
RSTS/E
Programmer's Utilities Manual

Order No. AA-D749A-TC

Including AD-D749A-T1, T2

June 1982

This document describes the RSX-based utilities available to the
RSTS/E programmer. It contains information on the MACRO Assem-
bler, Librarian, Patch, and MAKSIL utilities .

digital equipment corporation, maynard, massachusetts

OPERATING SYSTEM AND VERSION : RSTS/E V7.2

SOFTWARE VERSION : RSTS/E V7.2

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corpora-
tion. Digital Equipment Corporation assumes no responsibility for any
errors that may appear in this document .

The software described in this document is furnished under a license, and
may be used or copied only in accordance with the terms of such license .

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by DIGITAL or its affiliated companies .

Copyright © 1979, 1981, 1982 Digital Equipment Corporation .
All Rights Reserved .

The postage-paid READER'S COMMENTS form on the last page of this
document requests your critical evaluation to assist us in preparing future
documentation .

The following are trademarks of Digital Equipment Corporation :

DEC

	

VT
DECUS

	

DECsystem-10
DECnet

	

DECSYSTEM 20
PDP

	

DECwriter
UNIBUS

	

DIBOL
VAX

	

Edusystem

IAS
MASSBUS
PDT
RSTS
RSX
VMS
d 90 8000

Commercial Engineering Publications typeset this manual using DIGITAL's
TMS-11 Text Management System .

Contents

Preface

Documentation Conventions

Chapter 1 Introduction

1.1

	

RSTS/E Utility Command Line	 1-1
1 .2

	

RSTS/E File Specifications	 1-2
1 .3

	

Accessing Utilities and Entering Command Lines	1-3
1.3 .1

	

Accessing Utilities	 1-3
1 .3.1 .1 Entering the RUN Command	1-4
1 .3.1 .2 CCL Command Names	 1-4

1 .3 .2 Entering Command Lines	 1-5
1 .3.2 .1 Entering the Complete Command Lines	1-5
1 .3.2 .2 Using Indirect Command Files	1-5
1 .3.2 .3 Using Continuation Lines	1-6

Chapter 2 Using the MACRO-11 Utility Program

Page
vii

2.1 Running the MACRO-11 Assembler	 2-2
2.1.1 Running MACRO in DCL	 2-2
2.1 .2 Running MACRO with the RUN Command or a CCL

Command	 2-4
2.1 .3 Using Indirect Command Files	 2-5

2 .2

	

File Specification Switches	 2-6
2 .2.1 Listing Control Switches	 2-7
2 .2.2 Function Control Switches	 2-8
2 .2.3 MACRO Library Switch	 2-9
2 .2.4 Assembly Pass Switch	 2-9

2.3

	

Error Messages	 2-10

Chapter 3 Using the Librarian Utility Program (LBR)

3 .1

	

Library Files	 3-1
3 .2 LBR Command Line	 3-2
3 .3

	

LBR Switches	 3-2
3.3 .1 Compress Switch (/CO)	 3-3
3 .3 .2 Create Switch (/ CR)	 3-4
3 .3 .3 Delete Switch (/ DE)	 3-5
3 .3.4 Default Switch (/DF)	 3-6
3 .3.5 Delete Global Switch (/DG)	 3-8
3 .3.6 Entry Point Switch (/EP)	 3-8
3.3.7 Extract Switch (/EX)	 3-10
3.3.8 Insert Switch (/IN) for Object and Macro Libraries	3-11
3.3.9 Insert Switch (/IN) for Universal Libraries	3-12

ill

3 .3.10 List Switches (/ LI, / LE, /FU)	 3-13
3 .3.11 Modify Header Switch (/MH)

	

	 3-14
3 .3.12 Replace Switch (/RP) for Object and Macro Libraries 3-15
3 .3.13 Replace Switch (/RP) for Universal Libraries	3-18
3 .3.14 Selective Search Switch (/SS)	 3-20
3 .3.15 Spool Switch (/ SP)	 3-20
3 .3.16 Squeeze Switch (/SZ)	 3-21

3.4

	

Combining Library Functions	 3-23
3.5

	

