clock interrupt request and is asserted by the line clock logic in the

DC350/394

gate array

.

The line clock interrupt vector is stored at location 100

.

5.2.3.8

	

MPWR

FAIL L - This input is from the DC350/394 gate array and is asserted by the negation

of

the LSI-11 bus signal BPOK H

.

It is used to generate the nonmaskable power fail interrupt

.

The

MPWR

FAIL L input is negated when it is acknowledged by a general purpose write to address 140 or

when

the LSI-1 I bus signal BDCOK H is negated

.

5.2.3.9

	

MPARITY

L - The MPARITY L input is asserted by the DC350/394 gate array when a parity

error

is detected

.

This input is a nonmaskable interrupt to the DCJ I 1-A

.

5.2.3.10

	

MABORT L -The MABORT L signal is an 1/0 line that can be driven by the DCJ I1-A or the

DC350/394 gate array . The MABORT L signal is buffered and driven as the JABORT L output to

the FPA socket, the cycle encoder logic and the next address MUltipleXer (MUX) logic . The signal is used

in conjunction with the MPARITY L input to determine when the. DCJ11-A aborts the current

transaction .

5.2.3.11 FPA FPE L - The FPA FPE L input is driven by the FPA socket when a floating-point

exception occurs . This input is a nonmaskable interrupt request .

5.2.4

	

MDAL <21 :01>
The MDAL <21 :01> bus is a time-multiplexed data/address bus- The basic bus consists of DAL bits

<15 :0> and is bidirectional . DAL bits <21 :'f) - -sire -utputs only and are used _tc the ii-oended bL=s . The
data being transmitted or received is dependent on the type of transaction being, performed by the DCJI l -A .

5.2.5

	

DCJ11-A Transactions
The DCJI 1-A controls the type of transaction being executed and indicates this to the module circuits by
coding the MAIO <3 :0> signals . The standard transactions only read and write to the cache memory . Any
other transaction requires a stretched cycle in which MSCTL L is asserted . The bus arbitration controller
monitors the MSCTL L output and when it is asserted, the data path controller is enabled . This controls
the data flow until it is ready for the DCJ I 1-A and then it asserts the MCONT L input . There are six basic
transactions performed and these are described in Paragraphs 5 .2 .5 .1 through 5.2 .5.6 .
5 .2 .4 .1

	

NOP - This transaction performs a DCJ I 1-A internal operation and does not require the use of
the MDAL bus . The normal transaction is shown in Figure 5-3 . 'The stretched transaction (Figure 5-4)
occurs when MDMR L is asserted early in the transaction and remains stretched until the MCONT L
input is asserted to end the transaction .

ALE
STRB

ALC,

DMR

a' JFCTi

SC ;i

!'ONT

ALE

l7YJ

AID CODE
DMA

-~RR\REf1DEST

Figure 5_.t SLrCtched N0i:; r11t'~s .at i : .

AIO

	

AIO CODE

Figure 5-3

	

NOP Traiisactioit

M

5-6

DATA PATH
CONTROLLER

MR -17 G96

5.2.5.2

	

Bus

Read - The bus read transaction uses the MDAL bus to read data from cache memory, main

memory,

1/O devices or the addressable module registers

.

These transactions occur during instruction

stream

reads, data stream reads and the read portion of read-modify-writes

.

The transaction reads

complete

words and if only a byte is required, the DCJ I 1-A ignores the excess byte

.

A bus read

transaction

(Figure 5-5) occurs when the physical address scores a hit in the cache memory

.

The DCJ11-A

aborts

the transaction if any memory management or address errors assert the MABORT L signal

.

When

this

happens, all current information is ignored and the transaction is immediately aborted

.

The

noncache or stretched bus read transaction (Figure 5-6) is used when the data must be accessed via the

LSI-11

bus

.

This occurs when any of the following conditions exist

.

1 .

	

Either

MBS 1 H or MBSO H is set to 1 indicating an I/O address

2 .

	

Cache

bypass is indicated

3 .

	

Cache

force miss is indicated

4 .

	

MDMR

L is asserted

5 .

	

Cache

MMISS L is reported

DAL

ALE

DMR

BS

MISS

ABORT

BUFCTL

PHYSICAL

ADDRESS

DMA
REQUEST

I/0

BANK SELECT

Figure

5-5	

Bus

Read Transaction

Figure

5-6	

Stretched

Bus Read Transaction

5-7

DMA

REQUEST-'

CACHE

STATUS

CACHE

HIT

MUMMU

ABORT STATUS

MR

-12076

MR-12077

PHYSICAL

ADDRESS

DAL LSI

BUS DATA

ALE
DMA

REQUEST

DMR

I/0

BANK SELECT

BS CACHE

STATUS

CACHE

MISS

MISS
CACHE

HIT

ABORT MMU

ABORT STATUS

MMU

AND SYSTEM ABORT STATUS

BUFCTL

SCTL
CONTINUE

CONT

DV

The MBUFCTL L and MSCTL L outputs are asserted during the stretched portion of the read trans-
action . The data is read by the DCJ11-A when data valid (MDV L) is asserted . When the transaction is
stretched only because the MDMR L input was asserted, MDV L is not asserted because it will overwrite
the valid data received from the cache . The transaction remains stretched until the MCONT L input
is asserted to end the transaction .

5.2.5.3

	

Bus Write - The bus write transaction writes data to memory, I/O devices, or other addressable
registers via the DAL bus . The transaction can write either bytes or words as determined by the MAIO
code . The DCJ 11-A reports any memory management or address errors by enabling the MABORT L
signal . This causes the transaction to be terminated immediately and all data should be ignored .

The write transaction, as shown in Figure 5-7, and all bus write transactions are stretched . The MSCTL L
signal is asserted and the write data is on the bus during the stretched portion of the transaction . For byte
writes, an even address selects the low byte and an odd address selects the high byte . The data for the
remaining byte is not used .

5.2.5.4 General Purpose Read - The general purpose read transaction accesses non-user-addressable
module hardware . The MDAL address used for general purpose reads is in the form of 17 777 XXX,
where the XXX bits represent the general purpose read code described in Table 5-3 . The codes use MDAL
bits <7:0> to access the hardware .

All general purpose read transactions (Figure 5-8) are stretched . The DCJ11-A reads the data when
MDV L is asserted . The transaction is stretched until MCONT L is asserted to end the transaction .

MMU AND SYSTEM ABORT STATUS_-
-

Figure 5-7

	

Bus Write Transaction

Code Function

000

	

Reads the maintenance register during power-up
and determines the options selected by the user

001 Reserved

003 Reserved

'fable 5-3

	

General Purpose Read Codes

MR .>os9

DATA PATHCONTROLLER
DAL DATA OUTPHYSICAL ADDRESS
ALE
as W NM CACHE STATUSI/O BANK SELECT

ABORT ?)A((MMU ABORT STATUS -
BUFCTL -'---- -- -

SCTL
CONT

DAL

ATT
BU FCTL

9C-TL

CUNT
DV

Figure 5-8

	

General Purpose Read Transaction

5.2.5.5 General Purpose Write - The general purpose write transaction accesses non-user-addressable
module hardware . The MDAL address used for general purpose writes is in the form 17 777 XXX, where
the XXX bits represent the general purpose write code described in Table 5-4. The codes use MDAL bits
<7:0> to access the hardware .

All general purpose write transactions (Figure 5-9) are stretched. The DO11-A writes the data when
MSCTL L is asserted during the stretched portion of the transaction . The transaction is stretched until
MCONT L is asserted to end the transaction .

Code

003
014
034
040
100
114
140
220
224
230
234

GP DATA

Table 5-4 General Purpose Write Codes

Function

Reserved
Asserts bus reset signal
Indicates exit from console ODT mode
Reserved for future use
Acknowledges EVNT interrupt
Negates bus reset signal
Acknowledges power fail
Microdiagnostic test 1 passed
Microdiagnostic test 2 passed
Microdiagnostic test 3 passed
Indicates entrance into console ODT mode

DAL

	

(1(Sl(1((((ft "(I(((" (GP CODE

ALE

BUFCTL

SC-TL

CONT

Figure 5-9

	

General Purpose Write Transaction

5-9

DATA PATHCONTROLLER

DATA PATHCONTROLLER

CONTINUE

MR 171o0

MR-ioi

DAL

ALE

ABORT

BUFCTL

SCTL

CONT

DV

DATA

PATH

CONTROLLER
I

DEVICE

VECTOR

M

i

Figure

5-10	

Interrupt

Acknowledge Transaction

5.2.5.6

	

IACK

- The read interrupt vector transaction acknowledges an interrupt request received on one

of

the MIRQ <7

:4>

H inputs by reading a device interrupt vector

.

All interrupt vector transactions

(Figure

5-10) are stretched

.

The device interrupt vector is latched by the DCJI 1-A when the MDV L input

is

asserted

.

5.3

BUS ARBITRATOR

The

bus arbitrator controls the bus operations that occur between the DCJI I -A, the data path controller

and

the DMA requests

.

It uses the JCLK H input to synchronize its operation with the DCJI I -A

.

With the

use

of some external logic, it provides the five primary control signals to the data path controller, and

the

DMA grant output to the LSI-1 1 bus, as shown in Figure 5-11

.

All 16 basic transactions performed by

the

KDJII-B module use the DCJII-A during the first portion of the cycle, the data path controller

during

the mid-range of the cycle and the DCJI I -A at the end of the cycle

.

The DCJI I -A SCTL L input

and

the data path controller input JCI

:SEQ

BSY H are the two primary control signals used by the bus

arbitrator .

The SCTL L signal is asserted as an indication to give control of the bus to the data path

controller .

The JCI

:SEQ

BSY H signal is asserted to indicate that the data path controller is using the bus

and

is negated to allow the bus arbitrator to return control of the bus to the DCJI I -A

.

The

LAID <3

:0>

inputs to the DC350/394 gate array are decoded to determine the current transaction

and

the JSCTL L input is monitored to indicate the cycle is stretched

.

The PMG counter bits <2

:0>

of the

BCSR

in the DC350/394 gate array are decoded and the counter is enabled whenever an I/O page

location

or external memory is referenced by the DCJI1-A

.

All DMA requests are suppressed when

the

counter overflows, and the DCJI 1-A has bus mastership during the next DMA arbitration cycle

.

If the

counter

is disabled, the DCJI I -A is blocked from bus mastership as long as DMA requests are pending

.
The

inputs to the bus arbitration logic represent the current status of the module activities and are used to

control

the five signals used by the data path controller

.

The

internal transactions are defined by the assertion of the AUX CYC L output and the external

transactions

are defined by the assertion of the EXT CYC (1) H output, as shown in Table 5-5

.

These are

the

primary signals used to start the oscillator in the data path controller

.

The DMG H output is asserted

as

the DMA grant signal to the external bus

.

The CPU MSTR L is used by the control store logic in the

data

path controller

.

SYSTEM

ABORT STATUS

CONTINUE

MR

171D2

Figure

5-11 Bus Arbitrator

Table

5-5 Control Signals

Code

Transaction

Bus

Arbitrator Output

0 General

purpose read from FPA

AUX

CYC L

1 General

purpose write to FPA

AUX

CYC L

2 IDAT

data read

AUX

CYC L

3 IDAT

data write

AUX

CYC L

4 DC350/394

data/General purpose read

AUX

CYC L

5 DC350/394

data/General purpose write

AUX

CYC L

6 EXT

bus data read

EXT

CYC (1) H

7 EXT

bus data write

EXT

CYC (1) H

8 EXT

bus L byte write

EXT

CYC (1) H

9 EXT

bus H byte write

EXT

CYC (1) H

10 EXT

bus FPA write

EXT

CYC (1) H

11 Q-Bus

DATIO (DATOB)

EXT

CYC (1) H

12 Interrupt

vector read

AUX

CYC L

13 Standalone

mode cache write

AUX

CYC L

14 Non-I/O

or ABORT recovery

AUX

CYC L

15 Monitor

DMA write cycles

PDMA/QDMA

CYC H

Figure

5-12	

PMI

Cycle Request

The

TPBCYC L output is set by one of the following conditions

.

TPB CYC

H

-170.3

5.3.1

	

PMI

Cycle Request

In

addition to providing the oscillator signals to the data path controller, the CPU ACK H and CPU

MSTR

L outputs are used to generate the NPSLVCYC H and the TPBCYC L control signals to the next

address

MUX of the data path controller, as shown in Figure 5-12

.

The

JK input is set by the assertion of CPU ACK H and SSEL H, and is clocked by the JCLK input

.

This

sets

the output low, and with the EXT CYC (1) L set, the NPSLVCYC H output is asserted

.

1 .

	

The

assertion of CPU ACT H, provided TPBCYC L is already asserted

.
2 .

	

The

assertion of EXT CYC (1) H and UBSYS H, provided the DLY CYC L input is negated

.
3 .

	

The

JK output set low, provided DLY CYC L and Q DATIO L are asserted

.

5.4

DATA PATH CONTROLLER

The

data path controller provides the control signals necessary to execute the 16 basic transactions

.

The

bus

arbitrator makes the data path controller the bus master whenever the DCJ11-A enters the stretched

cycle

mode or DMA write cycles

.

The

data path controller consists of the cycle encoder, the oscillator, the next address MUX and the

control

store, as shown in Figure 5-13

.

The cycle encoder and the next address MUX control

the

addressing of the control store

.

The oscillator enables the control store outputs and provides the time

base

for the sequencing of the control store outputs

.

5.4.1

	

Cycle

Encoder

The

cycle encoder (Figure 5-14) is a programmable logic array that encodes the 12 input signals into the 4

LCYCCD

outputs, which select one of the 16 basic transactions

.

The 12 inputs are encoded and the output

latch

is opened by the assertion of TO

:LATCYCCD

H

.

The LCYCCD outputs are latched 20 ns later by

the

assertion of LATCYCCD H input

.

The LCYCCD outputs enabled by the input status are shown in

Table

5-6, and the transactions selected by these outputs are shown in Table 5-7

.

PAR- 17064

D6
D5
D4
D3D2
D1
DO

L
DEVCD2 H

-DEVCD1 HH
LDALOO H

LA10<3> I-jlLAIO<2> H
LAIO<1> H
LAIO<O> H

CPU MST R L
CPU ACT

Figure 5- 1 4

	

Cycle Encoder

CDCOK L

MR-17065

Figure 5-13 Data Path Controller

FPA FPE L
WRFMFPAL JABORT L FPA FPE L-a LCYCCD 8 HQDATIOH-SET RMW L SAMODE L~ LCYCCD 7 HLFPA OP L_

ZRV".,a FPLA18 X32 X10 LCYCCD 6 HLATCYCCD H
aoftj

TO : LATCYCCD H LCYCCD 5 HQDATIO LCLR SYNC TPBSY H--i D7

5- 14

Table 5-6 Cycle Encoder Status
LCYCCDLAIO <3:0> DEVCD LDAL JABORT OutputsLFPA QDATIO Standalone and3 2 1 0 2 1 0 OP (B) Mode FPA FPE TPBSY 8 7 6 5

1 1 1 0 X X 1 X X X 0 1 0 0 0 00 1 X X X X 1 X X X 0 1 0 0 0 11 0 X X 0 X X X X X 0 1 0 0 1 01 1 0 0 0 X X X X X 0 1 0 0 i 00 0 X X 0 X X X X X 0 l 0 0 1 11 0 X X 1 1 X X X X 0 1 0 1 0 01 1 0 0 1 1 X X X X 0 1 0 1 0 01 1 1 0 X X 0 X X X 0 1 0 1 0 00 0 X X 1 1 X X X X 0 1 0 1 0 10 1 X X X X 0 X X X 0 1 0 1 0 11 0 X X 1 0 X X X 0 0 1 0 1 1 01 1 0 0 1 0 X X X 0 0 1 0 1 1 00 0 0 X 1 0 X 1 0 0 0 1 0 1 1 10 0 1 X 1 0 0 1 0 0 0 1 1 0 0 00 0 1 x 1 0 1 1 0 0 0 1 1 0 0 10 0 X X 1 0 X 0 0 0 0 1 1 0 1 00 0 X X 1 0 X X 1 0 0 1 1 0 1 11 1 0 1 X X X X X X 0 1 1 1 0 00 0 X X 1 0 X X X 1 0 1 1 1 0 11 1 1 1 X X X X X X X 1 1 1 1 0X X X X X X X X X X 1 1 1 1 1 0X X X X X X X X X 0 X 0 1 1 1 1

Table 5-7 Transactions Selected by LCYCCD Outputs
LCYCCD Outputs

Code Transaction 8 7 6 5
0 General purpose read from FPA 0 0 0 01 General purpose write to FPA 0 0 0 12 IDAT data read 0 0 I 03 IDAT data write 0 0 1 14 DC350/394 data/General purpose read 0 1 0 05 DC350/394 data/General purpose write 0 1 0 16 EXT bus data read 0 1 1 07 EXT bus data write 0 1 1 18 EXT bus L byte write 1 0 0 09 EXT bus H byte write 1 0 0 110 EXT bus FPA write 1 0 1 011 Q-Bus DATIO (DATOB) 1 0 1 112 Interrupt vector read 1 1 0 013 Standalone mode cache write 1 1 0 114 Non-1/0 or ABORT recovery 1 1 1 015 Monitor DMA write cycles 1 1 1 t

5.4.2

Oscillator

The

oscillator logic is used to start and stop an oscillator within an 85 ns period and its output drives a

multitap

delay line to provide the TO H, T20 H, T40 H, T50 H, T70 H and T85 H outputs, as shown in

Figure

5-15

.

The T40 H output controls the duty cycle of the 85 ns period by turning the oscillator off

after

40 ns

.

The delayed outputs are used to sequence some of the control store signals during a single

period

of the oscillator

.

The

logic is controlled by a variety of signals to provide the start, stop, and restart conditions for the

oscillator,

as shown in Figure 5-16

.

The control signals for the 16 basic transactions are categorized as

primary

start signals and secondary restart signals in Table 5-8

.

The primary start signals are generated by

the

bus arbitrator as the AUX CYC L and EXT CYC (1) H inputs

.

The secondary signals are the restart

conditions

when the KDJ 11-B module must wait for a response from other bus devices

.

These are the reply

signal

(RRPLY H) or the no reply/timeout signal (CRPLY H)

.

The LAT RDSTRB H input is a restart

signal

from the PMl bus when the read strobe is latched

.

The PDMA CYC H or the QDMA CYC H

inputs

are the primary start signals for monitoring DMA write cycles

.

The JSTALL L input is enabled

when

a DMA hit occurs and is the restart signal

.

The assertion of JSTALL L requires that the addressed

location

in the cache memory be invalidated

.

The

oscillator is controlled by a variety of AND gates that are ORed together as part of the control logic

.
During

power-up, the CDCOK H input presets a flip-flop to start the oscillator and the T40 H output is

used

to clear the flip-flop and establish the duty cycle by asserting the T40 L input

.

The control store

asserts

the DL CONT H input and allows the oscillator to continue while the module is initialized

.

The

control

store negates the DL CONT H input and when the T20 H, T40 H and T50 H inputs become

negated,

the DL BUSY L signal is negated, allowing the oscillator to be dormant, as shown in Figure 5-15

.

The

assertion of AUX CYC L clocks a flip-flop to start the oscillator

.

The assertion of EXT CYC (1) H

input

also starts the oscillator, provided the DLYCYC L input is negated

.

The oscillator is turned off by

the

control store negation of DL CONT H and DL BUSY L to enable the restart conditions

.

The

LAT

RDSTRB H input from the PMI bus can also restart the oscillator, provided the DL BUSY L input is

negated .

The control store asserts the WT4 RPLY H and the WT4 NRPLY H inputs, and these enable

the

RRPLY H or the CRPLY H inputs to preset a flip-flop and restart the oscillator

.

The

PDMA H input is clocked into a flip-flop by RPBCYC H to enable the PDMA CYC H input to start

the

oscillator

.

The QDMA CYC H input is able to start the oscillator, provided that SET STL L is

negated .

The SET STL L input is asserted by the control store to enable JSTALL L to preset the flip-flop

and

restart the oscillator

.

TO

H

T20

H

T40

H

T50

H

T70

H

T85

H

DL

CONTHI

DL

BUSY L

Figure

5-15	

Oscillator

Outputs

5-1 5

MR

17066

CQCOK

H

Figure 5-16

Oscillator Control

Table

5-8 Oscillator

Control

Signals

Code Transaction Primary Secondary

0 General

purpose read from FPA

AUX

CYC L

None
1 General

purpose write to FPA

AUX

CYC L

None
2 IDAT

data read

AUX

CYC L

None
3 IDAT

data write

AUX

CYC L

None
4 DC350/394

data/General purpose read

AUX

CYC L

None
5 DC350/394

data/General purpose write

AUX

CYC L

None
6 EXT

bus data read

EXT

CYC (1) H

CRPLY

H, RRPLY H,

LAT

RDSTRB H

7 EXT

bus data write

EXT

CYC (1) H

CRPLY

H, RRPLY H

8 EXT

bus L byte write

EXT

CYC (1) H

CRPLY

H, RRPLY H

9 EXT

bus H byte write

EXT

CYC (1) H

CRPLY

H, RRPLY H

10 EXT

bus FPA write

EXT

CYC (1) H

CRPLY

H, RRPLY H

11 Q-Bus

DATIO (DATOB)

EXT

CYC (1) H

CRPLY

H, RRPLY H

12 Interrupt

vector read

AUX

CYC L

CRPLY

H, RRPLY H

13 Standalone

mode cache write

AUX

CYC L

None
14 Non-I/O

or ABORT recovery

AUX

CYC L

None
15 Monitor

DMA write cycles

PDMA

CYC H

JSTALL

L

QDMA

CYC H

5.4.3

	

Next

Address MUX

The

next address MUX is an 8-bit 2

:1

multiplexer that allows the control store to branch within the

selected

page to a routine that is determined by the conditions sampled at the multiplexer

.

The next

address

select signals (NA SEL <2

:0>)

and the next address bits (NA <1

:0>)

are driven to the control

store

as inputs to the multiplexer (Figure 5-17)

.

The NA SEL <2

:0>

inputs select one of eight MUX input

conditions

given in Table 5-9

.

5.4.3.1

Default - The default condition selects the NA <1

:0>

signals as they were copied from the

control

store

.

5.4.3.2

External Read/Write - During external data reads and writes, the MUX NA 0 output de-

termines

if the bus cycle is a PMI transfer by the status of TPBCYC

.

The MUX NA 1 output determines

if

the cache memory should be allocated by the status of either the J CACHE DIS or UBMEM inputs

.

Figure

5-17	

Next

Address Multiplexer

Table

5-9

Selection

of NA

<1 :0>

Status

NA SEL Input

Bits

Condition

Selected

2 1 0 MUX

Inputs

Default 0 0 0 0
External

Read/Write

0 0 1 1
LSI/Unibus 0 1 0 2
Interrupt

vector

0 1 1 3
DC350/394

accesses

1 0 0 4
Byte

allocation

1 0 1 5
DMA

monitor

1 1 0 6
Standalone

mode

1 1 1 7

5.4.3.3

	

LSI/Unibus

- During external data reads and writes, the MUX NA 0 output determines if the

cycle

should be an LSI bus or Unibus transfer by the status of NPSLV CYC

.

The MUX NA 1 output

determines

if the cache should be invalidated during an interrupt vector read from the Unibus by

the

status of PDMA CYC

.

The controller is stalled while waiting for the interrupt vector or RRPLY

.

If

the

Unibus interrupt master performs a DMA transfer, the cache is invalidated

.

5.4.3.4

	

Interrupt

Vector - The MUX NA 0 output is determined by the status of TXVEC and the

MUX

NA I output is determined by the status of RXVEC

.

These inputs have their respective vectors

read

from the DC350/394 gate array if asserted

;

otherwise, the vectors are read from the external bus

.

5.4.3.5

	

DC350/394

Accesses - The MUX NA 0 output is determined by the status of F

.USI-!

and if

asserted,

the cache is flushed

.

The MUX NA 1 output is determined by the status of JREG REF

and

if asserted, an internal register is read and the DCJI 1-A is not stalled

.

5.4.3.6

	

Byte

Allocation - The MUX NA 0 output is determined by the status of TBYTE, provided

JABORT

L is not asserted

.

The MUX NA 1 output is determined by the status of WRLB

.

During

external

bus writes and standalone mode cache reads, these bits determine which byte may be accessed

.
These

bits are not used for external bus data, H byte and L byte write transactions

.

During Q-Bus DATIO

transactions,

the MUX NA 0 output defines the cycle as a DATI transaction for a Read-Modify-Write

cycle

and inhibits the negation of SYNC until the transaction is complete

.

5.4.3.7

DMA Monitor - The MUX NA 0 output is determined by the status of DTS CMP and

DTG

PERR

.

The MUX NA 1 output is determined by the status of FRCE MISS

.

When monitoring

DMA

cycles, these outputs determine if the cache should be invalidated because of a DMA hit or the

assertion

of FRCE MISS H

.

5.4.3.8

Standalone Mode - The MUX NA 0 output is determined by the standalone mode input,

provided

the TBS7 H input is negated

.

The MUX NA 1 output is determined by the status of

WR

FM FPA

.

During DC350/394 transactions, the MUX NA 0 output specifies that the DMA tag store

parity

bit and the tag store be validated if the cycle was a standalone mode read cache miss

.

During

standalone

mode cache accesses, the MUX NA 1 output determines if the write data is obtained from the

DCJ

11-A or the FPA

.

5.4.4

	

Control

Store

The

control store is a 512 X 48 PROM that contains 16 pages

.

Each page has 32 entries that are 48 bits

wide,

as shown in Figure 5-18

.

The 16 pages represent the 16 basic transactions selected by the cycle

encoder

logic and those outputs are address bits <8

:5> .

Each entry in a page is sequenced to execute the

transaction

by using the NA <4

:2>

outputs as address bits <4

:2> .

Address bits NA <1

:0>

are selected by

the

NA SEL <2

:0>

outputs that select an output from the next address MUX

.

This allows the routine to

branch

within a selected page

.

At the end of each page, the control store resets the system back to an

initialized

state before exiting the page

.

The signals provided by the control store are listed in Table 5-10

.
Some

of them are modified by the time delay signals from the oscillator

.

Figure

5-18	

Control

Store

MR-17069

Signal

	

Function

Table

5-10	

Control

Store Outputs

NA

<4

:2>

	

Control

store address bits <4

:2> .

NA

<1

:0>

	

Control

store default next address bits <1

:0>

to MUX

.

NA

SEL <2

:0>

	

Next

address MUX selection code

.

GA

FCN <1

:0>

	

DC350/394

gate array encodes the following functions

.

0

Selects the address register

I

	

Selects

the console RX vector

2

Selects the console TX vector

3

Selects another DC350/394 register

DL

CONT H	

Clocked

at T20, enables the oscillator to continue running

.

UPDATE

H	

Allows

updating of the tag, parity and valid bits in the DMA and cache tag

store .

EN

GTOX H	

Enables

the DC350/394 gate array to drive the XDAL bus

.

WT4

NRPLY H	

Used

to restart the oscillator when there is no RPLY

.

WT4

RPLY	

Used

to restart the oscillator when there is RPLY

.

TO:LAT

CYCCD H	

Opens

the latches for the CYCCD selections at TO and latches the data at

T20.

TDIN

H	

Clocked

as T50

:DlN

H, LSI-11 bus DATI strobe

.

QTST

L	

Enables

the QSYNC and opens the XTOY bus on FPA/PMI write dumps

.

WR

TAG H	

Enables

cache writes

.

SEL

CACH H	

Selects

both bytes of the cache

.

END

CSEL L	

Clocked

as TMEND CSEL L to disable cache byte selects at T20

.

SEL

CDLB H	

Clocked

as T50

:SEL

CDLB H to select cache low byte at T50

.

SEL

CDHB H	

Clocked

as T50

:SEL

CDHB H to select cache high byte at T50

.

INC

FLCNTR H	

Increments

the flush counter

TO:LD

MSER L	

Clocked

as T50

:LD

MSER L to load the error status into the MSER at

T50.

WTSTB

H	

Write

data strobe for PMI

.

CLK

HIT H	

Samples

the DMA tag comparator

.

JACK

H	

Interrupt

acknowledge

.

TDOUT

H	

LSI-11

bus DATO strobe

.

EN

YTOZ H	

Enables

the YDAL bus to the ZDAL bus

.

EN

XTOY H	

Enables

the XDAL bus to the YDAL bus

.

EN

CDCOK H	

Enables

the CDCOK H signal

.

END

UPDT L	

Clocked

as T50

:END

UPDT L to disable various bus control signals

.

EN

MTOX L	

Enables

the MDAL bus to the XDAL bus

.

MDV

L	

Enables

the DCJI1-A data strobe

.

RWSTB

L	

Read/Write

strobe for IADR bus or DC350/394 gate array

.

EN

ADR H	

Enables

BDAL addressing and is byte control for LSI-11 DATIO cycles

.

CPU

ACT L	

Enables

TPBCYC L signal during external bus cycles

.

TO :YTOB

H	

Clocked

as T50

:YTOB

L to enable the YDAL bus to the BDAL bus

.

SET

YTOD L	

Latches

the DMA address buffer

.

EN

IBUS L	

Enables

the IDAT bus to and from the YDAL bus

.

EN

ATOX H	

Clocked

as THEN ATOX H to enable the address register to the XDAL

bus .

MEN

FTOZ L	

Clocked

as T50

:EN

FTOZ L to enable the FPA to the ZDAL bus

.

TO :OPN

YTOZ L	

Clocked

at T40 as OPN YTOZ (1) H to open the ZDAL buffer

.

Signal

GP

STRB <A2

:AO>

Table

5-10 Control Store Outputs (Cont)

Function

General

purpose strobes encoded to select output signals as follows

.

CLR

CLK L

0 Resets

the clock flip-flop

SET

RMW L

1 Sets

the RMW flag for LSI-11 bus DATIO cycles

CLR

LSYNC L

2 Resets

SYNC, DHIT flip-flop and clears YTOD latch

CLR

YTOD L

3 Opens

DMA address latch in the DC351 gate array

CLR

SEL L

4 Resets

the external cycle requestflip-flop

SET

STL L

5 Enables

JSTALL to restart the oscillator

CLR

PDMA L

6 Clears

the PDMA flip-flop

NC 7 Not

used

T50 : END UPDT LEN GTOX H

EN YTOZ L

T20 : EN A70X Vi

T50 YTOB H
TPBSY H
EN ADR H

5-22

EN GTOX L

EN YTOZ L

EN ATOXL~

YTOB l. ,_

NIR 170)0
Figure 5-19

	

Internal Bus Control Signals

Additional internal bus control signals are generated from the control store output signals as shown in
Figure 5-19 . The EN GTOX L, EN YTOX L and EN ATOX L signals are asserted by their respective
inputs ; EN GTOX H, EN YTOX H and EN ATOX H are asserted when the T50:END UPDT L input is
negated . The EN ZTOY L output is enabled by asserting T50:EN FTOZ L while the XTOY H
input is negated . The EN XTOY L output is asserted by having both the XTOY H and TPBSY H inputs
asserted .
The LSI-11 address and data bus transceivers are enabled to the YDAL bus by the assertion of
EN BDAL L, and the YDAL bus drives the BDAL bus when YTOB L is asserted . Whenever TPBSY H,
PDMA H, QSACK H or TIACK H is asserted, the EN BDAL L output is asserted . The YTOB L output
is asserted when either T50:YTOB H or EN ADR H inputs are asserted while "TPBSY H is also asserted .
5.5 CACHE MEMORY AND DMA STOREThe cache memory consists of a 4K RAM for data storage, the cache tag store, the data parity generating
logic, the valid tag bit logic and the cache control logic, as shown in Figure 5-20 . The cache memory is
used to temporarily store data received from the system memory that the DCJ11-A is currently using .
This allows the DCJI I -A to quickly access on-board data without performing external bus transactions .
The physical address is divided into three sections as shown in Figure 5-21 . The byte select bit is used to
access either high or low bytes of data . The index bits are used as the address of the cache memory, The
label bits are stored as the tag store for valid cache entries . Fach cache entry is organized as shown in
Figure _5-22 . The high and low data bytes are stored as data . The label bits with a tag valid bit (V) and the
tag parity bit (P) as even parity are stored as tag store data . The low byte parity (PO) is stored as even
parity and the high byte parity (Pl) is stored as odd parity in the tag store . The byte parity is predicted by
the cache data parity logic . The DMA store is an identical copy of thv cache tag store and it is used to
monitor the main memory DMA Jpdates while the cache tag store i}Zonitors the DCJI 1-A requirements .

CACHECONTROLLOGIC

Figure 5-20

	

Cache Memory System

21

	

13 12

	

01 00
LABEL

	

INDEX

Figure 5-21

	

Cache Physical Address

15

Figure 5-2 2 Cache Data Format

BYTE SELECT
MR 11057

FpTTV TAG

MR 11058

MR 17071

5.5.1

	

Cache

Memory

The

cache data RAM (Figure 5-23) is 8 Kbytes of read/write memory addressed by the index field, that

is,

XDAL bus bits <12

:1

>

.

These bits always access the data stored in an address location, but the data is

not

validated until the label field of the address is verified as the tag store by the DC350/394 gate array

.

The

read/write operations are controlled by the cache control signals CSEL CDHB L, CSEL CDLB L and

WR

CACH L

.

The low byte of cache data is read when the CSEL CDLB L input is asserted and is written

when

both the CSEL CDLB L and WR CACH L inputs are asserted

.

The high byte of cache data is read

when

the CSEL CDHB L input is asserted and is written when both the CSEL CDHB L and WR CACH L

inputs

are asserted

.

The data is routed via the ZDAL bus to the DO11-A

.

5.5.2

	

Cache

Tag Store

The

tag RAM (Figure 5-24) is a 4K x 16 read/write memory that stores 13 bits of data and three bits that

are

not used

.

The data consists of the 9-bit label field (address bits <21

:13>),

the high and low byte data

parity

bits (CDHBP H and CDLBP H), the tag parity bit (CTAGPAR H), and the tag valid bit (CTAG

VLD

H)

.

The data is received from the cache data path in the DC350/394 gate array

.

The read/write

operations

are controlled by the cache control signals CSEL CDHB L, CSEL CDLB L and WR CACH L

.
The

low byte of the cache tag store data is read when the CSEL CDLB L input is asserted and is written

when

both the CSEL CDLB L and WR CACH L inputs are asserted

.

The high byte of cache tag store

data

is read when the CSEL CDHB L input is asserted and is written when both the CSEL CDHB L and

WR

CACH L inputs are asserted

.

The high and low byte data parity bits (CDHBP H and CDLBP H) are

used

by the cache data parity logic

.

The cache tag data, the tag parity bit (CTAG PAR H) and the tag

valid

bit (CTAG VLD H) are used by the DC350/394 gate array

.

Figure

5-23	

Cache

Memory

Figure

5-24	

Cache

Tag Store

5-24

MR

17013

MR

17072

5.5.3

	

Cache

Data Parity Logic

The

cache data parity logic provides an even parity bit (CDLBP H) for the low byte of data and an odd

parity

bit (CDHBP H) for the high byte of data

.

It also checks these parity bits when the data is accessed

from

the cache memory and reports any errors as the HB PERR H and LB PERR H outputs to the

DCJ11-A

and the DC350/394 gate array

.

The

high byte parity bit (PHBPAR L) and low byte parity bit (PLBPAR L) signals are received from

memory

when the cache memory is being updated, as shown in Figure 5-25

.

These inputs are buffered and

latched

by the assertion of the COPN YTOZ H input

.

The latched outputs provide a correct parity bit

(HBPAR

H, LBPAR H) and a wrong parity bit (HBPAR L, LBPAR L) as inputs to the 4-bit multiplexer

.

The

data from the cache memory is read via the ZDAL bus to the 9-bit parity generator

.

The respective

parity

bit is also an input to the parity generator, provided the UPDATE L signal is negated

.

An odd

parity

bit and an even parity bit are generated on the 9-bit input by the parity generator and both of these

bits

are inputs to the 4-bit multiplexer

.

The

inputs to the multiplexer represent the original parity bit, a predicted parity bit and two wrong parity

bits .

The EN PRD H input selects the predicted parity when asserted and the correct parity bit when

negated .

The asserted WR WRONG PAR H input selects one of the two wrong parity bits, depending on

the

status of EN PRD H

.

The selected output determines the status of the CDLBP H or CDHBP H

outputs,

when they are enabled (Table 5-11), by asserting the UPDATE L output

.

Figure

5-

25

	

Cache

Data Parity Logic

M

8

.170

74

5.5.4

	

Valid

Tag Bit

The

valid tag bits for the DMA tag store and the cache tag store are generated by the same logic, as shown

in

Figure 5-26

.

The DTAG VLD H and CTAG VLD H are driven by the tag valid bit logic and are

enabled

by the assertion of the UPDATE L signal

.

The DTAG PAR H output is also copied from the

CTAG

PAR H signal when UPDATE I

.

is asserted

.

The valid bit output is good, provided the following

four

conditions are valid

.

l .

	

The

JBSI H signal is negated to indicate that the address is either for memory or system board

register .

2 .

	

The

address is not a nonexistent memory (NXM L negate), or an address invalidated by DMFL

INV

L negated

.

3 .

	

The

COPN YTOZ H signal is negated, or parity address bit 17 or 16 is negated

.

4 .

	

The

COPN YTOZ L signal is asserted

.

The predict signal EN PRD H and the DATI signal

T50:DIN

H are negated

.

5.5.5

	

DMA

Tag Store

The

DMA tag store (Figure 5-27) is a 4K X 12 read/write memory that stores 11 bits of data and one bit

that

is not used

.

The stored data is the same data stored in the cache tag store except for the two cache

memory

parity bits

.

The DC351 gate array controls the operation of the DMA tag store

.

It is addressed by

bits

< 12

:1

> of the DADR bus and the data is read via DTAG bus

.

The DTAG VLD H and DTAG PAR H

outputs

are used by the DC351 gate array to validate the DMA tag store data

.

This allows the DMA tag

store

to operate independently from the cache memory and monitor DMA transfers while the DCJI I -A is

using

the cache memory

.

5.5.6

	

Cache

Control

The

cache control signals are used to read and write the cache memory, the cache tag store, the DMA tag

store

and enable the cache parity logic

.

The input signals used by the cache control logic (Figure 5-28) are

from

the control store

.

The CSEL CDHB L, CSEL CDLB L and CSEL TAG L signals are all asserted by

asserting

the SEL CACH H input

.

The high byte select signal CSEL CDHB L and the CSEL TAG L

signal

are asserted when the T50

:SEL

CDHB H input is asserted while the T20

:END

CSEL L input is

negated .

The low byte select signal CSEL CDLB L and the CSEL TAG L signal are asserted when the

T50:SEL

CDLB H input is asserted while the T20

:END

CSEL L input is negated

.

The

WR CACH L signal is enabled by asserting WR TAG H while T50

:END

UPDT L is negated

.
UPDATE

L is enabled by asserting UPDATE H while T50

:END

UPDT L is negated

.

Table

5-11

Cache

Parity

EN

PRD H

WR

WRONG PAR H

CDHBP

H

CDLBP

H

0 0 Even

parity

Odd

parity

1 0 HB

PAR H

LB

PAR H

0 1 Odd

parity

Even

parity

1 1 HB

PAR L

LB

PAR L

Figure 5-26

	

Valid Tag Bit

Figure 5-27

	

DMA Tag Store

WR TAG H
T50 : END UPDT L
UPDATE H

E>
EDoFigure 5-28

	

Cache Control Signals 5-27

MR 17076

UPDATE L
WR CACH L

MR 17077

MR-17075

5.6 DC350/394 GATE ARRAY

The DC350/394 gate array (Figure 5-29) contains many of the functions of the KDJ11-B module . It

controls the cache data path, the address decoding for the on-board registers, the parity interrupts and

aborts, the KDJ11-B bus requests and the bus arbitrator logic, which is described in Paragraph 5 .3 .

A copy of the cache control register is stored in the gate array . In addition, the DC350/394 gate array

contains the following on-board registers and the console vector generator to access an 8:1 multiplexer

(AMUX) that drives the XDAL and CTAG busses .

On-Board Registers

Address

Boot and diagnostic Control/Status (BCSR)

Memory System Error (MSER)

Line Time Clock status (LTC)

Maintenance (MTRG)

Page Control (PCR)

Console Vector Generator

Receive vector 60

Transmit vector 64

ADRR REG 1 '-
?MB I

M BSOH

	

I <LLRCM16
_JALE L __
RWSTB L

	

ADDRESS

	

WR iDFV L _~	tAI---
FPA OP L
FPn RDV H

Figure 5-29

	

DC350/394 Gate Array

5-28

I IMEOUT H
JSTRB L

CACHE

	

NXM L
CONTROL

J CACHE DIS H

XDAL<2 1 . 0 0>

The

address register latches the 22-bit physical address from the XDAL bus when the JSTRB L input is

asserted

at the start of every cycle

.

Bits <22

:13>

of this register are used as the tag store data and bits

<

12

:0>

are used for decoding the addresses of the explicitly addressable registers and addressing the cache

memory .

Bit 12 is used to select a 2

:1

multiplexer (CMUX) input from the PCR that drives bits <14

:9>

of

the

IADR bus

.

The

BCSR is used to control the boot and diagnostic ROMs

.

It asserts the standalone mode output

(SAMODE

L) when bit 8 is set and the ENB HOB H output when bit 9 is set

.

The battery backup failure

input

(BBRBE H) is used to set bit 15 when the RPOK H input is asserted

.

The

MSER monitors the status of parity errors in the memory system

.

The contents of the register is

updated

from the parity/abort logic when the T50

:LD

MSER L input is asserted

.

The DTS CMP H input

is

used to set bit 14 and the DTG PERK H input is used to set bit 13 when the CLK HIT H input is

asserted .

The

LTC status register, enabled by setting bit 6, allows the clock logic to generate clock interrupts by

asserting

the MEVENT L output

.

The interrupts are determined by clock select bits 10 and 11 of the

BCSR

register, as shown in Table 5-12

.

The logic uses REVNT H, KDJ800 H and KDJ60 H inputs as

the

timing base of the interrupts

.

The

MTRG maintains the status of the system and is read by the DCJ11-A during the power-up routine

.
The

PSLV H, UBSYS H, FPA OP L and RPOK H inputs are used by bits <10

:8>

and 0 to indicate the

system

status

.

The

PCR uses bits <14

:9>

or <6

:1

> to drive the IADR bus via the CMUX, depending on the status of bit

12

in the address register

.

Boot ROM address 17 773 000 uses bits <14

:9>

as an address and boot ROM

address

17 765 000 uses bits <6

:1>

as an address

.

The

CCR is a copy of the cache control register in the DCJ11-A and is used to control the parity and abort

functions .

The FLSHRQ H output is asserted when bit 8 is set and is the flush cache request to the DC351

gate

array

.

The FRCE MISS H output is asserted when bit 3 or bit 2 is set and all DCJ11-A reads are

reported

as misses

.

The WR WRONG PAR H output is asserted when bit 6 is set and the wrong data

parity

is written for both bytes on DCJ11-A read misses and write hits

.

The

console vector generator provides the receive and transmit vectors when these interrupts are acknowl-

edged

by the DCJ11-A

.

Table

5-12	

LTC

Interrupts

CLK

SEL 1

CLK

SEL 0

Interrupt

Source

0 0 REVNT

H

0 1 KDJ800/16

or 50 Hz

1 0 KDJ60

or 60 Hz

1 1 KDJ800

or 800 Hz

The

A-Multiplexer (AMUX) is a 16-bit, 8

:1

multiplexer that interfaces to the XDAL bus

.

It is controlled

by

the GAFCN I and GAFCN0 inputs, along with the address decode logic outputs for the BCSR, MSER,

LTC,

MTRG, and PCR register selections

.

The AMUX is used to select a register or vector (Table 5-13)

and

drive its contents onto the XDAL bus

.

5.6.2

	

Cache

Data Path

The

Cache Data Path (CDP) uses the address register, the AMUX, the 2

:1

B multiplexer (BMUX), a

parity

generator, a parity predictor, a tag comparator and the cache control logic

.

When the cache is being

written,

XDAL bits <12

:1>

are the index bits used via the XDAL bus to address the cache memory

location

where the data is stored

.

The EN GTOX L input is asserted to enable the gate array or the

AMUX

output to drive the XDAL bus

.

The NXT WD H input is asserted to increment the current

address

and enable the second word from the system to be loaded into the next cache location

.

XDAL bits

<22 :13>

are the label data driven via the CTAG bus when the UPDATE L input is asserted and stored at

the

same address in the tag store

.

An even parity bit is generated for the tag data and can be modified

when

the write wrong tag parity bit (bit 10) in the CCR is set

.

The tag parity bit is stored with the label

data

when the UPDATE L input is asserted

.

An

address from the DO11-A is received and the CDP must validate it as a hit or miss for the cache

memory .

The address is latched in the address register and index bits < 12

:1

> are driv=en onto the XDAL

bus

via the AMUX to address the cache memory

.

The cache store data is read via CTAG bus bits

<21 :13>,

along with the CTAG PAR H and the CTAG VLD H bits

.

Address bits <21

:13>

are compared

with

tag data bits <12

:13>

by the tag comparator and an error is reported to the DCJ11-A by the

assertion

of the CTG MISS H output

.

A parity bit is predicted for address bits <21

:13>

and another

parity

bit is produced for tag data bits <21

:13>

by the parity generator

.

Both of these parity bits are

checked

with the CTAG PAR H input by the assertion of the CTAG VLD H input

.

An error in the

predicted

parity enables the CTG MISS H output, and an error in the tag parity check is reported to

the

parity interrupt and abort logic by the negation of the

.

JALE L input

.

The

cache control logic asserts the NXM L output when the TIMEOUT H input is asserted, except for

word

write cycles with bit I set in the CCR

.

The output is cleared at the end of the cycle by the assertion

of

the JSTRB L input

.

The cache control also asserts the JCACHE DIS H output for any I/O page access,

force

cache miss, read or write miss with bypass set for no parity errors or nonbypass miss with no tag

parity

errors

.

Table 5-13 AMUX

Selections

GAFCNI

GAFCNO

BCSR MSER LTC MTRG PCR Selected

Data

0 0 X X X X X Address

register

0 1 X X X X X Receive

vector 60

1 0 X X X X X Transmit

vector 64

1 1 1 0 0 0 0 Boot

and configuration

l 1 0 1 0 0 0 Memory

system error

1 I 0 0 1 0 0 Line

time clock status

1 1 0 0 0 1 0 Maintenance
1 1 0 0 0 0 0 Page

control

5.6.1 A-Multiplexer

5.6.3

	

Parity

Interrupt and Abort

The

parity interrupt and abort logic drives the MPARITY L and MABORT L outputs to the DO11-A

.
The

MABORT L output is enabled only when the JSCTL L input is asserted

;

otherwise, it is used as an

input

from the DO11-A

.

Asserting the MABORT L output alone results in an abort to location 4

.
Asserting

the MPARITY L output alone results in an interrupt to location 114

.

When both outputs are

asserted,

a parity abort to location 114 is also generated

.

The

logic uses the DTG PERR H, HB PERR H, LB PERR H, MEM PERR H, CLK HIT H and

TIMEOUT

H inputs

.

It also uses the internally generated tag parity error signal

.

These inputs represent

parity

errors from the cache memory, the main memory, the cache tag and the DMA tag

.

The TIMEOUT

H

input is asserted whenever nonexistent memory is addressed

.

These inputs are used with bits 7 and 0 of

the

CCR and the read request (RD REQ) signal from the cycle decode logic

.

The operations of the parity

interrupt

and abort logic are described in Table 5-14

.

The CPE status represents any cache parity error

.

The

parity interrupts and aborts can only occur if bits <7

:4>

of the MSER register were cleared after any

previous

cache parity error

.

These bits represent cache parity error status

.

This allows the system to

respond

to a nonfatal cache parity error without being interrupted for additional parity errors

.

When bit 4

of

the MSER register is set, bits 7 and 0 of the CCR can enable the outputs as shown in Table 5-15

.

The

MPARITY L output is asserted for main memory or cache parity errors provided CCR bit 0 is clear

and

CCR bit 7 is set

.

The MABORT L output is asserted when a cache parity error occurs during a

request

read, for any main memory parity error, for a nonexistent address, and whenever a cache parity

error

occurs when CCR bit 7 is set

.

Table

5-14

Parity Interrupt

and Abort

Logic

REQ

RD

CPE CCR7 CCRO NXM MEMPERR MPARITY

L

MABORT

L

X 0 X X 0 0 Negated Negated
X X X X 1 X Negated Asserted
X X X X 0 1 Asserted Asserted
1 1 X X 0 0 X Asserted
0 1 0 0 0 0 Asserted Negated
0 1 0 1 0 0 Negated Negated
0 1 1 X 0 0 Asserted Asserted

Table

5-15

CCR

Register

Selections

CCR7 CCRO MPARITY

L

MABORT

L

0 0 Asserted Negated
0 1 Negated Negated
1 X Asserted Negated

5.6.4

Address Decode

The

on-board register addresses are decoded as shown in Table 5-16

.

The decoder uses address register bits

<

12

:1

> and the bank select inputs MBS 1 H and MBSO H

.

The BCSR bits 12 and <7

:5>

are monitored

since

they can enable or disable the LTC register and the boot addresses

.

The

address decoder enables the SELDL L, SEL ROM8 L or SEL ROM16 L outputs when addressed,

and

the selected output is asserted when the JALE L input is asserted

.

The on-board device read and write

signals,

RDIDEV L and WRIDEV L, are enabled by the read and write cycles and are asserted when the

RWSTB

L input is asserted

.

The

CDR is read onto the IDAT bus when addressed and the RDBCR L output is asserted during a read

cycle .

During a write cycle, the WRDISP L output is enabled and the data is written in the LED display

register

when the RWSTB L input is asserted

.

Registers

that are external to the DC350/394 gate array are encoded by the DEVCD2 H and DEVCD1 H

outputs

to the cycle encoder, as shown in Table 5-17

.

The JREG REF H output is asserted when a

DCJI

1-A internal register is selected

.

The

address decode logic also enables the select decode logic to send the RWSTB L input to the internal

registers

on a write cycle

.

The RWSTB L input also goes to the abort logic for nonexistent module

addresses,

standalone mode bus read misses, bypass and force misses, and 1/O page references not on the

module .

DLVCD2

0 X
0
1
1
1

DEVCD1

Table

5-17	

DEVCD

Outputs

Selection

Internal

device decoded

No

selection

Register

within the gate array

DCJ

1 1-A internal register	

,

NXM

abort during standalone mode

5-32

Table

5-16

Address Decoding

Address

Bits <12

:1> MBS1 MBSO

Decoded Address

X

XXX XXX XXO 00

0 1 Nonexistent

register

X

XXX XXX XXO 01

0 1 Nonexistent

register

X

XXX XXX XXO 10

0 1 MSER
X

XXX XXX XXO 11

0 I CCR
X

XXX XXX XX 1 00

0 1 MTRG
1

111 101 010 00

1 0 BCSR
1

111 101 010 01

1 0 PCR
1

111 101 010 10

1 0 CDR
I

111 101 100 11

1 0 LTC

register

1

111 101 110 XX

1 0 Console

SLU

I

Oil XXX XXX XX

1 0 Boot

address 17 773 000

0

101 XXX XXX XX

1 0 Boot

address 17 765 000

Table

5-18	

Cycle

Decoding

LAID

5.6.5

	

Cycle

Decoder

The

cycle decoder decodes the LAID <3

:0>

H inputs to control the various functions within the

DC350/394

gate array, as shown in Table 5-18

.

The read/write cycles go to the address decoder for

register

selection and the request read and non-I/O cycles go to the parity/abort logic

.

A request read

forces

an abort on cache parity errors and a non-I/O inhibits aborts on stretched non-1/0 cycles

.