LBR Restrictions	 3-23
3.6 LBR Error Messages	 3-24

3.6.1 Effect of Fatal Errors on Library Files	3-24
3.6.2 List of LBR Errors	 3-25

Chapter 4 Using the Object Module Patch Utility (PAT) Program

4.1 How PAT Works	 4-2
4.2 Specifying the PAT Command Line	 4-4
4.3 How PAT Applies Updates	 4-4

4.3 .1 The Input File	 4-4
4.3 .2 The Correction File	 4-5
4.3 .3 Creating the Correction File	 4-5
4.3 .4 How PAT and the Task Builder Update Object Modules 4-6

4.3.4 .1 Overlaying Lines in a Module	4-6
4.3.4 .2 Adding a Subroutine to a Module	4-7

4 .3.5 Determining and Validating the Contents of a File	4-8
4.4 PAT Messages	 4-9

4.4.1 Information Messages	 4-9
4 .4.2 Command Line Errors	 4-10
4.4.3 File Specification Errors	 4-11
4.4.4 Input/ Output Errors	 4-12
4.4.5 Errors in File Contents or Format	4-13
4.4.6 Internal Software Error	 4-14
4.4.7 Storage Allocation Error	 4-15

Chapter 5 Using the MAKSIL Utility Program

iv

5.1

	

Creating a Run-Time System (RTS)	 5-1
5.2

	

Creating a Resident Library	 5-3
5 .3

	

Operating Instructions	 5-3
5 .4

	

Messages	 5-5
5.4 .1 Fatal Error Messages	 5-5
5 .4 .2 Diagnostic Messages	 5-8
5 .4 .3 Informational Messages	 5-9

Appendix A MACRO-11 Diagnostic Error Message Summary

Appendix B Librarian Utility Program (LBR) Files and Formats

U

B.1 Library Header	
B.2 Entry Point Table	
B.3 Module Name Table	
B.4 Module Header	

.B-1

.B-1

. B-1

. B-2

Index

Figures

3-1 MACRO Listing Before and After Running LBR with /SZ Switch . . 3-22
4-1 Updating a Module Using PAT	 . 4-2
4-2 Processing Steps Required to Update a Module Using PAT	 . 4-3
B-1 Standard Library File Format	 .B-2
B-2 Universal Library File Format	 .B-3
B-3 Contents of Library Header	 .B-4
B-4 Format of Entry Point Table Element	 . B-5
B-5 Format of Module Name Table Element	 . B-5
B-6 Module Header Format	 . B-5

Tables

1-1 File Specification Defaults	 . 1-2
1-2 File Extension Defaults	 . 1-3
1-3 Conventional CCL Names for RSTS / E Accessed RSX-Based Utilities .1-4
2-1 MACRO-11 Switches	 . 2-6
2-2 Arguments for / LI and / NL Switches	 . 2-7
2-3 Arguments for /DS and /EN Switches	 . 2-8
3-1 LBR Switches	 . 3-2
3-2 Sample Files Used in LBR Examples	 3-16
3-3 Output Library File after Execution of Example 1	 3-17
3-4 Output Library File after Execution of Example 2	 3-17
3-5 Output Library File after Execution of Example 3	 3-18
5-1 Task Builder Options for Virtual and Physical Address Range 5-2
5-2 Task Builder PAR and STACK Options for Various Sized Run-Time

Systems	 . 5-2

Preface

This manual describes four RSX-based utility programs available on
RSTS/E : MAC, LBR, PAT, and MAKSIL .

•

	

MAC - The MACRO-11 Assembler processes assembly language pro-
grams and produces single relocatable binary object files .

• LBR - The Librarian Utility is a library maintenance program that pro-
vides a means for creating, modifying, updating, listing, extracting, and
maintaining library files .

•

	

PAT - The Object Module Patch Utility is used to modify code in a relo-
catable binary object module .

•

	

MAKSIL - The Make a Save Image Library Utility is used to create a
resident library, a run-time system, or a multi-user task .

Audience Description

To use this manual, you should be familiar with the MACRO computer
language and have a working knowledge of the RSTS /E operating system .