The

TBYTE

L output is asserted for all read-modify-writes and external bus write byte cycles

.

When

any write cycle is decoded and the FPA OP L input is asserted, the FPA write cycle output WRFM

FPA

L is asserted

.

The FPA DLY H output is asserted when the FPA data is not ready, causing the FPA

RDY

H input to be negated while the WRFM FPA L output is asserted

.

The FPA DLY H or the

RSBFUL

H signal is used as the DLYCYC L output to the delay oscillator and PMI cycle request logic

.

5.6.6

Miscellaneous

The

TINIT H output is asserted when the RPOK H input is negated or for any general purpose write to

location

14, and is negated on any general purpose write to location 214

.

The

MPWR FAIL L output, which is the power fail interrupt to the DO11-A, is asserted by the negation

of

the RPOK H input

.

It is negated by a general purpose write to location 140 or when RPOK H is

asserted .

The

Unibus map enable (PMAPE H) is asserted when the JMAP L input is asserted from the DO11-A

.
The

JMAP L input is sampled when the JALE L input is asserted, provided the MABORT L output is not

asserted .

The PMAPE H output is negated when the RPOK H input is negated

.

The

JSTALL L output is used to stall the clock oscillator

.

The output is asserted, provided the JMAP L

input

is asserted when sampled by the negation of the JALE L input

.

It is also asserted whenever the

JSCTL

L input is asserted and whenever the LAID H bit 3 input is negated for a write cycle

.

3 2 1 0 Cycle

Selected

1 1 1 1 Non-I/O
1 1 0 0 Request

read

1 0 X X Demand

read

0 1 X X General

purpose write

1 1 1 0 General

purpose read

0 0 0 X Word

write

0 0 1 X Byte

write

5.7

DC351 GATE ARRAY

The

DC351 gate array controls the DMA tag data path, the clock start logic, the flush counter, and the

main

memory parity error logic, as shown in Figure 5-30

.

It uses the 9-bit bidirectional DTAG bus,

the

22-bit YDAL bus (16-bits are bidirectional and 6-bits are input only), and the 12-bit output-only

DADR

bus and XDAL bus

.

The data from the flush counter and DMA tag data path uses a 12-bit 2

:1
multiplexer

to drive the outputs on the DADR bus and XDAL bus

.

The YDAL bus and the IDAT bus are

enabled

and bidirectional when the EN IBUS L input is asserted

.

The YDAL bus drives the IDAT bus

when

the WRITE H input is asserted, and the IDAT bus drives the YDAL bus when the WRITE H input

is

negated

.

ONO

BLOCKCOUNTER

ADDRESSBUFFERLATCH

FLUSHCOUNTER

PARITYGENERATOR

TAGCOMPARATOR

HITLOGIC

".4 .1 : :
IDA(-EN

L

21

5

CLR

YTOO L

:LR

LSYNC L

WRITE

H

NXT

WD H

FL

RFOI

UMA

HI1

;.

DAL

16 H

DIN

H

H

DTAG

PAR H

DTAG

VLD H

CLK

DIES L

RWTBT

H

TPBSY

H

OSYNC

H

SAMODE

L

CLOCKSTART

Figure

5-30	

DC351

Gate Array

5.7.1

	

DMA

Tag Data Path

The

DMA tag data path writes YDAL bus bits <21

:13>

as the DMA tag data

.

This data is driven on the

DTAG

bus to the DMA tag store by the assertion of the UPDATE L input

.

YDAL bus bits < 12

:1

> are

used

to address the DMA tag store and are driven on the DADR bus

.

The

DMA tag data path consists of address buffers and latches, a tag comparator, a parity generator and

the

hit logic

.

Any address on the YDAL bus can be compared with the DMA tag store to determine if that

address

is being used by the cache memory

.

The latching logic for the YDAL buffers is preset by asserting

the

SET YTOD L input, and with the TPBSY H input asserted, the address is latched into the buffers by

the

assertion of the SYNC H input

.

The latches are reset by asserting the CLR YTOD L input or the CLR

LSYNC

L input

.

The NXT WD H input is asserted to increment the address in the buffer enabling the

second

word address

.

During

DMA cycles, every address on the YDAL bus is compared with the DMA tag store

.

The DADR

bus

addresses the DMA tag store and the data is compared to bits <21

:13>

of the YDAL bus

.

A parity bit

is

also generated for these bits and is compared with the DTAG PAR H input - the stored DMA parity

bit .

The results of these checks are enabled by the assertion of the DTAG VLD H input

.

The DTS CMP H

output

is asserted when a valid comparison of the DMA tag data is made, and the DTG PERR H output is

asserted

when a parity error is detected

.

The DMA HIT L output is asserted when there is a valid

comparison

of data and parity, and the CLK HIT H input is asserted

.

The DMA HIT L output is also

asserted

when the RWTBT H and the TPBSY inputs are asserted and sampled by the assertion of the

QSYNC

H input

.

The DMA HIT L output is inhibited when the SAMODE L input is asserted during

standalone

operations

.

When a hit occurs, the current data is invalidated and the new data is written into

the

cache memory

.

5.7.2

Clock Start Logic

The

clock start logic enables the QDMA CYC H output to trigger the delay oscillator during DMA write

cycles

on the LSI-11 bus

.

The output is asserted by the assertion of the RDOUT H input, provided the

TPBSY

H input is negated

.

The QDMA CYC H output is negated by the assertion of the CLR CLK L

input .

The clock start logic is initialized by the assertion of the CDCOK H input

.

5.7.3

	

Flush

Counter

The

contents of the cache memory is flushed or cleared during power-up and whenever bit 8 of the CCR is

set .

This requires that each address location in the cache tag and DMA tag store is addressed and cleared

or

invalidated

.

The DC350/394 gate array asserts the FL REQ H input to initiate the flush sequence

.

This

input

allows the 12-bit output from the flush counter to drive DADR <12

:1>

and XDAL <12

:1>

bus

outputs

via the 2

:1

multiplexer

.

It also asserts the FLUSH H output to the next address MUX logic, and

the

DMFL INV L output is asserted to invalidate the tag valid bit for the tag stores

.

The flush counter is

cleared

to zero by the assertion of the JSTRB L input

.

The DMA tag store is addressed by the DADR bus

and

the cache tag store is addressed by the XDAL bus

.

The

flush counter is incremented by the assertion of the INC FLCNTR H input from the control store and

the

next location in the tag stores is addressed

.

This cycle continues until all the locations are addressed

and

cleared

.

Then the flush counter overflows and negates the FLUSH H output to the next address MUX

logic

to end the cycle

.

5.7.4

Main Memory Parity Error

The

parity bits from the main memory are received via YDAL bus bits 17 and 16

.

When both of these bits

are

asserted high, the MEM PERK H output is asserted by the negation of the TDIN H input or the

RDSTRB

H input

.

The MEM PERR H output indicates that there was a parity error in the read cycle

from

the main memory

.

The output is cleared by the assertion of the JSTRB L input

.

5.8

TIMEOUT

The

KDJ11-B module has two timeout logic circuits - one for the DMA requests and the other for

nonexistent

memory or interrupt acknowledge

.

Both of these timeout circuits (Figure 5-31) use the same

principle,

but are controlled by different signals

.

5.8.1

	

DMA

Requests

The

DMA request timeout logic uses a monostable multivibrator that is continuously clocked by the

TOUT

CLK H signal, which is driven by the JCLK H input

.

The multivibrator is set by the assertion of

either

RRPLY H, UBSYS H, or the combination of DMG H and TRPLY H

.

This sets the output low,

the

CSACK L output is negated and the logic waits for the system to acknowledge the reply by

asserting

the CSACK L input

.

The capacitive network allows the multivibrator to run for 10 jseconds

before

it automatically resets the output and asserts the CSACK L output

.

However, the CSACK L

output

can be asserted anytime the QSACK H input is received as the acknowledgment for the reply

request .

5.8.2

	

NXM

or Interrupt Requests

The

NXM or interrupt request timeout logic uses the same type of logic that the DMA request timeout

uses .

The multivibrator is set by the assertion of UBSYS H or the negation of WT4RPLY H and waits for

the

system to acknowledge by asserting the RRPLY H input

.

The RRPLY H input asserts the CRPLY H

output,

or the multivibrator times out and asserts the CRPLY H and TIMEOUT H outputs

.

The assertion

of

the Unibus timeout signal (PUBTMO H) is allowed to override the logic and assert the TIMEOUT H

and

CRPLY H outputs

.

UB

SYS H

WT4

RPLY H

Figure

5-31	

NXM,/Interrupt

Timeout Logic

+5

VDC

CSACK

L

TIMEOUT

H

CRPLY

H

PUBTMO

H~	

RRPLY

H

Mrs

,1080

R7
+5

VDC

UBSYSH C45
RRPLY

H

V

DMG

H

TRPLY

H

TOUT QSACK

H

+3

VDC

CLK

H

JCLK

H

+3

VDC

R8

5.9

BUS DISTRIBUTION

The

bus distribution consists of the internal bus control logic, the LSI-11 bus control logic and the PMI bus

control

logic

.

This distribution network allows the addressing of any internal register that may be located

in

the DLART, the DC350/394 gate array, the boot and diagnostic ROMs, or the configuration and

display

switches

.

It also allows access to the cache memory and tag stores, the FPA, and the DC351 gate

array .

The LSI-11 bus can be accessed for standard LSI-11 bus transactions and the private memory,

located

on the LSI-11 bus, can be accessed for high speed DMA transactions by the PMI control logic

.

5.9.1

	

Internal

Bus Control

The

internal bus control network routes the addresses and data to and from the various module com-

ponents

via the MDAL, XDAL, YDAL, ZDAL and BDAL busses, as shown in Figure 5-32

.

The MDAL

bus

interfaces with the ZDAL input bus and the XDAL output bus to enable the DCJ11-A microprocessor

to

read and write data within the system

.

The XDAL bus has an address register to store the current

address

and is primarily driven by the DCJ11-A to access the cache memory and the YDAL bus

.

It also

provides

a bidirectional data path to the DC350/394 and DC351 gate arrays

.

The ZDAL bus routes data

from

the cache memory, the FPA and external data from the YDAL bus to the DCJ11-A

.

It also drives

the

YDAL bus with cache memory and FPA data

.

The YDAL bus is a bidirectional bus that interfaces

with

the BDAL bus and the ZDAL bus

.

It is also driven by the XDAL bus with the current address from

the

DCJ11-A, and accesses the internal IADR bus and IDAT bus via the DC351 gate array

.

Access

to and from the individual busses is controlled by a group of latching drivers that are primarily

controlled

by the DCJ11-A and the data path controller

.

A latch is opened and the data is latched by the

input

signal to the Latch Enable (LE) input, and the data is driven onto the latched bus by the input signal

to

the Output Enable (OE) input

.

For example, the COPN YTOZ H input latches the data from the

YDAL

bus when asserted, and the EN YTOZ L input drives the data onto the ZDAL bus when asserted

.

Figure

5-32	

Internal

Bus Control

5-37

5.9.2

	

LSI-11 Bus Control

The LSI-11 bus control signals establish the data communications path between the KDJ11-B module and
the rest of the devices in the system, as shown in Figure 5-33 . The addressing and data lines are driven by
the bus transceivers that interface with the YDAL bus (Figure 5-32). The LSI-11 bus control signals are

used by the handshaking protocol necessary to execute the bus transactions . The operation of the LSI-11

bus is described in greater detail in Chapter 6.

5.9.3

	

PMI Bus Control

The PMI bus control signals provide the interface between the KDJ11-B module and the PMI bus, as

shown in Figure 5-34 . The operation of the PMI bus is detailed in Chapter 7.

5.10 CONSOLE SERIAL LINE UNIT
The console SLU is a DC319 DLART that provides the KDJ11-B module with a serial line I/O for the
system console terminal, as shown in Figure 5-35 . The full-duplex unit interfaces via an RS-423 EIA
connector and is also RS-232C compatible . The SLU has four internal registers designated as RCSR,
RBUF, XCSR and XBUF. These registers transmit and receive serial line data via the console unit and
format the data for internal parallel communications using the IDAT bus. The contents of these registers
are described in Chapter 1 .

SS_E L H

UBSYS H
EXT CYC (1)
QTST L

L

C LR LSYNC L

TP BCYC L
UBSYS H

BEVNT L

	

..I

	

\

	

REVNT H

BDCOK H

BSACK L

Figure 5-33

	

LSI-11 Bus Control Signals

r--3RWTBT H

--Is RPOK H
a- BWTBT L

OIBPOK H

MR-1 7082

TSB7 H

YTOB L

im-BBS7 L

EN BDAL L

TSYNC H QSYNC H
BSYNC L

TD OUT H 9DOUT H
BDOUT L

TRPLY H R RPLY H
BRPLY L

TDIN H
BDIN L

TI NIT H
BINIT L

TD MG H
BDMGO L

TIACK H
BIACKO L

RHALT H
BHALT L

DMA

HIT H

PSB

FUL L

PRDSTB

L

TPBCYC

L

PM

I IN PUTS

L

--

TO :

LAT CYCCD H

Figure

5-34	

PMI

Bus Control Signals

614 .4

KHz

OSCILLATOR

RSB

FUL H

Figure

5-

3 5

	

Console

Serial Line Logic

RDSTRB

H

1

LAT RDSTRB H

WTSTB

H

PMI

OUTPUTS

PM

I TRANSCEIVERS

PWTSTB

L

__PBSY

L

CNSL

ENB HOB H

CNSL

DIS HOB H

CONSOLE

LOCK L

BOOT

EN L

MA

17084

MR

17083

PSSEL

L

SSEL

H

PUBMEM UBMEM

H

s

PUBTMO

L

0>
UBTMO

H

PUBSYS

L

=BSYS

H

The

DLART is enabled by asserting the SELDL input and is initialized by asserting the TINIT input

.

The

transmit

interrupt request (TXIRQ output is asserted when the internal XMIT RDY and XMIT IE bits of

the

XCSR are set

.

The receive interrupt request (RXIRQ output is asserted when the internal

RCV

DONE and RCV IE bits of the RCSR are set

.

These signals go to the console interrupt arbitration

logic

and interrupt the DCJI1-A by enabling the CIRQ4 input

.

The transmitter interrupt vector is at

location

064 and the receiver interrupt vector is at location 060

.

There

are two real-time clock interrupts - the KDJ800 input at 800 Hz and the KDJ60 input at 60 Hz

.
These

inputs are controlled by bits 10 and 11 of the BCSR register

.

The

contents of the internal registers are read onto the IDAT bus when the RDIDEV input is asserted, and

the

data on the IDAT bus is written into the internal registers when the WRIDEV input is asserted

.

The

internal

registers are addressed (Table 5-19) by the DADR1 and DADR2 inputs, which represent bits 1

and

2 of the address on the DADR bus

.

Since there are no byte cycles, address bit 0 is grounded by pin 21

of

the DLART

.

The

MART transmits and receives data using a common baud rate that is determined by the status of the

BCRO,

BCR 1 and BCR2 inputs

.

The input conditions to select a baud rate are shown in Table 5-20

.

The

status

of these inputs is selected by configuration switches 6, 7 and 8

.

Switch 8 selects the BCRO input,

switch

7 selects the BCR 1 input, and switch 6 selects the BCR2 input

.

The baud rate frequencies are based

on

the clock input frequency of 614

.4

kHz

.

The

serial input data is received via the SERIAL IN input and the serial output data is transmitted via the

SERIAL

OUT output

.

These signals are routed to and from J1 by the external drivers

.

The +12 Vdc

reference

is from the +15 Vdc input on the backplane and the -12 Vdc reference is from the circuit shown

in

Figure 5-35

.

Table

5-20 Baud Rate Selections*

*

	

l

indicates the input is asserted low

;

0 indicates the input is asserted high

.

5-40

BCR2 BCRI BCRO Baud

Rate

0 0 0 300
0 0 1 600
0 1 0 1,200
0 1 1 2,400
1 0 0 4,800
1 0 1 9,600
1 I 0 19,200
1 1 1 38,400

Address

Table

DADR2

5-19

DAM

Register

Selection

Register

17 777

560

0 0 Receiver

status (RCSR)

17 777

562

0 1 Receiver

Data Buffer (RBUF)

17 777

564

1 0 Transmitter

Status (XCSR)

17 777

566

1 1 Transmitter

Data Buffer (XBUF)

5.10.1

Halt-on-Break

The

break detected interrupt request output (BRK IRQ H) is asserted when the RCV BRK bit of the

RBUF

register is set

.

This bit is set when the console transmits a break condition to the DLART

.

The halt-

on-break

function is enabled when bit 9 of the BCSR is set by allowing the ENB HOB H output from the

DC350/394

gate array to be asserted while the CNSL ENB HOB H input from the PMI interface is also

asserted .

When these three inputs are asserted, the HOB H input to the DCJ1 l -A is asserted to enable the

halt

condition

.

When the CNSL DIS HOB signal from the PMI interface is asserted, the BRK IRQ H

output

is negated

.

5.10.2

	

Console

Interrupt Arbitration

The

console interrupt arbitration logic (Figure 5-36) determines the sequence of the RXIRQ and TXIRQ

interrupt

requests

.

If either request is asserted, the XIRQ output is asserted to the DCJ11-A as a level 4

interrupt

request on the CIRQ4 input, and the DO11-A initiates an Interrupt ACKnowledge transaction

(IACK) .

The RXIRQ and TXIRQ inputs are latched by the flip-flops when the TDIN input is asserted

and

provide the RXVEC and TXVEC outputs to the next address MUX

.

When the IACK input is

asserted,

it is NANDed with RXVEC (if it is present) to negate the RXIRQ request

.

The TXVEC

is

inhibited from being reset while the RXVEC is asserted

.

If TXVEC is asserted and RXVEC is negated,

the

asserted IACK input negates the TXIRQ request

.

The asserted IACK input enables the TIACK

output,

provided that neither the RXVEC nor the TXVEC outputs are asserted

.

Figure

5-

36

	

Console

Interrupt Arbitration

MR

17091

5.11

CONFIGURATION AND DISPLAY

The

configuration and display circuits consist of a switchpack having eight switches, six red LEDs and one

green

LED

.

The green LED monitors the +5 Vdc module supply voltage

.

The switches and red LEDs can

be

remotely operated via the J2 and J3 connectors

.

The circuits are shown in Figure 5-37

.

The

switches select the EEPROM bootstrap programs, enable the dialog mode, select the console baud

rate

and control the system console operation

.

The switch functions are described in Chapter 2

.

The

switchpack

data is driven onto the IDAT bus by the buffer/drivers when the RDBCR input is asserted and

it

goes to the CDR as bits <7

:0> .

The

red LEDs are encoded so that LEDs 0 through 2 and 3 through 5 are a binary representation of a two-

digit

octal number display for the diagnostic tests and error messages described in Chapter 4

.

The IDAT

bus

is used to drive the LED display using bits < 15

:8>

of the CDR

.

The flip-11ops are cleared by the

assertion

of RDCOK, and the IDAT bus data is latched to drive the display by the assertion of the WR

DISP

input

.

5.12

BOOT AND DIAGNOSTIC ROMS

The

boot and diagnostic ROMs contain the ROM code to support the boot and diagnostic programs

discussed

in Chapter 4

.

The ROMs are addressed by using IADR bus bits <14

:9>

from the DC350/394

and

DADR bus bits <8

:1>

from the DC351

.

The IADR address bits are selected by the DC350/394 from

the

PCR and depend on the address to be either 17 773 000 or 17 765 000

.

The ROMs are enabled by the

assertion

of the SEL ROM16 input

.

The address decoder in the DC350/394 asserts this input when a

location

in the ROM is addressed

.

The data is driven onto the IDAT bus by the DC350/394 assertion of

the

RDIDEV input

.

The boot and diagnostic ROM logic is shown in Figure 5-38

.

Figure

5-37	

Configuration

and Display Circuits

J2

MR-77092

5.13

CONFIGURATION EEPROM

The

configuration EEPROM provided with the module is a 2K X 8 EEPROM that is offset in a 28-pin

socket .

In this mode of operation, the W40 jumper connects the TP40 and TP41 pins to provide the WR

IDEV

input to the EEPROM

.

The user can optionally use a 4K or 8K EEPROM and use the W40 jumper

to

connect the TP41 and TP42 pins

.

This connects IADR bus bit 12 to the socket

.

IADR bus bit 13 and

the

WR IDEV input are connected to the pins not used by the 2K EEPROM

.

This condition provides the

two

additional address bits required for the expanded EEPROM

.

The

EEPROM is addressed by using IADR bus bits <13

:9>

from the DC350/394 and DADR bus bits

<8 :1>

from the DC351

.

The IADR address bits are selected by the DC350/394 from the PCR and

depend

on the address to be either 17 773 000 or 17 765 000

.

The EEPROM is enabled by the assertion of

the

5EL ROM8 input

.

The address decoder in the DC350/394 asserts this input when a location in the

EEPROM

is addressed

.

The data is driven onto the IDAT bus by the DC350/394 assertion of

the

RDIDEV input

.

Data is written into the EEPROM when the DC350/394 asserts the WR IDEV input

.
The

configuration EEPROM logic is shown in Figure 5-39

.

Figure

5-38	

Boot

and Diagnostic ROM Logic

Figure

5-39 Configuration EEPROM Logic

MR

- 17093

MR-17094

5.14 FLOATING-POINT ACCELERATOR

The FPA is an optional 40-pin chip that can be mounted on the module . The FPA is a floating-point

coprocessor that improves system performance (3 to 5 times greater speed) in floating-point applications .

The FPA chip informs the DC111-A microprocessor of its presence on the module by asserting the FPA

OP output during the power-up routine. The microprocessor then offloads all the floating-point functions

to the FPA chip, The operation of the FPA is transparent to the system, except for the increased speed.

The FPA socket and control signals are shown in Figure 5-40 .

5.14.1

	

FPA Operation

When the DCJI 1-A starts to decode an instruction, it asserts the MPRDCinput and that is sampled by the

FPA when the JSTRB input is asserted . The FPA monitors the JAIO <3 :0> inputs that are encoded to

represent the current microprocessor I/O cycle (see Table 5-1) . The XDAL <1 :0> inputs are the two least

significant bits of the current address and are decoded by the FPA to determine the type of cycle

(Table 5-4) . The JAIO <3 :0> and XDAL <1 :0> input data is latched by the assertion of the DALE H

input. The FPA loads the instruction stream data into a buffer and the DCJI I -A executes the bus cycles

necessary to obtain the operand data . The instructions and data are transmitted via the ZDAL bus. When

the data is valid on the ZDAL bus, the MDV input is asserted and the data is latched by the FPA. The

FPA proceeds to execute the floating-point instructions stored in its buffer .

When the results are ready in the FPA, it asserts the FPA RDY output and moves the data into an output

buffer . The control store acknowledges this condition by asserting the T50:EN FTOZ input that allows the

output buffer to move the data onto the ZDAL bus. The FPA asserts the FPA STL, output to stall

the DCJI I -A until the data is gated onto the ZDAL bus . If a floating-point error or exception occurs

during the processing, the FPA asserts the FPAFPE output to the DCJI 1-A and cancels the output cycle.

This condition is acknowledged by the control store assertion of MCONT to the DCJI1-A and a general

purpose read cycle is executed to clear the exception .

The FPA chip is initialized and the FPS is cleared by asserting the CDCOK input. The initialization

condition is cleared by the negation of the CDCOK input and the negation of the JSCTL input. The

JABORT input is monitored by the FPA while the JSCTL input is asserted during a stretched cycle. If

the JABORT input is asserted while JSCTL is asserted, the FPA does not complete the current I/O cycle.

This FPA functions on KDJI I -BB or KDJI I -BF modules.

Figure 5-40 Floating-Point Accelerator

5-44

MR .1 7095

CHAPTER 6
EXTENDED LSI-11 BUS

6.1 INTRODUCTIONThe processor, memory and I/O devices communicate via signal lines that constitute the extended LSI-11bus. The extended LSI-11 bus contains 4 extra address lines (BDAL <21 :18>) in addition to the 38original LSI-1 I bus lines . The four additional address lines extend the 256-Kbyte physical address space ofthe LSI-11 bus to 4 Mbytes . Addresses, 8-bit bytes or 16-bit data words, bus synchronization, and controlsignals are sent along these 42 lines . Addresses may be 16-, 18-, or 22-bits wide, depending on theaddressing capability of the processor installed in the system . The 16-bit data and the first 16 address bitsare time-multiplexed over the same 16 data/address lines . Two additional address bits (<17 :16>) and thememory parity bits are also time-multiplexed over 2 signal lines . The signal lines are functionally dividedas listed in Table 6-1 . Refer to Chapter 2 for a list of the extended LSI-l l bus signals .
The LSI-11 bus lines are treated as transmission lines that are terminated in their characteristic impedance(ZO) at both the near and far ends of the bus. The near end of the bus is defined as the first bus interfaceslot in the backplane ; the far end is the last bus interface slot .

Table 6-1 Summary of Signal Line Functions
Quantity Function Bus Signal Mnemonic
16 Data/address lines BDAL <15:0>
2 Memory parity/address lines BDAL <17:16>
4 Address lines BDAL <21 :18>
6 Address and data transfer BSYNC, BDIN, BDOUT,control lines BWTBT, BBS7, BRPLY
3 DMA control lines BDMR, BDMG, BSACK
5 Interrupt control lines BIRQ4, BIRQ5, BIRQ6,BIRQ7, BIAK
6 System control lines BPOK, BDCOK, BINIT,BHALT, BREF, BEVNT

Most LSI-I 1 bus signals are bidirectional and use a terminating resistor network connected between +5 V
and ground to provide a negated (high) signal level . Devices may be connected to any point along the bus
to receive signals from the near or far end of the bus via high-impedance bus receivers, or to transmit
signals to the near or far end through gated open-collector bus drivers . A bus driver asserts a signal by
causing the line to go from a high level (approximately 3 .4 V) to a low level (approximately 0.5 V) . The
electrically bidirectional lines sometimes carry signals that are functionally unidirectional . These function-
ally unidirectional lines carry signals that are required to travel in only one direction . For example, when a
device asserts a bus request signal (BIRQ), the signal always travels from the requesting device to the
processor and never in the reverse direction .
The interrupt acknowledge (BIAK) and DMA grant (BDMG) signals are physically unidirectional signals
that are wired to each LSI-11 bus slot in a daisy-chain scheme . These signals are generated by the
processor in response to interrupt and DMA requests and are transmitted to the bus via output signal pins .
Each of the output signals (BIAKO or BDMGO) is received on a device input pin (BIAKI or BDMGI) and
is conditionally retransmitted via a device output pin (BIAKO or BDMGO) . These signals are received
from higher-priority devices and are retransmitted to lower-priority devices on the bus.
Bus master/slave relationship communication between devices on the bus is asynchronous . A master/slave
relationship exists throughout each bus transaction . At any time, there is one device that has control of the
bus . This controlling device is termed the bus master . The master device controls the bus when communi-
cating with another device on the bus, termed the slave . The bus master (typically the KDJ I 1-B processor
or a DMA device) initiates a bus transaction . The slave device responds by acknowledging the transaction
in progress and by receiving data from, or transmitting data to, the bus master . The extended LSI-11 bus
control signals transmitted or received by the bus master or bus slave device must complete the sequence
according to the protocol established for transferring address and data information . The processor controls
bus arbitration (i.e ., it "decides" which device is to be bus master at any given time).
A typical example of a master/slave relationship is the processor, as master, fetching an instruction from
memory, which is always a slave . Another example is a disk drive, as master, transferring data to memory,
again, as the slave . Any device except the processor can be master or slave depending on the circum-
stances . Communication on the extended LSI-11 bus is interlocked ; for each control signal issued by the
master device, there must be a response from the slave in order to complete the transfer . It is
the master/slave signal protocol that makes the extended LSI-11 bus asynchronous . The asynchronous
operation allows both fast and slow devices to use the bus and eliminates the need for synchronizing clock
pulses between the bus master and slave device .

Since bus cycle completion by the bus master requires response from the slave device, each bus master
must include a timeout error circuit that aborts the bus cycle if the slave device does not respond to the bus
transaction within 10 As . The KDJI 1-B has a bus timer that restarts the clock when no device responds to
BDIN L or BDOUT L within 10 As . An immediate trap to location 48 occurs . The slowest peripheral or
memory device must respond in less than 10 As to prevent a bus timeout error .
6.2 BUS SIGNAL NOMENCLATURE
Throughout the following protocol specifications, bus signals are referred to in several different ways .

1 .

	

In general discussions where timing, polarity, and physical location are unimportant, the base
signal name without any prefixes or suffixes is used . For example:
SYNC, WTBT, BS7, DAL <21 : 0> or the DAL lines

2 .

	

Most

signals on the backplane etch are asserted low and are referred to with a prefix character

B,

and a suffix (space) L

.

For example

:

BSYNC

L, BWTBT L, BBS7 L, BDAL <21

:0>

L

BPOK

H and BDCOK H are asserted high

.

3 .

	

Receivers

and drivers are considered to be part of the bus

.

Signal inputs to drivers are referred

to

with a prefix character T, for transmit

.

For example

:

TSYNC,

TWTBT, TBS7, TDAL <21

:0>

4 .

	

Signal

outputs of receivers are referred to with the prefix character R, for receive

.

For example

:

RSYNC,

RWTBT, RBS7, RDAL <21

:0>

Whenever

timing is important, the designations in items 3 and 4 above are used to reference timing to a

receiver

output or driver input

.

For example, after receipt of the negation of RDIN, the slave negates its

TRPLY

(0 ns minimum, 8000 ns maximum)

.

It must maintain data valid on its TDAL lines until 0 ns

(minimum)

after the negation of RDIN, and must negate its TDAL lines 100 ns (maximum) after the

negation

of its TRPLY

.

6.3

DATA TRANSFER BUS CYCLES

Data

is transferred between a bus master and slave device to accomplish various functions

.

The data

transfer

bus cycles and their functions are described in Table 6-2

.

These

bus cycles, executed by bus master devices, transfer 16-bit words or 8-bit bytes to or from slave

devices .

The data to be written in the destination byte during byte output operations is valid on the

appropriate

BDAL lines

.

For example, BDAL <15

:8>

contains the high byte, and BDAL <7

:0>

contains

the

low byte

.

Table 6-3 describes the bus signals used in a data transfer operation

.

Data

transfer bus cycles can be reduced to three basic types

:

DATI, DATO(B) and DATIO(B)

.

These

transactions

occur between the bus master and one slave device selected during the addressing portion of

the

bus cycle

.

Table

6-2 Data

Transfer

Bus Cycles

Function
Bus

Cycle

(with

respect to

Mnemonic Description the

bus master)

DATI Data

word input

Read
DATO Data

word output

Write
DATOB Data

byte output

Write

byte

DATIO Data

word input/output

Read-modify-write
DATIOB Data

word input/byte output

Read-modify-write

byte

Mnemonic

Description

BDAL

<21

:0>

L	

22

data/address lines

BSYNC

L	

Synchronize

BDIN

L	

Data

input strobe

BDOUT

L	

Data

output strobe

BRPLY

L	

Reply

BWTBT

L	

Write/byte

control

BBS7

L	

Bank

7 select

l .
2 .
3 .
4 .

Table

6-3	

Data

Transfer Bus Signals

6-4

Function

BDAL

<21

:18>

L are used for 22-bit

extended

addressing

;

BDAL <17

:16>

L are

used

for 18-bit extended addressing, memory

parity

error, and memory parity error enable

functions ;

BDAL <15

:0>

L are used for

16-bit

addressing, word and byte transfers

.

Strobe

signals

Control

signals

6.3.1

	

Bus

Cycle Protocol

Before

initiating a bus cycle, the previous bus transaction must be complete (BSYNC L negated) and the

device

must become bus master

.

The bus cycle is divided into two parts - an addressing portion, and a data

transfer

portion

.

During the addressing portion, the bus master outputs the address for the desired slave

device

(memory location or device register)

.

The selected slave device responds by latching the address bits

and

holding this condition for the duration of the bus cycle (until BSYNC L becomes negated)

.

During the

data

transfer portion of the bus cycle, the operations performed vary slightly, depending on the type of

data

transfer desired

.

6.3.1 .1

	

Device

Addressing - The device addressing portion of a data transfer bus cycle comprises an

address

setup/deskew time and an address hold/deskew time

.

During the address setup/deskew time, the

bus

master does the following

.

It

asserts TDAL <21

:0>

with the desired slave device address bits

.
It

asserts TBS7 if a device in the 1/O page is being addressed

.
It

asserts TWTBT if the cycle is a DATO(B) bus cycle

.
It

asserts TSYNC 150 ns (minimum) after gating TDAL, TBS7, and TWTBT onto the bus

.

During

this time

.

the address, RBS7, and RWTBT signals are asserted at the slave bus receiver for at least

75

ns before BSYNC becomes active

.

Devices in the 1/O page ignore the 9 high-order address bits BDAL

<21 :13>

and, instead, decode RBS7 along with the 13 low-order address bits

.

An active RWTBT signal

indicates

that a DATO(B) operation follows, while an inactive RWTBT indicates a DATI or DATIO(B)

operation .

The

address hold/deskew time begins after BSYNC is asserted

.

The slave device uses the active BSYNC

to

clock BDAL address bits, RBS7 and RWTBT, into its internal logic

.

BDAL <21

:0>,

RBS7, and

RWTBT

remain active for 25 ns (minimum) after BSYNC becomes active

.

BSYNC remains active for

the

duration of the bus cycle

.

Memory

and peripheral devices are addressed similarly, except for the way they respond to RBS7

.
Addressed

peripheral devices must not decode address bits on RDAL <17

:13> .

Addressed peripheral

devices

may respond to a bus cycle only when RBS7 is asserted during the addressing portion of the cycle

.
When

asserted, RBS7 indicates that the device address resides in the I/O page (the upper 8-Kbyte address

space) .

Memory devices generally do not respond to addresses in the I/O page

.

However, some system

applications

may permit memory to reside in the I/O page for use as DMA buffers, ROM bootstraps,

diagnostics,

etc

.

6.3.1 .2

	

DATI

- The DATI bus cycle is a read operation that inputs data from the slave device to the bus

master .

The operations performed by the bus master and slave device during a DATI are shown in Figure

6-1 .

The DATI bus cycle timing is shown in Figure 6-2

.

Data consists of 16-bit word transfers over the bus

.
During

the data transfer portion of the DATI bus cycle, the bus master asserts TDIN 100 ns (minimum)

after

it asserts TSYNC

.

The slave device responds to RDIN active by asserting

:

TRPLY

after receiving RDIN, and 125 ns (maximum) before TDAL bus driver data bits are

valid,

2 .

	

TDAL

<17

:0>

L with the addressed data and error information

.

BUS

MASTER

(PROCESSOR

OR DEVICE)

ADDRESS

DEVICE OR MEMORY

"

ASSERT BDAL <21

:00>

L WITH

ADDRESS

AND

"

ASSERT BBS7 IF THE ADDRESS

IS

IN THE I/O PAGE

"

ASSERT BSYNC L

REQUEST

DATA

"

REMOVE THE ADDRESS FROM

BDAL

<21

:00>

LAND

NEGATE

BBS7 L

"

ASSERT BDIN L

TERMINATE

INPUT TRANSFER

"

ACCEPT DATA AND RESPOND

BY

NEGATING BDIN L

TERMINATE

BUS CYCLE

"

NEGATE BSYNC L

Figure 6-1

	

DATI

Bus Cycle

SLAVE
(MEMORY

OR DEVICE)

DECODE

ADDRESS

"

STORE"DEVICE SELECTED"

OPERATION

INPUT

DATA

"

PLACE DATA ON BDAL < 15

:00>

L

_ "

ASSERT BRPLY L

OPERATION

COMPLETED

"

NEGATE BRPLY L

MP

6028

T R)AL

T SYNC

T DIN

R RPLY

T WTBT

	

(4)

R/T DAL

R SYNC

R DIN

T RPLY

R BS7

P Ilvll~'~lU
100 N'S MINIMUMfl «5 r'IAXIMUN1

_~

	

100 NS150 NS

	

1

	

MINIMUM

160 NSMINIMUM~

	

-100 NS MINIMUM

Figure 6-2

	

DATI Bus Cycle Timing

200 NSMAXIMUM

-200 NS MINIMUM

T BS7

	

)4) X

	

X

	

(4)

TIMING AT MASTER DEVICE

TIMING AT SLAVE DEVICE
NOTES :1 . TIMING SHOWN AT MASTER AND SLAVE DEVICE

	

3 . BUS DRIVER OUTPUT AND BUS RECEIVER INPUTBUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS .

	

SIGNAL NAMES INCLUDE A "B" PREFIX .
2 . SIGNAL NAME PREFIXESARE DEFINED BELOW.

	

4 . DON'T CARE CONDITION .T = BUS DRIVER INPUTR = BUS RECEIVER OUTPUT

-200 NS MINIMUMCLOCK DATA 200 NSMININIUM --" I
300 NS Nil NIiMUM

MFi 607u

When

the bus master receives RRPLY, it does the following

.

1 .

	

It

waits at least 200 ns deskew time and then accepts input data at RDAL <15

:0>

bus receivers

.
RDAL

< 17

:16>

are monitored for a possible parity error indication

.

2 .

	

It

negates TDIN 150 ns (minimum) after RRPLY becomes active

.

The

slave device responds to RDIN negation by negating TRPLY and removing read data from TDAL

bus

drivers

.

TRPLY must be negated 100 ns (maximum) prior to removal of read data

.

The bus master

responds

to the negated RRPLY by negating TSYNC

.

Conditions

for the next TSYNC assertion are as follows

.

1 .

	

TSYNC

must remain negated for 200 ns (minimum)

.

2 .

	

TSYNC

must not become asserted within 300 ns of the previous RRPLY negation

.

6.3.1.3

	

DATO(B)

- DATO(B) is a write operation

.

Data is transferred in 16-bit words (DATO) or 8-bit

bytes

(DATOB) from the bus master to the slave device

.

The data transfer output can occur after the

addressing

portion of a bus cycle when TWTBT has been asserted by the bus master, or immediately

following

an input transfer part of a DATIO(B) bus cycle

.

The operations performed by the bus master

and

slave device during a DATO(B) bus cycle are shown in Figure 6-3

.

The DATO(B) bus cycle timing is

shown

in Figure 6-4

.

The

data transfer portion of a DATO(B) bus cycle comprises a data setup/deskew time and a data

hold/deskew

time

.

During the data setup/deskew time, the bus master outputs the data on TDAL < 15

:0>
100

ns (minimum) after TSYNC is asserted

.

If it is a word transfer, the bus master negates TWTBT while

gating

data onto the bus

.

If the transfer is a byte transfer, the bus master asserts TWTBT while gating

data

onto the bus

.

During a byte transfer, the condition of BDAL 00 L during the address cycle selects the

high

or low byte

.

If asserted, the high byte (BDAL <15

:8>

L) is selected

.

Otherwise, the low byte (BDAL

<7:0>

L) is selected

.

An asserted BDAL 16 L at data transfer time forces a parity error to be written into

memory

(if the memory is parity memory)

.

BDAL 17 L is not used for write operations

.

The bus master

asserts

TDOUT L 100 ns (minimum) after the TDAL and TWTBT bus driver inputs are stable

.

The slave

device

responds to RDOUT by accepting the input data and asserting TRPLY (8 us maximum to avoid

bus

timeout)

.

This completes the data setup/deskew time

.

During

the data hold/deskew time the bus master negates TDOUT 150 ns (minimum) after the assertion

of

RRPLY

.

TDAL <21

:0>

bus drivers remain stable for at least 100 ns after TDOUT negation

.

The bus

master

then negates TDAL inputs

.

The slave device senses RDOUT negation and negates TRPLY

.

The

bus

master responds by negating TSYNC

.

The processor, however, does not negate TSYNC for at least

175

ns after negating TDOUT

.

This completes the DATO(B) bus cycle

.

Before the next cycle, TSYNC

must

remain unasserted for at least 200 ns

.

Also, TSYNC may not be asserted until 300 ns (minimum)

after

RRPLY is negated

.

BUS MASTER

	

SLAVE(PROCESSOR OR DEVICE)

	

(MEMORY OR DEVICE)
ADDRESS DEVICE/MEMORY" ASSERT BDAL <21 :00> L WITHADDRESS AND" ASSERT BBS7 L IF ADDRESS ISIN THE I/0 PAGE" ASSERT BWTBT L (WRITECYCLE)" ASSERT BSYNC L

OUTPUT DATA" REMOVE THE ADDRESS FROMBDAL <21 :00> LAND NEGATE BBS7 L" NEGATE BWTBT L UNLESS DATOB" PLACE DATA ON BDAL < 15 :00> L" ASSERT BDOUT L

TERMINATE OUTPUT TRANSFER

	

r.
" NEGATE BDOUT L (AND BWTBT LIF A DATOB BUS CYCLE)" REMOVE DATA FROM BDAL <15 :00> L

TERMINATE BUS CYCLE" NEGATE BSYNC L
AV-

Figure 6-3

	

DATO or DATO(B) Bus Cycle

DECODE ADDRESSSTORE "DEVICE SELECTED"OPERATION

TAKE DATA" RECEIVE DATA FROM BDALLINES" ASSERT BRPLY L

OPERATION COMPLETED. " NEGATE BRPLY L

M F-6029

T

DAL

T

SYNC

T

DOUT

R

RPLY

T

BS7

T

WTST

R

DAL

R

SYNC

R

DOUT

T

RPLY

R

BS7

R

WTBT

--100

NS MINIMUM

TIMING

AT MASTER DEVICE

100

NS

MINIMUM

TIMING

AT SLAVE DEVICE

NOTES :
1 .

TIMING SHOWN AT MASTER AND SLAVE DEVICE

BUS

DRIVER INPUTS AND BUS RECEIVER OUTPUTS

.
2 .

SIGNAL NAME PREFIXES ARE DEFINED BELOW

:

	

4 .

DON'T CARE CONDITION

.
T

= BUS DRIVER INPUT

R

= BUS RECEIVER OUTPUT

Figure

6-

4

	

DATO

or DATO(B) Bus Cycle Timing

1--0

NS MINIMUM

3 .

BUS DRIVER OUTPUT AND BUS RECEIVER INPUT

SIGNAL

NAMES INCLUDE A "B" PREFIX

.

MR

-1179

6.3.1 .4

DATIO(B) - The protocol for a DATIO(B) bus cycle is identical to the addressing and data

transfer

portions of the DATI and DATO(B) bus cycles

.

After addressing the device, a DATI cycle is

performed

as explained in Paragraph 6

.3 .1 .2,

except TSYNC is not negated

.

TSYNC remains active for

an

output word or byte transfer [DATO(B)]

.

The bus master maintains at least 200 ns between RRPLY

negation

during the DATI cycle and TDOUT assertion

.

The cycle is terminated when the bus master

negates

TSYNC, which follows the same protocol as described for DATO(B)

.

The operations performed

by

the bus master and slave device during a DATIO or DATIO(B) bus cycle are shown in Figure 6-5

.

The

DATIO

and DATIO(B) bus cycle timing is shown in Figure 6-6

.

BUS

MASTER

(PROCESSOR

OR DEVICE)

ADDRESS

DEVICE/MEMORY

ASSERT

BDAL <21

:00>

L WITH

ADDRESS
ASSERT

BBS7 L IF THE

ADDRESS

IS IN THE I/O PAGE

ASSERT

BSYNC L

REQUEST

DATA

REMOVE

THE ADDRESS FROM

BDAL

<21

:00>

L

ASSERT

BDIN L

TERMINATE

INPUT TRANSFER

ACCEPT

DATA AND RESPOND BY

TERMINATING

BDIN L

OUTPUT

DATA

PLACE

OUTPUT DATA ON BDAL < 15

:00

>

(ASSERT

BWTBT L IF AN OUTPUT

BYTE

TRANSFER)

ASSERT

BDOUT L

TERMINATE

OUTPUT TRANSFER

REMOVE

DATA FROM BDAL LINES

NEGATE

BDOUT L

TERMINATE

BUS CYCLE

NEGATE

BSYNC L

(AND

BWTBT L IF IN

A

DATIOB BUS CYCLE)

~{

DECODE ADDRESS

STORE

"DEVICE SELECTED"

OPERATION

i

INPUT DATA

PLACE

DATA ON BDAL < 15

:00

> L

ASSERT

BRPLY L

r
L

Figure

6-5	

DATIO

or DATIO(B) Bus Cycle

TAKE

DATA

RECEIVE

DATA FROM BDAL LINES

ASSERT

BRPLY L

6-10

SLAVE
(MEMORY

OR DEVICE)

COMPLETE

INPUT TRANSFER

REMOVE

DATA

NEGATE

BRPLY L

~

OPERATION COMPLETED

NEGATE

BRPLY L

M .

6030

R/T DAL

	

(4)

T SYNC

T DOUT

T DIN

R RPLY
150 NSMINIMUM

T BS7

RT/DAL (4)

R SYNC

R DOUT

R DIN

T RPLY

R BS7

100 NS MINIMUM 150 NSMINIMUM--.1200 NS

	

200 NSMINIMUM-MINIMUM
200 NSMINIMUM

I _

775 NSMINIMUM

300 NSMINIMUM

100 NS MINIMUM

~7 200 NS MAXIMUM

100 NS MINIMUM

141I
100 NS MINIMUM100 NSMINIMUM

i

125 NS 14-

	

150 NSMAXIMUM

	

PFMINIMUM

MEN 1,50 NS

	

300 NSM 50MUMff#M MM11NIMU

	

MINIMUM
v

	

w

	

w

	

i ~

	

w25 NS

	

~ ~MINIMUM

	

I

	

~

	

"~

	

I+-25 NS MINIMUM
75 NS MINIMUMN- 75 NS MINIMUM

100 NSMINIMUM
25 NS MINIMUM

	

--~

	

I~--25 NS MINIMUMASSERTION = BYTE

	

~

	

(4)

750 NS MINIMUM

-*- 150 NS MINIMUM

x-25 NS MINIMUM

TIMING AT MASTER DEVICE

TIMING AT SLAVE DEVICENOTES :TIMING SHOWN AT REQUESTING DEVICE

	

3 . BUS DRIVER OUTPUT AND BUS RECEIVER INPUTBUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS

	

SIGNAL NAMES INCLUDE A "B" PREFIX .2 SIGNAL . NAME PREFIXES ARE DEFINED BELOW :

	

4 . DON'T CARE CONDITION .T= BUS DRIVER INPUTR = BUS RECEIVER OUTPUT
Figure 6-6

	

DATIO or DATIO(B) Bus Cycle Timing

0 NS MINIMUM1

mH says

6.4

DIRECT MEMORY ACCESS

DMA

capability allows direct data transfers between I/O devices and memory

.

This is useful when using

mass

storage devices (e

.g .,

disk drives) that move large blocks of data to and from memory

.

A DMA

device

only needs to know the starting address in memory, the starting address in mass storage, the length

of

the transfer, and whether the operation is read or write

.

When this information is available, the DMA

device

can transfer data directly to or from memory

.

Since most DMA devices must perform data

transfers

in rapid succession or lose data, DMA requests are assigned the highest priority level

.

DMA

is accomplished after the processor (normally bus master) has passed bus mastership to the highest-

priority

DMA device that is requesting the bus

.

The processor arbitrates all requests and grants the bus to

the

DMA device located closest (electrically) to the processor

.

A DMA device remains bus master until it

relinquishes

its mastership

.

The following control signals are used during bus arbitration

.

Signal

Name

BDMGl

L	

DMA

grant input

BDMGO

L	

DMA

grant output

BDMR

L	

DMA

request line

BSACK

L	

Bus

grant acknowledge

A

DMA transaction is divided into three phases

:

the bus mastership acquisition phase, the data transfer

phase,

and the bus mastership relinquish phase

.

The operations performed by the processor and bus master

during

the DMA request/grant sequence are shown in Figure 6-7

.

The DMA request/grant bus cycle

timing

is shown in Figure 6-8

.

KDJ11-A

PROCESSOR

(MEMORY

IS SLAVE)

GRANT

BUS CONTROL

NEAR

THE END OF THE

CURRENT

BUS CYCLE

(BRPLY

L IS NEGATED),

ASSERT

BDMGO L AND

INHIBIT

NEW PROCESSOR

GENERATED

BSYNC L FOR

THE

DURATION OF THE

DMA

OPERATION

.

TERMINATE

GRANT

SEQUENCE
0

NEGATE BDMGO L AND

WAIT

FOR DMA OPERATION

TO

BE COMPLETED

0

MONITOR TRANSACTION TO

INVALIDATE

CACHE IF

CACHE

HIT

RESUME

PROCESSOR

OPERATION
TENABLE

PROCESSOR-

GENERATED

BSYNC L

(PROCESSOR

IS BUS

MASTER)

OR ISSUE

ANOTHER

GRANT IF BDMR

L

IS ASSERTED

Figure

6-7	

DMA

Request/Grant Sequence

6-12

REQUEST

BUS

~'

	

ASSERT

BDMR L

BUS

MASTER

(CONTROLLER)

ACKNOWLEDGE

BUS

MASTERSHIP
*

RECEIVE BDMG

*WAIT

FOR NEGATION OF

BSYNC

L AND BRPLY L

eASSERT

BSACK L

*NEGATE

BDMR L

EXECUTE

A DMA DATA

TRANSFER
ADDRESS

MEMORY AND

TRANSFER

UP TO4 WORDS

OF

DATA AS DESCRIBED

FOR

DATI, OR DATO BUS

CYCLES
"

RELEASE THE BUS BY

TERMINATING

BSACK L

(NO

SOONER THAN

NEGATION

OF LAST BRPLY L)

AND

BSYNC L

WAIT

4 uS OR UNTI L

ANOTHER

FIFOTRANSFER

IS

PENDING BEFORE

REQUESTING

BUS AGAIN

.

During

the bus mastership acquisition phase, a DMA device requests the bus by asserting TDMR

.

The

processor

arbitrates the request and initiates the transfer of bus mastership by asserting TDMG

.
The

maximum time between BDMR L assertion by the DMA device and BDMGO L assertion by the

processor

is DMA latency

.

This time is processor-dependent

.

The KDJ11-B asserts TDMG 1

.4

/,s

(maximum)

after the assertion of RDMR

.

BDMGO

L/BDMGI L is one of two signals that are daisy-chained through each module in the backplane

.
The

signal is driven out of the processor on the BDMGO L pin, enters each module on the BDMGI L pin

and

exits on the BDMGO L pin

.

This signal passes through the modules in descending order of priority

until

it is stopped by the requesting device

.

The requesting device blocks the output of BDMGO L and

asserts

TSACK

.

If no device responds to the DMA grant, the processor clears the grant and rearbitrates

the

bus

.

During

the data transfer phase, the DMA device continues asserting BSACK L

.

If multiple data transfers

are

performed during this phase, consideration must be given to the use of the bus for other system

functions,

such as memory refresh (if required)

.

The actual data transfer is performed in the same manner

as

the data transfer portion of DATI, DATO(B) and DATIO(B) bus cycles

.

T

DMR

R

DMG

T

SACK

R/T

SYNC

R/T

RPLY

NOTE
The

KDJ11-B uses a no SACK timer that clears

BDMGO

L if BSACK L is not received from the

DMA

device within 10 ps

.

SECOND
REQUEST

7--7-7-7

0

NS MINIMUM

DMA

LATENCY

2 .

SIGNAL NAME PREFIXES ARE DEFINED BELOW

:
T

=BUS DRIVER INPUT

R

= BUS RECEIVER OUTPUT

Figure

6-8	

DMA

Request/Grant Bus Cycle Timing

r-

7--r-7--r- 7- 7- 7- 7 ? -7 7 -7

0

NS MINIMUM

0

NS MINIMUM	

-100

NS MAXIMUM

T

DAL	

A

	

ADDR

	

X

	

DATA
(ALSO

BS7,

WTBT,

REF)

NOTES :
1 .

TIMING SHOWN AT REQUESTING DEVICE BUS DRIVER	

3.

BUS DRIVER OUTPUT AND BUS RECEIVER INPUT

INPUTS

AND BUS RECEIVER OUTPUTS

.

	

SIGNAL

NAMES INCLUDE A "B" PREFIX

.

6-13

300

NS MAXIMUM

M

R 3690

The

DMA device can assert TSYNC L for a data transfer 0 ns (minimum) after it receives RDMGI L,

250

ns (minimum) after RSYNC is negated, and 300 ns (minimum) after RRPLY is negated

.

During

the bus mastership relinquish phase, the DMA device relinquishes the bus by negating TSACK

.
This

occurs after the last data transfer cycle (RRPLY negated) is completed (or aborted)

.

TSACK may be

negated

up to 300 ns (maximum) before negating TSYNC

.

6.5

INTERRUPTS

The

interrupt capability of the LSI-II bus allows any I/O device to temporarily suspend (interrupt)

current

program execution and divert processor operation for service of the requesting device

.

The

processor

inputs a vector from the device to start the service routine (handler)

.

As with a device register

address,

the hardware fixes the device vector at locations within a designated range of addresses between

000

and 7778

.

The vector indicates the first of a pair of addresses

.

The content of the first address is read

by

the processor

;

it is the starting address of the interrupt handler

.

The content of the second address is a

new

PSW

.

PSW bits <7

:5>

can be programmed to a priority level from 0 to 78

.

Only interrupts on a level

higher

than the number in the PSW priority level field are serviced by the processor

.

If the interrupt

priority

level of the new PSW is higher than that of the original PSW, the new PSW raises the

interrupt

priority level and thus prevents lower-level interrupts from breaking into the current interrupt

service

routine

.

Control is returned to the interrupted program when the interrupt service routine is

complete .

The

original (interrupted) program address (PC) and its associated PSW are stored on a stack

.

The original

PC

and PSW are restored by a return from interrupt instruction (RTI or RTT) at the end of the service

routine .

The use of the stack and the LSI-I 1 bus interrupt scheme can allow interrupts to occur within

interrupts

(nested interrupts) if the requesting interrupt has a higher priority level than the interrupt

currently

being serviced

.

Interrupts

can be caused by LSI-11 bus options and can also originate in the processor

.

Interrupts

originating

in the processor are called traps and are caused by programming errors, hardware errors,

special

instructions, and maintenance features

.

The following are the LSI-11 bus signals used in interrupt

transactions .

Signal

Name

IRQ4

L	

Interrupt

request priority level 4

BIRQ5

L	

Interrupt

request priority level 5

BIRQ6

L	

Interrupt

request priority level 6

BIRQ7

L	

Interrupt

request priority level 7

BIAKI

L	

Interrupt

acknowledge input

BIAKO

L	

Interrupt

acknowledge output

BDAL

<15

:0>

L	

Data/address

lines

BDIN

L	

Data

input strobe

BRPLY

L	

Reply

6.5.1

	

Device

Priority

The

LSI-11 bus supports the following two methods of determining device priority

.

"

	

Distributed

arbitration - Priority levels are implemented on the hardware

.

When devices of

equal

priority level request an interrupt, priority is given to the device electrically closest to the

processor .

"

	

Position-defined arbitration - Priority is determined solely by electrical position on the bus. The
device closest to the processor has the highest priority, while the device at the far end of the bus
has the lowest priority .

The KDJ11-B uses both methods - distributed arbitration, with four levels of priority, and position-defined
arbitration within each level. Interrupts on these priority levels are enabled/disabled by bits in the
processor status word (PSW <7:5>) . Single-level interrupt (position-defined) devices that interrupt on
BIRQ4 can also be used in KDJ11-B systems, but must be placed in a bus slot following the last bus slot in
which a position-independent device is installed .

6.5.2 Interrupt Protocol
Interrupt protocol has three phases : the interrupt request phase, the interrupt acknowledge and priority
arbitration phase, and the interrupt vector transfer phase. The operations performed by the processor and
interrupting device are shown in Figure 6-9. Interrupt protocol timing is shown in Figure 6-10 .

STROBE INTERRUPTS0 ASSERT BDIN L

PROCESSOR

	

DEVICE

GRANT REQUESTPAUSE AND ASSERT BIAKO L

RECEIVE VECTOR ANDTERMINATE REQUEST
" INPUT VECTOR ADDRESS
" NEGATE BDIN LAND BIAKO L

PROCESS THE INTERRUPT" SAVE INTERRUPTED PROGRAM
PC AND PS ON STACK" LOAD NEW PC AND PS FROM
VECTOR ADDRESSED LOCATION" EXECUTE INTERRUPT SERVICEROUTINE FOR THE DEVICE

Figure 6-9

	

Interrupt Request/Acknowledge Sequence

INITIATE REQUEST" ASSERT BIRQ L

RECEIVE BDIN L" STORE "INTERRUPT SENDING"IN DEVICE

RECEIVE BIAKI L" RECEIVE BIAKI LAND INHIBIT
BIAKO L" PLACE VECTOR ON BDAL < 15 :00 > L" ASSERT BRPLY L~~ NEGATE BI RQ L

COMPLETE VECTOR TRANSFER" REMOVE VECTOR FROM BDAL BUS
NEGATE BRPLY L

MR -11 82

T IRQ

R IAKI

T RPLY

R BS7

150 NS MINIMUM

INTERRUPT LATENCYMINUS SERVICE TIME

T DAL

	

(4)

	

X

	

VECTOR

	

X

	

(4)

R SYNC

	

(UNASSERTED)

(UNASSERTED)

/Z

125 NS MAXIMUM --~

	

--~

	

x--100 NS MAXIMUM

NOTES :1 . TIMING SHOWN AT REQUESTING DEVICE BUS DRIVER

	

3 . BUS DRIVER OUTPUT AND BUS RECEIVER INPUTINPUTS AND BUS RECEIVER OUTPUTS .

	

SIGNAL NAMES INCLUDE A "B" PREFIX .
2 . SIGNAL NAME PREFIXES ARE DEFINED BELOW :T =BUS DRIVER INPUTR = BUS RECEIVER OUTPUT

Figure 6-10

	

Interrupt Protocol Timing

The interrupt request phase begins when a device meets its specific conditions for interrupt requests (e.g .,
when the device is ready, done, or when an error has occurred) . The interrupt enable bit in a device status
register must be set . The device then initiates the interrupt by asserting the interrupt request line(s) .
BIRQ4 L is the lowest hardware priority level and is asserted for all interrupt requests for compatibility
with previous LSI-11 processors . The level at which a device is configured must also be asserted . (A special
case exists for level 7 devices that must also assert level 6.) The interrupt request line remains asserted
until the request is acknowledged .

Interrupt
Level

	

Lines Asserted by Device
4

	

BIRQ4 L
5

	

BIRQ4 L, BIRQ5 L
6

	

BIRQ4 L, BIRQ6 L
7

	

BIRQ4 L, BIRQ6 L, BIRQ7 L

4. DON'T CARE CONDITION .
MR 1183

During

the interrupt acknowledge and priority arbitration phase, the KDJI I -B acknowledges interrupts

under

the following conditions

.

1 .

	

The

device interrupt priority is higher than the current priority level stored in PSW <7

:5> .
2 .

	

The

processor has completed instruction execution and no additional bus cycles are pending

.

The

processor acknowledges the interrupt request by asserting TDIN and, 225 ns (minimum) later, by

asserting

TIAKO

.

The device electrically closest to the processor receives the acknowledge on its RIAKI

bus

receiver

.

On

the leading edge of RDIN, each bus option capable of requesting interrupts decides whether to accept

or

to pass on the RIAKI signal

.

A device that does not support position-independent, multilevel interrupts

accepts

RIAKI if it is requesting an interrupt when RDIN asserts

.

A device that does support position-

independent,

multilevel interrupts accepts RIAKI if it is requesting an interrupt and if there is no higher-

priority

request pending when RDIN asserts

.

This decision must be clocked into a flip-flop, which settles

within

150 ns of TDIN

.

Devices

that support position-independent, multilevel interrupts assert from one to three interrupt request

lines

when requesting an interrupt

.

Table 6-4 presents the Interrupt ReQuest (IRQ) lines a device at each

level

must assert in order to request an interrupt, and lists the lines it must monitor to determine whether a

higher-priority

device is requesting an interrupt

.

During

the interrupt vector transfer phase, the responding interrupt device receives RIAKI and then

asserts

TRPLY

.

The vector address must be stable at TDAL <8

:2>

125 ns (maximum) after TRPLY is

asserted .

The processor receives the assertion of RRPLY and, 200 ns (minimum) later, it inputs the vector

address

and negates both TDIN and TIAKI

.

The interrupting device negates TRPLY after the negation of

RIAKI,

and removes the vector address from TDAL <8

:2>

100 ns (maximum) after TRPLY negates

.
Since

vector addresses are constrained between 000 and 7748, none of the remaining TDAL lines are used

.

Table

6-4 Position-Independent,

Multilevel

Device Requirements

Interrupt
Level IRQ

Lines Asserted

IRQ

Lines Monitored

4 TIRQ4 RIRQ5,

RIRQ6

5 TIRQ4,

TIRQ5

RIRQ6
6 TIRQ4,

TIRQ6

RIRQ7
7 TIRQ4,

TIRQ6, TIRQ7

6.5.3

	

4-Level Interrupt Configurations
Users having high-speed peripherals and desiring better software performance can use the 4-level interrupt
scheme . Both position-independent and position-dependent configurations can be used with the 4-level
interrupt scheme .

The position-independent configuration is shown in Figure 6-11 . This configuration allows peripheral
devices that use the 4-level interrupt scheme to be placed in the backplane in any order . These devices
must send out interrupt requests and monitor higher-level request lines, as described in Paragraph 6.5 .2 .
The level 4 request is always asserted by a requesting device, regardless of priority, to allow compatibility
if an LSI-1 I or LSI-11 /2 processor is in the same system . If two or more devices of equally high priority
request an interrupt, the device physically closest to the processor wins arbitration . Devices that use the
single-level interrupt scheme must be modified or be placed at the end of the bus for arbitration to
function properly .

The position-dependent configuration is shown in Figure 6-12. This configuration is simpler to implement,
but has the following constraint : Peripheral devices must be ordered so that the highest-priority device is
located closest to the processor, with the remaining devices placed in the backplane in decreasing order of
priority .

With this configuration each device must only assert its own level and level 4 (for compatibility with an
LSI-11 or LSI-11 /2) . Monitoring higher-level request lines is unnecessary. Arbitration is achieved through
the physical positioning of each device on the bus . Single-level interrupt devices on level 4 must be
positioned last on the bus.

BIRO 4 (LEVEL 4 INTERRUPT REQUEST)
BIRO 5 (LEVEL 5 INTERRUPT REQUEST)
BIRQ 6 (LEVEL 6 INTERRUPT REQUEST)
BIRQ 7 (LEVEL 7 INTERRUPT REQUEST)

Figure 6-12

	

Position-Dependent Configuration

MR 2889

BIAK (INTERRUPT ACKNOWLEDGE) _I DEVICE BIAK LEVECE BIAK L EVECE5 BIAK LEVECE7KDJ11

4 4 BIRQ 4 (LEVEL 4 INTERRUPT RE QUEST)
BIRQ 5 (LEVEL 5 INTERRUPT REQUEST)
BI RQ 6 (LEVEL 6 INTERRU PT REQUEST)
BIRQ 7 (LEVEL 7 INTERRUPT REQUEST) I

Figure 6-11 Position-Independent Configuration

MR 2888

BIAK (INTERRUPT ACKNOWLEDGE) LEVEL 7 BIAK LEVEL 6 BIAK LEVEL 5 BIAK LEVEL4KDJ11 DEVICE DEVICE DEVICE DEVICE

6.6

CONTROL FUNCTIONS

The

following LSI-11 bus signals provide system control functions

.

Signal

Name

BREF

L	

Memory

refresh

BHALT

L	

Processor

halt

BINIT

L	

Initialize
BPOK

H	

Power

OK

BDCOK

H	

DC

power OK

BEVNT

L	

External

event interrupt request

6.6.1

	

Memory

Refresh

If

BREF is asserted during the address portion of a bus data transfer cycle, it causes all dynamic MOS

memories

to be addressed simultaneously

.

The sequence of addresses required for refreshing the memories

is

determined by the specific requirements of each memory

.

The complete memory refresh cycle consists

of

a series of refresh bus transactions

.

(A new address is used for each transaction

.)

The entire cycle must

be

completed within 2 ms

.

Multiple data transfers by DMA devices must be avoided since they could

delay

memory refresh cycles

.

The KDJ 11-B does not perform memory refresh

.

6.6.2

Halt

Assertion

of BHALT L stops program execution and forces the processor unconditionally into console

ODT

mode

.

The processor does not assert the BHALT L bus line when it comes to a programmed halt

.

6.6.3

Initialization

Devices

along the bus are initialized when BINIT L is asserted

.

The processor asserts the BINIT L signal

under

the following conditions

.

1 .

	

During

a power-down sequence

2 .

	

During

a power-up sequence

3 .

	

During

the execution of a RESET instruction

4 .

	

After

detection of a G character in ODT mode (if the processor features an ODT mode and a G

command

within it), and before execution of the code starting at the address that preceded the

G

command

6.6.4

	

Power

Status

Power

status protocol is controlled by two signals, BDCOK H and BPOK H

.

These signals are driven by an

external

device (usually the power supply) and are defined as follows

.

6.6.4.1

	

BDCOK

H - The assertion of this line indicates that do power has been stable for at least 3 ms

.
Once

asserted this line remains asserted until the power fails

.

6.6.4.2

	

BPOK

H - The assertion of this line indicates that there is at least an 8 ms reserve of do power

and

that BDCOK H has been asserted for at least 70 ms

.

Once BPOK H has been asserted, it must remain

asserted

for at least 3 ms

.

The

negation of this line indicates that power is failing and that only 4 ms of do power reserve remains

.
The

negation of this line during processor operation initiates a power-fail trap sequence

.

BINIT L

BPOKH

BDCOK H

DC POWER

NOTE :
ONCE A POWER-DOWN SEQUENCE IS STARTED,
IT MUST BE COMPLETED BEFORE A POWER-UP
SEQUENCEISSTARTED.

Figure 6-13

	

Power-Up/Power-Down Timing

6-20

POWER-DOWN

	

I _

	

POWER-UP

	

NORMAL
SEQUENCE POWER

MR 6032

6.6.4.3 Power-Up - The timing diagram for the power-up/power-down sequence is shown in
Figure 6-13 . The following events occur during a power-up sequence.

1 .

	

Logic associated with the power supply negates BDCOK H during power-up and asserts
BDCOK H 3 ms (minimum) after do power is restored to voltages within specification .

2.

	

The processor asserts BINIT L after receiving nominal power and negates BINIT L 0 ns
(minimum) after the assertion of BDCOK H.

3.

	

Logic associated with the power supply negates BPOK H during power-up and asserts BPOK H
70 ms (minimum) after the assertion of BDCOK H. If power does not remain stable for 70 ms,
BDCOK H is negated. Therefore, devices must suspend critical actions until BPOK H is
asserted .

4.

	

BPOK H must remain asserted for a minumum of 3 ms. BDCOK H must remain asserted 4 ms
(minimum) after the negation of BPOK H .

6.6.4.4

	

Power-Down - The following events occur during a power-down sequence .
1 .

	

If the ac voltage to a power supply drops below 75% of the nominal voltage for one full line
cycle (15 to 24 ms), BPOK H is negated by the power supply . Once BPOK H is negated, the
entire power-down sequence must be completed .
A device that requested bus mastership before the power failure that has not become bus master
must maintain the request until BINIT L is asserted or the request is acknowledged (in which
case regular bus protocol is followed).

2.

	

Processor software must execute a RESET instruction 3 ms (minimum) after the negation of
BPOK H. This asserts BINIT L for 8 to 20 ps . Processor software executes a HALT instruction
immediately following the RESET instruction .

3 .

	

BDCOK H must be negated a minimum of 4 ms after the negation of BPOK H. This 4 ms
allows mass storage and similar devices to protect themselves against erasures and erroneous
writes during a power failure .

4.

	

The processor asserts BINIT L 1 As (minimum) after the negation of BDCOK H.
5 .

	

The do power must remain stable for a minimum of 5 As after the negation of BDCOK H.
6 .

	

BDCOK H must remain negated for a minimum of 3 ms .
6.6.5

	

BEVNT L
The BEVNT L signal is an external line clock interrupt request to the processor . When BEVNT L is
asserted, the processor internally assigns location 1008 as the vector address for the BEVNT service
routine . Because the vector is internally assigned, the processor does not execute the protocol for reading in
the interrupt vector address (as is the case for other external interrupt requests) .
6.7 BUS ELECTRICAL CHARACTERISTICS
This paragraph contains information about the electrical characteristics of the LSI-11 bus .

The amount of capacitance a module presents to a bus signal line is the ac bus load . This capacitance is
measured between each module signal line and ground, and is expressed in ac unit loads, where each unit
load is defined as 9 .35 pF .
6.7.3 DC Bus Load Definition
The amount of leakage current a module presents to a bus signal line is the do bus load . A do unit load is
defined as 105 yA flowing into a module device when the signal line is in the unasserted (high) state .
6.7.4

	

120 S2 LSI-11 Bus
The electrical conductors interconnecting the bus device slots are treated as transmission lines . A uniform
transmission line, terminated in its characteristic impedance, propagates an electrical signal without
reflections . Insofar as bus drivers, receivers, and wiring connected to the bus have finite resistance and
nonzero reactance, the transmission line impedance becomes nonuniform, and thus introduces distortions
into pulses propagated along it . Passive components of the LSI-11 bus (such as wiring, cabling, and etched
signal conductors) are designed to have a nominal characteristic impedance of 120 Sl .
The maximum length of the interconnecting cable in multiple-back plane systems (excluding wiring within
the backplane) is limited to 4.88 m (16 ft) .

NOTE
The KDJ11-B processor (as well as all standard
Digital-supplied LSI-11 interfaces) connects to the
bus via special drivers and receivers described in
Paragraphs 6.7.5 and 6.7.6 .
The KDJ11-B processor provides resistive (250 S2)
pull-up on all bussed lines to 3.4 Vdc for this wired-
OR interconnecting scheme .

6-21

6.7.1 Signal Level Specification
Input Logic Levels
TTL logical low : 0.8 Vdc (maximum)
TTL logical high : 2.0 Vdc (minimum)
Output Logic Levels
TTL logical low : 0.4 Vdc (maximum)
TTL logical high : 2.4 Vdc (minimum)

6.7.2 AC Bus Load Definition

6.7.5

Bus Drivers

Devices

driving the 120 Si! LSI-11 bus must have open collector outputs and meet the specifications that

follow .

DC

Specifications*

"

	

Vcc

may vary from 4

.75

V to 5

.25

V

.

"

	

Output

low voltage when sinking 70 mA of current

:

0

.7

V (maximum)

.

"

	

Output

high leakage current when connected to 3

.8

Vdc

:

25 gA (even if no power is applied to

them,

except for BDCOK H and BPOK H)

.

AC

Specifications

"

	

Bus

driver output pin capacitance load

:

Not to exceed 10 pF

.

"

	

Propagation

delay

:

Not to exceed 35 ns

.

"

	

Driver

skew (difference in propagation time between slowest and fastest bus driver)

:

Not to

exceed

25 ns

.

"

	

Rise/fall

times

:

Transition time from 10% to 90% for positive transition, and from 90% to 10%

for

negative transition, must be no faster then 5 its

.

6.7.6

	

Bus

Receivers

Devices

that receive signals from the 120 Q LSI-11 bus must meet the following requirements

.

DC

Specificationsi'

"

	

Vcc

may vary from 4

.75

V to 5

.25

V

.

"

	

Input

low voltage

:

1

.3

V (maximum)

.

"

	

Input

high voltage

:

1

.7

V (minimum)

.

"

	

Maximum

input leakage current when connected to 3

.8

Vdc

:

80 pA with Vcc between 0

.0

V

and

5

.25

V

.

AC

Specifications

"

	

Bus

receiver input pin capacitance load

:

Not to exceed 10 pF

.

"

	

Propagation

delay

:

Not to exceed 35 ns

.

"

	

Receiver

skew (difference in propagation time between slowest and fastest receiver)

:

Not to

exceed

25 ns

.

*

	

These

conditions must be met at worst-case supply voltage, temperature, and input signal levels

.

t

	

These

conditions must be met at worst-case supply voltage, temperature, and output signal conditions

.

6-22

6.7.7

	

KDJ11-B Bus Termination
The 120 S2 LSI-I 1 bus should be terminated at each end by an appropriate resistive termination . A pair of
resistors in series from +5 .0 V to ground is used to establish a voltage for each bidirectional line when that
line is not being driven (negated) . The parallel impedance of this pair of resistors is 250 S2 . The terminating
resistors are shown in Figure 6-14. The KDJ11-B contains terminating resistor networks in 18-pin single-
in-line packages to provide the 120 S2 (terminations for the data/address, synchronization, and control
lines) at the processor end of the bus .

Some system configurations do not require terminating resistors at the far end of the bus . If the system
configuration does require such termination, it is typically provided by an M9404-YA cable connector
module .

6.7.7.1

	

Bus Interconnection Wiring - The bus interface for the module connectors is provided by one,
two, or three backplanes, depending on the system configuration . Since each backplane may contain up to
9 slots, a system may have a maximum of 27 module interfaces to the bus .

6.7.7.2

	

Backplane Wiring - The wiring that interconnects all device interface slots on the LSI-11 bus
must meet the following specifications .

l .

	

The conductors must be arranged so that each line exhibits a characteristic impedance of 120 Q
(measured with respect to the bus common return) .

2 .

	

Crosstalk from a pulse-driven line to an undriven line to which a constant 5 V is applied must be
less than 5% of the 5 V . Note that worst-case crosstalk is manifested by simultaneously driving
all but one signal line and measuring the effect on the undriven line .

3 .

	

The do resistance of a bus segment signal path, as measured between the near-end terminator
and far-end terminator modules (including all intervening connectors, cables, backplane wiring,
connector-module etch, etc .), must not exceed 2 SI .

4 .

	

The do resistance of a bus segment common return path, as measured between the near-end
terminator and far-end terminator modules (including all intervening connectors, cables, back-
plane wiring, connector-module etch, etc .), must not exceed an equivalent of 2 Q per signal path.
Thus, the composite signal return path do resistance must not exceed 2 S2 divided by 40 bus
lines, or 50 MSS . Note that although this common return path is nominally at ground potential,
the conductance must be part of the bus wiring; the specified low-impedance return path must
be provided by the bus wiring as distinguished from common system or power ground path .

120 S2

	

250 S2
BUS LINE

	

BUS LINE
TERMINATION

	

TERMINATION

Figure 6-1 4

	

Bus Line Termination

MP 6033

6.7.7.3

	

Intrabackplane

Bus Wiring - The wiring that interconnects the bus connector slots within one

contiguous

backplane is part of the overall bus transmission line

.

Due to implementation constraints, the

nominal

characteristic impedance of 120 SZ may not be achievable

.

Distributed wiring capacitance in

excess

of the amount required to achieve the nominal 120 S2 impedance may not exceed 60 pF per signal

line

per backplane

.

6.7.7.4

	

Power

and Ground - Each bus interface slot has connector pins assigned for the following do

voltages .

Voltage

	

Number

of Pins

+5

Vdc	

Three

pins, 4

.5

A (maximum) per bus device slot

+12

Vdc	

Two

pins, 3

.0

A (maximum) per bus device slot

Ground

	

Eight

pins, shared by power return and signal return

The

maximum allowable current per pin is 1

.5

A

.

The +5 Vdc must be regulated to +5% and the

maximum

ripple should not exceed 100 mV peak-to-peak

.

The +12 Vdc must be regulated to +3% and

the

maximum ripple should not exceed 200 mV peak-to-peak

.

NOTE
Power

is not bussed between backplanes on any

interconnecting

LSI-11 bus cables

.

6.7.7.5

	

Maintenance

and Spare Pins - There are four M SPARE pins per bus device slot assigned to

maintenance

(AK 1, AL 1, BK1, BL 1)

.

The maintenance pins on the basic LSI-11 system are not

.

bussed

from

module to module

.

Instead, at each bus device slot, the maintenance pins are shorted together as

pairs .

These pins must be shorted together for some modules to operate

.

This allows a module to use these

pins

during initial testing as two separate points

.

This feature is used by Digital for manufacturing tests

only .

Spare pins are allocated on the backplane as follows

.

S

SPARES - Four pins

:

AE1, AH1, BHI, AFI (with the exception of AF1 in slot 1), are reserved

for

the particular use of a module or set of modules

.

They may be used as test points or for

intermodule

connection

.

Appropriate wires must be added for intermodule communication since

these

pins are not connected in any way

.

The processor uses AF 1 in slot 1 as an output pin for the

SRUN

signal

.

S SPARE lines cannot be used as bus connections

.

P

SPARES - Two pins

:

AU 1 and BU 1, are similar to the S SPARE pins except that they are located

in

a manner that causes do voltages to appear on them if a module is inserted backwards

.

Use of these

pins

is not recommended

.

6.8

SYSTEM CONFIGURATIONS

LSI-i

l bus systems can be divided into two types

.

The first type comprises those systems that use only one

backplane,

the second type comprising those systems that use multiple backplanes

.

Two sets of config-

uration

rules are necessary to accommodate the different electrical characteristics of the two types of

systems .

Three

characteristics of each component in an LSI-I I bus system must be known before configuring any

system .

"

	

Power

consumption - The total amount of current drawn from the +5 Vdc and +12 Vdc power

supplies

by all modules in the system

.

"

	

AC

bus loading - The amount of capacitance a module presents to a bus signal line

.

AC loading

is

expressed in ac unit loads, where one ac unit load equals 9

.35

pF of capacitance

.

"

	

DC

bus loading - The amount of do leakage current a module presents to a bus signal when the

line

is high (undriven)

.

DC loading is expressed in terms of do unit loads, where one do unit load

equals

105 yA (nominal)

.

Power

consumption, ac loading, and do loading specifications for each module are included in the

Microcomputer

Interfaces Handbook

.

NOTE
The

ac and dc loads and the power consumption of

the

processor module, terminator module, and back-

plane

must be included in determining the total bus

loading

of a backplane

.

6.8.1

	

Rules

for Configuring Single-Backplane Systems

The

following rules apply only to single-backplane systems

.

Any extension of the bus off the backplane is

considered

a multiple-backplane system and must be configured accordingly

.

A single-backplane config-

uration

diagram is shown in Figure 6-15

.

l .

	

The

bus can accommodate modules that have up to 35 ac loads (total) before the termination is

required .

The processor has on-board termination for one end of the bus

.

If more than 20 ac

loads

are included, the other end of the bus must be terminated

.

2 .

	

A

120 Sl terminated bus can accommodate modules comprising up to 45 ac loads (total)

.

3 .

	

The

bus can accommodate modules up to 20 do loads (total)

.

4 .

	

The

bus signal lines on the backplane can be up to 35

.6

cm (14 in) long

.

5 .

	

It

is recommended that the far end of the bus be terminated with 240 Q

.

BACKPLANE

WIRE	

_
35.6CM

(141N) MAXIMUM

KDJ11-B

	

TERM
PROCESSOR

Figure

6-

1 5

	

Single-Back

plane Configuration

MR

-6034

6.8.2

	

Rules

for Configuring Multiple-Backplane Systems

Multiple-backplane

systems can contain a maximum of three backplanes

.

A configuration diagram for a

multiple-backplane

system is shown in Figure 6-16

.

1 .

	

The

signal lines on each backplane can be up to 25

.4

cm (10 in) long

.

2 .

	

Each

backplane can accommodate modules that have up to 20 ac loads (total)

.

Unused ac loads

from

one backplane may not be added to another backplane if the second backplane loading

will

then exceed 20 ac loads

.

Loading backplanes equally is recommended

.

3 .

	

The

do loading of all modules in all backplanes cannot exceed 30 loads (total)

.

Figure

6-

1 6

	

Multiple-Backplane

Configuration

MR

1086-1104

4 .

	

The

first backplane must have an impedance of 120 SZ (obtained via the processor module)

.

The

second

backplane is terminated by 240 52 resistor networks contained on the backplane

.

5 .

	

The

cables connecting the backplanes must observe the following conditions

.

a .

	

The

cable(s) connecting the two backplanes must be 61 cm (2 ft) or greater in length

.

b .

	

The

length of the cables must not exceed 4

.88

m (16 ft)

.

c .

	

The

cables used must have a characteristic impedance of 120 Q

.

6.8.3

	

Power

Supply Loading

Total

power requirements for each backplane can be determined by obtaining the total power require-

ments

for each module in the backplane

.

Obtain separate totals for +5 V and +12 V power

.

Power

requirements

for each module are specified in the Microcomputer Interfaces Handbook

.

Do

not attempt to distribute power via the LSI-1l bus cables in multiple-backplane systems

.

Provide

separate,

appropriate power wiring from each power supply to each backplane

.

Each power supply should

be

capable of asserting BPOK H and BDCOK H signals according to bus protocol

.

This is required if

automatic

power-fail/restart programs are implemented or if specific peripherals require an orderly power-

down

halt sequence

.

The proper use of the BPOK H and BDCOK H signals is strongly recommended

.

CHAPTER

7

PRIVATE

MEMORY INTERCONNECT BUS

7.1

DESCRIPTION

The

PMI bus provides a high performance communications path between the KDJI I -B CPU module, the

MSV

11-J memory modules and the KTJ l l-B UBA

.

The PMI bus consists of 14 signals that support

the

PMI protocol and the additional LSI bus signals that are shared with the LSI bus protocol

.

The address

and

data information is multiplexed using the same LSI bus data/address lines

.

The PMI protocol is

designed

for LSI systems and unique LSI-controlled Unibus systems that use the UBA

.

7.2

PMI INTERFACE

The

PMI interface signals are defined as the PMI bus master signals, the PMI slave signals and the PMI

Unibus

adapter signals

.

These interface signals are assigned to the C and D rows of the backplane and are

defined

as the interconnect bus

.

The PMI interface signals on the C/D bus are normally assigned two pins

to

provide an interconnection between the slots

.

The KDJ11-B module is only assigned one pin and

therefore

its position in the backplane is critical

.

The LSI bus signals that are used with the PMI protocol

use

the A and B rows of the backplane defined as the LSI bus

.

7.2.1

	

PMI

Bus Master Signals

The

PMI bus master controls the PMI bus cycles by using the nonmultiplexed control signals described in

Table

7-1

.

These signals are asserted low and negated high

.

7.2.2

	

PMI

Slave Signals

The

PMI slave responds to the bus master by the nonmultiplexed signals listed in Table 7-2

.

These signals

are

asserted low and negated high by any device that is capable of being a slave

.

7.2.3

	

PMI

Unibus Adapter Signals

The

UBA is used exclusively for Unibus systems

.

The PMI incorporates a special group of signals to

establish

communications between the KDJll-B and the UBA

.

These signals are nonmultiplexed as

described

in Table 7-3 and are not used in any LSI based system

.

7.2.4

	

LSI

Bus Signals

The

PMI protocol uses some of the standard LSI bus signals in conjunction with the PMI high speed

control

signals

.

These LSI bus signals may not be used exactly as they are used in an LSI bus operation

.
The

LSI bus signals used with the PM1 are listed with their PMI functions in Table 7-4

.

Table

7-1 PMI Bus Master Signals

Pin Mnemonic Function

DC1 PBYT

L

PMI

Byte

PBYT

L is asserted or negated in conjunction with the BWTBT L LSI bus

signal

to select the type of bus cycle as follows

.

BWTBT

L PBYT L Bus Cycle

H

H DATI or DATBI

H

L DATBP

L

H DATO

L

L DATBB

CE

I

PBCYC

L

PMI

Bus Cycle

The

PMI bus master starts a PMI cycle by asserting PBCYC L and ends a

PMI

cycle by negating PBCYC L

.

CPl PBLKM

L

PMI

Block Mode

To

read more than two words, the PMI bus master uses PBLKM L and

PBCYC

L to control the timing of the DATBI cycle

.

Both PBLKM L

and

PBCYC L are asserted at the start of the DATBI cycle, and after

reading

two words PBLKM L is negated

.

If there are more than two words

that

remain to be read, PBLKM L is asserted and negated every time two

words

are read (except for the last two words, where it remains negated)

.
After

reading the last two words, PBCYC is also negated

.

DB1 PWTSTB

L

PMI

Write Strobe

After

the bus master gates the data onto the bus, PWTSTB is asserted to

latch

the data into the write buffer of the PMI slave

.

Function

Table

7-2	

PMI

Slave Signals

PMI

Slave Selected

Whenever

a slave is addressed by the BDAL bus lines, it responds by

asserting

PSSEL L

.

The UBA does not assert this signal

.

PMI

High Byte Data Parity

This

signal is generated by the selected PMI memory module during DATI

and

DATBI cycles

.

It provides an odd parity bit for the high data byte

transmitted

on BDAL <15

:8> .

PMI

Low Byte Data Parity

This

signal is generated by the selected PM1 memory module during DATI

and

DATBI cycles

.

It provides an even parity bit for the low data byte

transmitted

on BDAL <7

:0> .

PMI

Read Strobe

This

signal is asserted and negated by the selected PMI memory module to

control

data transfers during DATI and DATBI cycles

.

The bus master uses

the

negating edge of PRDSTB L to latch the first data word

.

The second

data

word is latched at a specified time after PRDSTB L is negated

.

PMI

Slave Buffer Full

The

selected PMI slave asserts PSBFUL L during DATO and DATBO

cycles

to indicate that its write buffer is full and, consequently, it cannot

respond

to another cycle request

.

The bus master may output another

address

while PSBFUL L is asserted, but it must not assert PBCYC L until

PSBFUL

L is negated

.

Pin Mnemonic

CBI PSSEL

L

CHI PHBPAR

L

CK1 PLBPAR

L

CM

1

PRDSTB

L

CJ

l

PSBFUL

L

Pin

Mnemonic Function

Table

7-3	

PMI

Unibus Adapter Signals

DD

I	

PMAPE

L	

PMI

Unibus Map Enable

The

KDJ11-B asserts this signal when bit 5 of MMR3 is set

.

The signal is

negated

when bit 5 is cleared or reset

.

The UBA enables the Unibus map

when

PMAPE L is asserted and disables the Unibus map when PMAPE L

is

negated

.

The memory modules do not use this signal

.

CH

	

PUBSYS

L	

PMI

Unibus System

In

a Unibus system, PUBSYS L is asserted by the UBA to direct the

KDJI

I -B to follow PMI protocol for all data transfers, whether PSSEL L is

asserted

or not

.

LSI-11 bus protocol is disabled for all PMI devices when

PUBSYS

L is asserted

.

In

an LSI-11 system, PUBSYS L is always negated

.

If PSSEL L is negated,

the

KDJ11-B follows LSI-11 protocol and the PMI memory then responds

to

the LSI-I I protocol by the LSI DMA devices

.

CD1

	

PUBMEM

L	

PMI

Unibus Memory

The

UBA asserts PUBMEM L to indicate that Unibus memory space is

being

addressed

.

The signal is latched when PBCYC L is asserted

.

When a

PMI

slave is addressed, it asserts PSSEL L, but it must not respond to

the

PMI control signals if PUBMEM L is asserted

.

The KDJ11-B ignores

the

PSSEL L signal if PUBMEM L is asserted

.

CV

1	

PUBTMO

L	

PMI

Unibus Timeout

The

UBA asserts PUBTMO L in response to any of the following

conditions .

"

	

When

an NXM timeout occurs and the KDJI 1-B addresses the Unibus

"

	

When

a sack timeout occurs during an interrupt cycle

"

	

When

a Unibus interrupting device was granted bus mastership, but

fails

to execute an interrupt transaction

CR

1	

PBSY

L	

PMI

Busy

This

signal is asserted by the PMI bus master (KDJ 11-B or UBA) when it

gains

control of the PMI bus

.

The PMI bus master negates this signal when

it

relinquishes PMI mastership

.

The

KDJI I -B is the bus master at power-up and when the bus is idle

.

Function

Table 7-4

	

LSI Bus Signals

Write Byte (PMI Write Indication)In a PMI system, BWTBT L is used in conjunction with PBYT L to definethe data transfer cycle . BWTBT L and PBYT L are asserted for thispurpose when the bus master gates the address onto the BDAL lines .

ReplyDuring PMI cycles, BRPLY L is asserted by the KDJII-B and the PMIslave to prevent the next bus master from gaining control of the bus toosoon . In a Unibus system, BRPLY L is asserted by the UBA as a slaveresponse during the PMI DATOB cycle and interrupt vector DATI cycle .
NOTEThe PMI memory slave modules in a Unibus systemmust have BRPLY L disabled at all times .

Data InputThe BDIN L signal is only used in PMI Unibus systems during interruptgrant cycles . The KDJ11-B asserts BDIN L after it gates the interruptpriority, BDAL bits <3:0>, onto the bus . The UBA then latches theinterrupt priority data using the leading edge of BDIN L.
Interrupt Acknowledge InInterrupt Acknowledge OutThese signals are only used in PMI Unibus systems during the interruptgrant cycles . The KDJ11-B asserts the BIAKI L signal and the UBAacknowledges it by asserting one of the Unibus bus grant signals .

13131

	

BPOK H

	

Power OKThis signal is only used in PMI Unibus systems for the Unibuspower-up/power-down protocol . This signal is asserted and negated by theUBA in response to the Unibus AC LO signal . The assertion of AC LO maybe prolonged by the Unibus devices or the PMI memory during power-up .

Pin Mnemonic
AK2 BWTBT L

AF2 BRPLY L

AH2 BDIN L

AM2 BIAKI LAN2 BIAKO L

BWTBT L PBYT L Bus Cycle
H H DATI or DATBIH L DATIPL H DATOL L DATOB

7.3

PMI OPERATION IN AN LSI-11 SYSTEM

The

KDJI I -B is the default bus master in an LSI-11 system

.

Any bus device that has the appropriate

circuits

can become the bus master and control data transfers via the LSI-11 bus

.

The KDJI I -B relin-

quishes

control of the bus by acknowledging a DMA request from a DMA device which then becomes bus

master .

During the time that a DMA device is bus master, there is no PMI master

.

The standard LSI-11

bus

operations are described in Chapter 6

.

If

the KDJ 1 l -B receives a DMA request while performing a PMI cycle or while gating an address onto the

bus,

it must also perform the following relationships

.

1 .

	

If

the KDJI I -B has gated an address onto the bus for a PMI cycle or an LSI bus cycle and

wants

to abort the cycle, it removes the address and control signals from the bus and asserts the

BDMG

L signal

.

2 .

	

In

a PMI data transfer cycle, the KDJI I -B asserts the BDMG L signal after it asserts the

BRPLY

L signal

.

3 .

	

In

a PMI DATIP cycle, the KDJ 1 I -B negates the BRPLY L signal before the PMI slave

removes

the data from the bus

.

4 .

	

In

a PMI DATOB cycle, the KDJ 11-B negates the BRPLY L signal before it removes the data

from

the bus

.

5 .

	

In

a PMI DATOB cycle, the PMI slave negates the BRPLY L signal before it is ready to receive

the

BSYNC L signal from a DMA device

.

The

KDJI I -B can regain bus mastership only after BSYNC L and BSACK L have been negated by the

DMA

device

.

7.4

PMI OPERATION IN A UNIBUS SYSTEM

In

a Unibus system the KDJI I -B CPU is the default PMI master and the KTJII-B UBA is the default

Unibus

master

.

When the CPU as the PMI master addresses the Unibus memory or I/O page, the UBA

responds

as a PMI slave while simultaneously controlling the Unibus side of the transaction as the bus

master .

The

UBA can become the PMI master when the CPU issues a DMA grant or performs an interrupt

transaction .

The DMA or interrupt grant is accepted by the UBA and passes the DMA or interrupt grant

onto

a Unibus device, which would then become the Unibus master

.

In

Unibus systems, the bus master and PMI master can be requested by an NPR or interrupt request from

a

bus device, or a DMA or interrupt request from the UBA

.

7.4.1

	

Bus

Device NPR or DMA

Any

Unibus device that is capable of being a Unibus master can issue an NPR or DMA request to become

bus

master and control data transfers

.

When a Unibus device becomes the bus master through an NPR or

DMA

request, it can perform Unibus DATI, DATIP, DATO and DATOB cycles

.

The UBA responds as

a

Unibus slave when accessing PMI memory, the PMI I/O page or a UBA I/O page location on behalf of

a

Unibus master

.

During the same cycle, the UBA also acts as the PMI bus master to control the PMI

portion

of the data transfer for accesses to PMI memory or the PMI I/O page

.

The

KDJI I -B and the UBA use the following protocol to arbitrate an NPR

.

1 .

	

The

UBA asserts the DMA request (DMR) after receipt of a Unibus NPR or when it is ready to

transfer

data to or from memory

.

2 .

	

The

KDJI I -B bus arbitrator asserts the DMA grant (DMGO) after receiving the DMR input

and

after the negation of BSACK by the UBA

.

NOTE
The

KDJ11-B does not always give DMA requests

unconditional

priority

.

The KDJ11-B can be

programmed

to retain top priority for a predeter-

mined

amount of time while waiting to perform a

memory

transfer or honor an interrupt request

.

3 .

	

The

UBA enters the DMA cycle if it is the highest requesting priority or it asserts the

nonprocessor

grant (NPG) to the Unibus after receiving the DMG from the KDJII-B

.

4 .

	

Since

the UBA does not have the required priority it cannot be the next bus master

.

Instead, it

negates

bus busy (BBSY) after the assertion of DMR and clears the Unibus

.

5 .

	

The

device with the highest priority asserts select acknowledge (SACK) to the UBA and negates

the

NPR after the UBA asserts NPG

.

b .

	

This

device is now master of the Unibus and asserts BBSY and SACK when the previous bus

master

relinquishes the bus by negating BBSY

.

The new bus master may then initiate data

transfer

cycles

.

7 .

	

The

UBA asserts BSACK to the KDJII-B after receiving Unibus SACK or because of a

timeout

occurring 10 us after it asserts NPG

.

If Unibus SACK is not received within 10 us

after

the assertion of NPG, the UBA automatically asserts BSACK

.

8 .

	

The

UBA asserts transmitted PMI busy (PBSY) after it is negated by the PMI bus master

.

The

UBA

is now the PMI bus master and can initiate PMI data transfer cycles

.

The

KDJI 1-B bus arbitrator negates DMGO after BSACK is asserted

.

Since the UBA provides

the

timeout function, the KDJ I1-B maintains DMGO until it receives BSACK

.

10 .

	

The

UBA negates NPG after the KDJI I -B negates DMGO

.

11 .

	

The

device that is the current bus master negates SACK after it asserts BBSY and receives the

negation

of NPG

.

12 .

	

The

UBA negates BSACK after the Unibus SACK is negated and after BBSY is asserted

.

The

KDJII-B

bus arbitrator continues arbitration for 75 ns after BSACK is negated

.

13 .

	

The

bus master negates BBSY after it has cleared the bus

.

14 .

	

If

the KDJI l -B is the next PMI bus master, the UBA or the current bus master clears the bus,

the

PMI control data and negates PBSY to relinquish control of the PMI bus

.

7.4.2

	

PMI

Bus Device Interrupt

Any

Unibus device that is capable of being a bus master can issue a BR7 through 4 request and become

the

bus master to control data or interrupt vector transfers

.

In both cases, the UBA is the PMI master and

responds

as a slave if the device performs an interrupt vector transaction or accesses the PMI memory, the

PMI

I/O page or the UBA I/O page

.

When a Unibus device becomes the bus master through an interrupt

request,

it can perform the same Unibus data transfers described for the NPR

.

The

KDJ11-B and the UBA use the following protocol to arbitrate an interrupt request

.

l .

	

In

response to a Unibus device, the UBA asserts an interrupt request on BIRQ <7

:4> .

2 .

	

The

KDJ1 l-B bus arbitrator responds as follows

.

a .

	

Asserts

interrupt level on BDAL <3

:0> .

b .

	

Asserts

BDIN 150 ns after gating BDAL <3

:0> .

c .

	

Asserts

the interrupt acknowledge grant (BIAKO) 250 ns after asserting BDIN

.

3 .

	

The

UBA latches BDAL <3

:0>

when BDIN is asserted and asserts the Unibus interrupt level

BG

<7

:4>

after BIAKO is asserted

.

4 .

	

Since

the UBA does not have the highest priority, it negates BBSY after it asserts BG <7

:4>
and

clears the Unibus

.

5 .

	

The

Unibus device with the highest priority asserts select acknowledge (SACK) after it receives

BG

<7

:4>

and negates its interrupt request

.

6 .

	

The

UBA asserts BSACK to the KDJ11-B after the device asserts SACK

.

NOTE
The

UBA asserts PUBTMO to indicate a timeout if

SACK

is not received within 10 As after the asser-

tion

of BG <7

:4>.

The KDJ11-B cancels the inter-

rupt

cycle and becomes the PMI bus master by

receiving

PUBTMO

.

7 .

	

The

UBA asserts PBSY after it asserts BSACK and after the previous PMI bus master negates

PBSY.

The UBA now has control of the PMI and may initiate PMI data transfer or interrupt

cycles

after PBSY is asserted

.

8 .

	

The

UBA negates BG <7

:4>

after BSACK is asserted and negates BDGMO if BSACK is not

asserted

within the 10 As timeout period

.

The

new Unibus master asserts BBSY after it asserts SACK and the previous bus master

negates

BBSY

.

10 .

	

The

bus master negates SACK after the negation of BG <7

:4>

and after the assertion of BBSY

.

11 .

	

The

UBA negates BSACK to the KDJI I-B after the negation of SACK and the assertion of

PBSY.

12 .

	

The

KDJ11-B resumes NPR arbitration for 75 ns after the negation of BSACK, but does not

resume

BIRQ arbitration until the interrupt request is aborted by the assertion of PUBTMO or

the

completion of the interrupt operation

.

13 .

	

If

a Unibus device responds to BG <7

:4>

with one or more DMA transfers, the UBA responds

as

it would to a device that received bus mastership by an NPR request

.

The assertion of BDIN

and

BIAKO by the KDJI I -B has no effect on the PMI protocol

.

14 .

	

If

the Unibus master relinquishes control without sending the interrupt vector, the UBA asserts

PUBTMO,

indicating a timeout to the KDJI I -B, and the interrupt cycle is aborted

.

15 .

	

The

Unibus master negates BBSY after it clears the Unibus

.

7.5

PMI DATA TRANSFERS

There

are three general categories of PMI data transfer cycles

.

They are the DATI/DATIP, DATBI, and

DATO/DATOB

cycles

.

They are briefly described below

.

On

the Q22-Bus, the bus master can perform a read-modify-write (DATIO or DATIOB) cycle that

transmits

an address, reads a data word or byte, and then writes the data word or byte to the same address

.
The

PMI read-modify-write is performed by a DATIP cycle followed by a DATO or DATOB cycle

.

The

PMI

bus master has the responsibility of controlling the bus for the duration of both cycles

.

7.5.1

	

PMI

Data In/Data In Pause

The

DATI and the DATIP cycles are used to read one or two words when the PMI bus master accesses the

PMI

memory

.

When the PMI bus master accesses the I/O page or the Unibus memory, it can read only

one

word

.

The PMI bus master detects an I/O page reference by the assertion of TBS7 and a Unibus

memory

reference by the assertion of PUBMEM

.

The

PMI DATIP cycle is identical to the DATI cycle except that TPBYT is asserted with TADDR to

indicate

that the cycle immediately following the current cycle will be a DATO cycle to the same address

.
The

protocol used by the DATI and DATIP cycles is as follows

.

1 .

	

When

the PMI master assumes control of the bus, the BDAL <21

:0>

lines are addressed, BBS7

is

asserted, and PBYT is asserted for DATIP cycles

.

2 .

	

Each

PMI slave asserts PSSEL within 45 ns after it receives the asserted BDAL <21

:0>

and

BBS7

signals, if necessary

.

3 .

	

The

UBA asserts PUBMEM within 100 ns ns after it receives the asserted BDAL <21

:0>

and

BBS7

signals, if necessary

.

4 .

	

The

PMI master receives PSSEL within 130 ns after gating the asserted BDAL <21

:0>

and

BBS7

signals

.

5 .

	

The

PMI master receives PUBMEM within 120 ns after gating the asserted BDAL <21

:0>

and

BBS7

signals

.

6 .

	

If

PSSEL is asserted and PUBMEM is negated, the PMI master proceeds as follows

.

a .

	

The

PMI master asserts PBCYC within 130 ns after gating the BDAL <21

:0>,

BBS7, and

PBYT

signals and only after PSBFIJL is negated

.

b .

	

The

PMI master continues to assert the BDAL <21

:0>,

BBS7, and PBYT signals for a

minimum

of 40 ns and a maximum of 100 ns after asserting PBCYC

.

c .

	

The

UBA latches PUBMEM when PBCYC is asserted

.

d .

	

The

PMI slave receives stable BDAL <21

:0>,

BBS7, and PBYT signals for 65 ns

(minimum)

before PBCYC is asserted and for 30 ns after PBCYC is asserted

.

e .

	

The

PMI slave receives a valid PUBMEM from 10 ns (minimum) before the assertion of

PBCYC

and until 10 ns before PBCYC is negated

.

7 .

	

If

PSSEL is negated and the KDJI 1-B is the PMI master, then PMl cycles are performed with

the

UBA responding as a slave, and follow the routine listed above

.

8 .

	

If

PSSEL is negated and PUBMEM is asserted, the UBA is the PM1 master and it aborts the

PMI

cycle and does not respond as a Unibus slave

.

9 .

	

The

assertion of BRPLY by the PMI slave is optional in LSI systems

.

Its protocol is as follows

.

a .

	

The

PMI slave asserts BRPLY after PBCYC is asserted

.

b .

	

The

PMI slave negates BRPLY within 100 ns after the negation of PRDSTB

.

NOTE
In

Unibus systems with PMI memory as a slave,

BRPLY

must be disabled at all times

.

10 .

	

The

PMI slave gates the data onto the bus within 125 ns after the assertion of PBCYC

.

11 .

	

The

PMI slave gates PHBPAR and PLBPAR parity bits after the assertion of PBCYC

.

These

parity

bits are generated only for the memory locations being cached on the KDJI I -B from the

main

memory

.

12 .

	

The

PMI slave asserts PRDSTB after the assertion of PBCYC

.

13 .

	

The

PMI slave negates PRDSTB within 150 ns after the assertion of PBCYC

.

It is negated

within

75 ns after the first data word is gated on the bus and 55 ns after the PHBPAR and

PLBPAR

bits are gated for the first word

.

14 .

	

The

PMI slave maintains the data word, PHBPAR and PLBPAR for 30 ns after negating

PRDSTB .

15 .

	

The

PMI master receives the first data word from 10 ns before PRDSTB is negated and until

20

ns after PRDSTB is negated

.

16 .

	

The

PMI master receives PHBPAR and PLBPAR from 35 ns before PRDSTB is negated and

until

10 ns after PRDSTB is negated

.

17 .

	

If

the PMI master is executing a single word read, it negates PBCYC after PRDSTB is negated

and

latches the data before PRDSTB is negated

.

The following process is used only with double

word

reads

.

a .

	

The

PMI slave gates the second word data onto the bus after PRDSTB is negated

.

The

PMI slave gates the second word PHBPAR and PLBPAR bits onto the bus within

100

ns after PRDSTB is negated

.

c .

	

The

PMI master receives the second data word within 145 ns after PRDSTB is negated

.

d .

	

The

PMI master receives the second word PHBPAR and PLBPAR bits within 120 ns

after

PRDSTB is negated

.

e .