Document Structure

This manual has five chapters and two appendixes :

•

	

Chapter 1 Introduction

Introduces you to the RSX-11M utilities as they are used on a RSTS/E
system.

•

	

Chapter 2 Using the MACRO-11 Utility Program

Describes how to run the MACRO assembler to convert MACRO source
code into object code .

•

	

Chapter 3 Using the Librarian Utility Program (LBR)

Shows how to create, modify, maintain, and use library files containing
MACRO modules.

•

	

Chapter 4 Using the Object Module Patch Utility Program (PAT)

Shows how to modify code in a relocatable binary object module .

•

	

Chapter 5 Using the MAKSIL Utility Program

Describes how to create a resident library, a run-time system, or a multi-
user task .

vii

• Appendix A MACRO-11 Diagnostic Error Message Summary

Describes the single character codes that identify MACRO programming
errors . (Appendix A does not, however, contain a description of the
MACRO input-output error messages. You must refer to Chapter 2 for
that information .)

•

	

Appendix B Librarian Utility Program (LBR) Files and Formats

Contains detailed information on the formats and contents of library
files .

Associated Documents

The PDP-11 MACRO-11 Language Reference Manual describes how to use
the MACRO-11 relocatable assembler to develop PDP-11 assembly lan-
guage programs .

The RSTS /E DCL User's Guide describes the use of DCL (DIGITAL Com-
mand Language) on RSTS/E .

See the RSTS /E Documentation Directory for more information on RSTS / E
manuals.

Documentation Conventions
This manual uses the following conventions :

(RET) This symbol represents a carriage return . Unless the man-
ual indicates otherwise, end all commands or command
strings with a carriage return .

This symbol invokes an indirect command file . The at sign
immediately precedes the file specification for an indirect
command file .

(/)

	

Slashes in the file specification precede switches or
qualifiers .

(.) Periods in the file specification separate the file name and
extension. When the file name is used without an exten-
sion, the period is not necessary .

UPPERCASE In discussions of syntax, uppercase letters represent the
command name, which you must type .

lowercase

	

Lowercase letters represent a variable, for which you
must supply a value .

[] Square brackets enclose an item that is optional . You may
include the item in brackets, or you may omit it, as you
choose .

(. . .)

	

The ellipsis symbol represents repetition . You can repeat
the item that precedes the ellipsis .

Chapter 1
Introduction

This chapter describes the following subjects :

1 . The RSTS/E command line .

2. The RSTS/E file specification.

3. The use of utilities and the entering of command lines .

4. The conditions under which you can use a utility .

These subjects are common to all the programmer's utilities described in
this manual.

1 .1 RSTS/E Utility Command Line

The general utility command line format is :

out fi1e, . . .outfi1e=infilet . . .infi1e

where outfile and infile are file specifications for the output and input files
to be operated on by the utility . The number of file specifications you can
enter depends on the utility invoked . The maximum length of a command
line is 80 characters for all utilities except MACRO, which sometimes al-
lows up to 132 characters . (See Section 2.2.)

This general format varies for each utility . Some utilities use the entire
command line and others use abbreviated forms of the command line . These
utilities also accept indirect files containing command lines, as described in
Section 1 .3.2.2 .

I

1 .2 RSTS/E File Specifications
A file specification consists of a filename that conforms to standard RSTS/E
conventions, plus switches that modify, or specialize, the command . File speci-
fications have the form :

device :[Project,Programmer]filename .extension/sw . . .

where all components are optional except the filename . The file specification
components are defined below :

device is the name of the device that stores the file . The device name
consists of two ASCII characters followed by an optional 1-or
2-digit decimal unit number; for example, LP or DT1 . Logical
device names of up to six alphanumeric characters may also be
used .

[project,

	

is the account or project-programmer number (PPN) associated
programmer] with the file. The default is the PPN of the account you have

logged into. Note that RSTS/E project-programmer numbers
are similar to RSX-user identification codes (UIC) .

filename

	

is the name of the desired file . The filename can contain up to
six alphanumeric characters .

extension is the 0- to 3-character filename extension . Files having the
same name but a different function can be distinguished from
one another by the file extension ; for example, LRB .TSK and
LRB.OBJ .

/ sw is a switch specification. More than one switch can be used,
each separated from the previous one by its slash (/) . The
switch name is a 2- to 4-character alphanumeric code that
identifies the switch and may also indicate negation of the
switch. The permissible switches and their syntax are pre-
sented for each utility in the pertinent chapter .

You can use RSTS / E-specific switches (such as / MODE and / SIZE) only with
the MAKSIL utility .

Table 1-1 lists the default assumptions for components of a file-specification
that are not designated .

Table 1-1 : File Specification Defaults

1-2

	

Introduction

Item Default

device The device last specified (SY :, if none) .

project-programmer The project-programmer number last specified (the account you

extension

have logged into, if there is no previous entry) . Any PPN associ-
ated with a previously specified logical device name does not carry
through .

See Table 1-2 .

switch Defaults for each utility described in Chapters 2 through 5 .

Following is an example of input to the MAC Assembler and defaults :

DK1 :IMG1 tMP1=IN1 tDBO :IN2,IN3

Device

	

File

DK1: IMG1 .OBJ
DK1: MPl .LST
SY: INI.MAC
DBO: IN2.MAC
DBO:

	

IN3.MAC

Table 1-2 lists the default assumptions for missing extensions .

Table 1-2 : File Extension Defaults

1 .3 Accessing Utilities and Entering Command Lines

The RSTS/E user can access an RSX utility in two ways, and after
invoking a specific utility, the user then has two choices for entering com-
mand lines. The paragraphs that follow describe the methods of accessing
utilities and entering command lines, respectively .

1 .3 .1 Accessing Utilities

The two ways to invoke a utility are :

1 . Type the RUN command .

2. Type a CCL command .

Introduction

	

1-3

Utility File Type Extension File Description

MACRO-11 Input CMD Indirect Command File
(MAC)

Output

MAC
.MLB
OBJ
.LST

Macro Module
Macro Module Library
Object Module
List File

Library Input CMD Indirect Command File
(LBR) Input or Output

Input or Output
Input or Output
Input or Output
Output

OBJ
MAC
OLB
MLB
LST

Object Module
Macro Source Module
Object Library Module
Macro Module Library
List File

Patch Input CMD Indirect Command File
(PAT)

Output
OBJ
OBJ

Object Module
Object Module

MAKSIL Input

Output

TSK
.STB
.CMD

LIB
.RTS
.CMD

Task Image
Symbol Table File
Indirect Command File

Resident Library File
Run-Time System File
Indirect Command File

1-4 Introduction

The paragraphs below describe each method .

1 .3 .1 .1 Entering the RUN Command - In response to the system READY
prompt, you can enter the general form of the RUN command :

RUN $utiliti 0

where utility is one of the following :

MAC .TSK

	

- MACRO-11 Assembler Utility
LBR.TSK

	

- Librarian Utility
PAT.TSK

	

- Patch Object Module Utility
MAKSIL.BAC - MAKSIL Utility

For example, you can invoke the Librarian utility by typing the following :

RUN $LBR RE

This prompt is displayed on the terminal to indicate the Librarian utility is
ready to accept a command line :

LBR>

Note that the use of the symbol $ indicates that the utility is stored in
account [1,2] . The system manager has the option of installing these utili-
ties in other accounts . Check with the system manager for the location of
these utilities .

1 .3.1 .2 CCL Command Names - If the system manager has installed CCL
commands for the programmer's utilities, you can invoke these utilities by
using the appropriate CCL command. Table 1-3 lists a recommended set of
CCL names for the RSX utilities invoked by RSTS/E .

Table 1-3: Conventional CCL Names for RSX-Based Utilities

As an example, you can invoke the PAT utility by typing :

PAT 09

The utility indicates its readiness to accept a command line by displaying
the following prompt :

PAT>

Utility CCL Name

MACRO-11 MAC

Librarian LBR

Patch Object Module PAT

Make Save Image Library MAKSIL

Alternatively, you can employ the following general form of the CCL
command :

PAT .command-line> RE

This form causes the Patch utility to run, process <command-line>, and
return to the the system prompt .