	

If

the PMI master is reading two words, it negates PBCYC after latching the second word

.

f.

	

The

PMI slave removes the second word data from the bus within 50 ns after PBCYC is

negated .

7.5.2

	

PMI

Block Data In

The

DATBI cycle is used to read up to 16 words of data when the PMI bus master accesses the PMI

memory .

The PMI bus master cannot use the DATBI cycle when accessing the 1/O page or the

Unibus

memory

.

The PMI bus master detects an I/O page reference by the assertion of TBS7, and a

Unibus

memory reference by the assertion of PUBMEM

.

The

PMI bus master can only start DATBI transfers on even word boundaries

.

This means that address

bits

<1

:0>

must be equal to zeros

.

The PMI bus master cannot use the DATBI cycle to transfer across 16

word

address boundaries

.

This means that the PMI bus master must terminate DATBI data transfers when

it

reaches a memory location where the address bits <4

:1>

are all equal to ones

.

The protocol used by the

DATBI

cycle is as follows

.

1 .

	

When

the PMI master assumes control of the bus, the BDAL <21

:0>

lines are addressed and

BBS7

is asserted

.

2 .

	

Each

PMI slave asserts PSSEL within 45 ns after it receives the asserted BDAL <21

:0>

and

BBS7

signals, if necessary

.

3 .

	

The

UBA asserts PUBMEM within 100 ns ns after it receives the asserted BDAL <21

:0>

and

BBS7

signals, if necessary

.

4 .

	

The

PMI master receives PSSEL within 130 ns after gating the asserted BDAL <21

:0>

and

BBS7

signals

.

5 .

	

The

PMI master receives PUBMEM within 120 ns after gating the asserted BDAL <21

:0>

and

BBS7

signals

.

6.

	

If

PSSEL is asserted and PUBMEM is negated, the PMI master proceeds as follows

.

a .

	

The

PMI master asserts PBCYC within 130 ns after gating the BDAL <21

:0>,

BBS7,

BWTBT

and PBYT signals, and after PSBFUL is negated

.

b .

	

The

PMI master continues to assert the BDAL <21

:0>,

BBS7, BWTBT and PBYT signals

for

a minimum of 40 ns and a maximum of 100 ns after it asserts PBCYC

.

c .

	

The

UBA latches PUBMEM when PBCYC is asserted

.

d .

	

The

PMI slave receives stable BDAL <21

:0>,

BBS7, BWTBT and PBYT signals for 65 ns

(minimum)

before PBCYC is asserted and for 30 ns after PBCYC is asserted

.

e .

	

The

PMI slave receives a valid PUBMEM from 10 ns (minimum) before the assertion of

PBCYC

and until 10 ns before PBCYC is negated

.

7 .

	

If

PSSEL is negated and the KDJI1-B is the PMI master, the PMI cycles are performed with

the

UBA responding as a slave, and follow the routine listed above

.

8 .

	

If

PSSEL is negated and PUBMEM is asserted, the UBA is the PMI master and it aborts the

PMI

cycle and does not respond as a Unibus slave

.

9 .

	

The

PMI master asserts PBLKM within 50 ns after PBCYC is asserted

.

10 .

	

The

assertion of BRPLY by the PMI slave is optional in LSI systems

.

Its protocol is as follows

.

a .

	

The

PMI slave asserts BRPLY after PBCYC is asserted

.

b .

	

The

PMI slave negates BRPLY within 100 ns after the negation of PRDSTB

.

NOTE
In

Unibus systems with PMI memory as a slave,

BRPLY

must be disabled at all times

.

11 .

	

The

PMI slave gates the data onto the bus within 125 ns after the assertion of PBCYC

.

12 .

	

The

PMI slave gates PHBPAR and PLBPAR parity bits after the assertion of PBCYC

.

These

parity

bits are generated only for the memory locations being cached on the KDJ 11-B from the

main

memory

.

13 .

	

The

PMI slave asserts PRDSTB after the assertion of PBCYC

.

14 .

	

The

PMI slave negates PRDSTB within 150 ns after the assertion of PBCYC

.

It is negated

within

75 ns after the first data word is gated on the bus and 55 ns after the PHBPAR and

PLBPAR

bits are gated for the first word

.

15 .

	

The

PMI slave maintains the data word, PHBPAR and PLBPAR for 30 ns after negating

PRDSTB.

16 .

	

The

PMI master receives the first data word from 10 ns before PRDSTB is negated and until

20

ns after PRDSTB is negated

.

17 .

	

The

PMI master receives PHBPAR and PLBPAR from 35 ns before PRDSTB is negated and

until

10 ns after PRDSTB is negated

.

7-12

18 .

	

The

PMI slave gates the second word data onto the bus within 80 ns after PRDSTB is negated

.

19 .

	

The

PMI slave gates the second word PHBPAR and PLBPAR bits onto the bus within 100 ns

after

PRDSTB is negated

.

20 .

	

The

PMI master receives the second data word within 145 ns after PRDSTB is negated

.

21 .

	

The

PMI master receives the second word PHBPAR and PLBPAR bits within 120 ns after

PRDSTB

is negated

.

22 .

	

If

four or more data words are to be transmitted, the sequence proceeds as follows

.

a .

	

The

bus master negates PBLKM within 240 ns after the negation of PRDSTB and after

latching

the second word data

.

b .

	

The

PMI slave removes the second word data when PBLKM is negated

.

c .

	

The

PMI slave asserts PRDSTB after the negation of PBLKM

.

d .

	

The

PMI master asserts PBLKM 40 to 70 ns after negating it

.

e .

	

Return

to step 13 above

.

If

two more data words are to be transmitted, the sequence proceeds as follows

.

a .

	

The

bus master negates PBLKM within 240 ns after the negation of PRDSTB and after

latching

the second word data

.

b .

	

The

PMI slave removes the second word data when PBLKM is negated

.

c .

	

The

PMl slave asserts PRDSTB after the negation of PBLKM

.

d .

	

Return

to step 13 above

.

If

the last data word is to be transmitted, the sequence proceeds as follows

.

a .

	

The

bus master negates PBCYC after latching the last word data

.

b .

	

The

PMI slave removes the last word data from bus within 50 ns after PBCYC is negated

.

7.5.3

	

PMI

Data Out/Data Out Byte

The

DATO and DATOB cycles are used by the PMI bus master to transfer a single word or byte to a PMI

slave .

The protocol used by the DATO and DATOB cycles is as follows

.

1 .

	

When

the PMI master assumes control of the bus, the BDAL <21

:0>

lines are addressed, and

BBS7

and BWTBT are asserted for DATO cycles

.

In addition, PBYT is asserted for DATOB

cycles .

2 .

	

Each

PMI slave asserts PSSEL within 45 ns after it receives the asserted BDAL <21

:0>

and

BBS7

signals, if necessary

.

3 .

	

The

UBA asserts PUBMEM within 100 ns ns after it receives the asserted BDAL <21

:0>

and

BBS7

signals, if necessary

.

4 .

	

The

PMI master receives PSSEL within 130 ns after gating the asserted BDAL <21

:0>

and

BBS7

signals

.

5 .

	

The

PMI master receives PUBMEM within 120 ns after gating the asserted BDAL <21

:0>

and

BBS7

signals

.

6 .

	

If

PSSEL is asserted and PUBMEM is negated, the PMI master proceeds as follows

.

a .

	

The

PMI master asserts PBCYC within 130 ns after gating the BDAL <21

:0>,

BBS7,

BWTBT

and PBYT signals, and after PSBFUL is negated

.

b .

	

The

PMI master continues to assert the BDAL <21

:0>,

BBS7, BWTBT and PBYT signals

for

a minimum of 40 ris and a maximum of 100 ns after it asserts PBCYC

.

c .

	

The

UBA latches PUBMEM when PBCYC is asserted

.

d .

	

The

PMI slave receives stable BDAL <21

:0>,

BBS7, BWTBT and PBYT signals for 65 ns

(minimum)

before PBCYC is asserted and for 30 ns after PBCYC is asserted

.

e .

	

The

PMI slave receives a valid PUBMEM from 10 ns (minimum) before the assertion of

PBCYC

and until 10 ns before PBCYC is negated

.

7 .

	

If

PSSEL is negated and the KDJ 1 1-B is the PMI master, the PMI cycles are performed with

the

UBA responding as a slave, and follow the routine listed above

.

8 .

	

If

PSSEL is negated and PUBMEM is asserted, the UBA is the PMI master and it aborts the

PMI

cycle and does not respond as a Unibus slave

.

9 .

	

The

PMI slave asserts BRPLY within 50 ns after the assertion of PBCYC (LSI bus systems

only) .

NOTE
In

Unibus systems with PMI memory as a slave,

BRPLY

must be disabled at all times

.

10 .

	

The

PMI master gates the data onto the bus within 80 ns after the assertion of PBCYC

.

11 .

	

The

PMI master asserts PWTSTB within 75 ns after the data is placed on the bus

.

12 .

	

The

PMI maintains the data on the bus for 30 ns after it asserts PWTSTB

.

13 .

	

The

PMT slave receives the data from within 10 ns before the assertion of PWTSTB and until

20

ns after the assertion of PWTSTB

14 .

	

The

PMI slave asserts PSBFUL within 50 ns after the assertion of PWTSTB

.

15 .

	

The

PMI master negates PWTSTB 40 ns after asserting it

.

16 .

	

The

PMI master negates PBCYC after negating PWTSTB

.

17 .

	

The

PMI slave negates BRPLY within 300 ns (LSI systems) and cannot perform another PMI

or

LSI bus cycle during this period

.

7.6

PMI INTERRUPT PROTOCOL

The

PMI interrupt protocol consists of the interrupt request, granting the interrupt and fetching the

interrupt

vector to service the interrupt

.

The LSI requirements for an interrupt are defined in Chapter 6

.
The

Unibus requirements for the request and grant are described in Paragraph 7

.4.2 .

The transfer of the

interrupt

vector from the requesting Unibus device to the KDJI 1-B requires a combination of the Unibus

and

LSI bus protocols as follows

.

1 .

	

Once

the requesting device is the bus master, it places the interrupt vector on the Unibus after it

asserts

BBSY

.

2 . The

requesting device asserts INTR after the vector data is on the Unibus

.

3 .

	

The

UBA is the PMI bus master and asserts BRPLY after it receives INTR on the Unibus

.

4 .

	

The

UBA receives the interrupt vector and places it on the BDAL data lines within 75 ns after

BRPLY

is asserted

.

5 .

	

The

UBA latches the interrupt vector within 75 ns after INTR is asserted and then asserts

SSYN

on the Unibus

.

6 .

	

The

requesting device is the bus master and it removes the vector after it receives SSYN

.

It also

negates

INTR at this time

.

7 .

	

The

requesting device negates BBSY after negating INTR to relinquish bus mastership

.

8 .

	

The

KDJI I -B latches the vector data within 200 ns after the UBA-asserted BRPLY

.

9 .

	

The

KDJ 1 I -B negates BDIN and BIAKO after it latches the vector data

.

10 .

	

The

UBA negates BRPLY after BIAKO is negated

.

7.7

PMI POWER-UP/POWER-DOWN

The

power-up/power-down protocol for the PMI bus in an LSI system is described in Chapter 6

.

The

protocol

used in a Unibus system is similar to that of the LSI system

.

The primary difference is that in an

LSI

system, the BPOK signal is negated by the power supply 3 ms after it is asserted, and in the Unibus

system,

the KDJI l -B must ignore the assertion of AC LO for a minimum of 2 ms after it is asserted

.
These

delays allow the system software enough time to prepare for a power-down before the KDJ I 1-B can

execute

the power-down sequence

.

In

the Unibus system, the KDJI I -B receives DC LO as the DCOK signal, and the BPOK signal is isolated

from

AC LO by the UBA

.

The PMI memory interfaces to AC LO, but not to BPOK on the LSI bus

.
Therefore,

when a Unibus device asserts AC LO to the UBA, it asserts BPOK for a mimimum of 2 ms

before

it allows AC LO to negate BPOK

.

8.1

INTRODUCTION

The

KDJI I -B utilizes the six addressing modes described below with the base instruction set to control or

program

the operations executed by the microprocessor

.

Included in this chapter are specific examples

of

how these addressing modes are used

.

Direct

Addressing - The operand is the content of the selected register

.

8.2

ADDRESSING MODES

Data

stored in memory must be accessed and manipulated

.

Data handling is specified by a KDJI1-B

instruction

(MOV, ADD, etc

.),

and usually includes the following

.

The

function to be performed (operation code)

CHAPTER

8

ADDRESSING

MODES

Single-Operand

Addressing - One part of the instruction word specifies the registers

;

the other

part

provides information for locating the operand

.

Double-Operand

Addressing - One part of the instruction word specifies the registers

;

the

remaining

parts provide information for locating two operands

.

Deferred

(Indirect) Addressing - The contents of the selected register is the address of the

operand .

Use

of the PC as a General Purpose Register - The PC is different from other general purpose

registers

in one important respect

.

Whenever the processor retrieves an instruction, it automat-

ically

advances the PC by 2

.

By combining this automatic advancement of the PC with four of

the

basic addressing modes, the four special PC modes - immediate, absolute, relative, and

relative-deferred

- are created

.

Use

of the General Purpose Registers as an SP - General purpose registers can be used for stack

operations .

The

general purpose register to be used when locating the source operand, and/or destination

operand

(where required)

"

	

The

addressing mode, which specifies how the selected registers are to be used

A

large portion of the data handled by a computer is structured (character strings, arrays, lists, etc

.) .

The

KDJl

I-B addressing modes provide for efficient and flexible handling of structured data

.

A

general purpose register may be used with an instruction in any of the following ways

.

l .

	

As

an accumulator - The data to be manipulated resides in the register

.

2 .

	

As

a pointer - The contents of the register is the address of an operand, rather than the operand

itself.

3 .

	

As

a pointer that automatically steps through memory locations - Automatically stepping

forward

through consecutive locations is known as autoincrement addressing

;

automatically

stepping

backward is known as autodecrement addressing

.

These modes are particularly useful

for

processing tabular or array data

.

4 .

	

As

an index register - In this instance, the contents of the register and the word following the

instruction

are summed to produce the address of the operand

.

This allows easy access to

variable

entries in a list

.

An

important KDJ 11-B feature that should be considered with the addressing modes is the following

register

arrangement

.

"

	

Two

sets of six general purpose registers (RO-R5 and RO'-R5')

"

	

A

hardware SP register (R6) for each processor mode (kernel, supervisor, user)

"

	

A

PC register (R7)

Registers

RO-R5 and RO'-R5' are not dedicated to any specific function

.

Their uses are determined by

decoded

instructions and include the following

.

"

	

They

can contain the address of an operand or serve as pointers to the address of an operand

.

They

can be used for operand storage

.

For example, the contents of two registers can be added

and

stored in another register

.

They

can be used for the autoincrement or autodecrement features

.

"

	

They

can be used as index registers for convenient data and program access

.

The

KDJ 11-B also has instruction addressing mode combinations that facilitate temporary data storage

structures .

These can be used for convenient handling of data that must be accessed frequently

.

This is

known

as stack manipulation

.

The register that keeps track of stack manipulation is called the stack

pointer,

or SP

.

Any register can be used as an SP under program control

.

However, certain instructions

associated

with subroutine linkage and interrupt service automatically use R6 as a hardware stack pointer

.
For

this reason, R6 is frequently referred to as the SP

.

The SP functions include the following

.

"

	

The

SP keeps track of the latest entry on the stack

.

The

SP moves down as items are added to the stack and moves up as items are removed

.
Therefore,

the SP always points to the top of the stack

.

"

	

The

hardware stack is used during trap or interrupt handling to store information, allowing an

orderly

return to the interrupted program

.

R7

is used by the processor as its PC

.

It is recommended that R7 not be used as an SP or accumulator

.
Whenever

an instruction is fetched from memory, the PC is automatically incremented by two to point to

the

next instruction word

.

8-2

8.2.1

	

Single-Operand

Addressing

The

instruction format for all single-operand instructions (such as CLR, INC, TST) is shown in Figure 8-1

.
Bits

< 15

:6>

specify the operation code that defines the type of instruction to be executed

.

Bits <5

:0>

form

a

6-bit field called the destination address field

.

The destination address field consists of two subfields, as

follows .

"

	

Bits

<5

:3>

specify the destination mode

.

Bit 3 is set to indicate deferred (indirect) addressing

.

Bits

<2

:0>

specify which of the eight general purpose registers is to be referenced by this

instruction

word

.

8.2.2

Double-Operand Addressing

Operations

that employ two operands (such as ADD, SUB, MOV, and CMP) are handled by instructions

that

specify two addresses

.

The first operand is called the source operand

;

the second is called the

destination

operand

.

Bit assignments in the source and destination address fields may specify different

modes

and different registers

.

The instruction format for the double-operand instruction is shown in

Figure

8-2

.

The

source address field is used to select the source operand (the first operand)

.

The destination is used

similarly,

and locates the second operand and the result

.

For example, the instruction ADD A, B adds the

contents

(source operand) of location A to the contents (destination operand) of location B

.

After

execution,

B contains the result of the addition and the contents of A is unchanged

.

Examples

throughout this chapter use the sample KDJ11-B instructions given in Table 8-1

.

(A complete

list

of KDJI l -B instructions appears in Chapter 9, Table 9-1)

.

15

	

06

05 04 03 02 00

Figure

8-1	

Single-Operand

Addressing

15

	

12

11 10 09 08 06 05 04 03 02 00

OP

CODE

Figure

8-2 Double-Operand Addressing

Rn

MODE

OP

CODE	

DESTINATION

ADDRESS

MODE

Rn

Rn

MR

5458

MODE

SOURCE

ADDRESS	

DESTINATION

ADDRESS

MR

5459

*

	

DD

= Destination field (six bits)

SS

= Source field (six bits)

8.2.3

	

Direct

Addressing

The

following summarizes the four basic modes used with direct addressing

.

These direct modes are

illustrated

in Figures 8-3 to 8-6

.

Assembler
Mode

Name	

Syntax

Function

0

	

Register

	

Rn

	

Register

contains operand

.

INSTRUCTION

Figure

8-

3

	

Mode

0, Register

OPERAND

.H

5460

Table

8-1 Sample KDJ11-B Instructions

Mnemonic Description Octal

Code*

CLR Clear

- Zero the specified destination

. 0050DD

CLRB Clear

byte - Zero the byte in the specified destination

. 1050DD

INC Increment

- Add one to the contents of the destination

. 0052DD

INCB Increment

byte - Add one to the contents of the destination byte

. 1052DD

COM Complement

- Replace the contents of the destination by its

0051

DD

logical

complement

;

each 0 bit is set and each 1 bit is cleared

.

COMB Complement

byte - Replace the contents of the destination byte

1051

DD

by

its logical complement

;

each 0 bit is set and each 1 bit is

cleared .

ADD Add

- Add the source operand to the destination operand and

06SSDD
store

the result at the destination address

.

Mode

2

Mode

4

INSTRUCTION

Figure 8-5

	

Mode 4, Autodecrement

Assembler
Mode Name

	

Syntax Function

6

	

Index

	

X(Rn)

	

Value X is added to (Rn) to produce
address of operand . Neither X nor (Rn) is
modified .

INSTRUCTION

0

ADDRESS

ADDRESS

Figure 8-6

	

Mode 6, Index

-2 FOR WORD,
-1 FOR BYTE

+2 FOR WORD,
+1 FOR BYTE

OPERAND

MR-5463

MR-5451

MA -6462

Assembler
Name Syntax Function

Autoincrement (Rn)+ Register is used as a pointer to sequential
data and then is incremented .

INSTRUCTION ADDRESS OPERAND

Figure 8-4 Mode 2, Autoincrement

Assembler
Name Syntax Function

Autodecrement -(Rn) Register is decremented and then used as a
pointer .

8.2 .3 .1

	

Register Mode - With register mode (mode 0) any of the general registers may be used as simpleaccumulators, with the operand contained in the selected register . Since they are hardware registers(within the processor), the general registers operate at high speeds and provide speed advantages whenused for operating on frequently accessed variables . The assembler interprets and assembles instructions ofthe form OPR Rn as register mode operations . Rn represents a general register name or number and OPRis used to represent a general instruction mnemonic . Assembler syntax requires that a general register bedefined as follows .
RO = %0 (% sign indicates register definition)R1 = %1R2 = %2, etc .

Registers are typically referred to by name as RO, R1, R2, R3, R4, R5, R6, and R7 . However, R6 and R7are also referred to as SP and PC, respectively . Three register mode operations are illustrated inFigures 8-7 to 8-9 .
Register Mode Examples :
Symbolic

	

Octal Code

	

Instruction Name
INC R3

	

005203

	

Increment
Operation : Add one to the contents of R3 .

15

	

06 05 04 03 02 00
0

	

0

	

0

	

0

	

1

	

0

	

1

	

0

	

1

	

0

	

I

	

0

	

0 i

	

0

	

0

	

1

	

1

	

, SELECTi' '	REGISTER
OP CODE (INC(0052))

	

DESTINATION FIELD

Figure 8-7

	

INC R3 Increment
MR -5467

Symbolic

	

Octal Code

	

Instruction Name

ADD R2, R4

	

060204

	

Add

Operation: Add the contents of R2 to the contents of R4.

R2

R4

R4

Figure 8-8

	

ADD R2,R4 Add

Symbolic

	

Octal Code

	

Instruction Name

COMB R4

	

105104

	

Complement byte

Operation: 1's complement bits <7:0> (byte) in R4. When general registers are used, byte instructions
(with the exception of MOVB) operate only on bits <7:0>, that is, byte 0 of the register . MOVB to a
register, unique for byte instructions, extends the most significant bit of the low-order byte (sign extension)
into the high byte of the selected register . Otherwise, MOVB operates on bytes the same way MOV
operates on words.

BEFORE AFTER
R4

MR 5468

MR-5469

Figure 8-9

	

COMB R4 Complement Byte

BEFORE AFTER
000002 R2 000002

000004 R4 000006

8.2.3.2

	

Autoincrement

Mode [OPR (Rn)+] - This mode (mode 2) provides for automatic stepping of a

pointer

through sequential elements of a table of operands

.

It assumes the contents of the selected general

purpose

register to be the address of the operand

.

Contents of registers are stepped (by one for byte

instructions,

by two for word instructions, always by two for R6 and R7) to address the next sequential

location .

The autoincrement mode is especially useful for array processing and stack processing

.

It accesses

an

element of a table and then steps the pointer to address the next operand in the table

.

Although

autoincrement

mode is most useful for table handling, it is completely general and may be used for a

variety

of purposes

.

Three autoincrement mode operations are illustrated in Figures 8-10 to 8-12

.

Autoincrement

Mode Examples

:

Symbolic

	

Octal

Code	

Instruction

Name

CLR

(R5)+	

005025

	

Clear

Operation :

Use contents of R5 as the address of the operand

.

Clear the selected operand and then

increment

the contents of R5 by two

.

20000

30000

BEFORE

	

AFTER
ADDRESS

SPACE	

REGISTER

	

ADDRESS

SPACE	

REGISTER
005025 R5 030000

Figure

8-10	

CLR

(R5)+ Clear

Symbolic

	

Octal

Code	

Instruction

Name

CLRB

(R5)+	

105025

	

Clear

byte

Operation :

Use contents of R5 as the address of the operand

.

Clear the selected byte operand and then

increment

the contents of R5 by one

.

BEFORE

	

AFTER
ADDRESS

SPACE	

REGISTER

	

ADDRESS

SPACE	

REGISTER
105025

20000

30000

Figure

8-11	

CLRB

(R

5)+

Clear Byte

005025 R5

R5

030002

030001

MR

-5464

MR

-5465

Symbolic

	

Octal Code

	

Instruction Name

ADD (R2)+,R4

	

062204

	

Add

Operation : The contents of R2 is used as the address of the operand, which is added to the contents of R4 .
R2 is then incremented by two .

BEFORE

	

AFTER
ADDRESS SPACE

	

REGISTERS

	

ADDRESS SPACES

	

REGISTERS
062204

Autodecrement Mode Examples:

Figure 8-12

	

ADD (R2)+,R4 Add

8.2.3.3

	

Autodecrement Mode [OPR -(Rn)] - This mode (mode 4) is useful for processing data in a list in
reverse direction . The contents of the selected general purpose register is decremented (by one for byte
instructions, by two for word instructions) and then used as the address of the operand . The postincrement
and predecrement features on the KDJ11-13 are intended to facilitate hardware/software stack operations .
Three autodecrement mode operations are illustrated in Figures 8-13 to 8-15 .

Symbolic

	

Octal Code

	

Instruction Name

INC -(RO)

	

005240

	

Increment

Operation: The contents of RO is decremented by two and used as the address of the operand . The operand
is incremented by one .

1000

,7774

BEFORE

	

AFTER
ADDRESS SPACE

	

REGISTERS

	

ADDRESS SPACE

	

REGISTER
RO

Figure 8- 1 3

	

INC -(RO) Increment

10000

100002

,7774

010000

1000 005240 RO 017774

R2

R4

MR 5470

.9 5466

Symbolic

	

Octal

Code	

Instruction

Name

INCB

	

-(RO)

	

105240

	

Increment

byte

Operation:

The contents of RO is decremented by one and then used as the address of the operand

.

The

operand

byte is increased by one

.

1000

17774

17776

77774

77776

BEFORE

	

AFTER
ADDRESS

SPACE	

REGISTER

	

ADDRESS

SPACE	

REGISTER
105240

000

1000

T

RO 017776

Figure

8-14	

INCB

-(RO) Increment Byte

Symbolic

	

Octal

Code	

Instruction

Name

ADD

-(R3),RO	

064300

	

Add

Operation :

The contents of R3 is decremented by two and then used as a pointer to an operand (source),

which

is added to the contents of RO (destination operand)

.

000050

R3

Figure

8-15	

ADD

-(R

3),RO

Add

AFTER
REGISTER

	

ADDRESS

SPACE	

REGISTER

1000

17774

17776

10020

105240

000050

RO

MR

E471

0000070

MR-5472

8.2.3.4

	

Index

Mode [OPR X(Rn)] - In this mode (mode 6), the contents of the selected general purpose

register

and an index word following the instruction word are summed to form the address of the operand

.
The

contents of the selected register may be used as a base for calculating a series of addresses, thus

allowing

random access to elements of data structures

.

The selected register can then be modified by a

program

to access data in the table

.

Index addressing instructions are of the form OPR X(Rn), where X is

the

indexed word located in the memory location following the instruction word, and Rn is the selected

general

purpose register

.

Three index mode operations are illustrated in Figures 8-16 to 8-18

.

Index

Mode Examples

:

Symbolic

	

Octal

Code	

Instruction

Name

CLR

200(R4)	

005064

	

Clear
000200

Operation :

The address of the operand is determined by adding 200 to the contents of R4

.

The operand

location

is then cleared

.

1020

1022

AFTER
ADDRESS

SPACE	

REGISTER

000000

Figure

8-16	

CLR

200(R4) Clear

Symbolic

	

Octal

Code	

Instruction

Name

COMB

200(R 1)	

105161

	

Complement

byte

000200

Operation:

The contents of a location determined by adding 200 to the contents of R 1 is 1's comple-

mented,

that is, logically complemented

.

BEFORE

	

AFTER
ADDRESS

SPACE	

REGISTER

	

ADDRESS

SPACE	

REGISTER
1020

1022

017777
+200

020177

20176

	

011

1 000	

20176

20200

I I I	

20200

105161

000200

R1

8-1 1

Figure

8-17	

COMB

200(R 1) Complement Byte

R1

MR

5473

017777

MR-5474

ADDRESS

SPACE

BEFORE
REGISTER

1020 005064 R4 001000 1020

1022 000200 1022

1024 1000 1024
+200
1200

1200 177777 1200

1202

Symbolic

	

Octal

Code	

Instruction

Name

ADD

30(R2),20(R5)	

066265

	

Add
000030
000020

Operation:

The contents of a location determined by adding 30 to the contents of R2 is added to the

contents

of a location determined by adding 20 to the contents of R5

.

The result is stored at the destination

address,

that is, 20(85)

.

1100

2000

+30

+20

1130

2020

8- 12

Figure

8-18	

ADD

30(R2),20(R5) Add

8.2.4

	

Deferred

(Indirect) Addressing

The

four basic modes may also be used with deferred addressing

.

While in register mode the operand is the

contents

of the selected register, in register-deferred mode the contents of the selected register

is

the address of the operand

.

In

the three other deferred modes, the contents of the register selects the address of the operand rather

than

the operand itself

.

These modes are therefore used when a table consists of addresses rather than

operands .

The assembler syntax for indicating deferred addressing is C, or () when this is not ambiguous

.

The

following summarizes the deferred versions of the basic modes

.

These deferred modes are illustrated

in

Figures 8-19 to 8-22

.

Mode

INSTRUCTION REGISTER OPERAND

Figure

8-19 Mode 1, Register-Deferred

MR

5476

MR-5475

ADDRESS

SPACE

BEFORE
REGISTER ADDRESS

SPACE

AFTER
REGISTER

1020 066265 R2 001100 1020 066265 R2 001100

1022 000030 1022 000030

1024 000020 R5 002000 1024 000020 R5 002000

1130 000001 1130 000001

2020 000001 2020 000002

Assembler
Name Syntax Function

Register- @Rn

or (Rn)

Register

contains the address of the

deferred operand .

Assembler
Mode

Name	

Syntax

Function

3

	

Autoincrement-

	

@(Rn)+

	

Register

is first used as a pointer to a word

deferred

	

containing

the address of the operand, and

then

is incremented (always by two, even

for

byte instructions)

.

INSTRUCTION

INSTRUCTION

Figure

8-20 Mode 3, Autoincrement-Deferred

Assembler
Mode

Name	

Syntax

Function

5

	

Autodecrement-

	

@-(Rn)

	

Register

is decremented (always by two,

deferred

	

even

for byte instructions) and then used as

a

pointer to a word containing the address

of

the operand

.

REGISTER -2

Figure

8-21	

Mode

5, Autodecrement-Deferred

Assembler
Mode

Name	

Syntax

Function

7

	

Index-deferred

	

@X(Rn)

	

Value

X (stored in a word following the

instruction)

and (Rn) are added

.

The sum is

used

as a pointer to a word containing the

address

of the operand

.

Neither X nor (Rn)

is

modified

.

INSTRUCTION

X

REGISTER

Figure

8-22	

Mode

7, Index-Deferred

8-1 3

ADDRESS

ADDRESS

ADDRESS

OPERAND

+2

MR

5477

OPERAND

OPERAND

MR

-5478

MR

5479

The

following examples (Figures 8-23 to 8-26) further illustrate use of the deferred modes

.

Register-Deferred

Mode Example

:

Symbolic

	

Octal

Code	

Instruction

Name

CLR

@R5	

005015

	

Clear

Operation :

The contents of a location specified in R5 is cleared

.

1676

1700

R5

Figure

8-23	

CLR

@R5 Clear

Autoincrement-Deferred

Mode Example

:

BEFORE

	

AFTER
ADDRESS

SPACE	

REGISTER

	

ADDRESS

SPACE	

REGISTER
1676

1700

Symbolic

	

Octal

Code	

Instruction

Name

INC

@(R2)+	

005232

	

Increment

R5

Operation :

The contents of R2 is used as the address of the address of the operand

.

The operand is

increased

by one

;

the contents of R2 is incremented by two

.

BEFORE

	

AFTER
ADDRESS

SPACE	

REGISTER

	

ADDRESS

SPACE	

REGISTER

Figure

8-24 INC @(R2)+ Increment

.R-54B0

MR

-5481

Autodecrement-Deferred

Mode Example

:

Symbolic

	

Octal

Code	

Instruction

Name

COM

@-(RO)	

005150

	

Complement

Operation :

The contents of RO is decremented by two and then used as the address of the address of the

operand .

The operand is 1's complemented, that is, logically complemented

.

10100

10102

10774

10776

Figure

8-25	

COM

@-(RO) Complement

Index-Deferred

Mode Example

:

Symbolic

	

Octal

Code	

Instruction

Name

ADD

@1000(R2),R 1	

067201

	

Add
001000

Operation :

Location 1000 and the contents of R2 are summed to produce the address of the address of the

source

operand, the contents of which are added to the contents of RI

.

The result is stored in RI

.

1020

1022

1024

BEFORE

	

AFTER
ADDRESS

SPACE	

REGISTER

	

ADDRESSSPACE

	

REGISTER
012345

BEFORE

	

AFTER
ADDRESS

SPACE	

REGISTER
067201

001000

000002

RO

R1

R2

1000
+100
1_100

10100

10102

8-1 5

10774

10776

Figure

8-26	

ADD

@1000(R2),Rl Add

M

R 5482

MR

-5483

1020
ADDRESS

SPACE

067201 R1
REGISTER

001236

1022 001000 R2 000100
1024

1050 000002

1100 001050

8.2.5

	

Use

of the PC as a General Purpose Register

Although

R7 is a general purpose register, it doubles in function as the PC for the KDJ11-B

.

Whenever

the

processor uses the PC to acquire a word from memory, the PC is automatically incremented by two to

contain

the address of the next word of the instruction being executed or the address of the next instruction

to

be executed

.

(When the program uses the PC to locate byte data, the PC is still incremented by two

.)

The

PC responds to all the standard KDJ11-B addressing modes

.

However, with four of these modes the

PC

can provide advantages for handling Position-Independent Code (PIC) and unstructured data

.

When

utilizing

the PC, these modes are termed immediate, absolute (or immediate-deferred), relative, and

relative-deferred .

They are summarized in the following chart

.

Function

Operand

follows instruction

.

Absolute

address of operand follows

instruction .

Relative

address (index value) follows the

instruction .

Index

value (stored in the word after the

instruction)

is the relative address for the

address

of the operand

.

When

a standard program is available for different users, it is often helpful to be able to load it into

different

areas of memory and run it in those areas

.

The KDJ11-B can accomplish the relocation of a

program

very efficiently through the use of PIC, which is written by using the PC addressing modes

.

If an

instruction

and its operands are moved in such a way that the relative distance between them is not altered,

the

same offset relative to the PC can be used in all positions in memory

.

Thus, PIC usually references

locations

relative to the current location

.

The

PC also greatly facilitates the handling of unstructured data

.

This is particularly true of the immediate

and

relative modes

.

8.2.5.1

	

Immediate

Mode [OPR #n,DD] - With the PC, immediate mode (mode 2) is equivalent in use to

the

autoincrement mode

.

It provides speed improvements for accessing constant operands by including the

constant

in the memory location immediately following the instruction word

.

An immediate mode

operation

is illustrated in Figure 8-27

.

Immediate

Mode Example

:

Symbolic

	

Octal

Code	

Instruction

Name

ADD

# l 0,RO	

062700

	

Add
000010

Operation:

The value 10 is located in the second word of the instruction and is added to the contents of

R0.

Just before this instruction is fetched and executed, the PC points to the first word of the instruction

.
The

processor fetches the first word and increments the PC by two

.

The source operand mode is 27

(autoincrement

the PC)

.

Thus, the PC is used as a pointer to fetch the operand (the second word of the

instruction)

before it is incremented by two to point to the next instruction

.

Assembler
Mode Name Syntax

2 Immediate #n

3 Absolute @#A

6 Relative A

7 Relative- a~A
deferred

Figure 8-27

	

ADD # l 0,RO Add

177777

PC

Figure 8-28

	

CLR@ #1100 Clear

8.2.5.2 Absolute Mode [OPR @#A] - Using the PC, this mode (mode 3) is the equivalent of the
immediate-deferred or autoincrement-deferred modes. The contents of the location following the in-
struction are taken as the address of the operand. Immediate data is interpreted as an absolute address,
that is, an address that remains constant no matter where in memory the assembled instruction occurs .
Two absolute mode operations are illustrated in Figures 8-28 and 8-29 .

Absolute Mode Examples:

Symbolic

	

Octal Code

	

Instruction Name

CLR @#1100

	

005037

	

Clear
001100

Operation : Clear the contents of location 1100 .

BEFORE

	

AFTER
ADDRESS SPACE

PC

MR 5485

MR-5484

ADDRESS SPACE
20 005037
22 001100
24

1100 000000
1102

ADDRESS
BEFORE

SPACE REGISTER ADDRESS SPACE
AFTER

REGISTER
1020 062700

'*\
RO 000020 1020 062700 RO 000030

1022 000010 PC 1022 000010 PC
1024 1024

Symbolic

	

Octal

Code	

Instruction

Name

ADD

@#2000,R3	

063703

	

Add
002000

Operation :

Add contents of location 2000 to R3

.

BEFORE

	

AFTER
ADDRESS

SPACE	

REGISTER

	

ADDRESS

SPACE	

REGISTER

Figure

8-29	

ADD

@ #2000 Add

8.2.5.3

Relative Addressing Mode [OPR A or OPR X(PC)] - Usi ng R7, this mode (mode 6) is

assembled

as index mode

.

The base of the address calculation, which is stored in the second or third word

of

the instruction, is not the address of the operand, but the number which, when added to the PC,

becomes

the address of the operand

.

This mode is useful for writing PIC since the location referenced is

always

fixed relative to the PC

.

When instructions are to be relocated, the operand is moved by the same

amount.

The instruction OPR X(PC) is interpreted as `X is the location of A relative to the PC

.'

A relative

mode

operation is illustrated in Figure 8-30

.

Relative

Addressing Mode Example

:

Symbolic

	

Octal

Code	

Instruction

Name

INC

A	

005267

	

Increment
000054

Operation:

To increment location A, the contents of the memory location immediately following the

instruction

word is added to the PC to produce address A

.

The contents of A is increased by one

.

1020

1022

1024

1026

1100

R3

PC

BEFORE
ADDRESS

SPACE

PC

Figure

8-30	

INC

A Increment

8-18

20

063703

22

002000

24

2000 000300

R3

PC

PC

MR

-5487

MR-5486

AFTER
ADDRESS

SPACE

1020 0005267

1022 000054

1024

1026

1100 0000011024
+54
1100

8.2.5.4

Relative-Deferred Addressing Mode [OPR @A or OPR @X(PC)] - This mode (mode 7) is

similar

to relative mode, except that the second word of the instruction, when added to the PC, contains

the

address of the address of the operand, rather than the address of the operand

.

The instruction OPR

@X(PC)

is interpreted as `X is the location containing the address of A, relative to the PC

.'

A relative-

deferred

mode operation is illustrated in Figure 8-31

.

Relative-Deferred

Addressing Mode Example

:

Symbolic

CLR

@A

Operation :

Add second word of instruction to the updated PC to produce the address of the address of the

operand .

Clear the operand

.

Octal

Code	

Instruction

Name

005077

Clear

000020

BEFORE

ADDRESS SPACE

Figure

8-31	

CLR

@A Clear

PC

M

R-5488

8.2.6

	

Use

of the General Purpose Registers as a Stack Pointer

The

processor SP (R6) is, in most cases, the general register used for the stack operations related to

program

nesting

.

Autodecrement using R6 `pushes' data onto the stack, and autoincrement using R6

`pops'

data off the stack

.

Since the SP is used by the processor for interrupt handling, it has a special

attribute :

Autoincrements and autodecrements are always done in steps of two

.

Byte operations using the

SP

in this way leave odd addresses (upper bytes) unmodified

.

AFTER
ADDRESS

SPACE

1020 005077

1022 000020

1024 1024
+20

1

044

1044 010100

10100 000000

CHAPTER

9

BASE

INSTRUCTION SET

9.1

INSTRUCTION SET

This

chapter describes the KDJI1-B instruction set

.

The explanation of each instruction includes the

instruction

mnemonic, octal code, binary code, a diagram showing the format of the instruction, a

symbolic

notation describing its execution and effect on the condition codes, a description, special

comments,

and examples

.

Each explanation is headed by its mnemonic

.

When the word instruction has a

byte

equivalent, the byte mnemonic also appears

.

The

instruction set is listed by functional groups in Paragraph 9

.4,

and an alphabetical list is given in Table

9-1

below

.

Table

9-1 Instruction Set

Mnemonic Instruction Op

Code

ADC(B) Add

carry

"

055DD

ADD Add

source to destination

06SSDD
ASH Arithmetic

shift

072RSS
ASHC Arithmetic

shift combined

073RSS
ASL(B) Arithmetic

shift left

"

063DD

ASR(B) Arithmetic

shift right

"

062DD

BCC Branch

if carry is clear

103000
BCS Branch

if carry is set

103400
BEQ Branch

if equal (to zero)

001400
BGE Branch

if greater than or equal (to zero)

002000

BGT Branch

if greater than (zero)

003000
BHI Branch

if higher

101000
BHIS Branch

if higher or same

103000
BIC(B) Bit

clear

"

4SSDD

BIS(B) Bit

set

"

5SSDD

BIT(B) Bit

test

"

3SSDD

BLE Branch

if less than or equal (to zero)

003400
BLO Branch

if lower

103400
BLOS Branch

if lower or same

101400
BLT Branch

if less than (zero)

Table 9-1 Instruction Set (Cont)
Mnemonic Instruction Op Code
BMI Branch if minus 100400BNE Branch if not equal (to zero) 001000BPL Branch if plus 100000BPT Breakpoint trap 000003BR Branch (unconditional) 000400BVC Branch if overflow is clear 102000BVS Branch if overflow is set 102400CCC Clear all CC bits 000257CLC Clear C 000241CLN Clear N 000250
CLR(B) Clear destination " 050DDCLV Clear V 000242CLZ Clear Z 000244CMP(B) Compare source to destination "2SSDDCOM(B) Complement destination " 051 DDCSM Call to supervisor mode 0070DDDEC(B) Decrement destination E053DDDIV Divide 071 RSSEMT Emulator trap 104000-104377HALT Halt 000000
IOT Input/output trap 000004INC(B) Increment destination " 052DDimp Jump 0001 DDJSR Jump to subroutine 004RDDMARK Mark 0064NNMFPD Move from previous data space 0065SSMFPI Move from previous instruction space 1065SSMFPS Move byte from PS 1067DDMFPT Move processor type 000007MOV(B) Move source to destination " 1 SSDD
MTPD Move to previous data space 1066SSMTPI Move to previous instruction space 0066SSMTPS Move byte to PS 1064SSMUL Multiply 070RSSNEG(B) Negate destination " 054DDNOP No operation 000240RESET Reset external bus 000005ROL(B) Rotate left " 061DDROR(B) Rotate right " 060DDRTI Return from interrupt 000002

The diagram that accompanies each instruction shows the octal op code, binary op code,
assignments . Notice that in byte instructions, the most significant bit (bit 15) is always a one .

Symbols :

() = contents of

SS or src = source address

DD or dst = destination address

loc = location

t- = becomes

T = `is popped from stack'

f = `is pushed onto stack'

n = Boolean AND

V = Boolean OR

-v = exclusive OR

Boolean not

REG or R = register

B = byte

N = 0 for word, 1 for byte

= concatenated

and bit

Table 9-1 Instruction Set (Cont)

Mnemonic Instruction Op Code

RTS Return from subroutine 00020R
RTT Return from interrupt 000006
SBC(B) Subtract carry N056DDSCC Set all CC bits 000277SEC Set C 000261SEN Set N 000270SEV Set V 000262SEZ Set Z 000264SOB Subtract one and branch (if :# 0) 077R00SPL Set priority level 00023N
SUB Subtract source from destination 16SSDDSWAB Swap bytes 0003DDSXT Sign extend 0067DDTRAP Trap 104400-104777TST(B) Test destination " 057DDTSTSET Test destination, set low bit 0072DDWAIT Wait for interrupt 000001WRTLCK Read/lock destination 0073DDXOR Exclusive OR 074RDD

9.2

INSTRUCTION FORMATS

The

following formats include all instructions used in the KDJ11-B

.

Refer to individual instructions for

more

detailed information

.

1 .

	

Single-Operand

Group

:

	

CLR,

CLRB, COM, COMB, INC, INCB,

(Figure

9-1)	

DEC,

DECB, NEG, NEGB, ADC, ADCB,

SBC,

SBCB, TST, TSTB, ROR, RORB,

ROL,

ROLB, ASR, ASRB, ASL, ASLB,

JMP,

SWAB, MFPS, MTPS, SXT,

TSTSET,

WRTLCK

Figure

9-1	

Single-Operand

Group

2.

	

Double-Operand

Groups

:

OP

CODE

a .

	

Group

1

:

	

BIT,

BITB, BIC, BICB, BIS, BISB,

(Figure

9-2)	

ADD,

SUB, MOV, MOVB, CMP, CMPB

15 1

	

~

	

1
OP

CODE

Figure

9-2	

Double-Operand

Group 1

b .

	

Group

2

:

	

ASH,

ASHC, DIV, MUL, XOR

(Figure

9-3)

Figure

9-3	

Double-Operand

Group 2

3 .

	

Program

Control Groups

:

a .

	

Branch

(all branch instructions) (Figure 9-4)

Figure

9-4	

Program

Control Group Branch

9-4

DD(SS)

I

	

I

	

1

	

l

	

1
SS

(DD)

MR

5191

MR

5192

15

	

09

08 06 05	

00

MR

11554

00

MR

5193

b .

	

Jump (JMP) (Figure 9-5)

15

	

06

	

00

Figure 9-5

	

Program Control Group JMP

c .

	

Jump to Subroutine (JSR) (Figure 9-6)

15

	

09 08 06 05

	

00
0

Figure 9-6

	

Program Control Group JSR

d .

	

Subroutine Return (RTS) (Figure 9-7)

Figure 9-7

	

Program Control Group RTS

e.

	

Traps (breakpoint, IOT, EMT, TRAP, BPT) (Figure 9-8)

15

Figure 9-8

	

Program Control Group Traps

0

f.

	

Subtract 1 and Branch (if = 0) (SOB) (Figure 9-9)

R

R

Figure 9-9

	

Program Control Group Subtract

DD

NN

MR-0586-0788

MR -5194

MR 5195

00

MR -5196

00

MR 5197

g .

	

Mark

(Figure 9-10)

Figure

9-10	

Mark

h.

	

Call

to Supervisor Mode (CSM) (Figure 9-11)

Figure

9-11	

Call

to Supervisor Mode

i .

	

Set

Priority Level (SPL) (Figure 9-12)

Figure

9-12	

Set

Priority Level

.R

11548

MR

11549

MR

-11550

4 .

	

Operate

Group

:

	

HALT,

WAIT, RTI, RESET, RTT, NOP, MFPT

(Figure

9-13)

Figure

9-13	

Operate

Group

5 .

	

Condition

Code Operators

:

	

(all

condition code instructions)

(Figure

9-14)

15

Figure

9-14	

Condition

Group

9-6

06

05 04 03 02 01 00

4 N Z V

MR

-5198

C

MR

5199

6 .

	

Move

To/From

Previous
Instruction/Data
Space

Group

:

	

MTPD,

MTPI, MFPD, MFPI

(Figure

9-15)

Figure

9-15	

Move

To and From Previous Instruction/Data Space Group

9.3

BYTE INSTRUCTIONS

The

KDJI1-B includes a full complement of instructions that manipulate byte operands

.

Since all

KDJ11-B

addressing is byte-oriented, byte manipulation addressing is straightforward

.

Byte instructions

with

autoincrement or autodecrement direct addressing cause the specified register to be modified by one

to

point to the next byte of data

.

Byte operations in register mode access the low-order byte of the specified

register .

These provisions enable the KDJ11-B to perform as either a word or byte processor

.

The

numbering

scheme for word and byte addresses in memory is shown in Figure 9-16

.

The

most significant bit (bit 15) of the instruction word is set to indicate a byte instruction

.

Figure

9-16	

Byte

Instructions

MR

-5201

MR

11551

Example :

Symbolic Octal

Code

Instruction

Name

CLR 0050DD Clear

word

CLRB 1050DD Clear

byte

9.4

LIST OF INSTRUCTIONS

The

following is a functional list of the KDJI I -B instruction set

.

SINGLE-OPERAND

General

Mnemonic

Instruction

CLR(B)

	

Clear

destination

COM(B)

	

Complement

destination

INC(B)

	

Increment

destination

DEC(B)

	

Decrement

destination

NEG(B)

	

Negate

destination

TST(B)

	

Test

destination

WRTLCK

	

Read/lock

destination,

write/unlock

RO into destination

TSTSET

	

Test

destination, set low bit

Shift

and Rotate

Mnemonic

Instruction

ASR(B)

	

Arithmetic

shift right

ASL(B)

	

Arithmetic

shift left

ROR(B)

	

Rotate

right

ROL(B)

	

Rotate

left

SWAB

	

Swap

bytes

Multiple-Precision

Mnemonic

Instruction

ADC(B)

	

Add

carry

SBC(B)

	

Subtract

carry

SXT

	

Sign

extend

PSW

Operators

Mnemonic

Instruction

MFPS

	

Move

byte from PSW

MTPS

	

Move

byte to PSW

Signed

Conditional Branch

DOUBLE-OPERAND

General

Mnemonic Instruction Op

Code

MOV(B) Move

source to destination

N

1 SSDD

CMP(B) Compare

source to destination

N

2SSDD

ADD Add

source to destination

06SSDD
SUB Subtract

source from destination

16SSDD
ASH Arithmetic

shift

072RSS
ASHC Arithmetic

shift combined

073RSS
MUL Multiply 070RSS
DIV Divide 071

RSS

Logical

Mnemonic Instruction Op

Code

BIT(B) Bit

test

"

3SSDD

BIC(B) Bit

clear

"

4SSDD

BIS(B) Bit

set

"

5SSDD

XOR Exclusive

OR

074RDD

PROGRAM

CONTROL

Op

Code

or
Mnemonic Instruction Base

Code

Branch

BR Branch

(unconditional)

000400
BNE Branch

if not equal (to zero)

001000
BEQ Branch

if equal (to zero)

001400
BPL Branch

if plus

100000
BMI Branch

if minus

100400
BVC Branch

if overflow is clear

102000
BVS Branch

if overflow is set

102400
BCC Branch

if carry is clear

103000
BCS Branch

if carry is set

103400

Op

Code

or
Mnemonic Instruction Base

Code

BGE Branch

if greater than or equal

002000
(to

zero)

BLT Branch

if less than (zero)

002400
BGT Branch

if greater than (zero)

003000
BLE Branch

if less than or equal

003400
(to

zero)

Unsigned Conditional Branch
Op CodeorMnemonic

	

Instruction

	

Base Code
BHI

	

Branch if higher

	

101000BLOS

	

Branch if lower or same

	

101400BHIS

	

Branch if higher or same

	

103000BLO

	

Branch if lower

	

103400
Jump and Subroutine

Op Code

Trap and Interrupt

Miscellaneous Program Control

Op CodeorMnemonic Instruction Base Code
EMT Emulator trap 104000-104377TRAP Trap 104400-104777BPT Breakpoint trap 000003IOT Input/output trap 000004RTI Return from interrupt 000002RTT Return from interrupt 000006

orMnemonic Instruction Base Code
imp Jump 0001 DDJSR Jump to subroutine 004RDDRTS Return from subroutine 00020RSOB Subtract one and branch (if 0 0) 077RDD

Op CodeorMnemonic Instruction Base Code
CSM Call to supervisor mode 0070DDMARK Mark 0064NNSPL Set priority level 00023N

MISCELLANEOUS

CONDITION

CODE OPERATORS

Op

Code

or
Mnemonic Instruction Base

Code

CLC Clear

C

000241
CLV Clear

V

000242
CLZ Clear

Z

000244
CLN Clear

N

000250
CCC Clear

all CC bits

000257
SEC Set

C

000261
SEV Set

V

000262
SEZ Set

Z

000264
SEN Set

N

000270
SCC Set

all CC bits

000277
NOP No

operation

000240

Op

Code

or
Mnemonic Instruction Base

Code

HALT Halt 000000
WAIT Wait

for interrupt

000001
RESET Reset

external bus

000005
MFPT Move

processor type

000007
MTPD Move

to previous data space

1066DD
MTPI Move

to previous instruction space

0066DD
MFPD Move

from previous data space

1065SS
MFPT Move

from previous instruction space

0065SS

9.5 SINGLE-OPERAND INSTRUCTIONS
The KDJ11-B instructions that involve only one operand are described in the paragraphs that follow .

9.5.1 General

CLR
CLRB

CLEAR DESTINATION

	

w050DD
15

	

06 05

	

00
0/1 0 0 0 1 0 1 0 0 0

	

DD

Operation :

	

(dst) F- 0

Condition Codes :

	

N: cleared
Z : set
V: cleared
C: cleared

Description :

Example :

	

CLR R 1

COM
COMB

Word: The contents of the specified destination are replaced with Os .
Byte : Same.

Before

	

After

(R1) = 177777

	

(R1) = 000000

NZVC NZVC
1 1 1 1

	

0 1 0 0

COMPLEMENT DST

	

v051 DID
15

	

06 05

	

00T

	

T

	

T__.. . .T_ ._T-_T .

	

T

	

I

	

1
0/1 0 0 0 1 0 1 0 0 1

Operation :

	

(dst) - - (dst)

Condition Codes :

	

N:

	

set if most significant bit of result is set; cleared otherwise
Z:

	

set if result is 0 ; cleared otherwise
V : cleared
C : set

MR-1 1 504

MR 11505

Description:

	

Word: Replaces the contents of the destination address by its logical
complement . (Each bit equal to 0 is set and each bit equal to 1 is cleared.)

Example:

	

COM RO

INC
INCB

Byte : Same .

Before

	

After

(RO) = 013333

	

(RO) = 164444

NZVC NZVC

m052DD
06 05

	

00

Operation :

	

(dst) - (dst) + 1

Condition Codes :

	

N:

	

set if result is < 0; cleared otherwise
Z:

	

set if result is 0; cleared otherwise
V:

	

set if (dst) held 077777; cleared otherwise
C:

	

not affected

Description:

	

Word: Add 1 to the contents of the destination.
Byte : Same .

Example:

	

INC R2

Before

	

After

(R2) = 000333

	

(R2) = 000334

NZVC NZVC
0 0 0 0

	

0 0 0 0

DD

MR-1 1506

0

INCREMENT DST
15
0/1 0 0 0

DEC
DECB

DECREMENT DST
15

0/1 0 0 0 1 0 1 0 1

Operation :

	

(dst) <- (dst) - 1

Condition Codes :

	

N:

	

set if result is < 0 ; cleared otherwise
Z :

	

set if result is 0 ; cleared otherwise
V :

	

set if (dst) was 100000 ; cleared otherwise
C:

	

not affected

Description :

	

Word: Subtract 1 from the contents of the destination .
Byte : Same.

Example :

	

DEC R5

Before

	

After

(R5) = 000001

	

(R5) = 000000

NZVC NZVC
0 0 0

	

0 1 0 0

NEG
NEGB

m054DD
06 05

	

00

Operation :

	

(dst) E--- - (dst)

Condition Codes :

	

N:

	

set if result is < 0 ; cleared otherwise
Z :

	

set if result is 0 ; cleared otherwise
V :

	

set if result is 100000 ; cleared otherwise
C :

	

cleared if result is 0 ; set otherwise

Description :

Byte : Same.

m053D D
06 05

	

00
1

	

DD

MR-11507

MR 11503

Word : Replaces the contents of the destination address by its 2's com-
plement . Note that 100000 is replaced by itself . (In 2's complement notation
the most negative number has no positive counterpart .)

1

NEGATE DST
15
0/1 0 0 0

Example :

	

NEG RO

TST

TSTB

TEST DST

	

w057DD

15

	

06 05

	

00
T

	

1

	

1

0/1 0 0 0 1 0 1 1 1 1

Operation :

	

(dst) <-- (dst)

Before

	

After

(RO) = 000010

	

(RO) = 177770

NZVC NZVC

0 0 0 0

	

1 0 0 1

Condition Codes :

	

N:

	

set if result is < 0 ; cleared otherwise

Z:

	

set if result is 0 ; cleared otherwise

V : cleared

C : cleared

Description :

	

Word: Sets the condition codes N and Z according to the contents of the

destination address ; the contents of dst remain unmodified.

Byte : Same.

Example :

	

TST

	

R1

Before

	

After

(R1) = 012340

	

(R1) = 012340

NZVC NZVC

0 0 1 1

	

0 0 0 0

DD

MR 11501

WRTLCK

TSTSET

READ/LOCK DESTINATION
WRITE/UNLOCK RO INTO DESTINATION

	

0073DD

Operation :

	

(dst) <- (RO)
Condition Codes :

Description :

	

Writes contents of RO into destination using bus lock . If mode is 0, traps to

TEST DESTINATION AND SET LOW BIT

	

0072DD
15

	

06 05

	

00T
0 0 0 0 1 1 1 0 1 0

Operation :

	

(RO) <-- (dst), (dst) <- (dst) V 000001 (octal)
Condition Codes :

	

N:

	

set if RO < 0Z:

	

set if RO = 0V: clearedC:

	

gets contents of old destination bit 0.
Description :

	

Reads/locks destination word and stores it in R0 . Writes/unlocks (RO) V 1into destination . If mode is 0, traps to 10 .

MR 11498

M R-11499

N: set if RO < 0Z: set if RO = 0V : clearedC: unchanged

9.5.2

	

Shifts

and Rotates

Scaling

data by factors of two is accomplished by the shift instructions

:

The

sign bit (bit 15) of the operand is reproduced in shifts to the right

.

The low-order bit is filled with Os in

shifts

to the left

.

Bits shifted out of the C-bit, as shown in the following instructions, are lost

.

The

rotate instructions operate on the destination word and the C-bit as though they formed a 17-bit

`circular

buffer

.'

These instructions facilitate sequential bit testing and detailed bit manipulation

.

ASR
ASRB

ASL

- Arithmetic shift left

-T

-T-

0/1

0 0 0 1 1 0 0 1 0

Operation :

	

(dst)

- (dst) shifted one place to the right

Description :

	

Word:

Shifts all bits of the destination right one place

.

Bit 15 is reproduced

.
The

C-bit is loaded from bit 0 of the destination

.

ASR performs signed

division

of the destination by 2

.

Example :

ASR

- Arithmetic shift right

ARITHMETIC

SHIFT RIGHT	

m062DD
15

	

06

05	

00

Condition

Codes

:

	

N:

	

set

if high-order bit of result is set (result < 0)

;

cleared otherwise

Z:

	

set

if result = 0

;

cleared otherwise

Byte :

Same

.

BYTE :

C

9-17

C:

	

loaded

from low-order bit of destination

T

	

__T.

	

___-T
DD

III

I-

.

__-T -

MR

-11502

V :

	

loaded

from exclusive OR of N-bit and C-bit (as set by the completion

of

the shift operation)

00

15

	

ODD

ADDRESS	

08

	

I

	

07

	

EVEN

ADDRESS	

00

MR

-5209

ASL
ASLB

Example :

WORD :

BYTE :

ARITHMETIC

SHIFT LEFT

15
0/1

0 0 0 1 1 0 0 1

Operation :

	

(dst)

F- (dst) shifted one place to the left

Condition

Codes

:

	

N:

	

set

if high-order bit of result is set (result < 0)

;

cleared otherwise

Z:

	

set

if result = 0

;

cleared otherwise

V:

	

loaded

with exclusive OR of N-bit and C-bit (as set by the completion of

the

shift operation)

Description :

	

Word:

Shifts all bits of the destination left one place

.

Bit 0 is loaded with a 0

.
The

C-bit of the PSW is loaded from the most significant bit of the destina-

tion .

ASL performs a signed multiplication of the destination by 2 with

overflow

indication

.

C:

	

loaded

with high-order bit of destination

Byte :

Same

.

"063D

D

06

05	

00
T------T

I

DD

MR-1

1510

FO

08

	

07

	

EVEN

ADDRESS	

00

MR-521 1

ROR
RORB

Example :

WORD :

BYTE :

ROTATE

RIGHT	

060DD
15

	

06

05	

00

0/1

0 0 0 1 1 0 0 0 0

Operation :

	

(dst)

- (dst) rotate right one place

C:

	

loaded

with low-order bit of destination

Condition

Codes

:

	

N:

	

set

if high-order bit of result is set (result < 0)

;

cleared otherwise

Z:

	

set

if all bits of result = 0

;

cleared otherwise

V:

	

loaded

with exclusive OR of N-bit and C-bit (as set by the completion of

the

rotate operation)

Description :

	

Word:

Rotates all bits of the destination right one place

.

Bit 0 is loaded into

the

C-bit and the previous contents of the C-bit are loaded into bit 15 of the

destination .

Byte :

Same, except the C-bit is loaded into MSB 7 or 15

.

MR-11500

MR- 521 3

ROL
ROLB

ROTATE LEFT

	

m061 DO
15

	

06 05

	

00
0/1 0 0 0 1 1 0 0 0 1

Operation :

	

(dst) - (dst) rotate left one place

Condition Codes :

	

N:

	

set if high-order bit of result word is set (result < 0) ; cleared otherwise

Example :

WORD :

BYTE :

Z :

	

set if all bits of result word = 0; cleared otherwise

V: loaded with exclusive OR of the N-bit and C-bit (as set by the
completion of the rotate operation)

C :

	

loaded with high-order bit of destination

Description :

	

Word: Rotates all bits of the destination left one place . Bit 15 is loaded
into the C-bit of the PSW and the previous contents of the C-bit are
loaded into bit 0 of the destination .

Byte : Same, except the C-bit is loaded into LSB 8 or 0 .

DD

MR~11509

M R-521 5

SWAB

SWAP BYTES

	

0003DD
15

	

06 05

	

00

Operation :

	

byte 1 /byte 0 - byte 0/byte 1

DD

Condition Codes :

	

N: set if high-order bit of low-order byte (bit 7) of result is set ; cleared
otherwise

Z :

	

set if low-order byte of result = 0; cleared otherwise

V : cleared

C : cleared

Description :

	

Exchanges high-order byte and low-order byte of the destination word . (The
destination must be a word address .)

Example :

	

SWAB R1

Before

	

After

(R1) = 077777

	

(R1) = 177577

NZVC NZVC
1 1 1 1

	

0 0 0 0

MR-11508

9.5.3 Multiple-Precision
It is sometimes necessary to do arithmetic operations on operands considered as multiple words or bytes .
The KDJ11-B makes special provision for such operations with the instructions ADC (add carry) and SBC
(subtract carry) and their byte equivalents .
For example, two 16-bit words may be combined into a 32-bit double-precision word and added or
subtracted as shown below .

ADC
ADCB

OPERAND

OPERAND

RESULT

Example :

ADD R1,R2
ADC R3
ADD R4,R3

The addition of -1 and -1 could be performed as
-1 = 37777777777
(R1) = 177777 (R2) = 177777 (R3) = 177777 (R4) = 177777

1 .

	

After (R 1) and (R2) are added, 1 is loaded into the C-bit .
2 .

	

The ADC instruction adds the C-bit to (R3) ; (R3) = 0 .
3 .

	

(R3) and (R4) are added .
4 .

	

The result is 37777777776, or -2 .

ADD CARRY
15
0/1 0 0 0 1 0 1 1

32-BIT WORD

follows .

9-22

s055DD
06 05

	

00
DD

.R 11575

MR-5217

31 16 15
A1 I

31 16 15 0
131

31 16 15 0

Operation :

	

(dst)

E- (dst) + (C-bit)

Condition

Codes

:

	

N:

	

set

if result < 0

;

cleared otherwise

Z:

	

set

if result = 0

;

cleared otherwise

V:

	

set

if (dst) was 077777 and (C) was 1

;

cleared otherwise

C:

	

set

if (dst) was 177777 and (C) was 1

;

cleared otherwise

Description :

	

Word:

Adds the contents of the C-bit to the destination

.

This permits the

carry

from the addition of the low-order words to be carried to the high-order

result .

Example :

	

Double-precision

addition may be done with the following instruction

sequence .

SBC
SBCB

Description :

Example :

Byte :

Same

.

ADD

	

AO,BO

	

;add

low-order parts

ADC

	

B

1	

;add

carry into high-order

ADD

	

A

1,Bl	

;add

high-order parts

SUBTRACT

CARRY	

"056DD

15

	

06

05	

00
0/1

0 0 0 1 0 1 1 1 0

Operation :

	

(dst)

<-- (dst) - (C)

Condition

Codes

:

	

N:

	

set

if result < 0

;

cleared otherwise

Z:

	

set

if result = 0

;

cleared otherwise

V:

	

set

if (dst) was 100000

;

cleared otherwise

C:

	

set

if (dst) was 0 and C was 1

;

cleared otherwise

Word:

Subtracts the contents of the C-bit from the destination

.

This permits

the

carry from the subtraction of two low-order words to be subtracted from

the

high-order part of the result

.

Byte :

Same

.

Double-precision

subtraction is done by

:

SUB

AO,BO

SBC

B1

SUB

A1,B1

DD

MR

11576

SXT

SIGN EXTEND

	

0067DD
15

	

06 05

	

00
0 0 0 0 1 1 0 1 1 1

	

DD

Operation :

	

(dst) - 0 if N-bit is clear
(dst) - 1 if N-bit is set

Condition Codes :

	

N: not affected
Z : set if N-bit is clear
V: cleared
C: not affected

Description :

	

If the condition code bit N is set, a -1 is placed in the destination operand ; if
the N-bit is clear, a 0 is placed in the destination operand . This instruction is
particularly useful in multiple-precision arithmetic because it permits the sign
to be extended through multiple words .

Example :

	

SXT A

9.5.4

	

PSW Operators

MFPS

Operation :

	

(dst) - PSW
dst lower 8 bits

Before

	

After

(A) = 012345

	

(A) = 177777

NZVC NZVC
1 000

	

1 000

MOVE BYTE FROM PROCESSOR STATUS WORD

	

1067DD
15

	

06 05

	

00

Condition Codes :

	

N: set if PSW bit 7 = 1 ; cleared otherwise
Z : set if PSW <7 :0> = 0; cleared otherwise
V : cleared
C : not affected

DD

MR 11574

MR -11495

Description :

	

The

8-bit contents of the PSW are moved to the effective destination

.

If the

destination

is mode 0, PSW bit 7 is sign-extended through the upper byte of

the

register

.

The destination operand address is treated as a byte address

.

Example :

	

MFPS

RO

MTPS

Before

	

After

(RO)

= 0	

(RO)

= 000014

(PSW)

= 000014	

(PSW)

= 000000

MOVE

BYTE TO PROCESSOR STATUS WORD	

1064SS
15

	

06

05	

00

Operation :

	

PSW

<-- (src)

Condition

Codes

:

	

Set

according to effective SRC operand bits <3

:0>

Description :

	

The

eight bits of the effective operand replace the current contents of the

lower

byte of the PSW

.

The source operand address is treated as a byte

address .

Note

:

The T-bit (PSW bit 4) cannot be set with this instruction

.
The

SRC operand remains unchanged

.

This instruction can be used to change

the

priority bits (PSW <7

:5>)

in the PSW only in kernel mode

.

If not in

kernel

mode, PSW <7

:5>

cannot be changed

.

Example :

	

MTPS

R 1

Before

	

After

(RI)

= 000777	

(RI)

= 000777

(PSW)

= XXX000	

(PSW)

= XXX357

NZVC

NZVC

0

0 0 0	

1

1 1 1

SS

MR

11496

9.6

DOUBLE-OPERAND INSTRUCTIONS

Double-operand

instructions save instructions (and time), since they eliminate the need for load and save

sequences

such as those used in accumulator-oriented machines

.

9.6.1

General

MOV
MOVB

Description :

MOVE

SOURCE TO DESTINATION	

"1SSDD

15

	

12

11	

06

05	

00

0/1

0 0 1	

SS

	

DD

Operation :

	

(dst)

f-- (src)

Condition

Codes

:

	

N:

	

set

if (src) < 0

;

cleared otherwise

Z:

	

set

if (src) = 0

;

cleared otherwise

V:

cleared

C :

	

not

affected

Example :

	

MOV

XXX,R 1

MR-11497

Word:

Moves the source operand to the destination location

.

The previous

contents

of the destination are lost

.

Contents of the source address are not

affected .

Byte :

Same as MOV

.

The MOVB to a register (unique among byte

instructions)

extends the most significant bit of the low-order byte (sign

extension) .

Otherwise, MOVB operates on bytes exactly as MOV operates on

words .

;loads

register 1 with the con-

tents

of memory location

;
XXX

represents a program-

mer-defined

mnemonic used

to

represent a memory

location

MOV

#20,R0	

;loads

the number 20 into reg-

ister

0

;

indicates that the

value

20 is the operand

MOV

@#20,-(R6)	

;pushes

the operand contained

in

location 20 onto the stack

MOV

(R6)+, a,#177566	

;pops

the operand off a stack

and

moves it into memory

location

177566 (terminal

print

buffer)

CMP
CMPB

MOV Rl,R3

MOVB a)#177562,@#177566

COMPARE SRC TO DST
15

	

12 11

	

06 05
SS

Operation :

	

(src) - (dst)

Condition Codes:

	

N:

	

set if result < 0; cleared otherwise

Z :

	

set if result = 0; cleared otherwise

;performs an inter-register
transfer

;moves a character from the
terminal keyboard buffer to
the terminal printer buffer

DO

m2SSDD
00

MR 11562

V:

	

set if there was arithmetic overflow ; that is, operands were of opposite
signs and the sign of the destination was the same as the sign of the
result ; cleared otherwise

C:

	

cleared if there was a carry from the most significant bit of the result;
set otherwise

Description :

	

Compares the source and destination operands and sets the condition codes,
which may then be used for arithmetic and logical conditional branches . Both
operands are not affected . The only action is to set the condition codes . The
compare is customarily followed by a conditional branch instruction. Notice
that unlike the subtract instruction, the order of operation is (src) - (dst), not
(dst) - (src).

ADD

SUB

ADD SRC TO DST

	

06SSDD
15

	

12 11

	

06 05

	

00

Operation :

	

(dst) - (sre) + (dst)

Condition Codes :

	

N:

	

set if result < 0 ; cleared otherwise

SUBTRACT SRC FROM DST
15

	

12

Operation :

	

(dst) f-- (dst) - (src)

Condition Codes:

	

N:

Z:

V :

C:

Z :

	

set if result = 0 ; cleared otherwise

SS

set if result < 0; cleared otherwise

set if result = 0 ; cleared otherwise

9-28

r-
DD

MR-11563

V :

	

set if there was arithmetic overflow as a result of the operation, that is,
both operands were of the same sign and the result was of the opposite
sign ; cleared otherwise

C: set if there was a carry from the most significant bit of the result ;
cleared otherwise

Description :

	

Adds the source operand to the destination operand and stores the result at
the destination address . The original contents of the destination are lost . The
contents of the source are not affected . 2's complement addition is per-
formed . Notice that there is no equivalent byte mode.

Example :

	

Add to register :

	

ADD 20,R0
Add to memory :

	

ADD R1,XXX
Add register to register :

	

ADD R1,R2
Add memory to memory :

	

ADD @#I 7750,XXX

(XXX is a programmer-defined mnemonic for a memory location .)

16SSDD
11

	

06 05

	

00
DO

MR 11564

set if there was arithmetic overflow as a result of the operation, that is, if
operands were of opposite signs and the sign of the source was the same
as the sign of the result ; cleared otherwise

cleared if there was a carry from the most significant bit of the result ;
set otherwise

Description :

	

Subtracts the source operand from the destination operand and leaves the
result at the destination address . The original contents of the destination are
lost . The contents of the source are not affected . In double-precision arith
metic the C-bit, when set, indicates a `borrow .' Notice that there is no
equivalent byte mode.

Example :

	

SUB R1,R2

ASH

Before

	

After

(R1) = 011111

	

(R1) = 011111
(R2) = 012345

	

(R2) = 001234

NZVC

	

NZVC
1 1 1 1

	

0 0 0 0

ARITHMETIC SHIFT

	

072RSS
15

	

09 08 06 05

	

00
I

	

I

	

I

	

I

	

I

	

I

0 1 1 1 0 1 0

Operation :

	

R - R shifted arithmetically NN places to the right or left where NN = (src)

Condition Codes :

	

N:

	

set if result < 0
Z:

	

set if result = 0
V :

	

set if sign of register changed during shift
C :

	

loaded from last bit shifted out of register

Description :

	

The contents of the register are shifted right or left the number of times
specified by the source operand . The shift count is taken as the low-order six
bits of the source operand . This number ranges from -32 to +31 . Negative is
a right shift and positive (less than +31) is a left shift .

NOTE
A shift count of +31 shifts the contents of the regis-
ter to the right 31 times .

MR -1 1560

ASHC

ARITHMETIC

SHIFT COMBINED	

m073RSS
15

	

09

08 06 05	

00

R

NOTE
Bits

<5

:0>

shift count

.

Bits <15

:6>

must be 0

.

SS

MR

-11561

Operation :

	

R,

R V 1 f- R, R V 1

The

double word is shifted NN places to the right or left where NN = (src)

Condition

Codes

:

	

N:

	

set

if result < 0

Z:

	

set

if result = 0

V:

	

set

if sign bit changes during shift

C :

loaded with high-order bit when left shift

;

loaded with low-order

bit

when right shift (loaded with the last bit shifted out of the

32-bit

operand)

Description :

	

The

contents of the register and the register ORed with 1 are treated as one

32-bit

word

.

R V 1 (bits <15

:0>)

and R (bits <31

:16>)

are shifted right or

left

the number of times specified by the shift count

.

The shift count is taken

as

the low-order 6 bits of the source operand

;

the upper 11 bits of the source

operand

must be 0

.

This number ranges from -32 to +31

.

Negative is a right

shift

and positive is a left shift

.

When

the register chosen is an odd number, the register and the register

ORed

with 1 are the same

.

In this case, the right shift becomes a rotate

.

The

16-bit

word is rotated right the number of times specified by the shift count

.

MUL

DIV

MULTIPLY

	

070RSS
15

	

09 08 06 05

	

00

Operation :

	

R, R V 1 t- R X (src)

Condition Codes:

	

N:

	

set if product < 0
Z:

	

set if product = 0
V: cleared
C:

	

set if the result is less than -2 * *

	

15 or greater than or equal to
2 **15 -1 .

Description :

	

The contents of the destination register and source taken as 2's complement
integers are multiplied and stored in the destination register and the suc-
ceeding register, if R is even . If R is odd, only the low-order product is stored .
Assembler syntax is : MUL S,R. Notice that the actual destination is
R, R V 1, which reduces to just R when R is odd.

DIVIDE

	

071RSS
15

	

09 08

	

06 05

	

00

Operation :

	

R, R V 1 - R, R V 1/(src)

Condition Codes:

	

N:

	

set if quotient < 0

Z:

	

set if quotient = 0

V :

	

set if source = 0 or if the absolute value of the register is larger than the
absolute value of the instruction in the source . (In this case the in-
struction is aborted because the quotient would exceed 15 bits .)

C :

	

set if divide by zero is attempted.

Description :

	

The 32-bit 2's complement integer in R and R V 1 is divided by the source
operand. The quotient is left in R; the remainder is of the same sign as the
dividend . R must be even.

MR 11572

MR 11573

9.6.2 Logical
These instructions have the same format as those in the double-operand arithmetic group . They permit
operations on data at the bit level .

BIT
BITB

Operation :

	

(src) n (dst)

Condition Codes :

	

N:

	

set if high-order bit of result set; cleared otherwise
Z:

	

set if result = 0; cleared otherwise
V : cleared
C :

	

not affected

Description :

Example :

	

BIT #30,R3

	

;test bits three and four of R3 to see if
both are off .

BIC
BICB

BIT TEST
15

F-0-177

BIT CLEAR
15
0/1 1 0 0

+3SSD D
12 11

	

06 05

	

00
SS

Performs logical AND comparison of the source and destination operands
and modifies condition codes accordingly . Neither the source nor the desti-
nation is affected . The BIT instruction may be used to test whether any of the
corresponding bits set in the destination are also set in the source, or whether
all corresponding bits set in the destination are clear in the source .

R3 = 0 000 000 000 011 000

Before

	

After

NZVC NZVC
1 1 1 1

	

0 0 0 1

m4SSDD
12 11

	

06 05

	

00
SS

Operation :

	

(dst) F- - (src) A (dst)

DD

Condition Codes :

	

N:

	

set if high-order bit of result set ; cleared otherwise
Z :

	

set if result = 0; cleared otherwise
V : cleared
C :

	

not affected

9-32

MAI1565

MR 11557

Description:

	

Clears each bit in the destination that corresponds to a set bit in the source .
The original contents of the destination are lost . The contents of the
source are not affected .

Example:

	

BIC R3,R4

BIS
BISB

Example:

	

BIS RO,R 1

Before

	

After

Operation :

	

(dst) - (src) v (dst)

(R3) = 001234

	

(R3) = 001234
(R4) = 001111

	

(R4) = 000101

NZVC
1

	

1

	

1

	

1

Before :

After:

BIT SET

	

m5SSDD
15

	

12 11

	

06 05

	

00
0/1 1 0 1

	

SS

	

DID

Condition Codes:

	

N:

	

set if high-order bit of result set; cleared otherwise
Z:

	

set if result = 0; cleared otherwise
V: cleared
C:

	

not affected

Description:

	

Performs an inclusive OR operation between the source and destination
operands and leaves the result at the destination address, that is, corre-
sponding bits set in the source are set in the destination . The contents of the
destination are lost .

Before

	

After

(RO) = 001234

	

(RO) = 001234
(R1) = 001111

	

(R1) = 001335

9-33

MR -1 1558

NZVC

0 0 0 1

(R3) = 0 000 001 010 011 100

(R4) = 0 000 001 001 001 001

(R4) = 0 000 000 001 000 001

NZVC NZVC

0 0 0 0 0 0 0 0

Before: (RO) = 0 000 001 010 011 100

(RI) = 0 000 001 001 001 001

After : (RI) = 0 000 001 011 011 101

XOR

Operation :

	

(dst) t- (reg) -'vl (dst)

Condition Codes :

	

N:

	

set if result < 0; cleared otherwise
Z:

	

set if result = 0; cleared otherwise
V: cleared
C:

	

not affected

Description :

EXCLUSIVE OR

	

074RDD
15

	

09 08 06 05

	

00
0 1 1 1 1 0 0

	

R

	

DD

Example :

	

XOR RO,R2

The exclusive OR of the register and destination operand is stored in the
destination address . The contents of the register are not affected . The
assembler format is XOR R,D.

Before

	

After

1 .

	

The branch instruction is unconditional .

(RO) = 001234
(R2) = 001111

NZVC
1

	

1

	

1

	

1

Before :

After :

9.7 PROGRAM CONTROL INSTRUCTIONS
The following paragraphs describe the KDJ11-B instructions that affect program control .

MR-11559

9.7.1 Branches
These instructions cause a branch to a location defined by the sum of the offset (multiplied by 2) and the
current contents of the program counter if :

2 .

	

The branch instruction is conditional and the conditions are met after testing the condition
codes (N Z V C) .

The offset is the number of words from the current contents of the PC, forward or backward . Note that
the current contents of the PC point to the word following the branch instruction .

(RO)
(R2)

0

=
=

NZVC
0 0

001234
0003

1

5

(RO) = 0 000 001 010 011 100
(R2) = 0 000 001 001 001 001

(R2) = 0 000 000 011 010 101

Although

the offset expresses a byte address, the PC is expressed in words

.

The offset is automatically

multiplied

by 2 and sign-extended to express words before it is added to the PC

.

Bit 7 is the sign of the

offset .

If it is set, the offset is negative and the branch is done in the backward direction

.

If it is not set,

the

offset is positive and the branch is done in the forward direction

.

The

8-bit offset allows branching in the backward direction by 200 octal words (400 octal bytes) from the

current

PC, and in the forward direction by 177 octal words (376 octal bytes) from the current PC

.

The

KDJ11-B assembler typically handles address arithmetic for the user and computes and assembles the

proper

offset field for branch instructions in the form

:

Bxx

loc

Bxx

is the branch instruction and loc is the address to which the branch is to be made

.

The assembler gives

an

error indication in the instruction if the permissible branch range is exceeded

.

Branch instructions have

no

effect on condition codes

.

Conditional branch instructions where the branch condition is not met are

treated

as NOPs

.

BR

BRANCH

(UNCONDITIONAL)	

000400

PLUS OFFSET

15

	

08

07	

00

Operation :

	

PC

, PC + (2 X offset)

Condition

Codes

:

	

Not

affected

OFFSET

MR-5231

Description :

	

Provides

a way of transferring program control within a range of -128 to

+127

words with a one word instruction

.

New

PC address = updated PC + (2 X offset)

Updated

PC = address of branch instruction +2

Example :

	

With

the branch instruction at location 500, the following offsets apply

.

New

PC Address

Offset

Code

Offset

(decimal)

474 375 -3
476 376 -2
500 377 -1
502 000 0
504 001 +1
506 002 +2

BNE

BRANCH IF NOT EQUAL (TO ZERO)

15
-I-

	

I

	

T

	

1

	

1

	

1

0 0 0 0 0 0 1 0

Operation:

	

PC E-- PC + (2 x offset) if Z = 0
Condition Codes :

	

Not affected

Example :

	

Branch to C if A =A B

BEQ

Branch to C if A + B :# 0

001000 PLUS OFFSET
08 07

	

00

ADD A,B

	

;add A to B
BNE C

	

;branch if the result is not
equal to 0

MR 5232

Description:

	

Tests the state of the Z-bit and causes a branch if the Z-bit is clear. BNE is

the complementary operation of BEQ. It is used to test : (1) inequality

following a CMP, (2) that some bits set in the destination were also in the

source following a BIT operation, and (3) generally, that the result of the

previous operation was not 0.

CMP A,B

	

;compare A and B

BNEC

	

;branch if they are not equal

BRANCH IF EQUAL (TO ZERO)

	

001400 PLUS OFFSET

15

	

08 07

	

00
1

	

1

	

I

	

-T. . . .

	

. .T.	T

0 0 0 0 0 0 1 1

Operation:

	

PC t- PC + (2 X offset) if Z = I

Condition Codes :

	

Not affected

OFFSET

.R 5233

Description :

	

Tests the state of the Z-bit and causes a branch if Z is set. It is used to test :

(1) equality following a CMP operation, (2) that no bits set in the destination

were also set in the source following a BIT operation, and (3) generally, that

the result of the previous operation was 0.

Example:

	

Branch to C if A = B

BPL

BRANCH IF PLUS

	

100000 PLUS OFFSET
15

	

08 07

	

00

Operation :

	

PC -PC + (2 X offset) if N = 0

Condition Codes:

	

Not affected

BMI

CMP A,B

	

;compare A and B
BEQ C

	

;branch if they are equal

Branch to C if A + B = 0

ADD A,B

	

;add A to B
BEQ C

	

;branch if the result = 0

MR-5234

Description :

	

Tests the state of the N-bit and causes a branch if N is clear (positive result) .
BPL is the complementary operation of BMI.

BRANCH IF MINUS

	

100400 PLUS OFFSET
15

	

08 07

	

00
0 0 0

Condition Codes:

	

Not affected

0

Operation :

	

PC <-- PC + (2 X offset) if N = I

OFFSET

MR-5235

Description:

	

Tests the state of the N-bit and causes a branch if N is set. It is used to test
the sign (most significant bit) of the result of the previous operation),
branching if negative . BMI is the complementary function of BPL.

BVC

BVS

BRANCH IF OVERFLOW IS CLEAR

	

102000 PLUS OFFSET
15

	

08 07

	

00

Operation :

	

PC <- PC + (2 x offset) if V = 0
Condition Codes:

	

Not affected
Description:

	

Tests the state of the V-bit and causes a branch if the V-bit is clear . BVC is
the complementary operation of BVS.

BRANCH IF OVERFLOW IS SET

	

102400 PLUS OFFSET
15

	

08 07

	

00

Operation :

	

PC - PC + (2 x offset) if V = 1
Condition Codes:

	

Not affected
Description:

	

Tests the state of the V-bit (overflow) and causes a branch if V is set . BVS is
used to detect arithmetic overflow in the previous operation .

BCC
BRANCH IF CARRY IS CLEAR

	

103000 PLUS OFFSET
15

	

08 07

	

00
OFFSET0 0

0 0

Condition Codes:

	

Not affected
Operation :

	

PC F- PC + (2 x offset) if C = 0

OFFSET

iOFFSET

MR-5236

MR-5237

MR-5238

Description:

	

Tests the state of the C-bit and causes a branch if C is clear . BCC is the
complementary operation of BCS.

BCS

BRANCH IF CARRY IS SET

	

103400 PLUS OFFSET
15

	

08 07

	

00T

	

T

	

r

	

i
1 0 0 0 0 1 1 1

Operation :

	

PC -PC + (2 X offset) if C = 1

Condition Codes:

	

Not affected

MR 5239

Description :

	

Tests the state of the C-bit and causes a branch if C is set. It is used to test for
a carry in the result of a previous operation .

9.7.2

	

Signed Conditional Branches
Particular combinations of the condition code bits are tested with the signed conditional branches . These
instructions are used to test the results of instructions in which the operands were considered as signed (2's
complement) values .

Note that the sense of signed comparisons differs from that of unsigned comparisons in that in signed,
16-bit, 2's complement arithmetic, the sequence of values is as follows .

Whereas, in unsigned, 16-bit arithmetic, the sequence is considered to be :

highest 177777

000002
000001

lowest 000000

largest 077777
positive 077776

000001
000000
177777
177776

smallest 100001
negative 100000

BGE

BLT

BGT

BRANCH

IF GREATER THAN OR EQUAL	

002000

PLUS OFFSET

(TO

ZERO)

15

	

08

07	

00
0

Condition

Codes

:

	

Not

affected

Condition

Codes

:

	

Not

affected

9-40

Operation :

	

PC

<-- PC + (2 X offset) if N -4 V = 0

Operation :

	

PC

- PC + (2 X offset) if N -V V = 1

OFFSET

Description :

	

Causes

a branch if N and V are either both clear or both set

.

BGE is the

complementary

operation of BLT

.

Thus, BGE will always cause a branch

when

it follows an operation that caused addition of two positive numbers

.
BGE

will also cause a branch on a 0 result

.

BRANCH

IF LESS THAN (ZERO)	

002400

PLUS OFFSET

15

	

08

07	

00

Description :

	

Causes

a branch if the exclusive OR of the N- and V-bits is one

.

Thus, BLT

will

always branch following an operation that added two negative numbers,

even

if overflow occurred

.

In particular, BLT will always cause a branch if it

follows

a CMP instruction operating on a negative source and a positive

destination

(even if overflow occurred)

.

Further, BLT will never cause a

branch

when it follows a CMP instruction operating on a positive source and

negative

destination

.

BLT will not cause a branch if the result of the previous

operation

was 0 (without overflow)

.

BRANCH

IF GREATER THAN (ZERO)	

003000

PLUS OFFSET

15

	

08

07	

00
OFFSET

MR

-5240

MR

-5241

MR

5242

Operation :

	

PC

f-- PC + (2 X offset) if Z V (N V V) = 0

Condition

Codes

:

	

Not

affected

Description :

	

Operation

of BGT is similar to BGE, except that BGT will not cause a branch

on

a 0 result

.

BLE

Operation :

	

PC- PC + (2 X offset) if Z V (N 4 V) = 1

Condition Codes :

	

Not affected

Description:

	

Operation is similar to BLT, but in addition will cause a branch if the result
of the previous operation was 0.

9.7.3 Unsigned Conditional Branches
The unsigned conditional branches provide a means for testing the result of comparison operations in
which the operands are considered as unsigned values .

BHI

Operation :

	

PC -PC + (2 X offset) if C = 0 and Z = 0

Condition Codes:

	

Not affected

Description:

	

Causes a branch if the previous operation caused neither a carry nor a 0
result . This will happen in comparison (CMP) operations as long as the source
has a higher unsigned value than the destination.

BLOS

BRANCH IF LESS THAN OR EQUAL (TO ZERO)

	

003400 PLUS OFFSET
15

	

08 07

	

00

BRANCH IF HIGHER

	

101000 PLUS OFFSET
15

	

08 07

	

00
1 0 0 0 0 0 1 0

	

OFFSET

BRANCH IF LOWER OR SAME

	

101400 PLUS OFFSET
15

	

08 07

	

00

Operation :

	

PC <- PC + (2 X offset) if C V Z = 1

Condition Codes:

	

Not affected

OFFSET

MR-5243

MR-5244

MR 5245

Description :

	

Causes a branch if the previous operation caused either a carry or a 0 result .
BLOS is the complementary operation of BHI. The branch will occur in
comparison operations as long as the source is equal to or has a lower
unsigned value than the destination.

BHIS

BLO

BRANCH

IF HIGHER OR SAME

15

	

08

07	

00
T

Operation :

	

PC

E- PC + (2 X offset) if C = 0

Condition

Codes

:

	

Not

affected

Description :

	

BHIS

is the same instruction as BCC

.

This mnemonic is included for

convenience

only

.

BRANCH

IF LOWER	

103400

PLUS OFFSET

15

	

08

07	

00

Operation :

	

PC

- PC + (2 x offset) if C = 1

Condition

Codes

:

	

Not

affected

Description :

	

BLO

is the same instruction as BCS

.

This mnemonic is included for

convenience

only

.

103000

PLUS OFFSET

MR-5246

MR-5247

9.7.4

	

Jump and Subroutine InstructionsThe subroutine call in the KDJII-B provides for automatic nesting of subroutines, reentrancy, andmultiple entry points . Subroutines may call other subroutines (or indeed themselves) to any level of nestingwithout making special provision for storage of return addresses at each level of subroutine call . Thesubroutine calling mechanism does not modify any fixed location in memory, and thus provides forreentrancy . This allows one copy of a subroutine to be shared among several interrupting processes .
imp

Operation :
Condition Codes :
Description :

Example :

PC <- (dst)
Not affected
JMP provides more flexible program branching than the branch instructionsdo . Control may be transferred to any location in memory (no range limi-tation) and can be accomplished with the full flexibility of the addressingmodes, with the exception of register mode 0 . Execution of a jump with mode0 will cause an illegal instruction condition, and will cause the CPU to trap tovector address 4 . (Program control cannot be transferred to a register .)Register-deferred mode is legal and will cause program control to be trans-ferred to the address held in the specified register . Note that instructions areword data and must therefore be fetched from an even-numbered address .
Deferred-index mode JMP instructions permit transfer of control to theaddress contained in a selectable element of a table of dispatch vectors .
First :
JMP FIRST

	

;transfers to FIRST
JMP @LIST

	

;transfers to locationpointed to at LIST
List:
FIRST

	

;pointer to FIRST
JMP C(SP)+

	

;transfer to locationpointed to by the top ofthe stack, and remove thepointer from the stack

0001 DD

MR 11555

JSR

JUMP

TO SUBROUTINE	

004RDD

15

	

09

08 06 05	

00

0

0 0 0 1 0 0	

R

	

DD

Operation :

	

(tmp) "--

(dst) (tmp is an internal processor register)

j

(SP) E- reg (pushes register contents onto processor stack)

reg

- PC (PC holds location following JSR - this address now put in

register)

PC

F-- (dst) (PC now points to subroutine destination)

Description :

	

In

execution of the JSR, the old contents of the specified register (the linkage

pointer)

are automatically pushed onto the processor stack and new

linkage

information is placed in the register

.

Thus, subroutines nested within

subroutines

to any depth may all be called with the same linkage register

.
There

is no need either to plan the maximum depth at which any particular

subroutine

will be called or to include instructions in each routine to save and

restore

the linkage pointer

.

Further, since all linkages are saved in a reentrant

manner

on the processor stack, execution of a subroutine may be interrupted

.
The

same subroutine may be reentered and executed by an interrupt service

routine .

Execution of the initial subroutine can then be resumed when other

requests

are satisfied

.

This process (called nesting) can proceed to any level

.

A

subroutine called with a JSR reg,dst instruction can access the arguments

following

the call with either autoincrement addressing, (reg) +, if

arguments

are accessed sequentially

;

or by indexed addressing, X(reg),

if

accessed in random order

.

These addressing modes may also be deferred,

@(reg)+

and aX(reg), if the parameters are operand addresses rather than

the

operands themselves

.

JSR

PC, dst is a special case of the KDJ 11-B subroutine call suitable for

subroutine

calls that transmit parameters through the general registers

.

The

SP

and the PC are the only registers that may be modified by this call

.

Another

special case of the JSR instruction is JSR PC,@(SP) ±, which

exchanges

the top element of the processor stack with the contents of the

program

counter

.

This instruction allows two routines to swap program

control

and resume operation from where they left off when they are recalled

.
Such

routines are called coroutines

.

Return

from a subroutine is done by the RTS instr-action

.

RTS reg loads the

contents

of reg into the PC and pops the top element ofthe processor stack

into

the specified register

.

NOTE
JSR

with register mode destination 0 is illegal and

traps

to 10

.

9-44

MR

11556

Example :

R5

	

R6

R7

SBCALL:

	

JSR

R5,SBR	

#

1	

n

	

SBCALL
SBCALL+4 :

	

ARG

1

ARG

2

SBCALL+2+2M :

	

ARG

M

CONT:

	

Next

Instruction	

#

1	

n

	

CONT

SBR:

	

MOV

(R5)+,dst 1	

SBCALL+4

	

n-2

	

SBR
MOV

(R5)+,dst 2

MOV

(R5)+,dst M	

SBCALL+2+2M
Other

Instructions	

CONT
EXIT:

	

RTS

R5	

CONT

	

n-2

	

EXIT

JSR

R5, SBR

JSR

PC, SBR

DATA

0

n-2

	

PC+2

9-45

MR-5250

BEFORE : (PC) R7

(SP) R6

R5

AFTER : R7

R6

R5

BEFORE : (PC) R7

(SP) R6

AFTER : R7

R6

RTS

RETURN FROM SUBROUTINE

	

00020R
15

	

03 02 00r- ,
0 0 0 0 0 0 0 0 1 0 0 0 0

Operation :

	

PC f- (reg)
(reg) F--- (SP) T

Description :

	

Loads the contents of the register into the PC and pops the top element of the
processor stack into the specified register.

Example :

	

RTS R5

Return from a nonreentrant subroutine is typically made through the same
register that was used in its call . Thus, a subroutine called with a JSR PC, dst
exits with an RTS PC, and a subroutine called with a JSR R5, dst may pick
up parameters with addressing modes (R5) +, X(R5), or @X(R5), and finally
exits with an RTS R5.

BEFORE : (PC) R7

(SP) R6

R5

AFTER : R7

R6

R5

FITS R5 STACK

MR-515]

MR 11553

SOB

SUBTRACT

ONE AND BRANCH (IF -kO)	

077RNN

15

	

09

08 06 05	

00

Condition

Codes

:

	

Not

affected

R
r

--T

.

	

T
OFFSET

MR

11552

Operation :

	

(R)

- (R) - 1

;

if this result =

.*

0, then PC r-- PC - (2 X offset)

;

if (R) = 0

then

PC - PC

Description :

	

The

register is decremented

.

If the contents does not equal 0, twice the offset

is

subtracted from the PC (now pointing to the following word)

.

The offset is

interpreted

as a 6-bit positive number

.

This instruction provides a fast,

efficient

method of loop control

.

The assembler syntax is SOB R,A where A

is

the address to which transfer is to be made if the decremented R is not

equal

to 0

.

Notice that the SOB instruction cannot be used to transfer control

in

the forward direction

.

9.7.5

Traps

Trap

instructions provide for calls to emulators, I/O monitors, debugging packages, and user-defined

interpreters .

A trap is effectively an interrupt generated by software

.

When a trap occurs, the contents of

the

current PC and PSW are pushed onto the processor stack and are replaced by the contents of a 2-word

trap

vector containing a new PC and new PSW

.

The return sequence from a trap involves executing an

RTI

or RTT instruction, which restores the old PC and old PSW by popping them from the stack

.

Trap

instruction

vectors are located at permanently assigned fixed addresses

.

EMT

EMULATOR TRAP

	

104000-104377
15

	

08 07

	

00
0 0

Operation :

	

(SP) - PSW
j (SP) - PC
PC f- (30)
PSW , (32)

Condition Codes:

	

N:

	

loaded from trap vector
Z :

	

loaded from trap vector
V:

	

loaded from trap vector
C:

	

loaded from trap vector

Description :

	

All operation codes from 104000 to 104377 are EMT instructions and may
be used to transmit information to the emulating routine (e .g ., the function to
be performed) . The trap vector for EMT is at address 30 . The new PC is
taken from the word at address 30 ; the new PSW is taken from the word at
address 32 .

NOTE
EMT is used frequently by Digital system software
and is therefore not recommended for general use.

BEFORE :

PS

PC

SP

AFTER : PS

PC

SP

9-48

M k-8255

MR-5254

TRAP

Operation :

	

j (SP) <- PSW
1 (SP) ~-- PC
PC E-- (34)
PSW f- (36)

Condition Codes :

	

N:

	

loaded from trap vector
Z:

	

loaded from trap vector
V:

	

loaded from trap vector
C :

	

loaded from trap vector

BPT

Operation :

TRAP

	

104400-104777
15

	

08 07

	

00
1 0 0 0 1 0 0 1

Description :

	

Operation codes from 104400 to 104777 are TRAP instructions . TRAPS and
EMTs are identical in operation, except that the trap vector for TRAP is at
address 34 .

NOTE
Since Digital software makes frequent use of EMT,
the TRAP instruction is recommended for general
use.

MR-6268

BREAKPOINT TRAP

	

000003
15

	

00

J, (SP) <- PSW
(SP) , PC

PC , (14)
PSW <-- (16)

Condition Codes :

	

N:

	

loaded from trap vector
Z:

	

loaded from trap vector
V :

	

loaded from trap vector
C:

	

loaded from trap vector
Description:

	

Performs a trap sequence with a trap vector address of 14 . Used to call
debugging aids . The user is cautioned against employing code 000003 in
programs run under these debugging aids . (No information is transmitted in
the low byte .)

MR-5257

IOT

Operation:

Condition Codes:

	

N:

Z:

V:

C:

Description:

RTI

Operation:

I NPUT/OUTPUT TRAP

	

000004

0015

Condition Codes:

	

N:

Z:

V:

C:

Description:

(SP) ,PSW

J (SP) , PC

PC F- (20)

PSW - (22)

loaded from trap vector

loaded from trap vector

loaded from trap vector

loaded from trap vector

Performs a trap sequence with a trap vector address of 20 .

transmitted in the low byte.)

PC , (SP) T
PSW f- (SP) T

loaded from processor stack
loaded from processor stack
loaded from processor stack
loaded from processor stack

MR-5258

(No information is

MR 5259

Used to exit from an interrupt or TRAP service routine . The PC and PSW
are restored (popped) from the processor stack . If the RTI sets the T-bit in
the PSW, a trace trap will occur prior to execution of the next instruction .

When executing in kernel mode, any legal mode can be stored in PSW
<15 :14, 13 :12> . When executing in supervisor mode, only supervisor or user
mode can be stored, and in user mode, only the user mode can be stored.

When executing in kernel mode, either a 1 or a 0 can be stored in PSW bit
11 . When executing in supervisor mode, a stored 0 can be changed to a 1, but
a stored 1 cannot be changed to a 0 .

RTT

Operation :

	

PC , (SP) T
PSW , (SP) T

Condition Codes :

	

N:

	

loaded from processor stack
Z :

	

loaded from processor stack
V:

	

loaded from processor stack
C:

	

loaded from processor stack

9.7.6

	

Miscellaneous Program Controls

MARK

RETURN FROM TRAP

	

000006
0015

-5260

Description:

	

Operation is the same as RTI except that it inhibits a trace trap, whereas RTI
permits a trace trap . If the new PSW has the T-bit set, a trap will occur after
execution of the instruction following RTT.

When executing in kernel mode, any legal mode can be stored in PSW
<15 :14, 13 :12> . When executing in supervisor mode, only supervisor or user
mode can be stored, and in user mode, only the user mode can be stored .

When executing in kernel mode, either a 1 or a 0 can be stored in PSW bit
11 . When executing in supervisor mode, a stored 0 can be changed to a 1,
but a stored 1 cannot be changed to a 0 .

MARK

	

0064NN
15

	

06 05T-

	

I

	

I

	

1

	

I
0 0 0 0 1 1 0 1 0 0

Operation :

	

SP f-- PC + 2 X NN
PC t- R5
R5 - (SP)+

Condition Codes:

	

N:

	

unaffected
Z: unaffected
V: unaffected
C: unaffected

(NN = number of parameters)

Description :

	

Used as part of the standard subroutine return convention . MARK facilitates
the stack clean-up procedures involved in subroutine exit . Assembler format
is : MARK N.

9-51

00

MR -11566

Example:

	

MOV

R5,-(SP)	

;place

old R5 on stack

MOV

P1,-(SP)	

;place

N parameters on

MOV

P2,-(SP)	

;the

stack to be used

;there

by the subroutine

MOV

PN,-(SP)

MOV

=MARKN,-(SP)	

;place

the instruction

;MARK

N on the stack

MOV

SP,R5	

;set

up address at MARK N

;instruction
JSR

PC,SUB	

;jump

to subroutine

At

this point the stack is as follows

.

OLD

R5

P1
PN

MARK

N

OLD

PC

MR

11569

The

program is at the address SUB, which is the beginning of the subroutine

.

SUB :

	

;execution

of the

;subroutine

itself

RTS

R5	

;the

return begins

:
;this

causes the contents

;of

R5 to be placed in the

;PC

which then results in

;the

execution of the

;instruction

MARK N

.

The

;contents

of the old PC

;are

placed in R5

.

MARK

N causes

:

(1) the stack pointer to be adjusted to point to the old R5

value ;

(2) the value now in R5 (the old PC) to be placed in the PC

;

and (3)

the

contents of the old R5 to be popped into R5, thus completing the return

from

the subroutine

.

NOTE
If

memory management is in use, the stack must be

mapped

through both I and D space to execute the

MARK

instruction

.

SPL

CSM

SET

PRIORITY LEVEL	

00023N
15

	

03

02 00

11IIIIi11,
0

0 0 0 0 0 0 0 1 0 0 1 1

Operation :

	

PSW

bits <7

:5>

F- priority

(priority

= N)

Condition

Codes

:

	

N:

unaffected

Z:

unaffected

V :

unaffected

C :

unaffected

Description :

	

In

kernel mode, the least significant three bits of the instruction are loaded

into

PSW bits <7

:5>,

thus causing a changed priority

.

The old priority is lost

.
In

user or supervisor modes, SPL executes as an NOR

Assembler

syntax is

:

SPL N

CALL

TO SUPERVISOR MODE

15

	

06
I

	

I

	

T
0

0 0 0 1 1 1 0 0 0

Operation :

	

If

MMR3 bit 3 = 1, and

current

mode = kernel, then

supervisor

SP <-- current mode SP

temp

<15

:4>

- PSW <15

:4>
temp

<3

:0>

f--- 0

PSW

<13

:12>

<- PSW <15

:14>
PSW

< 15

:14>

<-- 1

PSW4-0
-(SP)

f-- temp

-(SP)

, PC

-(SP)

- (dst)

PC

F- (10)

;
otherwise,

traps to 10 in

Condition

Codes

:

	

N:

unaffected

Z:

unaffected

V:

unaffected

C:

unaffected

kernel

mode

.

MR

-11567

MR-11568

Description :

	

CSM

may be executed in user or supervisor mode, but is an illegal instruction

in

kernel mode

.

CSM copies the current SP to the supervisor mode, switches

to

supervisor mode, stacks three words on the supervisor stack (the PSW with

the

condition codes cleared, the PC, and the argument word addressed by the

operand),

and sets the PC to the contents of location 10 (in supervisor space)

.
The

called program in supervisor space may return to the calling program by

popping

the argument word from the stack and executing RTI

.