Some utilities can also be invoked by DCL commands . See the RSTSIE
DCL User's Guide for more information .

1 .3.2 Entering Command Lines

The two methods for entering utility command lines are :

1. Typing the complete utility command line .

2. Using an indirect command .

1 .3.2.1 Entering the Complete Command Lines - You can enter the required
command line either in response to a utility's prompt for input or as part of
the CCL command. Three examples of this method are :

1. You can employ the RUN command to invoke the utility . The utility
prompts for command line input. After execution is completed, the util-
ity reprompts for additional command input ; for example :

RUN $LBR®
LBR>BIGLIB / IN=SMALL ,MID tBIGEO
LBR>

2. You can invoke the utility by typing its CCL name . The utility prompts
for the command line. After execution is completed, the utility
reprompts for additional command input; for example :

LBRM
LBR>BIGLIB/IN=SMALL ,MID,BIGEM
LBR>

3. You can invoke the utility by typing its CCL name followed by a space
and the complete utility command line . After execution of the utility,
the system again displays the READY prompt; for example :

LBR BIGLIB/IN=SMALL ,MID,BIG(O
READY

1 .3.2.2 Using Indirect Command Files - The second method of entering a
utility command line is through the use of indirect command files . When
you specify an indirect command file, the utility interprets the contents of
the file in the command specified as a series of one or more command lines .
The advantage of an indirect command file is that you can enter a com-
monly used command line sequence once and store it for subsequent use
rather than reentering the sequence .

Introduction

	

1-5

I

I

1-6

	

Introduction

The @ character is the first character of the indirect command line .
Immediately following the @ character is a file specification . The format
for an indirect command is :

@device :[Pro .iect,Prolrammer] filename .extension

You can omit certain elements of the file specification . The following
defaults are then applied :

device

	

- SY:

[project,programmerl - Current PPN

.extension

	

- CMD

The following examples show the use of indirect commands .

Example 1

RUN $LBR
LBR>@ALPHA ED
LBR>

Example 2

LBR @BETA .CTL
READY

In the first example, only the filename, ALPHA, is specified . The device,
account, and extension fields are defaulted . In the second example, a
filename and extension are specified with the device and account defaulted .

NOTE

Indirect command files are not used by the MAKSIL
program .

1 .3.2.3 Using Continuation Lines - Only the MACRO utility allows you to
use continuation lines . See Chapter 2 for more information .

Chapter 2
Using the MACRO-11 Utility Program

RSTS/E has two MACRO language assemblers, one that runs under the
RT11 run-time system and one that runs under the RSX-11M run-time
system. This chapter describes how to use the RSX-based MACRO assem-
bler. Refer to the PDP-11 MACRO-11 Language Reference Manual for
complete information about MACRO-11 assembly language and the
RSTS /E RT11 Utilities Manual for information on the RT11-based
MACRO assembler .

The RSX-based MACRO assembler (MAC) converts MACRO source code
into object code. Output from the assembler can include any or all of the
following :

•

	

A binary relocatable object file that contains all the records and reloca-
tion information needed for task building

•

	

A listing of the source input file that provides both documentation for the
module and a tool for debugging the code

•

	

A table of contents listing that contains the line sequence numbers, the
page numbers, and the text accompanying each SBTTL directive

•

	

A symbol table listing that provides information about symbol names and
program sections (.PSECTs) that are referenced in the source program

To use the MACRO assembler, you should understand how to :

•

	

Run the assembler (including how to format command strings to specify
files MACRO uses during assembly)

•

	

Use file specification switches to override file control directives in the
source program

•

	

Interpret error messages

The following sections describe these topics .

June 1982

	

2-1

2 .1 Running the MACRO Assembler

There are two ways to run the MACRO assembler on RSTS/E :

•

	

With the DIGITAL Command Language (DCL) MACRO command

•

	

With the RUN command or a Concise Command Language (CCL)
command

You can also use indirect command files to enter command lines .