On return,

the

condition codes are determined by the PSW on the stack

.

Hence, the

called

program in supervisor space may control the condition code values

following

return

.

9.7.7

	

Reserved

Instruction Traps

These

are caused by attempts to execute instruction codes reserved for future processor expansion

(reserved

instructions) or instructions with illegal addressing modes (illegal instructions)

.

Order codes not

corresponding

to any of the instructions described are considered to be reserved instructions

.

JMP and JSR

with

register mode destinations are illegal instructions

;

they trap to virtual address 10 in kernel data space

.
Reserved

instructions trap to vector address 10 in kernel data space

.

9.7.8

	

Trace

Trap

Trace

trap is enabled by bit 4 of the PSW and causes processor traps at the end of instruction execution

.
The

instruction that is executed after the instruction that sets the T-bit proceeds to completion and then

traps

through the trap vector at address 14

.

The trace trap is a system debugging aid and is transparent to

the

general programmer

.

The

following are special cases of the T-bit

.

NOTE
Bit

4 of the PSW can only be set indirectly by

executing

an RTI or RTT instruction with the

desired

PSW on the stack

.

NOTE
The

traced instruction is the instruction after the

one

that sets the T-bit

.

1 .

	

An

instruction that clears the T-bit - Upon fetching the traced instruction, an internal flag - the

trace

flag - is set

.

The trap still occurs at the end of this instruction

.

The PSW on the stack,

however,

has a clear T-bit

.

2 .

	

An

instruction that sets the T-bit - Since the T-bit is already set, setting it again has no effect

.
The

trap still occurs

.

3 .

	

An

instruction that causes an instruction trap - The instruction trap is performed and the entire

routine

for the service trap is executed

.

If the service routine exits with an RTI, or in any other

way

restores the stacked PSW, the T-bit is set again, the instruction following the traced

instruction

is executed, and, unless it is one of the special cases noted previously, a trace trap

occurs .

4 .

	

An

instruction that causes a stack overflow - The instruction completes execution as usual

.

The

stack

overflow does not cause a trap

.

The trace trap vector is loaded into the PC and PSW and

the

old PC and PSW are pushed onto the stack

.

Stack overflow occurs again, and this time the

trap

is made

.

5 .

	

An interrupt between setting the T-bit and fetching the traced instruction - The entire interrupt
service routine is executed and then the T-bit is set again by the exiting RTI . The traced
instruction is executed (if there have been no other interrupts), and, unless it is a special case
noted above, a trace trap occurs .

6 .

	

Interrupt trap priorities - See Table 1-6 .

9.8 MISCELLANEOUS INSTRUCTIONS

HALT

HALT
5

Operation :

	

j (SP) <-- PSW
1 (SP) , PC
PC <-- restart address
PSW f- 340

Condition Codes :

Description :

Not affected

The effect of HALT depends upon the CPU operating mode and the state of
the trap-on-halt option (bit 3) in the maintenance register . Execution of the
HALT instruction in kernel mode with the trap-on-halt option cleared causes
the CPU to end the execution of instructions after the current instruction and
enter the DCJ11 micro-ODT mode . Execution of the HALT instruction in
kernel mode with the halt-on-trap option set, or at any time in supervisor or
user modes, causes a trap through virtual address 4 and also sets bit 7 of the
CPU error register .

NOTE
DMA activity may continue while the CPU is
halted, even if the Halt switch is on .

The state of the halt-on-trap option has no effect on
the operation of the Halt switch located on the oper-
ator console panel .

000000
00

KIP -5z si

WAIT

Condition Codes :

	

Not affected

Description :

	

The WAIT instruction allows the processor to relinquish the bus while it
waits for an interrupt . During this time the processor does not compete for
instructions or operands from memory . This may permit higher transfer rates
between devices and memory, since there are no processor induced latencies
by requests from the devices .

RESET

WAIT FOR INTERRUPT

	

000001
15

	

00

RESET EXTERNAL BUS
15

Condition Codes:

	

Not affected

MR-6262

In WAIT, as in all instructions, the PC points to the next instruction
following the WAIT instruction . Thus, when an interrupt causes the PC and
PSW to be pushed onto the processor stack, the address of the next instruc-
tion following the WAIT is saved . The exit from the interrupt routine causes
resumption of the interrupted process at the instruction following the WAIT.
The WAIT instruction executes as an NOP in supervisor and user modes .

000005
00

MR -5263

Description :

	

The following sequence of events occurs : (1) a general purpose write cycle is
performed and a general purpose code of 014 is generated ; (2) operation
is delayed for 69 microcycles ; (3) a general purpose write is performed and a
general purpose code of 214 is generated : and (4) operation is delayed for 600
microcycles . If not in kernel mode, RESET operates as an NOP.

MFPT

MOVE FROM PROCESSOR TYPE WORD

	

000007
15

	

00

Operation :

	

RO- 5

Condition Codes :

	

Not affected

Description :

	

The number 5 is placed in R0, indicating to the system software that the
processor type is a CPU designed to use the DCJ 11 microprocessor .
The value returned by this instruction does not guarantee that the CPU is a
KDJ11-B . The KDJ11-A CPU also returns the same value because it too uses
the DCJ 11 microprocessor . The system program should read the main-
tenance register and check bits <7 :4> to determine the exact type of
microprocessor being used . The specific values contained in the maintenance
register are shown below :

In addition, maintenance register bit 9 is used to further define the type of
system . If this bit is set, the system is Unibus based and if this bit is cleared,
the system is LSI bus based .

NOTE
The following PDP-11 CPUs implement the MFPT
instruction. The chart shows the value returned to
RO when the instruction is executed . The other
PDP-11 CPUs treat this instruction as a reserved
instruction and trap through virtual address 10 .

MR -7198

Maintenance Register Bits
CPU Type 7 6 5 4

KDJ11-A 0 0 0 1
KDJ11-B 0 0 1 0

Contents
of RO PDP-11 CPU Type Microprocessor

1 PDP-11 /44
3 KDF11-A, -B, -UA DCF11
4 KXT11-AA, -AB, -CA DCT11
5 KDJ 11-A, -B DCJ11

MTPD/MTPI

Operation :

	

(temp)

- (SP)+

(dst)

- (temp)

Condition

Codes

:

	

N:

	

set

if the source < 0

Z:

	

set

if the source = 0

V:

cleared

Z:

unaffected

Description :

	

The

instruction pops a word off the current stack determined by PSW

<15 :14>

and stores that word in an address in the previous space

(PSW

<13

:12>).

The destination address is computed using the current

registers

and memory map

.

MFPD/MFPI

Operation :

Description :

MOVE

TO PREVIOUS DATA SPACE (BI F '15= 1)

MOVE

TO PREVIOUS INSTRUCTION SPACE (BIT 15=0)	

r066DD
15

	

06

05	

00

0/1

0 0 0 1 1 0 1 1 0

MOVE

FROM PREVIOUS DATA SPACE	

(BIT

15= 1)

MOVE

FROM PREVIOUS INSTRUCTION SPACE (BIT 15=0)

15
0/1

0 0 0

Condition

Codes

:

	

N:
Z:
V:
Z :

(temp)

f- (src)

-(SP)

t- (temp)

set

if the source < 0

set

if the source = 0

cleared
unaffected

Pushes

a word onto the current stack from an address in the previous space

determined

by PSW <13

:12> .

The source address is computed using the

current

registers and memory map

.

When MFPI is executed and both pre-

vious

mode and current mode are user, the instruction functions as though it

were

MFPD

.

DD

m

065SS

06

05	

00
SS

MR

11571

MR

11570

9.9 CONDITION CODE OPERATORS
CLN SEN
CLZ SEZ
CLV SEV
CLC SEC
CCC SCC

CONDITION CODE OPERATORS
15
0 0 0 0 0 0 0 0 1 0 1

0002 xx
05 04 03 02 01 00

N

Description :

	

Set and clear condition code bits . Selectable combinations of these bits may
be cleared or set together . Condition code bits corresponding to bits in the
condition code operator (bits <3 :0>) are modified according to the sense of
bit 4, the set/clear bit of the operator . That is, set the bit specified by bit 0, 1,
2, or 3, if bit 4 = 1 . Clear corresponding bits if bit 4 = 0 .

Z V C
MR -5266

Combinations of the above set and clear operations may be ORed together to
form combined instructions .

Mnemonic Operation Op Code
CLC Clear C 000241
CLV Clear V 000242
CLZ Clear Z 000244
CLN Clear N 000250
SEC Set C 000261
SEV Set V 000262
SEZ Set Z 000264
SEN Set N 000270
SCC Set all CCs 000277
CCC Clear all CCs 000257

Clear V and C 000243
NOP No operation 000240

CHAPTER

10

FLOATING-POINT

ARITHMETIC

10.1

INTRODUCTION

The

KDJ11-B executes 46 floating-point instructions

.

The floating-point instruction set is compatible with

the

FP11 instruction set for PDP-11 computers

.

Both single- and double-precision floating-point capa-

bilities

are available with other features, including floating-to-integer and integer-to-floating conversion

.

10.2

FLOATING-POINT DATA FORMATS

Mathematically,

a floating-point number may be defined as having the form (2 ** K) * f, where K is an

integer

and f is a fraction

.

For a nonvanishing number, K and f are uniquely determined by imposing the

condition

1/2 < f < 1

.

The fractional part (f) of the number is then said to be `normalized

.'

For

the

number 0, f is assigned the value 0, and the value of K is indeterminate

.

The

floating-point data formats are derived from this mathematical representation for floating-point

numbers .

Two types of floating-point data are provided

.

In single-precision, or floating mode, the data is

32

bits long

.

In double-precision, or double mode, the data is 64 bits long

.

Sign magnitude notation is used

.

10.2.1

	

Nonvanishing

Floating-Point Numbers

The

fractional part (f) is assumed normalized, so that its most significant bit must be 1

.

This 1 is the

`hidden'

bit

.

It is not stored explicitly in the data word, but the microcode restores it before carrying out

arithmetic

operations

.

The floating and double modes reserve 23 and 55 bits, respectively, for f

.

These bits,

with

the hidden bit, imply effective word lengths of 24 bits and 56 bits

.

Eight

bits are reserved for storage of the exponent K in excess 200 notation (i

.e .,

as K + 200 octal), giving

a

biased exponent

.

Thus, exponents from -128 to +127 may be represented by 0 to 377 (base 8), or 0 to

255

(base 10)

.

For reasons given below, a biased exponent of 0 (the true exponent of -200 octal) is

reserved

for floating-point 0

.

Therefore, exponents are restricted to the range -127 to +127 inclusive

(-177

to +177 octal) or, in excess 200 notation, 1 to 377

.

The

remaining bit of the floating-point word is the sign bit

.

The number is negative if the sign bit is a 1

.

10.2.2

	

Floating-Point

Zero

Because

of the hidden bit, the fractional part is not available to distinguish between 0 and nonvanishing

numbers

whose fractional part is exactly 1/2

.

Therefore, the KDJ 11-B reserves a biased exponent of 0 for

this

purpose, and any floating-point number with a biased exponent of 0 either traps or is treated as if it

were

an exact 0 in arithmetic operations

.

An exact or `clean' 0 is represented by a word whose bits are all

Os .

A `dirty' 0 is a floating-point number with a biased exponent of 0 and a nonzero fractional part

.

An

arithmetic

operation for which the resulting true exponent exceeds 177 octal is regarded as producing a

floating

overflow

;

if the true exponent is less than -177 octal, the operation is regarded as

producing

a floating underflow

.

A biased exponent of 0 can thus arise from arithmetic operations as a

special

case of overflow (true exponent = -200 octal)

.

(Recall that only eight bits are reserved for the

biased

exponent

.)

The fractional part of results obtained from such overflow and underflow is correct

.

10.2.3

Undefined Variables

An

undefined variable is any bit pattern with a sign bit of 1 and a biased exponent of 0

.

The term

`undefined

variable' is used, for historical reasons, to indicate that these bit patterns are not assigned a

corresponding

floating-point arithmetic value

.

Note that the undefined variable is frequently referred to as

-0

elsewhere in this chapter

.

A

design objective was to ensure that the undefined variable would not be stored as the result of any

floating-point

operation in a program run with the overflow and underflow interrupts disabled

.

This is

achieved

by storing an exact 0 on overflow and underflow if the corresponding interrupt is disabled

.

This

feature,

together with an ability to detect reference to the undefined variable (implemented by the FIUV

bit

discussed later), is intended to provide the user with a debugging aid

:

If -0 occurs, it did not result

from

a previous floating-point arithmetic instruction

.

10.2.4

	

Floating-Point

Data

Floating-point

data is stored in words of memory as illustrated in Figures 10-1 and 10-2

.

The

KDJ11-B provides for conversion of floating-point to integer format and vice versa

.

The processor

recognizes

single-precision integer (I) and double-precision integer long (L) numbers, which are stored in

standard

2's complement form

.

(See Figure 10-3

.)

10.3

FLOATING-POINT STATUS REGISTER (FPS)

This

register provides mode and interrupt control for the currently executing floating-point instruction and

also

reflects conditions resulting from the execution of the previous instruction

.

(See Figure 10-4

.)

In this

discussion

a set bit = 1 and a reset bit = 0

.

Three bits of the FPS register control the modes of operation as

follows .

Single/Double

- Floating-point numbers can be either single- or double-precision

.

Long/Short

- Integer numbers can be 16 bits or 32 bits

.

Chop/Round

- The result of a floating-point operation can be either `chopped' or `rounded

.'

The

term

`chop' is used instead of `truncate' to avoid confusion with truncation of series used in

approximations

for function subroutines

.

The

FPS register contains an error flag and four condition codes (5 bits)

:

carry, overflow, zero, and

negative,

which are analogous to the CPU condition codes

.

+2

MEMORY

+0

F

FORMAT, FLOATING-POINT SINGLE PRECISION

15

	

00
FRACTION

<15

:0>

S

	

EXP

	

FRACT

<22

:16>

Figure

10-1	

Single-Precision

Format

MR-3604

+6

+4

+2

MEMORY +0

+2

MEMORY +0

D FORMAT, FLOATING POINT DOUBLE PRECISION
15

	

00
FRACTION <15:0>

1

	

I

	

1

	

1

	

I

	

1

	

I

	

1

	

1

	

1

	

I

	

I

	

1

	

1

	

1
F RACTI ON <31 :16>

15
FRACTION <47 :32>

1

	

1 .

	

--A

	

_L__

	

J-

	

L. _ -

	

1

	

-1

	

I

	

J

S

	

EXP

	

FRACT <54:48>
I

	

1

	

I

	

1

	

1

	

1

	

1

	

- 1 - 1 - I

	

1

	

1

S= SIGN OF FRACTION
EXP = EXPONENT IN EXCESS 200 NOTATION, RESTRICTED TO 1 TO 377 OCTAL

FOR NONVANISHING NUMBERS.
FRACTION = 23 BITS IN F FORMAT, 55 BITS IN D FORMAT PLUS ONE HIDDEN

BIT (NORMALIZATION). THE BINARY RADIX POINT IS TO THE LEFT .

Figure 10-2

	

Double-Precision Format
MR-3605

I FORMAT, SHORT-INTEGER SINGLE PRECISION
15 14

	

00
S

	

NUMBER <15 :0>

NUMBER <15:0>
I

	

I

	

I

	

1

	

1

	

I

	

I

	

1

	

I

	

1

	

I

	

1

	

1

	

1

L FORMAT, LONG-INTEGER DOUBLE PRECISION
15 14

	

00
S

	

NUMBER <30:16>
f

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I j
S=SIGN OF NUMBER
NUMBER = 15 BITS IN I FORMAT, 31 BITS IN L FORMAT .

Figure 10-3

	

2's Complement Format

14 13 12 11 10 09 08 07 06 05 04 03 02 01

RESERVED

	

RESERVED

Figure 10-4

	

Floating-Point Status Register

10-3

00

MR 3607

MR-3606

The

KDJ11-B recognizes the following six floating-point exceptions

.

Bit

Name

15

FER

14

FID

Detection

of the presence of the undefined variable in memory

Floating

overflow

Floating

underflow

Failure

of floating-to-integer conversion

Attempt

to divide by 0

Illegal

floating op code

For

the first four of these exceptions, bits in the FPS register are available to individually enable and

disable

interrupts

.

An interrupt on the occurrence of either of the last two exceptions can be disabled only

by

setting a bit that disables interrupts on all six of the exceptions as a group

.

Of

the 13 FPS bits, 5 are set as part of the output of a floating-point instruction

:

the error flag and

condition

codes

.

Any of the mode and interrupt control bits may be set by the user

;

the LDFPS instruction

is

available for this purpose

.

These 13 bits are stored in the FPS register as shown in Figure 10-4

.

The FPS

register

bits are described in Table 10-1

.

Table

10-1	

FPS

Register Bit Description

Function

The

Floating ERror (FER) bit is set by the KDJI I -A if

:

1 .

	

Division

by zero occurs,

2 .

	

An

illegal op code occurs,

3 .

	

Any

one of the remaining floating-point exceptions occurs and the corre-

sponding

interrupt is enabled

.

Note

that the above action is independent of whether the FID bit is set or

clear .

Note

also that the KDJI I -A never resets the FER bit

.

Once the FER bit is

set

by the KDJI I -A, it can be cleared only by an LDFPS instruction

.

(The

RESET

instruction does not clear the FER bit

.)

This means that the FER bit

is

up to date only if the most recent floating-point instruction produced a

floating-point

exception

.

If

the FID bit is set, all floating-point interrupts are disabled

.

NOTE
The

FID bit is primarily a maintenance feature

.

It is

normally

clear and it must be clear if one wishes to

assure

that storage of -0 by the KDJ11-A is accom-

panied

by an interrupt

.

Throughout

the rest of this chapter, assume that the

FID

bit is clear in all discussions involving overflow,

underflow,

occurrence of -0, and integer conversion

errors.

10-4

Bit

Name Function

Table

10-1	

FPS

Register Bit Description (font)

13

	

Reserved

	

Reserved

for future use

.

12

	

Reserved

	

Reserved

for future use

.

11

	

FIUV

	

An

interrupt occurs if FIUV is set and a -0 is obtained from memory as an

operand

of ADD, SUB, MUL, DIV, CMP, MOD, NEG, ABS, TST, or any

LOAD

instruction

.

The interrupt occurs before execution on all instructions

.
When

FIUV is reset, -0 can be loaded and used in any floating-point

operation .

Note

that the interrupt is not activated by the presence of -0 in an AC

operand

of an arithmetic instruction

.

In particular, trap on -0 never occurs in

mode

0

.

A result of -0 is not stored without the simultaneous occurrence of

an

interrupt

.

10

	

FIU

	

When

the FIU bit is set, floating underflow causes an interrupt

.

The frac-

tional

part of the result of the operation causing the interrupt is correct

.

The

biased

exponent is too large by 400, except for the special case of 0, which is

correct .

A special case is discussed later in the detailed description of the

LDEXP

instruction

.

9

	

FIV

	

When

the FIV bit is set, floating overflow causes an interrupt

.

The fractional

part

of the result of the operation causing the overflow is correct

.

The biased

exponent

is too small by 400

.

If

the FIV bit is reset and overflow occurs, there is no interrupt

.

The

KDJ11-A

returns exact 0

.

Special

cases of overflow are discussed later in the detailed descriptions of the

MOD

and LDEXP instructions

.

8

	

FIC

	

When

the FIC bit is set and a conversion to integer instruction fails, an

interrupt

occurs

.

When the interrupt occurs, the destination is set to 0 and all

other

registers are left untouched

.

If

the FIC bit is reset, the result of the operation is the same as that detailed

above,

but no interrupt occurs

.

The

conversion instruction fails if it generates an integer with more bits than

can

fit in the short or long integer word specified by the FL bit

.

7

	

FD

	

The

FD bit determines the precision that is used for floating-point calcu-

lations .

When set, double-precision is assumed

.

When reset, single-precision is

used .

6

FL

The

FL bit is active in conversion between integer and floating-point formats

.
When

set, the integer format assumed is double-precision 2's complement

(i .e .,

32 bits)

.

When reset, the integer format assumed is single-precision 2's

complement

(i

.e .,

16 bits)

.

10-5

10.4

FLOATING EXCEPTION CODE AND ADDRESS REGISTERS

One

interrupt vector is assigned to take care of all floating-point exceptions (location 244)

.

The six possible

errors

are coded in the 4-bit Floating Exception Code (FEC) register as follows

.

Code

Exception

2

	

Floating

op code error

4

	

Floating

divide by zero error

6

	

Floating-to-integer

or double-to-integer conversion error

8

	

Floating

overflow error

10

	

Floating

underflow error

12

	

Floating

undefined variable error

The

address of the instruction producing the exception is stored in the Floating Exception Address (FEA)

register .

The

FEC and FEA registers are updated only when one of the following occurs

.

"

	

Division

by zero

"

	

Illegal

op code

"

	

Any

of the other four exceptions with the corresponding interrupt enabled

Bit Name

Table

10-1 FPS Register Bit Description (Cont)

Function

5 FT When

the FT bit is set, the result of any arithmetic operation is chopped

(truncated) .

When reset, the result is rounded

.

4 Reserved Reserved

for future use

.

3 FN FN

is set if the previous floating-point operation result was negative

;

other-

wise

it is reset

.

2 FZ FZ

is set if the previous floating-point operation result was 0

;

otherwise it is

reset .

1 FV FV

is set if the previous floating-point operation resulted in an exponent

overflow ;

otherwise it is reset

.

0 FC FC

is set if the previous floating-point operation resulted in a carry of the

most

significant bit

.

This implies that the FEC and FEA registers are updated only when the FER bit is set .

0 = Floating-point accumulator
1 = Deferred
2 = Autoincrement
3 = Autoincrement-deferred
4 = Autodecrement
5 = Autodecrement-deferred
6 = Index
7 = Index-deferred

NOTES
1 .

	

If one of the last four exceptions occurs with
the corresponding interrupt disabled, the FEC
and FEA are not updated .

2 .

	

If an exception occurs, inhibition of interrupts
by the FID bit does not inhibit updating of the
FEC and FEA.

3 .

	

TheFEC and FEA are not updated if no excep-
tion occurs . This means that the STST (store
status) instruction returns current information
only if the most recent floating-point instruc-
tion produced an exception.

4.

	

Unlike the FPS, no instructions are provided
for storage into the FEC and FEA registers.

10.5 FLOATING-POINT INSTRUCTION ADDRESSING
Floating-point instructions use the same type of addressing as the central processor instructions . A source
or destination operand is specified by designating one of eight addressing modes and one of eight central
processor general registers to be used in the specified mode. The modes of addressing are the same as those
of the central processor, except in mode 0 . In mode 0, the operand is located in the designated floating-
point processor accumulator rather than in a central processor general register . The modes of addressing
are as follows .

Autoincrement and autodecrement operate on increments and decrements of 4 for F format, and 10
(octal) for D format .
In mode 0, all six floating-point accumulators (ACO-AC5) may be used as source or destination .
Specifying floating-point accumulators AC6 or AC7 results in an illegal op code trap. In all other modes,
which involve transfer of data to or from memory or the general registers, users are restricted to the first
four floating-point accumulators (ACO-AC3) . When reading or writing a floating-point number to or from
memory, the low memory word contains the most significant word of the floating-point number, and the
high memory word the least significant word .

10.6

ACCURACY

General

comments on the accuracy of the KDJll-B floating-point instructions are presented here

.

The

descriptions

of the individual instructions include the accuracy at which they operate

.

An instruction or

operation

is regarded as `exact' if the result is identical to an infinite precision calculation involving the

same

operands

.

The a priori accuracy of the operands is thus ignored

.

All arithmetic instructions treat an

operand

whose biased exponent is 0 as an exact 0 (unless FIUV is enabled and the operand is -0, in which

case

an interrupt occurs)

.

For all arithmetic operations except DIV, a 0 operand implies that the instruc-

tion

is exact, The same statement holds for DIV if the 0 operand is the dividend

.

But if it is the divisor,

division

is undefined and an interrupt occurs

.

For

nonvanishing !bating-point operands, the fractional part is binary normalized

.

It contains 24 bits or 56

bits

for floating mode and double mode, respectively

.

For ADD, SUB, MUL, and DIV, two guard bits are

necessary

and sufficient for the general case, to guarantee return of a chopped or rounded result identical

to

the corresponding infinite precision operation chopped or rounded to the specified word length

.

Thus,

with

two guard bits, a chopped result has an error bound of one Least Significant Bit (LSB)

;

a rounded

result

has an error bound of 1/2 LSB

.

These error bounds are realized by the KDJ 11-B for all instructions

.

In

the rest of this chapter, an arithmetic result is called exact if no nonvanishing bits would be lost by

chopping .

The first bit lost in chopping is referred to as the `rounding' bit

.

The value of a rounded result is

related

to the chopped result as follows

.

If

the rounding bit is 1, the rounded result is the chopped result incremented by an LSB

.

2 .

	

If

the rounding bit is 0, the rounded and chopped results are identical

.

It

follows that

1 .

	

If

the result is exact

:

Rounded

value = chopped value = exact value

.

2 .

	

If

the result is not exact, its magnitude is

"

	

always

decreased by chopping,

"

	

decreased

by rounding if the rounding bit is 0,

"

	

increased

by rounding if the rounding bit is 1

.

Occurrence

of floating-point overflow and underflow is an error condition

;

the result of the calculation

cannot

be correctly stored because the exponent is too large to fit into the eight bits reserved for it

.
However,

the internal hardware has produced the correct answer

.

In the case of underflow, replacement of

the

correct answer with 0 is a reasonable resolution of the problem for many applications

.

This is done by

the

K DJ 11-B if the

.

underflow interrupt is disabled

.

The error incurred by this action is an absolute rather

than

a relative error

;

it is bounded (in absolute value) by 2 ** -128

.

There is no such simple resolution for

the

case of overflow

.

The action taken, if the overflow interrupt is disabled, is described under FIV (bit 09)

in

'l able MI

.

The FIV and FIU bits (of the floating-point status word) provide users with an opportunity to implement
their own correction of an overflow or underflow condition . If such a condition occurs and the corre-
sponding interrupt is enabled, the microcode stores the fractional part and the low eight bits of the biased
exponent . When the interrupt takes place, users can identify the cause by examination of the floating
overflow (FV) bit or the FEC. The reader can readily verify that (for the standard arithmetic operations
ADD, SUB, MUL, and DIV) the biased exponent returned by the instruction bears the following relation
to the correct exponent .

"

	

On overflow, it is too small by 400 (octal) .

"

	

On underflow, if the biased exponent is 0, it is correct . If the biased exponent is not 0, it is too
large by 400 (octal) .

Thus, with the interrupt enable, enough information is available to determine the correct answer . Users
may, for example, rescale their variables (via STEXP and LDEXP) to continue a calculation . Note that
the accuracy of the fractional part is unaffected by the occurrence of underflow or overflow .

10.7 FLOATING-POINT INSTRUCTIONS
Each instruction that references a floating-point number can operate on either single- or double-precision
numbers, depending on the state of the FD mode bit . Similarly, there is an FL mode bit that determines
whether a 32-bit integer (FL = 1) or a 16-bit integer (FL = 0) is used in conversion between integer and
floating-point representations . FSRC and FDST operands use floating-point addressing modes
(Figure 10-5); SRC and DST operands use CPU addressing modes .

DOUBLE-OPERAND ADDRESSING
15

	

12 11 08 07 06 05

	

00
AC FSRC,FDST,SRC,DST

SINGLE-OPERAND ADDRESSING
15

	

12 11
FSRC, FDST, SRC, DST

I

	

i

	

i

	

i

	

i

	

i

OC = OPCODE = 17
FOC= FLOATING OPCODE
AC = FLOATING POINT ACCUMULATOR (ACO-AC3)
FSRC AND FDST USE FPP ADDRESSING MODES
SRC AND DST USE CPU ADDRESSING MODES

Figure 10-5

	

Floating-Point Addressing Modes
MA-3608

Terms

Used in Instruction Definitions

OC

	

=

op code = 17

FOC

	

=

floating op code

AC

	

=

contents of accumulator, as specified by AC field of instruction

FSRC

= address of floating-point source operand

FDST

	

=

address of floating-point destination operand

f

	

=

fraction

XL

	

=

largest fraction that can be represented

:

1

- 2 * * (-24), FD = 0

;

single-precision

1

- 2 ** (-56), FD = 1

;

double-precision

XLL

	

=

smallest number that is not identically zero

2

** (-128)

XUL

	

=

largest number that can be represented =

2**(127)*XL

JL

	

=

largest integer that can be represented

:

2

** (15) - 1

;

FL = 0

;

short integer

2

* * (31) - 1

;

FL = 1

;

long integer

ABS

(address) = absolute value of (address)

EXP

(address) = biased exponent of (address)

.LT .

	

=

less than

.LE .

	

=

less than or equal to

.GT.

	

=

greater than

.GE.

	

=

greater than or equal to

LSB

	

=

least significant bit

Boolean

Symbols

=

AND

v

	

-=

inclusive OR

=

exclusive OR

_,.

	

_

NOT

10-10

ABSF/ABSD

MAKE

ABSOLUTE FLOATING/DOUBLE	

1706

FDST

15

	

12

11	

06

05	

00

Format:

	

ABSF

FDST

I

	

I

	

I

	

I

	

I
0

0 0 1 1 0

Operation :

	

If

(FDST) < 0, (FDST) f- - (FDST)

.

If

EXP(FDST) = 0, (FDST) - exact 0

.

For

all other cases, (FDST) <- (FDST)

.

Condition

Codes

:

	

FC

E-- 0

FV

<- 0

FZ

- I if (FDST) = 0, else FZ F- 0

FN-0

Description :

	

Set

the contents of FDST to its absolute value

.

Accuracy :

	

These

instructions are exact

.

ADDF/ADDD

MR-11467

Interrupts :

	

If

FIUV is enabled, trap on -0 occurs before execution

.

Overflow and

underflow

cannot occur

.

ADD

FLOATING/DOUBLE	

172(AC)FSRC
15

	

12

11	

08

07 06 05	

00T
1

	

1

	

1

Format :

	

ADDF

FSRC,AC

AC

Operation :

	

Let

SUM = (AC) + (FSRC)

.

If

underflow occurs and FIU is not enabled, AC - exact 0

.

If

overflow occurs and FIV is not enabled, AC ,-- exact 0

.

For

all others cases, AC E- SUM

.

Condition

Codes

:

	

FC

- 0

FV

- I if overflow occurs, else FV f- 0

FZ

F- I if (AC) = 0, else FZ F- 0

FN

- I if (AC) < 0, else FN	

0

FSRC

MR

-11468

Description :

	

Add

the contents of FSRC to the contents of AC

.

The addition is carried out

in

single- or double-precision and is rounded or chopped in accordance with

the

values of the FD and FT bits in the FPS register

.

The result is stored in

AC

except for

Interrupts :

	

If

FIUV is enabled, trap on -0 in FSRC occurs before execution

.

If overflow

or

underflow occurs, and if the corresponding interrupt is enabled, the trap

occurs

with the faulty result in AC

.

The fractional parts are correctly stored

.
The

exponent part is too small by 400 for overflow

.

It is too large by 400 for

underflow,

except for the special case of 0, which is correct

.

Accuracy :

	

Errors

due to overflow and underflow are described above

.

If neither occurs,

then

for oppositely signed operands with exponent difference of 0 or l, the

answer

returned is exact if a loss of significance of one or more bits can

occur.

Note that these are the only cases for which loss of significance of

more

than one bit can occur

.

For all other cases the result is inexact with

error

bounds of

Special

Comment

:

	

The

undefined variable -0 can occur only in conjunction with overflow or

underflow .

It is stored in AC only if the corresponding interrupt is enabled

.

CFCC

Overflow

with interrupt disabled

Underflow

with interrupt disabled

For

these exceptional cases, an exact 0 is stored in AC

.

"

	

LSB

in chopping mode with either single- or double-precision

"

	

1/2

LSB in rounding mode with either single- or double-precision

COPY

FLOATING CONDITION CODES	

170000
15

	

12

11	

00

Format :

	

CFCC

Operation :

	

C

- FC

V

E- FV

Z-FZ
N-FN

I

	

I

	

I

	

I

	

I-
0

0 0 0 0 0 0 0 0 0 0 0

Description :

	

Copy

the floating-point condition codes into the CPU condition codes

.

MR

11469

CLRF/CLRD

CLEAR FLOATING/DOUBLE

Format :

	

CLRF FDST

Operation :

	

(FDST) - exact 0

Condition Codes:

	

FC "- 0
FV E- 0
FZ - 1
FN -0

Description :

	

Set FDST to 0 . Set FZ condition code and clear other condition code bits .

Interrupts :

	

No interrupts occur . Overflow and underflow cannot occur .

Accuracy :

	

These instructions are exact .

CMPF/CMPD

COMPARE FLOATING/DOUBLE

	

1731AC+4WSRC
15

	

12 11

	

08 07 06 05

	

00
1 1 1 1 0 1 1 1 AC

	

FSRC

Format :

	

CMPF FSRC,AC

Operation :

	

(FSRC) - (AC)

Condition Codes :

	

FC- 0
FV - 0
FZ - I if (FSRC) = 0, else FZ - 0
FN F- I if (FSRC) < 0, else FN -- 0

Description : Compare the contents of FSRC with the accumulator . Set the appropriate
floating-point condition codes . FSRC and the accumulator are left unchanged
except as noted below .

Interrupts :

	

If FIUV is enabled, trap on -0 occurs before execution .

Accuracy :

	

These instructions are exact .

1704 FDST
11

	

06 05

	

00
0

	

0

	

0

	

1

	

0

	

0

	

FDST

Special Comment :

	

An operand that has a biased exponent of 0 is treated as if it were an exact 0.
In this case, where both operands are 0, the KDJII-B stores an exact 0 in
AC.

MR-11470

MR-11471

DIVF/DIVD

DIVIDE

FLOATING/DOUBLE	

174(AC+4)FSRC
15

	

12

11	

08

07 06 05	

00
1

1 1 1 1 0 0 1 AC	

FSRC

rormat :

	

DIVF

FSRC,AC

Operation :

	

If

EXP(FSRC) = 0, (AC) - (AC) and the instruction is aborted

.

If

EXP(AC) = 0, (AC) F-- exact 0

.

For

all other cases, let QUOT = (AC)/(FSRC)

.

If

underflow occurs and FIU is not enabled, AC <-- exact 0

.

If

overflow occurs and FIV is not enabled, AC t- exact 0

.

For

all others cases, AC , QUOT

.

Condition

Codes

:

	

FC

F- 0

FV

- 1 if overflow occurs, else FV <- 0

FZ

<- 1 if (AC) = 0, else FZ ~--- 0

FN

E-- 1 if (AC) < 0, else FN E-- 0

Description :

	

If

either operand has a biased exponent of 0, it is treated as an exact 0

.

For

FSRC

this would imply division by 0

;

in this case, the instruction is aborted,

the

FEC register is set to 4, and an interrupt occurs

.

Otherwise, the quotient

is

developed to single- or double-precision with two guard bits for correct

rounding .

The quotient is rounded or chopped in accordance with the values

of

the FD and FT bits in the FPS register

.

The result is stored in the AC

except

for

Overflow

with interrupt disabled

Underflow

with interrupt disabled

For

these exceptional cases, an exact 0 is stored in AC

.

MR

11472

Interrupts :

	

If

FIUV is enabled, trap on -0 in FSRC occurs before execution

.

If (FSRC)

=

0, interrupt traps occur on an attempt to divide by 0

.

If overflow or

underflow

occurs, and if the corresponding interrupt is enabled, the trap

occurs

with the faulty result in AC

.

The fractional parts are correctly stored

.
The

exponent part is too small by 400 for overflow

.

It is too large by 400 for

underflow,

except for the special case of 0, which is correct

.

Accuracy :

	

Errors

due to overflow and underflow are described above

.

If none of these

occurs,

the error in the quotient is bounded by I LSB in chopping mode and

by

1/2 LSB in rounding mode

.

Special

Comment

:

	

The

undefined variable -0 can occur only in conjunction with overflow or

underflow .

It is stored in AC only if the corresponding interrupt is enabled

.

10-14

LDCDF/LDCFD

LOAD

AND CONVERT FROM DOUBLE-TO-FLOATING

AND

FROM FLOATING-TO-DOUBLE

15

	

12

11	

08
1

1 1 111,71-77

Format :

	

LDCDF

FSRC,AC

Operation :

	

If

EXP(FSRC) = 0, AC r-- exact 0

.

177(AC+4)FSRC
07

06 05	

00
AC

	

FSRC

MR

11473

If

FD = 1, FT = 0, FIV = 0 and rounding causes overflow, AC t--- exact 0

.

In

all other cases, AC - Cxy(FSRC), where Cxy specifies conversion from

floating

mode x to floating mode y

.

x

= D, y = F if FD = 0 (single) LDCDF

y

= F, y = D if FD = 1 (double) LDCFD

Condition

Codes

:

	

FC

f- 0

FV

- 1 if conversion produces overflow, else

FV-0
FZ

- 1 if (AC) = 0, else FZ ~-- 0

FN

E-- I if (AC) < 0, else FN ~-- 0

Description :

	

If

the current mode is floating mode (FD = 0), the source is assumed to be a

double-precision

number and is converted to single-precision

.

If the floating

chop

bit (FT) is set, the number is chopped

;

otherwise, the number is

rounded .

If

the current mode is double mode (FD = 1), the source is assumed to be a

single-precision

number and is loaded left-justified in AC

.

The lower half of

AC

is cleared

.

Interrupts :

	

If

FIUV is enabled, trap on -0 occurs before execution

.

Overflow cannot

occur

for LDCFD

.

A

trap occurs if FIV is enabled and if rounding with LDCDF causes over-

flow .

AC - overflowed result

.

This result must be +0 or -0

.

Underflow

cannot

occur

.

Accuracy :

	

LDCFD

is an exact instruction

.

Except for overflow (see above), LDCDF

incurs

an error bounded by 1 LSB in chopping mode and by 1/2 LSB in

rounding

mode

.

LDCIF/LDCID/LDCLF/LDCLD

LOAD AND CONVERT INTEGER OR LONG INTEGER
TO FLOATING OR DOUBLE-PRECISION

	

177(AC)SRC
15

	

12 11

	

08 07 06 05

	

00
1 1 1 1 1 1 1 0

	

AC

	

SRC

Format :

	

LDCIF SRC,AC

Operation :

	

AC - Cjx(SRC), where Cjx specifies conversion from integer mode j to
floating mode x .

j=IifFL=0,j=LifFL=I
x=F if FD=O,x=D if FD= 1

Condition Codes :

	

FC- 0
FV-0
FZ ,-- 1 if (AC) = 0, else FZ

	

0
FN - 1 if (AC) < 0, else FN <- 0

Description :

	

Conversion is performed on the contents of SRC from a 2's complement
integer with precision j to a floating-point number of precision x . Note that j
and x are determined by the state of the mode bits FL and FD.

If a 32-bit integer is specified (L mode) and (SRC) has an addressing mode of
0 or immediate addressing mode is specified, the 16 bits of the source register
are left-justified and the remaining 16 bits are loaded with Os before
conversion .

In the case of LDCLF, the fractional part of the floating-point representation
is chopped or rounded to 24 bits for FT = 1 or 0, respectively .

Interrupts :

	

None. SRC is not floating-point, so trap on -0 cannot occur .

Accuracy :

	

LDCIF, LDCID, and LDCLD are exact instructions . The error incurred by
LDCLF is bounded by 1 LSB in chopping mode and by 1/2 LSB in rounding
mode.

MR-11474

LDEXP

LOAD EXPONENT

	

176(AC+4)SRC
15
1 i

12 11 08 07 06 05 00
1 1 1 1 0 1 AC SRC

MR-11475

Format : LDEXP SRC,AR

Operation : (Note that 177 and 200, appearing throughout this instruction definition, are
octal numbers.)

If -200 < SRC < 200, EXP(AC) f-- SRC + 200 and the rest of AC is
unchanged.

If (SRC) > 177 and FIV is enabled, EXP(AC) <- [(SRC) + 200]<7:0>.

If (SRC) > 177 and FIV is disabled, AC f- exact 0.

If (SRC) < -177 and FIU is enabled, EXP(AC) - [(SRC) + 200]<7 :0>.

If (SRC) < -177 and FIU is disabled, AC - exact 0.

Condition Codes: FC - 0
FV <- 1 if (SRC) > 177, else FV f-- 0
FZ - 1 if (AC) = 0, else FZ E- 0
FN E- 1 if (AC) < 0, else FN <-- 0

Description : Change AC so that its unbiased exponent = (SRC). That is, convert (SRC)
from 2's complement to excess 200 notation and insert it into the EXP field
of AC. This is a meaningful operation only if ABS(SRC) LE 177.

If SRC > 177, the result is treated as overflow . If SRC < -177, the result is
treated as underflow .

Interrupts : No trap on -0 in AC occurs, even if FIUV is enabled. If SRC > 177 and FIV
is enabled, trap on overflow occurs . If SRC < -177 and FIU is enabled, trap
on underflow occurs .

Accuracy : Errors due to overflow and underflow are described above. If EXP(AC) = 0
and (SRC) = -200, AC changes from a floating-point number treated as
0 by all floating arithmetic operations to a nonzero number . This happens
because the insertion of the `hidden' bit in the microcode implementation of
arithmetic instructions is triggered by a nonvanishing value of EXP.

For all other cases, LDEXP implements exactly the transformation of a
floating-point number (2 ** K) * f into (2 ** (SRC)) * f where 1/2 LE.
ABS(f) LT. 1 .

LDF/LDD

LOAD

FLOATING/DOUBLE	

172(AC+4)FSRC

Format :

	

LDF

FSRC,AC

Operation :

	

AC

, (FSRC)

Condition

Codes

:

	

FC

F- 0

FV

f- 0

FZ

<-- 1 if (AC) = 0, else FZ <-- 0

FN

f- I if (AC) < 0, else FN E- 0

Description :

	

Load

single- or double-precision number into AC

.

Interrupts :

	

If

FIUV is enabled, trap on -0 occurs before AC is loaded

.

Overflow and

underflow

cannot occur

.

Accuracy :

	

These

instructions are exact

.

Special

Comment

:

	

These

instructions permit use of -0 in a subsequent floating-point instruction

if

FIUV is not enabled and (FSRC) = --0

.

LDFPS

LOAD

FLOATING-POINT PROGRAM STATUS	

1701

SRC

15

	

12

11	

06

05	

00

Format :

	

LDFPS

SRC

Operation :

	

FPS

t-- (SRC)

I

	

I

	

I

	

I

	

I
0

0 0 0 0 1

Description :

	

Load

floating-point status register from SRC

.

I
FSRC

.R

11476

MR-11477

Special

Comment

:

	

Users

are cautioned not to use bits 13, 12, and 4 for their own purposes, since

these

bits are not recoverable by the STFPS instruction

.

MODF/MODD

MULTIPLY

AND SEPARATE INTEGER

AND

FRACTION FLOATING/DOUBLE	

171

(AC+4) FSRC

15

	

12

11	

08

07 06 05	

00

Format :

	

MODF

FSRC,AC

i
AC

Description

	

This

instruction generates the product of its two floating-point operands,

and

Operation

:

	

separates

the product into integer and fractional parts, and then stores one or

both

parts as floating-point numbers

.

Let

PROD = (AC) * (FSRC) so that in

Floating-point :

ABS(PROD) = (2 ** K) * f, where

1/2

LE

.

f LT

.

l, and EXP(PROD) = (200 + K)

.

Fixed-point

binary

:

PROD = N + g, where

N

= INT(PROD) = integer part of PROD, and

g

= PROD - INT(PROD) = fractional part of PROD with 0 LE

.

g

.LT .

1

.

Both

N and g have the same sign as PROD

.

They are returned as follows

.

If

AC is an even-numbered accumulator (0 or 2), N is stored in AC + 1

(1

or 3), and g is stored in AC

.

If

AC is an odd-numbered accumulator, N is not stored and g is stored

in

AC

.

These

two statements can be combined as

:

N

is returned to AC V 1 and g is returned to AC

.

Five

special cases occur, as indicated in the following formal description with

L

= 24 for floating mode and L = 56 for double mode

.

1 .

	

If

PROD overflows and FIV is enabled, AC V 1 - N, chopped to L

bits,

AC F- exact 0

.

Note

that EXP(N) is too small by 400 and that -0 can be stored in AC

V

1

.

If

FIV is not enabled, AC V 1 f- exact 0, AC <-- exact 0, and -0 will

never

be stored

.

T

-T___I

FSRC

MR

11478

Accuracy :

	

Described

above

.

2 .

	

If

2 ** L

.LE .

ABS(PROD) and no overflow, AC V 1 <- N, chopped to

L

bits, AC - exact 0

.

The

sign and EXP of N are correct, but low-order bit information is lost

.

3 .

	

If

1 LE

.

ABS(PROD)

.LT .

2 ** L, AC V 1 <-- N, AC <-- g

.

The

integer part N is exact

.

The fractional part g is normalized and

chopped

or rounded in accordance with FT

.

Rounding may cause a

return

of + unity for the fractional part

.

For L = 24, the error in g is

bounded

by 1 LSB in chopping mode and by 1/2 LSB in rounding mode

.
For

L = 56, the error in g increases from the limits above as ABS(N)

increases

above 8, because only 59 bits of PROD are generated

.

If

2 ** p

.LE .

ABS(N)

.LT .

2 ** (p + 1), with p > 2, the low order p - 2

bits

of g may be in error

.

4 .

	

If

ABS(PROD) LT

.

1 and no underflow, AC V 1 - exact 0 and AC f- g

.

There

is no error in the integer part

.

The error in the fractional part is

bounded

by 1 LSB in chopping mode and 1/2 LSB in rounding mode

.
Rounding

may cause a return of + unity for the fractional part

.

5 .

	

If

PROD underflows and FIU is enabled, AC V 1 <-- exact 0 and AC <- g

.

Errors

are as in case 4, except that EXP(AC) is too large by 4008 (if

EXP

= 0, it is correct)

.

Interrupt occurs and -0 can be stored in AC

.

If

FIU is not enabled, AC V 1 - exact 0 and AC F- exact 0

.

For

this case the error in the fractional part is less than 2 ** (-128)

.

Condition

Codes

:

	

FC

- 0

FV

f- 1 if PROD overflows, else FV - 0

FZ

f- 1 if (AC) = 0, else FZ <- 0

FN

- 1 if (AC) < 0, else FN - 0

Interrupts :

	

If

FIUV is enabled, trap on -0 in FSRC occurs before execution

.

Overflow

and

underflow are described above

.

Applications :

	

1 .

Binary-to-decimal conversion of a proper fraction

.

The following

algorithm,

using MOD, generates decimal digits D(1), D(2)

. . .

from

left

to right

.

Initialize :

	

I

~-- 0

;
X

<-- number to be converted

;
ABS(X)

< 1

;
While :

	

X

=A 0

Begin :

	

PROD

- X * 10

;
I-I+1 ;
D(I)

- INT(PROD)

;
X

E- PROD - INT(PROD)

;
End.

This

algorithm is exact

.

It is case 3 in the description because the number of

nonvanishing

bits in the fractional part of PROD never exceeds L, and hence

neither

chopping nor rounding can introduce error

.

2 .

	

To

reduce the argument of a trigonometric function

.

ARG

* 2/PI = N + g

.

The two low bits of N identify the quadrant, and

g

is the argument reduced to the first quadrant

.

The accuracy of N + g

is

limited to L bits because of the factor 2/PI

.

The accuracy of the

reduced

argument thus depends on the size of N

.

3 .

	

To

evaluate the exponential function e * * x, obtain x * (log e base 2) _

N+g,then

e**x=(2**N)*(e** (g* ln2))

.

The

reduced argument is g * ln2 < 1 and the factor 2 ** N is an exact

power

of 2, which may be scaled in at the end via STEXP, ADD N to

EXP

and LDEXP

.

The accuracy of N + g is limited to L bits because of

the

factor (log e base 2)

.

The accuracy of the reduced argument thus

depends

on the size of N

.

MULF/MULD

MULTIPLY

FLOATING/DOUBLE	

171(AC)FSRC

Format :

	

MULF

FSRC,AC

Operation :

	

Let

PROD = (AC) * (FSRC)

.

If

underflow occurs and FIU is not enabled, AC - exact 0

.

If

overflow occurs and FIV is not enabled, AC

"-

exact 0

.

For

all others cases, AC - PROD

.

Condition

Codes

:

	

FC

f--, 0

FV

<-- 1 if overflow occurs, else FV ,-- 0

FZ

f- 1 if (AC) = 0, else FZ E-- 0

FN

f- 1 if (AC) < 0, else FN	

0

"

	

Overflow

with interrupt disabled

"

	

Underflow

with interrupt disabled

MR

11479

Description :

	

If

the biased exponent of either operand is 0, (AC) <- exact 0

.

For all other

cases

PROD is generated to 48 bits for floating mode and 59 bits for double

mode.

The product is rounded or chopped for FT = 0 or l , respectively, and

is

stored in AC except for

For

these exceptional cases, an exact 0 is stored in AC

.

Interrupts :

	

If

FIUV is enabled, trap on -0 in FSRC occurs before execution

.

If overflow

or

underflow occurs, and if the corresponding interrupt is enabled, the trap

occurs

with the faulty result in AC

.

The fractional parts are correctly stored

.
The

exponent part is too small by 400 for overflow

.

It is too large by 400 for

underflow,

except for the special case of 0, which is correct

.

Accuracy :

	

Errors

due to overflow and underflow are described above

.

If neither occurs,

the

error incurred is bounded by 1 LSB in chopping mode and 1/2 LSB in

rounding

mode

.

Special

Comment

:

	

The

undefined variable -0 can occur only in conjunction with overflow or

underflow .

It is stored in AC only if the corresponding interrupt is enabled

.

NEGF/NEGD

NEGATE FLOATING/DOUBLE

	

1707 FDST
15

	

12 11

	

06 05

	

00
1

	

1

	

1

	

1

	

0

	

0

	

0

	

1

	

1

	

1

	

FDST

Format :

	

NEGF FDST

Operation:

	

(FDST) E- - (FDST) if (FDST) = 0, else (FDST) f- exact 0.

Condition Codes:

	

FC f-- 0
FV-0
FZ - 1 if (FDST) = 0, else FZ <- 0
FN t- 1 if (FDST) < 0, else FN E- 0

Description:

	

Negate the single- or double-precision number and store result in same
location (FDST).

Interrupts :

	

If FIUV is enabled, trap on -0 occurs before execution. Overflow and
underflow cannot occur.

Accuracy :

	

These instructions are exact.

SETD

MR 11480

SET FLOATING DOUBLE MODE

	

170011
15

	

12 11

	

00
1

	

1 "

	

1

	

1 0 0 0 0 0 0 0 0 1 0 0 1

Format:

	

SETD

Operation :

	

FD- 1

Description :

	

Set the KDJ11-B in double-precision mode.

SETF

SET FLOATING MODE

	

170001
15

	

12 11

	

00
0 0 0 0 0 0 0 0 0 0 0 1

Format :

	

SETF

Operation :

	

FD <- 0

Description:

	

Set the KDJ 11-B in single-precision mode.

10-23

MR-11481

MR-11482

SETI

SET INTEGER MODE

	

170002

15

	

12 11

	

00
-.-1 . .-

	

I

	

I

	

I

	

I

	

I

	

- I

	

I

	

I
0 0 0 0 0 0 0 0 0 0 1 0

Format :

	

SETI

Operation:

	

FL F- 0

Description :

	

Set the KDJI 1-B for short-integer data .

SETI,

MR -11483

SET LONG INTEGER MODE

	

170012

15

	

12 11

	

00

1 1 1 0 0 0 0 0 0 0 0 1 0 1 0

Format:

	

SETL

Operation:

	

FL - 1

Description:

	

Set the KDJ11-B for long-integer data .

MR 11484

STCFD/STCDF

STORE AND CONVERT FROM FLOATING-TO-DOUBLE
AND FROM DOUBLE-TO-FLOATING

	

176 (AC) FOST
15

	

12 11

	

08 07 06 05

	

00

Format :

	

STCFD AC,FDST

AC

Operation :

	

If (AC) = 0, (FDST) - exact 0 .

x = F, y = D if FD = 0 (single) STCFD
x = D, y = F if FD = 1 (double) STCDF

Condition Codes:

	

FC - 0
FV E-- 1 if conversion produces overflow, else
FV-0
FZ E- 1 if (AC) = 0, else FZ F- 0
FN f- 1 if (AC) < 0, else FN -- 0

FDST

MRA 1485

If FD = 1, FT = 0, FIV = 0 and rounding causes overflow, (FDST) f- exact 0.

In all other cases, (FDST) - Cxy(AC), where Cxy specifies conversion from
floating mode x to floating mode y .

Description :

	

If the current mode is single-precision, the accumulator is stored left-justified
in FDST and the lower half is cleared .

If the current mode is double-precision, the contents of the accumulator are
converted to single-precision, chopped or rounded depending on the state of
FT, and stored in FDST.

Interrupts :

	

Trap on -0 does not occur even if FIUV is enabled because FSRC is an
accumulator . Underflow cannot occur . Overflow cannot occur for STCFD.

A trap occurs if FIV is enabled and if rounding with STCDF causes overflow .
(FDST) f- overflowed result . This result must be +0 or -0.

Accuracy :

	

STCFD is an exact instruction . Except for overflow (see above), STCDF
incurs an error bounded by 1 LSB in chopping mode and by 1/2 LSB in
rounding mode.

STCFI/STCFL/STCDI/STCDL

STORE

AND CONVERT FROM FLOATING OR DOUBLE

TO

INTEGER OR LONG INTEGER	

175(AC+4)DST
15

	

12

11	

08

07 06 05	

00

1

1 1 1 1 0 1 1	

AC

	

DST

Format :

	

STCFI

AC,DST

Operation :

	

(DST)

F- Cxj(AC) if -JL - 1 < Cxj(AC) < JL + l, else (DST) F- 0, where

Cjx

specifies conversion from floating mode j to integer mode x

.

j=IifFL=0,j=LifFL=1
x=FifI'D=0,x=DifI'D=1

JL

is the largest integer

.

2

* * 15 - 1 for FL = 0

2**32-1

for FL =1

Condition

Codes

:

	

C,

FC - 0 if -JL - 1 < Cxj(AC) < JL + l, else

C,

FC F- 1

V,

FV <-- 0

Z,

FZ f- 1 if (DST) = 0, else Z, FZ - 0

N,

FN E- 1 if (DST) < 0, else N, FN F-- 0

MR-11486

Description :

	

Conversion

is performed from a floating-point representation of the data in

the

accumulator to an integer representation

.

If

the conversion is to a 32-bit word (L mode), and an addressing mode of 0

or

immediate addressing mode is specified, only the most significant 16 bits

are

stored in the destination register

.

If

the operation is out of the integer range selected by FL, FC is set to 1 and

the

contents of the DST are set to 0

.

Numbers

to be converted are always chopped (rather than rounded) before

they

are converted

.

This is true even when chop mode bit FT is cleared in the

FPS

register

.

Interrupts :

	

These

instructions do not interrupt if FIUV is enabled, because the -0

(if

present) is in AC, not in memory

.

If FIC is enabled, trap on conversion

failure

occurs

.

Accuracy :

	

These

instructions store the integer part of the floating-point operand, which

may

not be the integer most closely approximating the operand

.

They are

exact

if the integer part is within the range implied by FL

.

STEXP

STORE EXPONENT

	

175(AC)DST
15

	

12 11

	

08 07 06 05

	

00
1 1 1 1 1 0 1 0 AC

	

DST

Format :

	

STEXP AC,DST

Operation :

	

(DST) , EXP(AC) - 200.

Condition Codes:

	

C, FC <- 0
V,FV-0
Z, FZ , 1 if (DST) = 0, else Z, FZ - 0
N, FN - 1 if (DST) < 0, else N, FN - 0

Description:

	

Convert the AC exponent from excess 200 notation to 2's complement and
store the result in DST.

Interrupts :

	

This instruction does not trap on -0. Overflow and underflow cannot occur.

Accuracy :

	

This instruction is exact.

STF/STD

STORE FLOATING/DOUBLE

	

174(AC)FDST

Format :

	

STY AC,FDST

Operation :

	

(FDST) <-- AC

Condition Codes:

	

FC <- FC
FV - FV
FZ f- FZ
FN - FN

Description :

	

Store single- or double-precision number from AC.

Interrupts :

	

These instructions do not interrupt if FIUV is enabled, because the -0
.

	

(if present) is in AC, not in memory . Overflow and underflow cannot occur.

Accuracy :

	

These instructions are exact.

MR-1 1487

MR -1 1488

Special Comment:

	

These instructions permit storage of a -0 in memory from AC. There are two

conditions in which -0 can be stored in an AC of the KDJI I -B . One occurs

when underflow or overflow is present and the corresponding interrupt is

enabled. A second occurs when an LDF or LDD instruction is executed and

the FIUV bit is disabled .

10-27

STFPS

15

	

12 11

	

06 05

	

00
1 1 1 1 0 0 0 0 1 0

	

DST

Format :

	

STFPS DST

Operation :

	

(DST) - FPS

Description :

	

Store the floating-point status register in DST.

Special Comment:

	

Bits 13, 12, and 4 are loaded with 0 . All other bits are the corresponding bits
in the FPS.

STST

STORE FLOATING-POINT PROGRAM STATUS

	

1702 DST

STORE FPP'S STATUS

	

1703 DST
15

	

12 11

	

06 05

	

00

Format :

	

STST DST

Operation :

	

(DST) <- FEC (DST + 2) , FEA.

Description :

	

Store the FEC and FEA in DST and DST + 2. Note the following .

"

	

If the destination mode specifies a general register or immediate
addressing, only the FEC is saved.

The information in these registers is current only if the most recently
executed floating-point instruction caused a floating-point exception .

MR-1 1489

MR-11490

SUBF/SUBD

SUBTRACT FLOATING/DOUBLE

	

173(AC)FSRC
15

	

12 11

	

08 07 06 05

	

00

Format :

	

SUBF FSRC,AC

Operation :

	

Let DIFF = (AC) - (FSRC) .

If underflow occurs and FIU is not enabled, AC - exact 0.

If overflow occurs and FIV is not enabled, AC ,-- exact 0.

For all others cases, AC - DIFF.

Condition Codes :

	

FC -0
FV - 1 if overflow occurs, else FV E- 0
FZ - 1 if (AC) = 0, _else FZ ~- 0
FN - 1 if (AC) < 0, else FN

	

0

Description:

	

Subtract the contents of FSRC from the contents of AC. The subtraction is
carried out in single- or double-precision and is rounded or chopped in accor-
dance with the values of the FD and FT bits in the FPS register . The result is
stored in AC except for

"

	

Overflow with interrupt disabled
"

	

Underflow with interrupt disabled

For these exceptional cases, an exact 0 is stored in AC.

MR-11491

Interrupts :

	

If FIUV is enabled, trap on -0 in FSRC occurs before execution. If overflow
or underflow occurs, and if the corresponding interrupt is enabled, the trap
occurs with the faulty result in AC. The fractional parts are correctly stored .
The exponent part is too small by 400 for overflow . It is too large by 400 for
underflow, except for the special case of 0, which is correct .

Accuracy :

	

Errors due to overflow and underflow are described above . If neither occurs,
then for like-signed operands with exponent difference of 0 or 1, the answer
returned is exact if a loss of significance of one or more bits can occur. Note
that these are the only cases for which loss of significance of more than one
bit can occur. For all other cases the result is inexact with error bounds of

"

	

LSB in chopping mode with either single- or double-precision
+

	

1/2 LSB in rounding mode with either single- or double-precision

Special Comment:

	

The undefined variable -0 can occur only in conjunction with overflow or
underflow . It is stored in AC only if the corresponding interrupt is enabled.

TSTF/TSTD

TEST FLOATING/DOUBLE
15

	

12TT~'
1

	

1

	

1

	

1

Format :

	

TSTF FDST

Operation :

	

(FDST)

1705 FDST
11

	

06 05

	

00
0 0 0 1 0 1

	

FDST

Condition Codes :

	

FC- 0
FV f- 0
FZ , 1 if (FDST) = 0, else FZ <- 0
FN - 1 if (FDST) < 0, else FN ~- 0

MR-1 1492

Description :

	

Set the floating-point condition codes according to the contents of FDST.

Interrupts :

	

If FIUV is set, trap on -0 occurs before execution . Overflow and underflow
cannot occur .

Accuracy :

	

These instructions are exact .

CHAPTER

11

PROGRAMMING

TECHNIQUES

11 .1

INTRODUCTION

The

KDJ11-B offers a great deal of programming flexibility and power

.

Utilizing the combination of the

instruction

set, the addressing modes, and the programming techniques, it is possible to develop new

software

or to utilize old programs effectively

.

The programming techniques in this chapter show the

capabilities

of the KDJ11-B

.

The techniques discussed involve PIC, stacks, subroutines, interrupts, reen-

trancy,

coroutines, recursion, processor traps, programming peripherals, and conversion

.

11.2

POSITION-INDEPENDENT CODE

The

output of a MACRO-11 assembly is a relocatable object module

.

The task builder or linker binds one

or

more modules together to create an executable task image

.

Once built, a task can only be loaded and

executed

at the virtual address specified at link time

.

This is because the linker has had to modify some

instructions

to reflect the memory locations in which the program is to run

.

Such a body of code is

considered

position-dependent (i

.e .,

dependent on the virtual addresses to which it is bound)

.

The

KDJ11-B processor offers addressing modes that make it possible to write instructions that do not

depend

on the virtual addresses to which they are bound

.

This type of code is termed position-independent

and

can be loaded and executed at any virtual address

.

PIC can improve system efficiency, both in use of

virtual

address space and in conservation of physical memory

.

In

multiprogramming systems like RSX-11 M, it is important that many tasks be able to share a single

physical

copy of common code (e

.g .,

a library routine)

.

To make optimum use of the virtual address space

of

a task, shared code should be position-independent

.

Code that is not position-independent can also be

shared,

but it must appear in the same virtual locations in every task using it

.

This restricts the placement

of

such code by the task builder and can result in the loss of virtual addressing space

.

11.2.1

	

Use

of Addressing Modes in the Construction of Position-Independent Code

The

construction of PIC is closely linked to the proper use of addressing modes

.

The remainder of this

explanation

assumes the reader to be familiar with the addressing modes described in Chapter 6

.

The

following addressing modes, which involve only register references, are position-independent

.

R

	

Register

mode

(R)

	

Register-deferred

mode

(R)+

	

Autoincrement

mode

C(R)+

	

Autoincrement-deferred

mode

-(R)

	

Autodecrement

mode

as-(R)

	

Autodecrement-deferred

mode

When

employing these addressing modes, the user is guaranteed position independence, providing the

contents

of the registers are supplied independently of a particular virtual memory location

.

The

following two relative addressing modes are position-independent when a relocatable address is

referenced

from a relocatable instruction

.

A

	

Relative

mode

@A

	

Relative-deferred

mode

Relative

modes are not position-independent when an absolute address (that is, a nonrelocatable address) is

referenced

from a relocatable instruction

.

In such a case, absolute addressing (i

.e .,

@#A) may be employed

to

make the reference position-independent

.

Index

modes can be either position-independent or position-dependent, according to their use in the

program .

N=4

X(R)

	

Index

mode

@X(R)

	

Index-deferred

mode

If

the base, X, is an absolute value (e

.g .,

a control block offset), the reference is position-independent

.

The

following

is an example

.

MOV

2(SP),RO

;POSITION-INDEPENDENT

MOV

N(SP),RO

;POSITION-INDEPENDENT

If,

however, X is a relocatable address, the reference is position-dependent, as the following example

shows .

CLR

ADDR(Rl)

;POSITION-DEPENDENT

Immediate

mode can be either position-independent or not, according to its use

.

Immediate mode refer-

ences

are formatted as follows

.

#N

	

Immediate

mode

When

an absolute expression defines the value of N, the code is position-independent

.

When a relocatable

expression

defines N, the code is position-dependent

.

That is, immediate mode references are position-

independent

only when N is an absolute value

.

Absolute

mode addressing is position-independent only in those cases where an absolute virtual location is

being

referenced

.

Absolute mode addressing references are formatted as follows

.

@#A

	

Absolute

mode

An

example of a position-independent absolute reference is a reference to the PSW from a relocatable

instruction,

as in this example

.

MOV

	

C#PSW,RO

	

;RETRIEVE

STATUS AND PLACE IN REGISTER

11.2.2

	

Comparison

of Position-Dependent and Position-Independent Code

The

RSX-11 library routine, PWRUP, is a FORTRAN-callable subroutine for establishing or removing a

user

power failure, Asynchronous System Trap (AST) entry point address

.

Embedded within the routine is

the

actual AST entry point that saves all registers, effects a call to the user-specified entry point, restores

all

registers on return, and executes an AST exit directive

.

The following examples are excerpts from this

routine .

The first example is modified to illustrate position-dependent references

.

The second example is

the

position-independent version

.

Position-Dependent

Code

PWRUP : :
CLR -(SP) ;ASSUME

SUCCESS

CALL X.PAA ;PUSH

(SAVE)

;ARGUMENT

ADDRESSES

;ONTO

STACK

WORD l .,$PSW ;CLEAR

PSW, AND

. ;SET

Rl=R2SP

MOV $OTSV,R4 ;GET

OTS IMPURE

;AREA

POINTER

MOV (SP)+,R2 ;GET

AST ENTRY

;POINT

ADDRESS

BNE 10$;IF

NONE SPECIFIED,

;SPECIFY

NO POWER

CLR -(SP) ;RECOVERY

AST SERVICE

BR 20$;
10$:

MOV R2,F.PF(R4) ;SET

AST ENTRY POINT

MOV #BA,-(SP) ;PUSH

AST SERVICE

;ADDRESS
20$:

CALL X.EXT ;ISSUE

DIRECTIVE, EXIT

.
.BYTE 109.,2 . ;

BA: MOV R0,-(SP) ;PUSH

(SAVE) RO

MOV R1,-(SP) ;PUSH(SAVE)RI
MOV R2,-(SP) ;PUSH(SAVE)R2

11 .3 STACKS
The stack is part of the basic design architecture of the KDJ11-B. It is an area of memory set aside by the
programmer or the operating system for temporary storage and linkage. It is handled on a Last In, First
Out (LIFO) basis, where items are retrieved in reverse of the order in which they were stored . A stack
starts at the highest location reserved for it and expands linearly downward to lower addresses as items are
added.

It is not necessary to keep track of the actual locations into which data is being stacked. This is done
automatically through an SP . To keep track of the last item added to the stack, a general register is used to
store the memory address of the last item in the stack . Any register except R7 (the PC) may be used as an
SP under program control ; however, instructions associated with subroutine linkage and interrupt service
automatically use R6 as a hardware stack pointer . For this reason, R6 is frequently referred to as the
system SP. Stacks may be maintained in either full-word or byte units . This is true for a stack pointed to
by any register except R6, which must be organized in full-word units . Byte stacks (Figure II-1) require
instructions capable of operating on bytes rather than full words.

11.3.1

	

Pushing onto a Stack
Items are added to a stack using the autodecrement addressing mode . Adding items to the stack is called
`pushing,' and is accomplished by the following instructions .

MOV

	

Source,-(SP)

	

;MOV CONTENTS OF SOURCE WORD
;ONTO THE STACK

OR
MOVB

	

Source,-(SP)

	

;MOVB SOURCE BYTE ONTO
;THE STACK

007100
007076
007074
007072
007070
007066
007064

WORD STACK
ITEM # 1
ITEM # 2
ITEM # 3
ITEM # 4

BYTESTACK

007100

	

ITEM # 1
007077

	

ITEM # 2
007076

	

ITEM # 3
007075

	

ITEM # 4

NOTE :
BYTES ARE
ARRANGEDINWORDS AS FOLLOWING :

BYTE 1

	

BYTE 0

f-. SP

Figure 11-1

	

Word and Byte Stacks

007072

.4- 007075

MR-3662

11 .3.4

	

Stack

Uses

A

stack is used in the following ways

.

1 .

	

Often,

one of the general-purpose registers must be used in a subroutine or interrupt service

routine

and then be returned to its original value

.

The stack can be used to store the contents of

the

registers involved

.

2 .

	

The

stack is used in storing linkage information between a subroutine and its calling program

.
The

JSR instruction, used in calling a subroutine, requires the specification of a linkage register

along

with the entry address of the subroutine

.

The content of this linkage register is stored on

the

stack, so as not to be lost, and the return address is moved from the PC to the linkage

register .

This provides a pointer back to the calling program so that successive arguments may

be

transmitted easily to the subroutine

.

3 .

	

If

no arguments need be passed by stacking them after the JSR instruction, the PC may be used

as

the linkage register

.

In this case, the result of the JSR is to move the return address in the

calling

program from the PC onto the stack and replace it with the entry address of the called

subroutine .

4 .

	

In

many cases, the operations performed by the subroutine can be applied directly to the data

located

on or pointed to by a stack without the need to move the data into the subroutine area

.

Example:

;CALLING

PROGRAM

MOV

	

SP,R

1	

;R

1 IS USED AS THE STACK

JSR

PC,SUBR	

;POINTER

HERE

.

;SUBROUTINE
ADD

	

(R

l)+,(R 1)	

;ADD

ITEM # 1 TO #2, PLACE

;RESULT

IN ITEM #2,

;Rl

POINTS TO

;ITEM

#2 NOW

Since

arguments may be obtained from the stack by using some form of register-indexed

addressing,

it is sometimes useful to save a temporary copy of R6 in some other register that has

been

saved at the beginning of a subroutine

.

If R6 is saved in R5 at the beginning of the

subroutine,

R5 may be used to index the arguments

.

During this time, R6 is free to be

incremented

and decremented while being used as the SP

.

If R6 is used directly as the base for

indexing

and is not `copied,' it may be difficult to keep track of its position in the argument list,

since

the base of the stack changes with every autoincrement/decrement

.

However,

if the contents of R6 (SP) are saved in R5 before any arguments are pushed onto the

stack,

the position relative to R5 remains constant

.

Return

from a subroutine also involves the stack, as the return instruction, RTS, must retrieve

information

stored there by the JSR

.

When

a subroutine returns, it is necessary to `clean up' the stack by eliminating or skipping over

the

subroutine arguments

.

One way this can be done is to insist that the subroutine keep the

number

of arguments as its first stack item

.

Returns from subroutines then involve calculating

the

amount by which to reset the SP, resetting the SP, and then storing the original contents of

the

register that was used as the SP copy

.

The

second routine uses four fewer words of instruction code and two words of temporary stack storage

.
Another

routine may use the same stack space at some later point

.

Thus, the ability to share temporary

storage

in the form of a stack is a way to save on memory usage

.

As

another example of stack use, consider the task of managing an input buffer from a terminal

.

As

characters

come in, the user may wish to delete characters from the line

.

This is accomplished very easily

by

maintaining a byte stack containing the input characters

.

Whenever a backspace is received, a

character

is popped off the stack and eliminated from consideration

.

In this example, popping characters

to

be eliminated can be done by using either the MOVB (move byte) or INC (increment) instructions

.

Note

that in this case the INC instruction is preferable to MOVB, since it accomplishes the task of

eliminating

the unwanted character from the stack by readjusting the SP without the need for a destina-

tion

location

.

Note also, that the SP used in this example cannot be the system SP (R6) because R6 may

point

only to word (even) locations

.

Refer to Figure 11-3

.

11 .3.6

	

Subroutine

Linkage

The

contents of the linkage register are saved on the system stack when a JSR is executed

.

The effect is

the

same as executing a MOV reg,-(R6)

.

Following the JSR instruction, the same register is loaded with

the

memory address (the contents of the current PC) and a jump is made to the entry location specified

.
Figure

11-4 shows the conditions before and after the subroutine instruction JSR R5, 1064 is executed

.

Because

hardware already uses general purpose register 6 to point to a stack for saving and restoring PC

and

PSW information, it is convenient to use that stack to save and restore intermediate results and to

transmit

arguments to and from subroutines

.

Using R6 this way permits nesting subroutines and interrupt

service

routines

.

002000

	

n

n n n n n

001776

mmmmmm

001774
001772

f

SP

001776
002000
001776
001774
001772

Figure

11-

4

	

JSR

Stack Condition Example

n

n

nnn
mmmmm
000132 .0--SP 001774

MR-3665

001011

C

C
001010

u

u
001007

S

INC

R3 s

001006

T

001005

O

001004

M

M
001003

E

E
001002

R

R f

R3

001002
001001

Z

.*-R3

001001

MR-3664

Figure

11-3

Byte

Stack Used as a Character Buffer

BEFORE AFTER
(R5)=

000132

(R5)

= 001004

(R6)

= 001776

(R6)

= 001774

(PC)

= (R7) = 001000

(PC)

= (R7) = 001064

After the interrupt service routine is complete, an RTI is performed. The top two words of the stack are
automatically popped and placed in the PC and PSW, respectively, thus resuming the interrupted
program . Interrupt service programming is intimately involved with the concept of CPU and device
priority levels .

11.3.7.2

	

Nesting - Interrupts can be nested in much the same manner that subroutines are nested . It is
possible to nest any arbitrary mixture of subroutines and interrupts without any confusion. When the
respective RTI and RTS instructions are used, the proper returns are automatic . Refer to Figure 11-5 .

1 . PROCESS 0 IS RUNNING; SP IS

	

SP--.w POPOINTING TO LOCATION P0 .

2 .

	

INTERRUPT STOPS PROCESS 0 WITHPC = PCO, ANDSTATUS = PSO, STARTSPROCESS 1 .

	

SP ---

3 .

4 .

6 .

0

5 .

0

Figure 11-5

	

Nested Interrupt Service Routines and Subroutines

7 .

	

SUBROUTINE A RELEASES THE TEM-PORARY STORAGE HOLDING TA 1 ANDTA2.
PO

PSO
PCO
TEO
TE1

PC1
PC2

PSO
PCO
TEO
TE1

_PSO
PCO

PROCESS 1 USES STACK FOR TEM- PO 8 . SUBROUTINE A RETURNS CONTROL PO
PORARY STORAGE (TEO,TE1 PSO TO PROCESS 2 WITH AN RTS R7 ; PC ISPCO RESET TO PC2 .

TEO
SP --0. TE1

0 SP-~

PROCESS 1 INTERRUPTED WITH PC= PO 0
PC1 AND STATUS = PS1 ; PROCESS 2 PSOIS STARTED . _PC_0 9. PROCESS 2 COMPLETES WITH AN RTI PO

TEO INSTRUCTION (DISMISSES INTER-
TE1 RUPT ; PC IS RESET TO PC 1 AND
PS1 STATUS IS RESET TO PS1 ; PROCESSSP -i PC1 1 RESUMES . SPA

0 0

PROCESS 2 IS RUNNING AND DOES A PO 10 . PROCESS 1 RELEASES THE TEM- POJSR R7, A TO SUBROUTINE A WITH PSO PORARY STORAGE HOLDING TEO ANDPC = PC2. PCO TE 1 . SP-i
TEO
TE1 0
P51
PC1 11 . PROCESS 1 COMPLETES ITS OPERA- SP -i POSP-i PC2 TION WITH AN RTI, PC IS RESET TOPCO, ANDF STATUS IS RESET TO PSO . 00

SUBROUTINE A IS RUNNING AND POUSES STACK FOR TEMPORARY PSOSTORAGE . PCO
TEO
TE1
PS1
PC1
PC2
TAI

SP -i TA2

Figure

11-7	

Sharing

Control of a Routine

11 .3.8.2

	

Writing

Reentrant Code - In an operating system environment, when one task is executing and

is

interrupted to allow another task to run, a context switch occurs in which the PSW and current contents

of

the general purpose registers are saved and replaced by the appropriate values for the task being

entered .

Therefore, reentrant code must use the general purpose registers and the stack for any counters,

pointers,

or data to be modified or manipulated in the routine

.

The

context switch occurs whenever a new task is allowed to execute

.

It causes all of the general purpose

registers,

the PSW, and often, other task-related information to be saved in an impure area

.

It then reloads

these

registers and locations with the appropriate data for the task being entered

.

Notice that one

consequence

of this is that a new SP value is loaded into R6, thereby causing a new area to be used as the

stack

when the second task is entered

.

The

following should be observed when writing reentrant code

.

JSR

PC, a(R6)+

1 .

	

All

data should be in or pointed to by one of the general purpose registers

.

2 .

	

A

stack can be used for temporary storage of data or pointers to impure areas within the task

space .

The pointer to such a stack would be stored in a general purpose register

.

3 .

	

Parameter

addresses should be used by indexing and indirect reference rather than by putting

them

into instructions within the code

.

MR

-3668

4 .

	

When

temporary storage is accessed within the program, it should be by indexed addresses,

which

can be set by the calling task in order to handle any possible recursion

.

11 .3.9

Coroutines

In

some programming situations, several program segments or routines are highly interactive

.

Control is

passed

back and forth between the routines, each going through a period of suspension before being

resumed .

Since the routines maintain a symmetric relationship with each other, they are called coroutines

.

Coroutines

are two program sections, either one subordinate to the call of the other

.

The nature of the call

is,

`I have processed all I can for now, so you can execute until you are ready to stop, then I will continue

.'
The

coroutine call and return are identical, each being a jump to subroutine instruction with the destina-

tion

address on top of the stack and the PC serving as the linkage register, as follows

.

11.3.9.1

	

Coroutine

Calls - The coding of coroutine calls is made simple by the stack feature

.

Initially,

the

entry address of the coroutine is placed on the stack, and from that point the JSR PC,@(R6)+

instruction

is used for both the call and the return statements

.

This JSR instruction results in an exchange

of

the contents of the PC and the top element of the stack, permitting the two routines to swap control and

resume

operation where each was terminated by the previous swap

.

An example is shown in Figure 11-8

.
Notice

that the coroutine linkage cleans up the stack with each control transfer

.

then

COROUTINES

	

MAIN PROGRAMS

	

SUBROUTINES

JSR PC,@ (SP)+

JSR PC,@ (SP(+

Figure 11-9

	

Coroutines Versus Subroutines

11 .3.9.3

	

Using Coroutines - Coroutines should be used in the following situations .
"

	

Whenever two tasks must be coordinated in their execution without obscuring the basic struc-
ture of the program. For example, in decoding a line of assembly language code, the results at
any one position might indicate the next process to be entered . A detected label must be
processed. If no label is present, the operator must be located, etc.

"

	

To add clarity to the process being performed, to ease in the debugging phase, etc.
An assembler must perform a lexicographic scan of each assembly language statement during pass 1 of the
assembly process . The various steps in such a scan should be separated from the main program flow to add
to program clarity and to aid in debugging by isolating details . Subroutines are not satisfactory in this case,
as too much information has to be passed to the subroutine each time it is called . Coroutines could be
effectively used, with one routine performing as the assembly pass 1 routine and the other extracting one
item at a time from the current input line. Figure 11-10 illustrates this example.
Coroutines can be utilized in I/O processing . Figure 11-10 shows coroutines used in double-buffered I/O
using IOX. The flow of events may be described as follows .

Write 01
Read 11

	

concurrently,
Process 12

Write 02
Read 12

	

concurrently,
Process Il

igure 11-11 illustrates a coroutine swapping interaction .

RTS

MR-3670

When routine 1 is operating, it executes
MOV #PC2,-(R6)JSR PC,@(R6)+

with the following results .
1 .

	

PC2 is popped from the stack and the SP is autoincremented .
2.

	

SP is autodecremented and the old PC (i .e ., PC 1) is pushed .
3 .

	

Control is transferred to the location PC2 (i .e ., routine 2) .
When routine 2 is operating, it executes

JSR PC,@(R6)+
with the result that PC2 is exchanged for PC I on the stack and control is transferred back to routine 1 .
11 .3.10 RecursionAn interesting aspect of a stack facility, other than its providing for automatic handling of nested
subroutines and interrupts, is that a program may call on itself as a subroutine - just as it can call on any
other routine . Each new call causes the return linkage to be placed on the stack, which (as it is a LIFO
queue) sets up a natural unraveling to each routine just after the point of departure . Typical flow for a
recursive routine resembles that shown in Figure 11-12.

Figure 11-12

	

Recursive Routine Flow
MR 3673

11 .3.11

	

Processor Traps
Certain errors and programming conditions cause the KDJ11-B processor to enter the service state and
trap to a fixed location . A trap is an interrupt generated by hardware . Pending conditions are arbitrated
according to a priority . The following list describes the priority from highest to lowest .

Condition

	

Description

Memory management violation*

	

A memory management violation causes an abort and
(MMUERR)

	

traps to location 2508 .

Timeout error* (BUSERR)

	

No response from a bus device during a bus transaction
causes an abort and traps to location 48 .

Parity error* (PARERR)

	

A parity error signal received by the processor during a
bus transaction causes an abort and traps to location 1148 .

Trace (T) bit*

	

If PSW bit 4 is set at the end of instruction execution, the
processor traps to location 148 .

Stack overflow* (STKOVF)

	

If the KSP was pushed below 4008 during instruction
execution, the processor traps to location 48 at the end of
the instruction .

Power fail* (PFAIL)

	

If the power OK bus signal (BPOKH) was negated during
instruction execution, the processor traps to location 248
at the end of the instruction .

Interrupt level 7 (BIRQ7)

	

If device interrupt requests are asserted and PSW <7:5>
Interrupt level 6 (BIRQ6)

	

are properly set, the processor at the end of the present
Interrupt level 5 (BIRQ5)

	

instruction execution initiates an interrupt vector
Interrupt level 4 (BIRQ4)

	

sequence on the bus . These inputs are maskable by
PSW <7 :5> .

PSW <7:5>

	

Levels Inhibited

7

	

All
6

	

6, 5, 4
5

	

5, 4
4

	

4
0-3

	

None

Halt line

	

If the BHALT L bus signal is asserted during the service
state, the processor enters ODT mode .

Nonmaskable software cannot inhibit the condition . MMUERR, BUSERR, PARERR are mutually exclusive when the
-r.oecsscr is ex "cutmg iE piogiam

Note

that the EMT low byte is 374

.

This is interpreted by the EMT handler to indicate a group of

routines .

Then the contents of RO (high byte) is tested by the handler to identify exactly which routine

within

the group is being requested - in this case routine number 2

.

(The CM3 call of the RSUM is set up

to

pass the identification code

.)

11 .3.12

	

Conversion

Routines

Almost

all assembly language programs require the translation of data or results from one form to another

.
Code

that performs such a transformation is called a conversion routine

.

Several commonly used conver-

sion

routines follow

.

Almost

all assembly language programs involve some type of conversion routine

.

Octal-to-ASCII, octal-to-

decimal,

and decimal-to-ASCII are a few of the most widely used

.

Arithmetic

multiply and divide routines are fundamental to many conversion routines

.

Division is typically

approached

in one of two ways

.

1 .

	

The

division can be accomplished through a combination of rotates and subtractions

.

Example :

Assume

the following code and register data

.

To make the example easier, also assume a 3-bit

word .

DIV:

	

MOV

#3,-(SP)	

;SET

UP DIGIT COUNTER

CLR

-(SP)	

;CLEAR

RESULT

1$

	

ASL

(SP)

ASL

R 1

ROL

RO

CMP

RO,R3

BLT

2$

SUB

R3,RO	

;RO

CONTAINS REMAINDER

INC

(SP)	

;INCREMENT

RESULT

2$

	

DEC

2 (SP)	

;DECREMENT

COUNTER

BNE

$1

Therefore,

to divide 7 by 2

:

RO

= 000	

remainder
R

1 = 111	

7

(multiplicand)

R3

= 010	

2

(multiplier)

Cbit=0

Stack
Oil

	

counter
000

	

quotient

Following

through the coding, the quotient, remainder, and dividend all shift left, manipulating

the

most significant digit first, etc

.

At

the conclusion of the routine

:

RO

= 001

remainder
R

1 = 000

R3

= 010

Stack
000 counter
Oil quotient

2 .

	

The

second method of division works by repeated subtraction of the powers of the divisor,

keeping

a count of the number of subtractions at each level

.

Example:

To

divide 22110 by 10, first try to subtract powers of 10 until a nonnegative value is obtained,

counting

the number of subtractions of each power

.

221
-1000

Negative,

so go to the next lower power, and count for 103 = 0

.

221
-100

Negative,

so reduce power, and count for 102 = 2

.

21
-10

121

count for 102= 1

-100

21

count	

=

2

-100

11

count for 101 = 1

1

count	

=

2

-10

Negative,

so count for 101 = 2

.

No

lower power, so remainder is 1

.

Answer

= 022, remainder 1

.

Multiplication

is also approached in one of two ways

.

1 .

	

Multiplication

can be done with a combination of rotates and additions

.

Example :

Assume

the following code and a 3-bit word

.

ADD

CLR

RO	

;HIGH

HALF OF ANSWER

MOV

#3,CNT	

;SET

UP COUNTER

MOV

Rl,MULT

;

	

;MULTIPLICAND

MORE:

	

ROR

R2

BCC

NOW

ADD

MULT,RO

;IF

INDICATED,

;MULTIPLICAND
NOW;

	

ROR

RO

R04

R1

DEC

CNT

BNE

MORE

MULT:

	

0
CNT:

	

0

The

following conditions exist for 6 X 3

.

After

the routine is executed

:

RO

= 000	

high-order

half of result

R

1 = 110	

multiplicand
R3

= 011	

multiplier

RO

= 010	

high-order

half of result

R1

= 010	

low-order

half of result

R2

= 100

CNT=0
MULT

= 110

2 .

	

The

second method of multiplication is repetitive addition

.

Example:

Multiplication

of RO by 508(1 01000)

.

If

RO contains 7

:

After

execution

:

MUL50:

	

MOV

R0,-(SP)

ASL

RO

ASL

RO

ADD

(SP)+,RO

ASL,

RO

ASL

RO

ASL

RO

RETURN

RO

= 11 1

RO

= 10001 1000

(78

* 508 = 4308)

ASCII

Conversions - The conversion of ASCII characters to the internal representation of a number, as

well

as the conversion of an internal number to ASCII in I/O operations, presents a challenge

.

The

following

routine takes the 16-bit word in R 1 and stores the corresponding 6 ASCII characters in

the

buffer addressed by R2

.

OUT:

LOOP

:
MOV #5,80 ;LOOP

COUNT

MOV R1,-(SP) ;COPY

WORD INTO STACK

BIC #

177770,GSP

;ONE

OCTAL VALUE

ADD #'O,cSP ;CONVERT

TO ASCII

MOVB (SP)+,--(R2) ;STORE

IN BUFFER

ASR R

1

;SHIFT
ASR R

1

;RIGHT
ASR R1 ;THREE
DEC RO ;TEST

IF DONE

BNE LOOP ;NO,

DO IT AGAIN

BIC #177776,81 ;GET

LAST BIT

ADD #'O,R

1

;CONVERT

TO ASCII

MOVB R5,-(R2) ;STORE

IN BUFFER

RTS PC ;DONE,RETURN

11 .4

PROGRAMMING THE PROCESSOR STATUS WORD

The

current processor status can be read and written using several programming techniques on the PSW

.
The

PSW has an I/O address of 17 777 776

.

The KDJ11-B and other PDP-11 processors implement this

address,

whereas LSI-I I and LSI-11/2 processors do not

.

One technique is to use the 1/O address as a

source

or destination address with any instruction

.

CLR

@#17777776

MOV

@#17777776, RO

The

first instruction clears the PSW and the second instruction moves the contents of the PSW to general

register

0

.

The

PSW explicit address (17 777 776) can be accessed on a word or byte basis

.

The KDJI I -B recognizes

the

PSW odd address (17 777 777) and the access result is identical to an odd memory address reference

.

Another

technique is to use the two dedicated PSW instructions, MTPS and MFPS

.

These instructions

only

reference the even byte

.

If memory management is enabled, certain PSW bits are protected

.

11 .5

PROGRAMMING PERIPHERALS

Programming

LSI-11 bus compatible modules (devices) is simple

.

A special class of instructions that deals

with

I/O operations is unnecessary

.

The bus structure permits a unified addressing structure in which

control,

status, and data registers for devices are directly addressed as memory locations

.

Therefore, all

operations

on these registers (such as information transfer and data manipulation) are performed by

normal

memory reference instructions

.

The

use of all memory reference instructions on device registers greatly increases the flexibility of I/O

programming .

For example, information in a device register can be compared directly with a value and a

branch

made on the result

.

CMP

RBUF,	

#101
BEQ

SERVICE

In

this case, the program looks for 101 in the DLV 11 receiver data buffer register (RBUF) and branches if

it

finds it

.

There is no need to transfer the information into an intermediate register for comparison

.

When

the character is of interest, a memory reference instruction can transfer the character into a user

buffer

in memory or to another peripheral device

.

The instruction MOV DRINBUF LOC transfers a

character

from the DRV11 data input buffer (DRINBUF) into a user-defined location

.

All

arithmetic operations can be performed on a peripheral device register

.

For example, the instruction

ADD

10, DROUT BUF adds 10 to the DRV 11 output buffer

.

All read/write device registers can be

treated

as accumulators

.

There is no need to funnel all data transfers, arithmetic operations, and compari-

sons

through one or a small number of accumulator registers

.

11 .6

PDP-11 PROGRAMMING EXAMPLES

The

programming examples that follow show how the instruction set, addressing modes, and programming

techniques

can be used to solve some simple problems

.

The format used is MACRO-11

.

Program

Program

Address Contents Label Op

Code Operand

Comments

;PROGRAMMING

EXAMPLE

;SUBTRACT

CONTENTS OF LOCS 700-710

;FROM

CONTENTS OF LOOS 1000-1010

000000 RO=%O
000001 R

l =%1

000002 R2=%2
000003 R3=%3
000004 R4=%4
000005 R5=%5
000006 SP=%6
000007 PC=%7

000500 .=500
000500 012706 START .

MOV #

.,SP ;INIT

STACK POINTER

000500
000504 012701 MOV

#700,R1

000700
000510 012702 MOV

#712,R2

000712
000514 012703 MOV

#1000,R3

001000
000520 012704 MOV

#1012,R4

001012
000524 005000 CLR

RO

000526 005005 CLR

R5

000430 062105 SUM1 : ADD

(RI)+,R5

;START

ADDING

000532 020102 CMP

RI,R2

;FINISHED

ADDING?

000534 001375 BNE

SUMI

;IF

NOT BRANCH BACK

000536 062300 SUM2 : ADD

(R3)+,RO

;START

ADDING

000540 020304 CMP

R3,R4

;FINISHED

ADDING?

000542 001375 BNE

SUM2

;IF

NOT BRANCH BACK

000544 160500 DIFF : SUB

R5,RO

;SUBTRACT

RESULTS

000546 000000 HALT ;THAT'S

ALL FOLKS

000700 .=700
000700 000001 WORD

1,2,3,4,5

000702 000002
000704 000003
000706 000004
000710 000005

001000 .=1000
001000 000004 WORD

4,5,6,7,8

001002 000004,
001004 000006
001006 000007
0010

1 i

00001 ;1

000501, END

Program

Program

Address

	

Contents

Label	

Op

Code	

Operand

	

Comments

RO=%O
Rl=%l
R2=%2
SP=%6
PC=%7

;PROGRAM

TO COUNT NEGATIVE NUMBERS

;IN

A TABLE

;20 .

SIGNED WORDS

;BEGINNING

AT LOC VALUES

;COUNT

HOW MANY ARE NEGATIVE IN RO

.=500

START : MOV#.,SP ;SET

UP STACK

MOV

#VALUE,RI

;SET

UP POINTER

MOV

#VALUES+40

.,R2 ;SET

UP COUNTER

CLR

RO

CHECK: TST

(R1)+

;TEST

NUMBER

BPL

NEXT

;POSITIVE?
INC

RO

;NO,

INCREMENT

;COUNTER
NEXT: CMP

R1,R2

;YES,

FINISHED?

BNE

CHECK

;NO,

GO BACK

HALT ;YES,

STOP

VALUES: 0
.END

Program

Program

Address

	

Contents

Label	

Op

Code	

Operand

	

Comments

RO=%O
Rl=%1
R2=%2
R3=%3
SP=%6
PC=%7

.=500

START:

	

MOV

#

.,SP

	

;SET

UP STACK

MOV

#16

.,R

I	

;SET

UP COUNTER

MOV

#SCORES,R2	

;SET

UP POINTER

MOV

#AVERAGE,R3

CLR

RO

;PROGRAM

TO COUNT ABOVE AVERAGE QUIZ SCORES

;LIST

OF 16

.

QUIZ SCORES

;BEGINNING

AT LOC SCORES

;KNOWN

AVERAGE IN LOC AVERAGE

;COUNT

IN RO SCORES ABOVE AVERAGE

CHECK:

	

CMP

(R2)+,(R3)	

;COMPARE

SCORE AND AVERAGE

BLE

NO	

;LESS

THAN OR EQUAL

;TO

AVERAGE?

INC

RO	

;NO,

COUNT

NO:

	

DEC

R 1	

;YES,

DECREMENT COUNTER

BNE

CHECK	

;FINISHED?

NO, CHECK

HALT

	

;YES,

STOP

AVERAGE:65 .

SCORES*

25

.,70.,100.,60 .,80 .,80 .,40 .
55.,75.,100 .,65 .,90 .,70 .,65 .,70 .

.END

Program

Program

Address

	

Contents

Label	

Op

Code	

Operand

	

Comments

RO=%O
Rl=%l
SP=%6
CR=15
LF=12
TKS=177560
TKB=TKS+2
TPS=TKB+2
TPB=TPS+2

.TITLE

ECHO

;PROGRAMMING

EXAMPLE

;ACCEPT

(IMMEDIATE ECHO) AND

;STORE

20

.

CHARS

;FROM

THE KEYBOARD, OUTPUT CR & LF

;ECHO

ENTIRE STRING FROM STORAGE

OUT :

SAVE:

.=1000
START: MOV

#

.,SP ;INITIALIZE

STACK POINTER

MOV #SAVE+2,R0 ;SA

OF BUFFER

;BEYOND

CR & LF

MOV #20.,R

1

;CHARACTER

COUNT

IN : TSTB

C#TKS

;CHAR

IN BUFFER?

BPL

IN

;IF

NOT BRANCH BACK

;AND

WAIT

ECHO: TSTB

G#TPS

;CHECK

TELEPRINTER

;READY

STATUS

BPL ECHO
MOVB a,#TKB,C#TPB ;ECHO

CHARACTER

MOVB C#TKB,(RO)+ ;STORE

CHARACTER AWAY

DEC R1
BNE IN ;FINISHED

INPUTTING?

MOV #SAVE,RO ;SA

OF BUFFER INCLUDING

;CR

& LF

MOV #22.,R

1

;COUNTER

OF BUFFER

;INCLUDING

CR & LF

TSTB (a#TPS ;CHECK

TELEPRINTER

;READY

STATUS

BPL OUT
MOVB (RO)+,C#TPB ;OUTPUT

CHARACTER

DEC RI
BNE OUT ;FINISHED

OUTPUTTING?

HALT

BYTE CR,LF
.=.+20,
.END

SORT:

	

MOV

#-10

.,R4
NEXT:

	

MOV

COUNT,R3

MOV

#BUFFER+9

.,RO
ADD

R3,RO

MOVB

(RO)+,RI

LOOP:

	

CMPB

(RO)+,R 1

BGE

GT

LT:

	

MOVB

-(RO),R2

MOVB

Rl,(RO)+

MOV

R2,R I

GT :

	

INC

R3

BNE

LOOP

INSERT :

	

MOVB

RI,BUFFER+10

.(R4)
INC

R4

INC

COUNT

BNE

NEXT

MOV

#-9

.,COUNT

	

;RESTORE

LOCATION COUNT

RTS

PC	

;EXIT

COUNT:

	

WORD

-9

.
LINEI :

	

ASCII/INPUT

ANY TEN SINGLE-DIGIT VALUES (0-9)

;

I'LL/

.ASCII/SORT

AND OUTPUT THEM IN/

LINE2 :

	

ASCII/SMALLEST

TO LARGEST ORDER

./
BUFFER : .=.+10 .

.END

INITSP	

;FINISHED!!!

Program

Program

Address

Contents Label

Op

Code Operand

Comments

;PROGRAMMING

EXAMPLE

;SUBROUTINE

TO INPUT TEN VALUES

INPUT: MOV

#BUFFER,RO

;SET

UP SA OF

;STORAGE

BUFFER

MOV

#-10

.,R

I

;SET

UP COUNTER

IN : TSTB

da#TKS

;TEST

KYBD READY STATUS

BPL

IN

OUT : TSTB

G#TPS

;TEST

TTO READY STATUS

BPL

OUT

MOVB

@#TKB,Ga #TPB

;ECHO

CHARACTER

MOVB

@#TKB,(RO)+

;STORE

CHARACTER

INC

RI

;INC

COUNTER

BNE

IN

RTS

PC

;EXIT

;PROGRAMMING

EXAMPLE

;SUBROUTINE

TO SORT TEN VALUES

Program

Program

Address

	

Contents

Label	

Op

Code	

Operand

	

Comments

R0=%0
Rl=%l
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7
TKS=177560
(address

of terminal control status register)

TKB=TKS+2

- (terminal data buffer register)

TPS=TKB+2

- (terminal output control and status registers)

TPB=TPS+2

- (terminal output data buffer)

.=3000

INITSP :

MOV #

.,SP
JSR

PC,CRLF

JSR

R5, OUTPUT

LINE

I

69 .
JSR

PC,CRLF

JSR

R5,OUTPUT

LINE2
26 .
JSR

PC,CRLF

JSR

PC,INPUT

JSR

PC,SORT

JSR

PC,CRLF

JSR

R5,OUTPUT

BUFFER
10 .
JSR

PC,CRLF

HALT

;PROGRAMMING

EXAMPLE

;SUBROUTINE

EXAMPLE

;INPUT

TEN VALUES, SORT, AND

;OUTPUT

THEM IN SMALLEST TO LARGEST ORDER

;INITIALIZE

STACK POINTER

;GO

TO CRLF SUBROUTINE

;GO

TO OUTPUT SUBROUTINE

;SA

OF LINE 1 BUFFER

;NUMBER

OF OUTPUTS

;GO

TO CRLF SUBROUTINE

;GO

TO OUTPUT SUBROUTINE

;SA

OF LINE 2 BUFFER

;NUMBER

OF OUTPUTS

;GO

TO CRLF SUBROUTINE

;GO

TO INPUT SUBROUTINE

;GO

TO SORT SUBROUTINE

;GO

TO CRLF SUBROUTINE

;GO

TO OUTPUT SUBROUTINE

;INPUT

BUFFER AREA

;NUMBER

OF OUTPUTS

;THE

END!!!

;SUBROUTINE

TO OUTPUT A

;VARIABLE

LENGTH MESSAGE

OUTPUT :

MOV (R5)+,RO	

;PICK

UP SA OF DATA BLOCK

MOV

(R5)+,R1	

;PICK

UP NUMBER OF OUTPUTS

NEG

R1	

;NEGATE

IT

AGAIN:

	

TSTB

G#TPS	

;TEST

TTO READY STATUS

BPL

AGAIN

MOVB

(RO)+,G#TPB	

;OUTPUT

CHARACTER

INC

RI	

;BUMP

COUNTER

BNE

AGAIN

RTS

R5

11.7

LOOPING TECHNIQUES

Looping

techniques are illustrated in the program segments below

.

The segments are used to clear a 50-

word

table

.

1 .

	

Autoincrement

(pointer address in general purpose register)

RO=%O
MOV

#TBL,RO

LOOP:

	

CLR

(RO)+

CMP

R0,#TBL+100

.
BNE

LOOP

2.

	

Autodecrement

(pointer and limit values in general purpose register)

RO=%O
Rl=%l
MOV

#TBL,RO

MOV

#TBL+100

.,Rl
LOOP:

	

CLR

- (R 1)

CMP

R l ,R0

BNE

LOOP

Program

Program

Address

Contents Label

Op

Code Operand

Comments

;PROGRAMMING

EXAMPLE

;SUBROUTINE

TO OUTPUT A CR & LF

CRLF: TSTB

C3#TPS

;TEST

TTO READY STATUS

BPL

CRLF

MOVB

#I 5,G#TPB

;OUTPUT

CARRIAGE RETURN

LNFD: TSTB

G#TPS

;TEST

TTO READY STATUS

BPL

LNFD

MOVB

#12,0#TPB

;OUTPUT

LINE FEED

RTS

PC

;EXIT

3 .

	

Counter

(decrementing a general purpose register containing count)

RO=%O
Rl=%l
MOV

#TBL,RO

MOV

#50

.,Rl
LOOP:

	

CLR

(RO)+

DEC

R 1

BNE

LOOP

Index

Register Modification (indexed mode, modifying index value)

RO=%O
CLR

RO

LOOP:

	

CLR

TBL (RO)

ADD

#2,RO

CMP

R0,# 100

.
BNE

LOOP

5.

	

Faster

Index Register Modification (storing values in general purpose register)

RO=%O
Rl=%l
R2=%2
MOV

#2,R 1

MOV

#100

.,R2
CLR

RO

LOOP:

	

CLR

TBL (RO)

ADD

Rl,R0

CMP

RO,R2

BNE

LOOP

6.

	

Address

Modification (indexed mode, modifying base address)

RO=%O
MOV

#TBL,RO

LOOP:

	

CLR

0(RO)

ADD

#2,LOOP+2

CMP

LOOP+2,# 100

.
BNE

LOOP

A.1

GENERAL

The

KDJI I -B module uses two ROMs that contain the boot and diagnostic coding described in Chapter 4

.
The

original version is designated as V6

.0

and the revised or updated versions are V7

.0

and V8

.0 .

The user

does

not have to remove the module from the system for identification because the version number is

shown

in the upper right hand corner of the display whenever the setup mode is entered

.

The ROM part

numbers

associated with each version are shown in Table A-1

.

The differences between V6

.0

and V7

.0

are

detailed

in Paragraph A

.2,

while the differences between V7

.0

and V8

.0

are covered in Paragraph A

.3 .

APPENDIX

A

ROM

CODE DIFFERENCES

A.2

V6

.0

AND V7

.0

DIFFERENCES

A.2.1

	

Boot

Support for Tape MSCP Devices (TK50/TU81)

V7 .0

has a built-in tape MSCP boot program for the TK50/TU81 devices and the device name is MU

.
The

tape MSCP boot and the disk MSCP boot are combined into one common boot program

.

V6 .0

does not have a tape MSCP boot program for the TK50/TU81 devices

.

Unibus systems could boot

these

devices if an M9312 type boot ROM for tape MSCP devices could be installed in the UBA module,

but

this type of boot ROM is not available

.

A.2.2

	

Disk

MSCP Automatic Boot Routine

In

the V7

.0

MSCP automatic boot, the program tries to boot removable media units from 0 to 255 and

then

to boot fixed media units from 0 to 255

.

The program attempts to boot each unit at the standard

MSCP

address and if this fails, the boot program attempts the same unit number from the first floating

disk

MSCP device (if it is present) before continuing to the next unit number

.

The routine always makes

the

first pass trying to boot the removable media units and the final pass trying the fixed media units

.

In

the V6

.0

MSCP automatic boot (device name A), the program tries to boot removable media units

from

0 to 7 and then to boot fixed media units from 0 to 7

.

It only tries to boot the drives attached to the

controller

at the standard address of 172 150

.

The MSCP automatic boot does not support unit numbers

above

7 and it hangs if the controller has a response from a unit number greater than 7

.