Use the method that best suits your needs and the conditions on your sys-
tem (default keyboard monitor, for example) .

2.1 .1 Running MACRO in DCL

You can recognize DCL by its dollar prompt ($). To run MACRO, type :

$ MACRO

After you press RETURN, DCL prompts for the input files :

Files :

Enter the input files in the form :

input filespec + . . . + n

For example :

Files :

	

FILET+FILE2+FILES

In this example FILE1, FILE2, and FILE3 are the source files to be
assembled .

You can also type a complete command on one line. For example :

$ MACRO MAIN .MAC

MACRO creates the object file MAIN.OBJ and the list file MAIN .LST from
the source file MAIN .MAC and places the files in your account on the
public structure .

Note that you cannot use the wildcard characters (?) and (*) with the DCL
MACRO command .

The DCL processor expands the file specifications you enter into more com-
plete file specifications, including device and account . The expanded com-
mand line can contain no more than 80 characters . If DCL detects more
than 80 characters in the expanded command line, you receive the error
message "?Command too long." Note that you can use a plus sign (+) or a
comma (,) to separate the input files .

2-2 Using the MACRO-11 Utility Program

	

June 1982

June 1982

By default, MACRO creates an object file and gives it the same name as the
first input file . The assembler also creates a list file by default . The default
file extensions are OBJ for the object file and LST for the list file .

Although an input file can be on a disk other than the system disk,
MACRO places the object and list files in your account on the public struc-
ture by default. You can include a device specification in the command line
directing MACRO to place the files on a specified device .

If you do not want MACRO to create an object file, use the /NOOBJ quali-
fier. Similarly, the /NOLIST qualifier tells MACRO not to create a list file .
You use these qualifiers when you want to see if a MACRO program assem-
bles, and you do not want to get an object or a list file (at least the first time
you run the program) .

To give the object or list file a name other than the default, use the
/OBJECT or /LIST qualifier to assign a specific file name . If you do not
include file extensions, the assembler assigns them for you . For example :

$ MACRO MAIN .MAC/OBJECT=MODULE/LIST=MODLST

In this example :

MACRO

	

Invokes the assembler .
MAIN.MAC

	

Is the source input file .
/ OBJECT = MODULE

	

Specifies MODULE as the object file name .
/LIST = MODLST

	

Specifies MODLST as the list file name .

You can also specify a library file . To do so, add the /LIBRARY qualifier to
the input file specification . For example :

$ MACRO MAIN .MAC+SECOND .LIB/LIBRARY/OBJECT=MODULE

In this example:

MACRO
MAIN.MAC
SECOND.LIB
/LIBRARY

/OBJECT = MODULE

Invokes the assembler .
Is a source input file .
Is a second source input file .
Is the library qualifier that marks the input
file SECOND .LIB as a library file created by
the LBR program .
Specifies MODULE as the object file name .

If you are at the Files : prompt and want to exit the MACRO assembler,
press CTRL/Z to return to the dollar prompt . If you have begun an assem-
bly, you can stop the process and return to the dollar prompt by pressing
CTRL/C . Note that CTRL / C is an abnormal exit that you should use only
as a last resort .

Refer to the RSTSIE DCL User's Guide for complete information about
DCL.

Using the MACRO-11 Utility Program 2-3

2.1 .2 Running MACRO with the RUN Command or a CCL
Command

On most RSTS/E systems, the MACRO assembler runs from the system
library account [1,2]. You can use the RUN command to run MACRO from
any keyboard monitor by typing :

RUN $MAC RE

The $ is a special account character representing [1,2] .

Your system manager may have installed a Concise Command Language
(CCL) command to run MACRO. If so, you can type :

MAC RE

In response, MACRO prompts with :

MAC :

Note that in DCL, typing MAC causes the Files : prompt to appear on your
terminal . To use the CCL MAC in DCL, type :

$ CCL MAC 90

The MAC> prompt indicates that the assembler is ready for a command of
the form :

output-filespec(s) = input filespec(s)

The file specifications define the object files, listing files and source files
appearing in a MACRO command line .

Type output and input file specifications in the form :

object,listing / s :arg = srcl,src2 srcn / s:arg

where :

object

	

Is the file specification of the binary object file produced
by the assembly process .

listing

	

Is the file specification of the assembly and symbol list-
ing produced by the assembly process .

/s:arg

	

Is one or more file specification switches and arguments .
(Section 2 .3 describes these switches and arguments .)

srcl,src2srcn Are file specifications for one or more MACRO source
files or MACRO library files .

You cannot use wildcard characters (?) and (*) in MACRO file
specifications .

2-4 Using the MACRO-11 Utility Program June 1982

If you omit the object or listing output file specification, the output file is
not created . For example :

MAC :>,LIST=SRC1,SRC2 am

In this case an object file is not created, but the list file is . Note that you
must include the comma before "LIST" .

If you do not enter an input file, you receive the error message "MAC -
ILLEGAL FILENAME ."

If you do not specify a listing file, MACRO displays on your terminal any
errors found in the source program .

You can enter a complete command on one line when you use the CCL
command, but you are limited to 80 characters . However, when you are at
the MAC> prompt, you can have a total of 132 characters in a command
line .

You can use continuation lines at the MAC > prompt, as long as the total
length does not exceed 132 characters . A continuation line allows you to
type a command line on more than one physical line . Use a hyphen to
indicate continuation after any element in the command line . For example :

MAC>OBJECT,LISTING=SRC1 ,- RE

MAC ::>SRC2 ,SRC3 ,-
MAC •S RCQ EE

If you are at the MAC> prompt and want to exit the MACRO assembler,
press CTRL/Z to return to the keyboard monitor prompt . If you have
entered a command string and begun an assembly, you can stop the process
and return to the keyboard monitor prompt by pressing CTRL / C .

2.1 .3 Using Indirect Command Files

Besides typing command lines using the methods described in Sections
2 .1 .1 and 2 .1 .2, you can also enter command lines by using an indirect
command file . When you specify an indirect command file, MACRO inter-
prets the contents of the file as one or more command lines . The advantage
of an indirect command file is that you can enter a commonly used com-
mand sequence once and store it for later use .

You can use EDT or any other editor to create the indirect command file .
For example, the contents of an indirect command file might be :

MAIN,MAIN = MAIN
MACRO,MACRO = MACRO

Here is an example that shows the use of an indirect command file :

RUN $MAC EE

MAC ::>@f i lespec EE

MAC >

June 1982

	

Using the MACRO-11 Utility Program

	

2-5

The file specified as "@filespec" contains MACRO command strings . After
opening this file, MACRO reads and executes command lines until it
detects the end of file . MACRO then displays the MAC> prompt . Press
CTRL/Z to exit .

You can also use indirect command files in a CCL command :

MAC @filespec RE

MACRO reads and executes command lines until it detects the end of file .
Control then returns to the keyboard monitor .

Note that you cannot use indirect command files with the DCL MACRO
command .

You can nest indirect command files in MACRO (that is, call one indirect
command file from another) . However, you cannot nest command files to
more than three levels . If you do, you receive the error message "MAC -
INDIRECT FILE DEPTH EXCEEDED ."

2.2 File Specification Switches
At assembly time, you can override specific MACRO directives that appear
in the source program . You can also tell MACRO how to handle specific
files during assembly. You do this by including special switches in the
MACRO command string. Table 2-1 lists the switches and describes their
effects .

Table 2-1 : MACRO-11 Switches

2-6 Using the MACRO-11 Utility Program June 1982

Switch Type Function

/LI:arg Listing
Control

Overrides source program directive NLIST .

/NL:arg Listing
Control

Overrides source program directive LIST .

/SP Listing
Control

Spools listing output .

/NOSP Listing
Control

Does not spool output (default value) .

/EN:arg Function
Control

Allows the use of arguments (see Table 2-3) to override source
program directive DSABL .

/DS:arg Function
Control

Allows the use of arguments (see Table 2-3) to override source
program directive ENABL .

/ML MACRO
Library

Indicates that the input file is a MACRO library file .

/PA:1 Assembly
Pass

MACRO is a 2-pass assembler. /PA:1 causes the associated file
to assemble during pass 1 only .