Socket

Table

A-1 ROM

V8.0

Set

Part

Numbers

V7.0

Set

V6.0

Set

Low

byte E116

High

byte E117

23-168E5

23-169E5

23-116E5-00

23-117E5-00

23-077E5-00

23-078E5-00

The

first floating controller (when present) is at address 160 334, if there are no devices from 160 010 to

160

330

.

The main advantage of V7

.0

is to allow the user to add a second disk MSCP device without

making

any entries into the translation table (as long as the controller address is set exactly according to

the

floating CSR address rules)

.

A.2.3

	

Dialog

Mode Boot Command for Disk MSCP Boot

V7 .0

of the dialog mode lets the user execute the boot command for a DU device and the ROM code tries

to

boot the selected unit number at the standard controller address

.

If the boot is not successful, the ROM

code

then tries to boot the same unit number at the first floating controller address (if it is present)

.

When

an

error occurs on both controllers, the V7

.0

ROM code prints out error messages for both controllers

starting

with the standard address

.

Nonexistent error messages are not printed unless the unit is nonexis-

tent

on both controllers

.

If the second controller does not exist at the proper floating address, the ROM

code

prints out messages associated with the standard controller only

.

When the translation table or the /A

switch

is used, only one controller is tried regardless of the existence of two or more controllers

.

V6.0

of the boot routine tries the standard address only, unless otherwise directed by the translation table

or

the /A switch

.

A.2.4

	

Disk

MSCP Boot (DU)

The

V7

.0

disk MSCP boot always initializes the disk controllers when they are first accessed

.

The

controller

is left on-line, unless it is necessary to take it off-line

.

This allows the boot to operate faster in

the

automatic boot mode when many unit numbers and possibly multiple controllers are being tried

.

The

controller

is always turned off before control is transferred to the secondary boot

.

The V7

.0

DU/MU boot

requires

a 16-Kword memory (minimum) and the V6

.0

DU boot requires an 8-Kword memory

(minimum) .

In

V6

.0,

the controller is initialized only when the SA register is not zero

.

The controllers are usually left

on

and are turned off before transferring control to the secondary boot

.

The controller is also turned off

before

checking for a valid boot block

.

Therefore, if the automatic boot sequence `sees' a lot of non-

bootable

media before it gets to the device being booted, the boot code may be slow since it has to

reinitialize

the controller after each nonbootable unit is found

.

A.2.5

	

8-Unit

Restriction for MSCP Automatic Boot

V6 .0

is restricted to units 0 through 7 and if the first unit on the controller is unit 8 or greater, the boot

loops

because the automatic boot program does not correctly handle unit numbers greater than 7

.

V7

.0
can

handle unit numbers from 0 through 255

.

A.2.6

	

Irregular

Monitoring of Keyboard During Automatic Boot Sequence

As

the ROM code proceeds through the devices during the V6

.0

automatic boot, it does not check the

keyboard

for a <CTRL> C unless a specific boot program does it

.

The keyboard is sometimes checked by

a

boot when the boot program is in a potentially long loop waiting for some action to occur

.

V7

.0

checks

the

keyboard at least once between each boot in the automatic boot sequence

.

A.2.7

	

Addition

of Single-Letter Mnemonic in Automatic Boot List

A

single-letter mnemonic (L) has been added to the boot command list for V7

.0 .

The L command causes

the

automatic boot sequence to loop continuously until one of the selected devices is successfully booted

.
Normally,

the last device in the automatic boot table is followed with the mnemonic E, which causes the

sequence

to exit at the end of the table, and if no device is successfully booted, the ROM code displays an

error

message and requests input before proceeding

.

When

the L follows the last device, the ROM code restarts the table at the beginning and continuously

tries

each device in the table until one is booted or the user types <CTRL> C to abort the sequence

.

This

feature

is useful for booting a fault-tolerant system that must be tried continuously until a successful boot

occurs .

Figure A-1

	

Program for Continuous Loop
MR-17272

The L command is not included in V6.0, but the user can implement it by writing a small EEPROM boot
to emulate the feature . The source code and the description of this program (to enable a continuous loop
function for V6.0) are shown in Figure A-1 . When this feature is implemented, it must be noted that there
is no boot program using a device name of L, and if there is, the user has to delete or rename that boot
before using the new program.
A.2.8

	

Setup Mode Disable
V7 .0 includes a disable parameter on the list of parameters used by setup command 2. This command was
added to prevent unauthorized entry into setup mode and it allows the user to disable entry into setup
mode if the forced dialog mode is not selected . This change assumes that the forced dialog mode switch is
controlled or that switch 5 on the module is on to prevent unauthorized entry into setup mode. When the
ROM code is in dialog mode and setup mode is disabled, all references to the setup commands are
eliminated, and typing SETUP causes an invalid command response from the ROM code . In V6.0, the
setup mode can always be entered from dialog mode.

A.2.9

	

Disable All Testing Parameter
V7.0 includes a disable testing parameter on the list of parameters used by setup command 2 . When this
parameter is set or selected, it disables all memory and cache testing if the forced dialog mode is not
selected . (The forced dialog mode causes the module to run the complete set of tests.) This reduces the
testing time to approximately 70 or 85 ms. This parameter is not available in V6.0 .

A.2.10

	

Edit/Create Command
In V7 .0, the edit/create command of the setup mode uses a decimal value for the highest unit number
entry on the EEPROM boots. V6 .0 uses an octal number that is converted into a decimal number .

.=10000 Program is relocatable to another
address .

START: tstb @#177560 Has any characters been typed
bpl 10$ No-Go exit back to auto boot

Yes-Check the character
movb @#177562,r5 Get the character from the RBLIF
bic #177600,r5 Clear off all bits above bit 07
cmp r5,#3 Is the character a CTRL C ?
beq 20$ Yes-Then return to ROM code with

r5 set to 3 which will cause the
boot sequence to be aborted .

10$: mov #301,r5 Load r5 with value for drive error
movb #100,@#177611 This will fake out the ROM code

and make it restart the auto boot;sequence
20$ bic #760,@#177520 Make sure the ROMs are selected in

the BCSR
IMP @#165762 Return to the ROM code .

If r5 is 301 then restart the auto
boot sequence . If r5 is 3 then
abort the sequence and go to Dialog
mode .

A.2.11

	

Initialize Command for the PMG Counter
The initialize command sets the PMG count value to 7 in V7.0 . This value was set to 0 in V6.0 . The
recommended value for the PMG count is 7 for all modules that use V6.0 .

NOTE
It is recommended that users of V6.0 change the
PMG count value from the default value of 0 to a
value of 7.

A.2.12

	

PMG Parameter Warning
V7.0 prints a warning message if the PMG count value is set to 0 by the user . The warning was created to
prevent the user from operating the system with a PMG count value of 0. This ensures that the CPU is not
locked out from the bus for excessively long periods of time, which could cause some loss of data if it is
stalled for more than 250 ms . The message shows the PMG count value being changed and prints the
warning with the parameter line being reprinted, allowing the user to change the PMG count value.
The display also contains the current values associated with the selections available to the user (Figure
A-2) and thus eliminates the need to consult a reference document . V6 .0 prints only the parameter
selected and the values the user may select (Figure A-2) .
A.2.13

	

Setup Command 4 Printout
V7 .0 prints descriptions of the single-letter mnemonics A, B, E, and L when they are used by setup
command 4. V6 .0 prints only the descriptions for A and E because there are no descriptions for B and L.
The V7.0 descriptions are shown in Figure A-3.

A.2.14

	

MU (TK50/TU81) Device
V7 .0 adds the device name MU for the TK50 or TU81 to the list of devices in the automatic boot
selections table . This is also added to the list when the setup mode initialize command is executed . V6 .0
does not have the MU device name. The setup command 4 automatic boot lists are shown in Table A-2 for
both versions .

V6,0 PMG count parameter printout

PMG count

	

(0-7) = 7 NEW =

V7,0 PMG count parameter printout

PMG 0-(7) 1 = .4us,

	

2=.8,

	

3=1 .6,

	

4=3.2, . ..7=25 .6 = 7

	

NEW =

Figure A-2

	

PMG Count Value Warning Message
MR-17273

KDJ 11 -B Setup modePress the RETURN key for HelpType a command then press the RETURN key: 4 <CR>
List/change the Automatic boot selections in the Setup table
A = MSCP automatic boot
B = External ROM boot
E = Exit automatic boot
L = Loop continuously
Boot 1 = ABoot 2 = DLO
Boot 3 = MSOBoot 4 = MUO
Boot 5 = EBoot 6 = blank
Type CTRL Z to exit or press the RETURN key for No change
Boot 1 = ADevice name =

Figure A-3

	

Single-Letter Descriptions for Command 4

Table A-2

	

Setup Command 4 Automatic Boot Lists

V7.0 V6.0
A A
DLO DLO
MSO MSO
MUO A
A

A-5

MR-17274

A.2.15

	

Setup Command 5
Setup command 5 is eliminated in V7 .0 . The setup command 5 description is reserved and if the command
is selected, it is ignored .
In V6.0, this command allows different character sets in the console terminal to automatically be selected
by the ROM code when the user changes from English to a local text or from local to English text . The
command is no longer required since all text printed on the screen uses only the standard ASCII characters
generally available on all terminals. Special characters used in some languages are imitated by fallback
representations in standard ASCII.
A.2.16 Memory Initialization at Power-Up
V7 .0 writes to all consecutive memory starting at location 0 at least once after the power-up sequence is
complete . This feature is disabled if the disable testing option is enabled. This option does not apply to
restarts . V6.0 may not write to locations above 248 Kbytes if the long memory test is disabled or
<CTRL> C is typed.

A.2.17

	

Power-Up

Option Set to 3 with Battery Backed Up Memory

In

V7

.0,

if the selected power-up mode is 3 and the battery indicates that the voltages are lost with the

ignore

battery function turned off, the ROM code goes to the dialog mode regardless of the restart mode

selection .

For the same conditions in V6

.0,

the ROM code executes the restart mode selection if it is not

mode

3 or it goes to the dialog mode

.

The battery OK signal is currently used only in Unibus systems

.

A.2.18

Halt-on-Break

V7 .0

sets the halt-on-break bit in the BCSR immediately after the "Testing in progress - Please wait"

message

is displayed

.

The halt-on-break feature, generally used in single-user environments, was not

needed .

V6 .0

does not set the halt-on-break bit in the BCSR until a break is received and discarded, any valid

character

is received except XON, or the ROM code gives up control of the CPU

.

This allows the ROM

code

to ignore any breaks that come as a result of a terminal being powered up

.

A.2.19

	

Local

Language Support

V7.0

supports local language translations by using the <CTRL> L command

.

Local language is not

supported

in V6

.0 .

A.2.20

	

Addition

of Map Command Feature

V7 .0

adds an additional feature to the map command

.

This feature determines the clock speed of the CPU

by

counting the number of SOB instructions that can be executed out of the cache memory during one 20

ms

cycle of the internal DLART clock

.

This value is compared with a table of standard values and if it is

within

0

.1

% of any standard value, that value is displayed

.

If it does not match a standard value, the actual

value

is displayed

.

The standard values are 15

.206,

17, 18, 19, and 20

.

The speed is not calculated if any

errors

are detected during testing

.

A.2.21

	

EEPROM

Load Error Before Dialog Mode

In

V7

.0,

if the setup mode is entered and an error occurs in loading the EEPROM data into memory, the

dialog

mode is restarted and no error message is generated

.

V6

.0

does not check to verify the data is OK

and

setup mode cannot be entered without testing memory

.

In either case, a timeout may occur and trap to

location

4 with an error message being generated

.

A.2.22

	

Test

Command Decimal Numbers

In

V6

.0

dialog mode, when the user selects a specific test with the test command, the ROM code selects a

different

test number

.

The valid test numbers are in the range of 31 to 70 (octal) with the exception of

tests

64 to 66 and any Unibus test on LSl-11 bus systems

.

The only test numbers that may cause confusion

are

illegal test numbers that end in 8 or 9 using the decimal system

.

Table A-3 lists the selectable (illegal)

test

numbers and the actual test run by the ROM code

.

Table

A-3	

ROM

Code Test Selections

Selected

	

Actual

Test

Test

78

70

69

61

68

60

59

51

58

50

49

	

41

(Unibus only)

48

	

40

(Unibus only)

39

	

31

(Unibus only)

A-6

V6.0 does echo the correct and actual test being run. For example, if the user selects T 59, then V6.0
responds that it is looping on test 51 . V7 .0 corrects the problem .
A.2.23

	

Test Command Execution of a Single Test
In V7 .0, if the test command is used and a specific test is selected, the memory size routine is run before
the selected test is run . Some of the memory size parameters have been lost and need to be replaced . V6.0
runs only the selected test when a single test is selected .
A.2.24

	

Test Errors in Tests 72 to 75
In V6.0, if an error occurs in tests 72 to 75, the user has a choice of either rerunning the test or looping on
the test . It does not matter what the user selects, however, because the ROM code unconditionally restarts
from the beginning if the user selects a valid choice . For V7.0, the user is only allowed to rerun the test,
but the ROM code still restarts the code from the beginning when this selection is made .
A.2.25

	

Bypass Errors for Test Failures
In V6 .0, if an error occurs during testing, the user may bypass the test if the error is considered to be
nonfatal . Many times it is difficult to determine if an error is fatal or nonfatal and sometimes, if an error is
determined to be nonfatal, it may still cause a problem when overridden .
V7.0 considers all errors to be fatal and never provides the override command. However, the user can still
override the error in the same way used for V6 .0 . To override, the user types <CTRL> O and then types 4
<RETURN>. If <CTRL> O is not typed, the 4 is ignored and not echoed .
A.2.26

	

Test 76 and 75 Error Messages
During the first two major tests, 76 and 75, the printout for errors has been changed . These tests have a
simple printout because the normal printout routine has not been turned on at this time . V6.0 prints "Error
76" or "Error 75" and V7 .0 prints "A 76" or "A 75." This change was made for local language
applications since these printouts cannot be translated .
A.2.27

	

Starting Automatic Boot Sequence Message
V7.0 prints a message indicating when the automatic boot mode is selected and the sequence is starting .
This message (Figure A-4) indicates that all the testing is complete and the ROM code is starting the
automatic boot sequence .

NOTE
This does not apply to LSI-11 systems with the
friendly format feature selected by setup
command 2.

Testing in progress - Please wait
Memory size is 512 K Bytes
9 Step memory test
Step 1 23456789

Starting system

Figure A-4

	

Automatic Boot Sequence Message
MR 17275

A.2.28

	

Device Name and Number After Message
V7.0 prints the device mnemonic and unit number after the "Starting system" message shown in Figure
A-5. This has no affect on the printout when the user friendly printout feature is selected .

A.2.29

	

Incorrect Message for Invalid Unit Number
V6 .0 responds with an incorrect message (Figure A-5) when the user types in a unit number greater than
255 . V7.0 corrects this problem by printing a message (Figure A-6) indicating the invalid unit number .

A.2.30

	

Dialog Mode Header Message
V7.0 changes the dialog mode header message by deleting the brackets because they are not available on
all terminals.
A.2.31

	

Map Command Message
V7.0 changes the & symbol to "and" for the map command message in setup mode because the symbol is
not available on all terminals.

A.2.32

	

List Device Descriptions
V7 .0 changes the descriptions for the device names in some of the mnemonics and also shows the TK25
and TS05 devices under the mnemonic MS for Unibus systems. The differences are not listed here because
they are obvious. RA80/81/60, for example, is changed to RA80, RA81, and RA60.

A.2.33

	

Loss of the First Line in a List Header
In V6 .0 dialog mode, when the user types the boot command without the device and then types
<RETURN> ? to get a list of boot devices, the ROM code does not send a line feed before the header of
the list and the header is lost in the right margin (Figure A-7) . The list is typed out correctly . V7.0 corrects
the problem and the message shown in Figure A-8 is displayed .

A.2.34

	

<CTRL> R and <CTRL> U Echo
V6.0 echoes the <CTRL> R and <CTRL> U commands as R and U, respectively. V7 .0 does not echo
these commands because the symbols are not available on all terminals. These commands still function the
same way .

Testing in progress - Please waitMemory size is 512 K Bytes
9 Step memory test
Step 1 23456789

Starting automatic boot
Starting system from DUO

Figure A-5

	

V6.0 Incorrect Message
MR 17276

Commands are Help, Boot, List, Setup, Map, Test .
Type a command then press the RETURN key : B DL300 <CR>
Invalid unit number
Commands are Help, Boot, List, Setup, Map, Test.
Type a command then press the RETURN key:

Figure A-6

	

V7.0 Correct Error Message

Commands are : [Help, Boot, List, Setup, Map, Test]
Type a command then press the RETURN key : B <CR>
Enter the device name and unit numer then press the RETURN key : ?

Figure A-7

	

V6.0 List Header Error

MR-17277

MR-17278

Commands are Help, Boot, List, Setup, Map, Test.
Type a. command then press the RETURN key : B <CR>
Enter the device name and unit number then press the RETURN key : ?

RA80, RA81, RA60, RD51, RD52, RX50,RC25
RI-01, RL02

Figure A-8

	

V7.0 Correct List Header
MR 17279

name numbers Source Device type
DU 0-255 CPU ROM MSCP (RA80/81 /60, RD51 /52, RX50, RC25)
DL 0-3 CPU ROM RL01/RL02

etc

Device Unit CPU ROM
name numbers CPU ROM
DU 0-255
DL 0-3

etc

A.2.35

	

Power-Up or Restart Mode Set to 3 (LSI Bus Only)
In V6 .0, before executing a power recovery trap through location 24, the ROM code does the following .

1 .

	

Reads and stores the contents of location 24
2.

	

Executes a read/write test on location 24
3.

	

Restores the original contents of location 24
When the test is successfully completed, the ROM code loads the contents of location 26 into the PSW
and jumps to the location specified in location 24 . Since this location was tested, the ROM code cannot be
present in the lower portion of memory .
V7.0 does not test location 24 and it is possible to have ROM code in the lower portion of memory . The
ROM code loads the contents of location 26 into the PSW and jumps to the location specified in location
24 .
A.2.36

	

Automatic Boot Misleading Error Message (LSI Bus Only)
In V6.0, R5 is cleared at the end of the MSCP disk sniffer boot and this causes all errors that occurred
during the sniffer to appear to be correctable by the user . This minor problem only affects the message
sent to users operating in the friendly mode . V7.0 corrects the problem .
A.2.37

	

APT Halt-on-Break Detect (LSI Bus Only)
V6 .0 can detect breaks coming from an APT system . This feature allows LSI type systems that have the
halt-on-break option disabled to halt, and enables the halt-on-break option if the APT is trying to down-
line-load . V7.0 eliminates this feature because it is implemented in the manufacturing process . If the
feature is not eliminated, there is a small chance that the system may be halted with halt-on-break disabled
if the terminal is a VT5X terminal (or possibly other terminals), but not if it is a VTIXX or VT2XX
terminal .
Note also that autobaud detect routines from remote hosts can cause halt-on-break when it is not desired .
A.2.38

	

B Mnemonic for ROM Boots (Unibus Only)
For V7 .0 under the B mnemonic for ROM boots, the address located at 173 024 on the M9312 module in
the Unibus system must be an even address . This is the only check of the address data . For V6.0 under the
B mnemonic for ROM boots, the address located at 173 024 must be 165 000 or greater, but it can be
odd. In either case, if all the conditions are not met, an invalid device message is reported .
A.2.39

	

Error in List Command When Unknown ROM is Found (Unibus Only)
In V6.0, the ROM board for the Unibus must respond to all addresses from 17 773 000 to 17 773 776 for
the ROM code to transfer control using the B mnemonic, or else an invalid device message is reported . In
V7.0, only address 17 773 024 must respond .
A.2.40

	

Power-Up or Restart Mode Set to 3 (Unibus Only)
In V6 .0, the ROM code checks for the presence of Unibus memory and sets up the KMCR before
executing a power recovery trap through location 24 . Then the ROM code does the following .

1 .

	

Reads and stores the contents of location 24
2 .

	

Executes a read/write test on location 24
3 .

	

Restores the original contents of location 24
When the test is successfully completed, the ROM code loads the contents of location 26 into the PSW
and jumps to the location specified in location 24 . Since this location was tested, the ROM code cannot be
present in the lower portion of memory .

V7 .0 does not check for Unibus memory and assumes that by selecting mode 24 the system has the final
configuration of memory already installed . Therefore, location 24 is not tested and it is possible to have
ROM code in the lower portion of memory . The ROM code loads the contents of location 26 into the
PSW and jumps to the location specified in location 24 .
A.2.41

	

Saving KMCR Bits <5:0> in the EEPROM (Unibus Only)
In V7 .0, when the setup table is written into the EEPROM, the contents of KMCR bits <5:0> are always
copied into the EEPROM regardless of the power-up or restart modes . The EEPROM data is used to load
the KMCR when the ODT or 24/26 modes are selected . The ROM code autosizes for Unibus memory
when the automatic boot or dialog modes are selected .
In V6 .0, KMCR bits <5 :0> are copied into the EEPROM only when ODT is selected for the power-up or
restart mode. The ODT mode is the only mode that does not autosize for Unibus memory and con-
sequently must depend on the EEPROM to contain the correct KMCR information .
A.3 V7.0 AND V8.0 DIFFERENCES
This paragraph describes the changes made when V8.0 of the ROM code was created . The changes made
in V7 .0 (as described in Paragraph A.2) are still true for V8 .0 except as noted below . Paragraph A .2
describes the differences between V6.0 and V7 .0 only .
A.3.1

	

M9312 MultiROM Bootstrap Support (PDP-11/84 Only)
V6.0 and V7 .0 do not support M9312 bootstrap programs, which require more than one ROM to
implement (multiROM bootstraps) . The only way these programs can be supported for V6.0 and V7 .0 is
to use a work-around program loaded into the EEPROM (refer to the PDP-11/84 Technical Manual) .
V8.0 corrects this problem and automatically supports M9312 multiROM bootstraps .

NOTE
This problem occurs only in PDP-11/84 systems .

A.3.2

	

Small Memory Automatic Boot Problem for RQDX3
V7.0 has a check in the MSCP initialize sequence that assumes the disk controller starts step 1 within 100
seconds of a hard initialize command . This is not true of many RQDX3 controller modules at power-up .

The problem happens in small memory systems (less than 1 Mbyte) and on large memory systems if some
of the memory tests are bypassed . The problem occurs only at power-up . V8 .0 allows at least 10 seconds
for step 1 to start (as in V6 .0) .
A.3.3

	

RAnn Disk Spinup Time Delay for Automatic Boot
In V6.0 and V7.0, the disk MSCP bootstrap assumes that off-line error codes from the disk being booted
are correct . If the disk is an RAnn on a UDA/KDA controller, and if the disk is spinning up or down, it
may incorrectly identify a disk spinning up as being off-line (not available) . This causes the ROM code to
skip this unit and try another even though there is no problem.
V8.0 works around this problem with the following strategy . It identifies the controller as a KDA50,
UDA50, or UDA50A . The identification is done in step 4 of the initialize sequence . If the device is not a
KDA/UDA controller, the delay is not present . If the controller type is UDA/KDA and the response
packet from the controller is an off-line code (3), the ROM code repeatedly tries to boot the device for a
period of at least 60 seconds . RAnn devices need this delay time to spin up and be ready to respond to the
host . If the RAnn is not ready to be booted after 60 seconds, the code reports the error and sets a flag
preventing this delay time from occurring again unless the code is rebooted . The next device specified in
the automatic boot setup table is then tried . The code responds to the terminal shortly if it cannot find a
bootabie device .

In

a case where the code enters dialog mode, it is assumed that the user has the RAnn spun up and ready

.
The

code does not wait 60 seconds for the device to spin up

.

The device promptly reports any errors if they

occur .

Some RAnn devices (possibly RA60) work adequately without this change

.

CAUTION
When

a system is configured with RAnn disks (and

possibly

with other non-RAnn MSCP disks), it is

important

to realize that the wait loop in V8

.0
delays

the automatic boot process for 60 seconds or

more.

It is recommended that the user remove A

(disk

MSCP automatic boot) from the boot table in

the

EEPROM using setup command 4

.

The user

should

replace it with the desired order of devices to

be

booted (i

.e .,

DUO, DU2, etc

.) .

This is especially

true

when booting fixed media devices, since the disk

automatic

boot ignores fixed media devices until it

has

tried all removable media devices

.

Remember

that the disk automatic boot tries each

unit

at the standard controller address and then at

the

first floating address

.

This is also true for indi-

vidual

unit numbers (i

.e .,

DU2, DUO, etc

.)

unless the

unit

number is described in the translation table (set-

up

mode command 3)

.

A.3.4

	

Addition

of RESET Instruction at Beginning of Code

V8.0

executes a RESET instruction (bus reset) at the beginning of the code

.

V6

.0

and V7

.0

do not include

this

instruction

.

This change provides a bus reset after POK is asserted

.

A.3.5

	

Addition

of New Setup Command 5

V8.0

adds a new setup mode command 5, similar to the setup mode command 5 in V6

.0 .

V7

.0

does not

have

a setup mode command 5

.

This new command in V8

.0

allows the user to store up to 20 bytes of

information

in the EEPROM

.

The data is stored in the same place in the EEPROM as for V6

.0 .

However,

the

information stored there is never sent to the console as it was in V6

.0 .

The data must be entered as

octal

numbers in the range of 0 to 377

.

This command may be used to store serial numbers, etc

.

The setup

mode

initialize command resets this data to 0

.

The ROM code does not use this data for any purpose at all

.

A.3.6

	

Memory

Test Coverage Problem

V6.0

and V7

.0

test only the first 4 Kwords of memory when running test 50

.

V8

.0

corrects this and checks

all

available consecutive memory

.

Test 50 checks two locations for floating 1 s and Os and does byte

testing .

A.3.7

	

List

Command Device Descriptions

Some

of the messages printed during the V8

.0

list command are new

.

The changes are given in Table A-4

.

A.3.8

	

Manufacturing

Test Loop Problem

The

manufacturing test loop in V7

.0

does not execute all of its tests

.

V8

.0

corrects the problem

.

V6

.0
always

worked correctly This change affects only those manufacturing sites that use the feature

.

The

manufacturing

tes

;

loop can only be selected by using the switchpack on the CPU module

.

Table

A-4

New

List Command

Device

Descriptions

Message
Type From: To: Comments

DU RD51,

RD52,

RDnn,

RXnn,

RC25,

RA80,

RC25,

RAnn

RA81,

RA60

XH DECnet

DEQNA

DECnet

Ethernet

11/73

or 11/83 only

XE DECnet

DEQNA

DECnet

Ethernet

11/84

only (if ROM present)

APPENDIX

B

SETUP

PARAMETER WORKSHEETS

B.1

PURPOSE

The

purpose of these worksheets is to report and confirm the setup parameters contained in the setup

EEPROM

on the KDJ 11-B CPU module

.

B.2

FUNCTION

The

worksheets are to be filled out when the KDJ11-B module is installed and should contain all pertinent

information

on the setup parameters selected

.

When complete, they should be left with the system as a

reference

and may also be used to program a replacement module in the future

.

The

original data should be written in ink and any new data should be added in pencil

.

The user sets the

configuration

as follows

.

1 .

	

Setup

command 7 lists the original values to ensure that the changes are being programmed

correctly,

and setup command 1 is used to exit

.

2 .

	

Setup

command 9 copies any changes the user makes to the setup table in the EEPROM

.

3 .

	

Setup

command 14 writes a boot program from memory into the EEPROM

.

Currrent

Type

<CTRL> Z to exit or press <RETURN> to proceed

.

Setup

Parameters

Item Parameter Selections Original

A Enable

halt-on-break

(0)

= No (1) = Yes

=

1

B Disable

user friendly format

(0)

= No (1) = Yes

=

1

C ANSI

video terminal

(0)

= No (1) = Yes

=

1

D Power-up (0)

= Dialog

=

0

(1)

= Automatic

(2)

= ODT

(3)

= 24

E Restart Same

as power-up

=2

F Ignore

battery

(0)

= No (1) = Yes

=0

G PMG

count

Select

from 0-7

=5

H Disable

clock CSR

(0)

= No (1) = Yes

=1

I Force

clock interrupts

(0)

= No (1) =Yes

=1

J Clock

frequency

(0)

= Power supply

=3
(1)

= 50 Hz

(2)

= 60 Hz

(3)

= 800 Hz

K Enable

EEC test

(0)

= No

(1)

= Yes

=

1

L Disable

long memory test

(0)

= No (1) = Yes

=

0

M Disable

ROM

(0)

= No

=

3

(1)

= Disable 165

(2)

= Disable 173

(3)

= Disable both

N Enable

trap-on-halt

(0)

= No (1) = Yes

=

1

O Allow

alternate boot block

(0)

= No (1) = Yes

=

0

Bootstrap

Original Current

TT

1

Device

name

Unit

#

CSR

address

TT2
Device

name

Unit

#

CSR

address

TT3
Device

name

Unit

#

CSR

address

TT4
Device

name

Unit

#

CSR

address

TT5
Device

name

Unit

#

CSR

address

TT6
Device

name

Unit

#

CSR

address

TT7
Device

name

Unit

#

CSR

address

TT8
Device

name

Unit

#

CSR

address

TT9
Device

name

Unit

#

CSR

address

Setup

Command 3 Selections

Program

Original Current

Boot

1

Device

name

Boot

2

Device

name

Boot

3

Device

name

Boot

4

Device

name

Boot

5

Device

name

Boot

6

Device

name

Setup

Command 4 Selections

Setup

Command 5 Selections

Original

Current

Selection

Non-English

Original

Current Selection

English

0= 0=
1= 1=
2= 2=
3= 3=
4= 4=
5= 5=
6= 6=
7= 7=
8= 8=
9= 9=

Setup

Command 6 Selections

Switches

	

Original

Current

2 3 4

On On On Special
On On Off SB1
On Off On SB2
On Off Off SB3
Off On On SB4
Off On Off SB5
Off Off On SB6
Off Off Off Normal

AMUX

- A-multiplexer

APE

- active page field

ASCII

- American Standard Code for Information Interchange

AST

- asynchronous system trap

BCR

- boot and diagnostic facility configuration register

BCSR

- boot and diagnostic control/status register

BMUX

- B-multiplexer

CCR

- cache control register

CDP

- cache data path

CDR

- configuration and display register

CMUX

- C-multiplexer

CSM

- call supervisor mode

CSR

- control/status register

DATBI

- data block in

DATI/DATIP

- data in/data in pause

DATO/DATOB

- data out/data out byte

DCSR

- diagnostic control/status register

DLART

- digital-link asynchronous receiver/transmitter

DMA

- direct memory access

EEPROM

- electrically erasable programmable ROM

EIA

- Electronic Industries Association

EIS

- extended instruction set

EPROM

- erasable programmable ROM

ESC

- escape

FEA

- floating exception address

FEC

- floating exception code

FER

- floating error

FPA

- floating-point accelerator

FPS

- floating-point status register

HMR

- hit/miss register

IACK

- interrupt acknowledge

I/O

- input/output

IRQ

- interrupt request

KMCR

- KTJ 11 memory configuration register

KSP

- kernel stack pointer

LE

- latch enable

LIFO

- last in, first out

LRU

- least recently used

LSB

- least significant bit

LTC

- line time clock

MMR

- memory management register

MSCP

- mass storage control protocol

MSER

- memory system error register

MUX

- multiplexer

NOP

- non-I/O

NPR

- nonprocessor request

NXM

- nonexistent memory

ODT

- on-line debugging technique

OE

- output enable

PA

- physical address

PAF

- page address field

PAR

- page address register

PC

- program counter

PCR

- page control register

PDR

- page descriptor register

PIC

- position-independent code

PIRQ

- program interrupt request

PLF

- page length field

PMG

- processor mastership grant

PMI

- private memory interconnect

PSW

- processor status word

RAM

- random-access memory

RBUF

- receiver buffer

RCSR

- receiver control/status register

ROM

- read-only memory

SLU

- serial line unit

SP

- stack pointer

SSP

- supervisor stack pointer

UBA

- UNIBUS adapter module

USP

- user stack pointer

VA

- virtual address

XBUF

- transmitter buffer

XCSR

- transmitter control/status register

BEVNT

L, 6-21

BGT,

9-40

A-multiplexer,

5-30

BHALT

L, 6-19

ABSF/ABSD,

10-11

BHI,

9-41

Absolute

addressing mode, 8-17

BHIS,

9-42

AC

bus loading, 6-21

BIC,

9-32

Accuracy,

10-8

BIS,

9-33

ADC,

9-22

Bit,

9-32

ADD,

9-28

BLE,

9-41

ADDF/ADDD,

10-11

BLO,

9-42

Address

decode, 5-32

Block

data in (DABTI), 1-35

Addressing

modes, 8-1

BLOS,

9-41

Advance

to next test, 4-25

BLT,

9-40

Alternate

boot block, 2-12

BMI,

9-37

ANSI

video terminal, 2-9

BNE,

9-36

ASH,

9-29

Boot

mode commands, 4-3

ASHC,

9-30

Boot

program, 4-3

ASL,

9-18

Bootstrap
ASR,

9-17

error

LED display, 4-17

Autodecrement

mode, 8-9

programs

available, 4-12

Autodecrement-deferred,

8-12

translation

table, 4-8

Autoincrement

mode, 8-8

BPL,

9-37

Autoincrement-deferred,

8-12

BPT,

9-49

Automatic

(Mode 1), 4-2

BR,

9-35

Automatic

boot sequence, 4-8

Break-detected

interrupt request, 5-41

Automatic

mode, 2-10

Bus

arbitrator, 5-10

Bus

cycle protocol, 6-4

B Bus

device NPR, 7-6

Bus

distribution, 5-37

B-multiplexer,

5-28

Bus

master, 6-2

Back-up/restart,

1-23

Bus

read, 5-7

Bank

select address codes, 5-4

Bus

termination, 6-23

Basic

transactions, 5-12

Bus

timeout, 1-10

Baud

rate, 2-4

Bus

write, 5-8

Baud

rate selection, 1-35

BVC,

9-38

BCC,

9-38

BVS,

9-38

BCS,

9-39

Byte

allocation, 5-18

BEQ,

9-36

Byte

instructions, 9-6

C

C-multiplexer,

5-28

C/D

interface, 1-34

Cache,

1-1

Cache

control, 5-26

logic,

5-30

register,

1-30

signals,

5-24

Cache

data parity logic, 5-25

Cache

data path, 5-30

Cache

data RAM, 5-24

Cache

memory, 1-27, 5-24

Cache

memory (test 62), 4-20

Cache

operation with memory

(test

51), 4-21

Cache

parity, 5-25

Cache

response, 1-28

CCC,

9-59

CFCC,

10-13

CLC,

9-59

CLN,

9-59

Clock

CSR, 2-11

Clock

interrupts, force 2-11

Clock

select, 2-11

Clock

start logic, 5-35

CLR,

9-12

CLRF/CLRD,

10-13

CLV,

9-59

CLZ,

9-59

CMP,

9-27

CMPF/CMPD,

10-13

COM,

9-12

Complete

memory data/byte

exercise

(test 50), 4-21

Condition

code operators, 9-I1

Configuration

and display circuits, 5-42

Configuration
parameters,

2-8

register,

1-43

requirements,

2-1

Connectors

J2 and J3, 2-3

Console

enable, 2-6

Console

interrupt arbitration logic,

5-41
Console

message, 4-10

Console

ODT, 3-1

Console

serial line unit (SLU), 5-38

Console

SLU test 1 (test 66), 4-19

Console

SLU test 2 (test 65), 4-19

Console

SLU test 3 (test 64), 4-19

Contact

(pin) identification, 2-18

Control

store, 5-18

Control

store outputs, 5-20

Control/status

register, 1-40

Conversion

routines, 11-21

INDEX-2

Coroutines,

11-14

CPU

and MMU (test 76), 4-18

CPU

error register, 1-7

CPU

or halt switch (test 77), 4-18

CPU

ROM checksum and PCR

(test

70), 4-19

CSM,

9-53

<CTRL>

C command, 4-16

Current

transaction, 5-2

Cycle

decoder, 5-33

Cycle

encoder, 5-12

status,

5-14

D

D

space group, 1-16

DADR

bus bits, 5-43

Data

in (DATI), 1-34

Data

out (DATO), 1-35

Data

path controller, 5-12

Data

transfer bus cycles, 6-3

DATI

bus cycle, 6-5

DATIO

(B) bus cycle, 6-10

DATO

(B) bus cycle, 6-7

DC

bus loading, 6-21

DC350/394
accesses,

5-18

gate

array, 5-28

DC351

gate array, 5-34

DEC,

9-14

Default,

5-17

Deferred

(indirect) addressing, 8-12

Destination

operand, 8-3

DEVCD

outputs, 5-33

Device

addressing, 6-4

Device

priority, 6-14

Diagnostic

tests, 4-16

error

message, 4-24

Dialog

(Mode 0), 4-1

Dialog

mode, 2-9

Direct

addressing, 8-4

Direct

memory access (DMA), 6-12

Disable

all testing, 2-12

Disable

ROM, 2-11

Disable

setup mode, 2-12

Disable

UBA ROM, 2-12

Distributed

arbitration, 6-14

DIV,

9-31

DIVF/DIVD,

10-14

DMA

monitor, 5-18

DMA

tag

data

path, 5-35

store,

5-26

DMA

transaction, 6-12

Double-operand

addressing, 8-3

E

ECC

test, 2-12

EEPROM,

4-1

Create

a boot program, 4-12

Delete

a boot program, 4-12

Load

a boot program, 4-12

Save

a boot program, 4-13

EEPROM

checksum (test 71), 4-19

Electrical

characteristics, 6-21

EMT,

9-48

Enable

18-bit mode, 2-12

Enable

trap-on-halt, 2-12

Enable

UBA cache, 2-12

Enable

Unibus memory test, 2-12

Enter

ROM ODT, 4-14

EPROMs,

4-1

Error

message, 4-28

Error

number, 4-24

Exit

(test 30), 4-23

Exit

command, 4-5

Exit

standalone mode (test 56), 4-20

Extended

LSI-11 bus signals, 6-1

External

read/write, 5-17

External

transactions, 5-10

F

Floating

exception register

address,

10-6

code,

10-6

Floating-point

accelerator (FPA), 1-2,

5-44
Floating-point

accumulators, 10-8

Floating-point

data, 10-2

Floating-point

exceptions, 10-6

Floating-point

instruction (test 60),

4-18
Floating-point

instructions, 10-9

Floating-point

number, 10-1

Floating-point

status register (FPS),

5-44,

10-2

Flush

cache, 1-30

Flush

counter, 5-35

Forced

dialog mode, 4-2

FPA

operation, 5-44

FPS

register bits, 10-2

Functional

blocks, 5-1

G

General

purpose read, 5-8

codes,

5-8

General

purpose registers, 1-2

General

purpose write, 5-8

codes,

5-9

INDEX-3

H

H9277-A

backplane, 2-1

H9278-A

backplane, 2-1

Halt,

9-51

Halt-on-break,

2-9

Help

command, 4-2

High

byte parity (PI), 5-22

High

byte parity bit, 5-25

Hit

logic, 5-35

Hit/miss

register, 1-32

I

space group, 1-16

IADR

bits, 5-42

Ignore

battery, 2-10

Immediate

mode, 8-16

INC,

9-13

Index

bits, 5-22

Index

field, 1-27

Index

mode, 8-11

Index-deferred,

8-13

Initialization,

5-2, 6-18

Input

signals, 5-4

Installation

procedure, 2-21

Instruction

set list, 9-1

Internal

bus control

network,

5-37

signals,

5-21

Internal

transactions, 5-12

Interrupt-driven

techniques, 11-10

Interrupt

protocol, 6-15

Interrupts,

1-8, 6-12

Interrupt

service routines, 11-10

Interrupt

vector, 5-18

Interrupt

vector timeout, 1-10

IOT,

9-50

J

JMP,

9-43

JSR,

9-44

Jump

and subroutine, 9-10

Jumper

wires, 2-1

K

Kernel,

1-2

Kernel

protection, 1-3

Kernel

stack, 1-3

L

Label

bits, 5-22

LDCDF/LDCFD,

10-15

LDCIF/LDCID/LDCLF/LDCLD,
10-16

LDEXP,

10-17

LDF/LDD,

10-18

LDFPS,

10-18

LED

display, 4-16

Line

clock (test 61), 4-20

Line

time clock register, 1-45

List

command, 4-4

Logical,

9-9

Long

memory test, 2-11

Loop

on test, 4-24

Looping

techniques, 11-32

Low

byte parity (PO), 5-23

Low

byte parity bit, 5-22

LSI-1

1

bus

signals, 2-19

bus

systems, 6-24

compatible

options, 2-13

control

signals, 5-38

LSI-11

based system, 2-13

LSI/Unibus,

5-18

M

Main

memory parity error, 1-29, 5-32,

5-35
Maintenance

register, 1-44

MAID

coding, 5-2

Map

command, 4-15

Map

memory and 1/O page, 4-25

MARK,

9-51

Master/slave

relationship, 6-2

MBS

1 H and MBSO H signals, 5-3

Memory

address shorts (test 46), 4-22

Memory

location 0 (test 53), 4-21

Memory

locations 0 to 4K words

(test

52), 4-21

Memory

management registers, 1-16

register

0, 1-20

register

1, 1-20

register

2, 1-20

register

3, 1-22

Memory

mapping, 1-I I

Memory

parity/ECC (test 47), 4-21

Memory

refresh, 6-19

Memory

sizing routine (test 54), 4-20

Memory

system error register, 1-32

Menlor~*

systcnl registers, 1-30

MFPD/

MFPI, 9-58

MFPS.

9-

.2 :1

INDEX-4

MFPT,

9-57

Microprocessor,

5-2

Miscellaneous

CPU and EIS (test 67),

4-19
MMU

aborts (test 63), 4-19

Mode

24, 2-10

24/26

(Mode 3), 4-2

Modes,

1-2

MODF/MODD,

10-19

MOV,

9-26

MSV

11-J memory modules, 2-1

MTPD/MTPI,

9-58

MTPS,

9-25

MUL,

9-31

MULF/MULD,

10-22

Multiple

faults, 1-23

Multiple-backplane

systems, 6-24

Multiple-precision,

9-8

N

NEG,

9-14

NEGF/NEGD,

10-23

Nesting,

11-11

Next

address multiplexer, 5-17

No

SACK timeout, 1-10

NOP,

5-7

ODT
commands,

3-3

entry

conditions, 3-2

mode,

2-10

timeout,

3-8

ODT

(Mode 2), 4-2

Optional

commands, 4-24

Oscillator,

5-15

control

signals, 5-16

Output

messages, 4-29

P

Page

address register, 1-18

Page

control register, 1-42

Page

descriptor register, 1-18

Parity

error, 1-29

detection,

1-29

Parity

generator, 5-30

Parity

interrupt and abort, 5-31

Physical

address, 1-14

PMG

count, 2-I0

PMI

bus control signals, 5-38

PMI

bus master signals, 7-1

Block

Mode, 7-1

Bus

Cycle, 7-1

PMI

Byte, 7-1

PMI

Write Strobe

.

7-1

PMI

cycle request, 5-12

PMI

data transfers, 7-9

block

data in, 7-11

data

in/data in pause, 7-9

data

out/data out byte, 7-13

PMI

interrupt protocol, 7-15

PMI

operation, 7-4

bus

device interrupt, 7-6

PMI

power-up/down, 7-15

PMI

signal assignments, 2-18

PMI

slave signals, 7-3

PMI

High Byte Data Parity, 7-3

PMI

Low Byte Data Parity, 7-3

PMI

Read Strobe, 7-3

PMI

Slave Buffer Full, 7-3

PMI

Slave Selected, 7-3

PMI

turned on and check UBA reboot

bit

(test 74), 4-18

PMI

Unibus adapter signals, 7-4

PMI

Busy, 7-4

PMI

Unibus Map Enable, 7-4

PMI

Unibus Memory, 7-4

PMI

Unibus System, 7-4

PMI

Unibus Timeout, 7-4

Popping

from a stack, 11-6

Position-defined

arbitration, 6-14

Position-dependent

code, 11-3

Position-independent

code, 8-16, 11-1

Power

status protocol, 6-18

Power-up

modes, 2-9

Power-up

to Mode 3

:

24 Mode (test 72),

4-18
Power-up

to Mode 2

:

OUT (test 73),

4-18
Power-up/power-down,

6-19

Predicted

parity, 5-30

Primary

bootstrap programs, 4-26

Primary

control system, 5-1

Private

memory interconnect (PMI),

1-34,

7-1

Processor

status word (PSW), 1-4

Processor

traps, 11-19

Program

control, 9-7

Program

counter, 1-4

Program

interrupt request register, 1-7

Programming

techniques, 11-1

Protection

modes, 1-1

PSW

operators, 9-8

Pushing

onto a stack, 11-5

Qualifiers,

4-3

Q

R

Read

interrupt vector, 5-10

Receiver

buffer register, 1-37

Receiver

control/status register, 1-36

Recursion,

11-17

Reentrancy,

I1-12

Reentrant

code, 11-12

Register

mode, 8-6

Register-deferred,

8-13

Relative

addressing mode, 8-18

Relative-deferred

addressing mode,

8-19
Rerun

test, 4-24

Reset,

9-56

Resident

boot programs, 4-5

Restart,

2-10

Restricted

LSI-I1 options, 2-15

ROL,

9-20

ROM

code, 4-1

disable,

2-11

ROM

ODT commands, 4-15

ROR,

9-19

RTI,

9-50

RTS,

9-46

RTT,

9-51

S

SBC,

9-23

SCC,

9-59

SEC,

9-59

Secondary

functional blocks, 5-2

Select

configuration parameters (2), 4-6

Selection

of NA <1

:0>

status, 5-17

SEN,

9-59

Serial

line interface, 1-35

Serial

line unit, 1-2

SETD,

10-23

SETF,

10-23

SETI,

10-24

SETL,

10-24

Setup

mode, 4-5

disable,

2-12

Setup

mode command 2, 2-7

Setup

table, 4-12

SEV,

9-59

SEZ,

9-59

Shift

and rotate, 9-8

Signed

conditional branch, 9-9

Single-backplane

systems, 6-25

Single-operand

addressing, 8-3

SOB,

9-47

Source

operand,

.8-3

SPL,

9-53

Stack,

11-5

uses,

11-8

Stack

pointer, 1-4

Stale

data, 1-32

Standalone

mode, 5-18

Standard

factory configuration, 2-2

Status

LED display, 2-7

Status

registers, clearing, 1-22

STCFD/STCDF,

10-25

STCFI/STCFL/STCDI/STCDL,
10-26

STEXP,

10-27

STF/STD,

10-27

STFPS,

10-28

Stretched

bus read, 5-7

STST,

10-28

SUB,

9-28

SUBF/SUBD,

10-29

Subroutine

advantages, 11-10

Sunset

loop, 1-8

Supervisor,

1-2

Supervisory

program, 1-10

SWAB,

9-21

Switchpack,

2-2

Switchpack

boot selections, 4-11

SXT,

9-24

T

Tag

comparator, 5-30

Tag

field, 1-27

Tag

parity bit (P2), 5-22

Tag

RAM, 5-23

Tag

store data, 5-22

Tag

valid bit (V), 5-22

Time-multiplexed

data/address bus, 5-6

Timeout

logic, 5-36

Transactions,

5-3

Transmitter

buffer register, 1-39

Transmitter

control/status register,

1-38
Trap,

9-49

Trap

and interrupt, 9-10

Trap-on-halt,

enable, 2-12

TST,

9-15

TSTF/TSTD,

10-30

TSTSET,

9-16

Turn

on MMU, run CPU and MMU

(test

75), 4-18

Typical

displays, 4-25

Typical

usage, 1-22

U

UBA

address overflow (test 40), 4-22

UBA

boot ROM (test 45), 4-21

UBA

cache data (test 37), 4-23

UBA

cache, enable, 2-12

UBA

cache LRU (test 36), 4-23

UBA

cache parity error (test 34), 4-23

UBA

cache tag store (test 35), 4-23

UBA

floating address/data (test 41),

4-22
UBA

map registers data path (test 44),

4-21
UBA

mapped diagnostic data (test 42),

4-22
UBA

register response (test 55), 4-20

UBA

unmapped diagnostic data

(test

43), 4-22

Unibus

adapter module (UBA), 1-34

signals,

7-2

compatible

options, 2-16

Unibus

map enable, 5-34

Unibus

memory address shorts

(test

31), 4-23

Unibus

memory data/byte exercise

(test

33), 4-23

Unibus

memory parity (test 32), 4-23

Unibus

system, 2-16

Unsigned

conditional branch, 9-10

User,

1-2

User

friendly

format,

2-9

mode,

4-28

User

program, 1-11

Valid

tag bits, 5-26

Version

V6

.0,

4-1, A-1

Version

V7

.0,

4-1, A-1, A-11

Version

V8

.0,

4-1, A-1, A-11

Virtual

address, 1-14

WAIT,

9-56

WRTLCK,

9-16

XOR,

9-34

V

W

Your comments and suggestions will help us in our efforts to improve the quality and usefulness of our
publications .

ce

ce -"
(a) Less than 1

	

(b) 1 to 3

	

(c) 4 to 6

	

(d) 7 to 9

	

(e) 10 or more
3 . What did you like most about this manual?

4 . What did you like least about this manual?

5 .

6 . List any errors you found in the manual . (Reference page, table, or figure numbers .)

7 . Do you have any additional comments?

READER'S COMMENTS

Name

	

Company -
Title

	

Department
Street

	

City

	

State/Country

	

Zip

Telephone No I	Date

KDJ11-B CPU Module User's GuideEK-KDJ1 B-UG-001

How do you rate this manual?
Indicate your opinion of the quality of the manual . For each aspect of quality, darken your response on the five-point scale,
where (1) = POOR and (5) = EXCELLENT

(a) Accuracy . c l) c 2) c 3, c4) 5 >
(b) Completeness . (1) c2) c 3, c4) c 5,
(c) Usefulness of Examples/Figures . c 1 , c 2- c3- c 4) c 5 ~
(d) Clearness of Language . c 1 ~ c2-, c 3- 4, c 5
(e) Helpfulness of Index/Table of Contents . < 1 ; c 2-) c3 D c4) c 5
(f) Consistency in Presenting Information . 1-; 2) c3- c4) c5)

(g) Logical Organization . c 1 j c2) c 3-, c4- c 5,
(h) Visual Appeal . 1 ; c2- 3) : 4 > c5)
(i) Relevance of Information . ~- 1 - ; (2 ~ c 3 A) c 5

(j) Ease of Learning . c 1 c 2) c 3- (4) c 5,
(k) Ease of Use . c 1 c 2 3 , , 4 : 5,
(I) YOUR OVERALL IMPRESSION . < 1 ; c 2, (3 ~ c 4 ~ 5)

(m) Quality Relative to Other Digital Manuals . c 1 , 2-, 3, c 4, c 5 >
(n) Quality Relative to Other Companies' Manuals c 1 > 2 , 3, 4, (5 ;

1 . Which of the following most closely describes your job? 1 cap cb-) cc :) cd :)
(a) Administrative support (d) Scientist/Engineer (g) Educator/Trainer c f D cgD ch) c i D

(b) Programmer/Analyst (e) Systems Manager (h) Computer Operator
(c) Software support (f) Sales (i) Other

2 . How many years of experience do you have with computers? 2 caD cb :) cc :) cd)

a 9

FOLD HERE AND TAPE

BUSINESS REPLY MAILFIRST CLASS

	

PERMIT NO . 33

	

MAYNARD, MA
POSTAGE WILL BE PAID BY ADDRESSEE
DIGITAL EQUIPMENT CORPORATION
Educational Services/Quality Assurance
12 Crosby Drive BUO/E08
Bedford, MA 01730

FOLD HERE

No PostageNecessaryif Mailed in theUnited States