/PA:2 Assembly
Pass

Causes the associated file to assemble during pass 2 only .

Attach the /ML, / PA:1 and / PA:2 switches directly to the source files they
affect. Place other switches anywhere in the command string . For example,
the / LI switch affects the listing file regardless of where you place it in the
command string .

The next four sections describe how to use the file specification switches .

2.2.1 Listing Control Switches

Use the /Ll :arg and /NL :arg switches to :

•

	

Control the content and format of assembly listings at assembly time

•

	

Override the arguments of LIST and NLIST directives in the source
program

MACRO has default settings for the /LI and /NL switches when you do not
include arguments :

•

	

The /LI switch without an argument causes MACRO to ignore LIST and
.NLIST directives that have no arguments

•

	

The /NL switch without an argument causes MACRO to list only the
symbol table, the table of contents, and error messages

Table 2-2 lists the arguments you can use with /LI and /NL switches . See
the PDP-11 MACRO-11 Language Reference Manual for more information
on the meaning of these arguments .

Table 2-2: Arguments for /LI and /NL Switches

June 1982

	

Using the MACRO-11 Utility Program 2-7

Argument Listing Control Default

BEX Binary extensions . List

BIN Generated binary code . List

CND Unsatisfied conditionals, IF and ENDC statements . List

COM Comments . List

LD List control directives with no arguments . No List

LOC Address location counter. List

MC Macro calls, repeat range expansion . List

MD Macro definitions, repeat range expansion . List

ME Macro expansion . No List

MEB Macro expansion binary code . No List

SEQ Source line sequence number . List

SRC Source code . List

SYM Symbol table . List

TOC Table of contents . List

TTM 132-column line printer format when not specified . No List

For example, assume that the source program contains the following
sequence :

.NLIST MEB

(MACRO references)

.LIST ME 13

In this example, you disable the listing of MEB (Macro Expansion Binary)
code with the NLIST directive and later resume MEB listing with the
.LIST directive. If you include /LI :MEB in the assembly command string,
however, MACRO ignores both the NLIST MEB and the LIST MEB direc-
tives. This enables MEB listing throughout the program .

2.2.2 Function Control Switches

The /EN:arg and /DS :arg switches let you enable or disable functions at
assembly time and control the form and content of the binary object file .
These switches override ENABL and DISABL directives in the source
program.

Table 2-3 summarizes the /EN and /DS function arguments, their default
status, and the functions they control . See the PDP-11 MACRO-11
Language Reference Manual for more information on the meaning of the
arguments .

Table 2-3: Arguments for /EN and /DS switches

2-8 Using the MACRO-11 Utility Program June 1982

Argument Function Default

ABS Absolute binary output . Disable

AMA Assembly of all absolute addresses as relative
addresses .

Disable

CDR Source columns from 73 on are reserved for
comments .

Disable

FPT Floating point truncation. Disable

GBL Undefined symbols treated as globals . Disable

LC Lowercase ASCII input . Disable

LSB Local symbol block . Disable

PNC Binary output . Enable

REG Mnemonic definitions of registers . MACRO uses the
following definitions :

RO=%0

Enable

R1=%1
R2=%2
R3=%3
R4 = %4
R5 = %5
SP = %6
PC=%7

2.2.3 Macro Library Switch

Before using the macro library switch, you need to understand what macro
libraries are and how the assembler and Task Builder handle them . Macro
libraries are specially formatted files containing macro call definitions or
object module subroutines . The MACRO assembler and the Task Builder
can access these library files and extract code from them . Libraries are
convenient to use because they encourage sharing of code .

RSTS/E comes with a set of standard libraries . You can also create your
own libraries with LBR, described in Chapter 3 . The library files you create
using LBR are in the same format as those that DIGITAL supplies with the
operating system .

LB:RSXMAC.SML is one of the libraries that DIGITAL provides . It con-
tains definitions for all system directives . You do not have to specify
LB:RSXMAC.SML in the command string ; MACRO automatically searches
it as if it were the last source file in the command string . However, if you
include a macro library in the command string other than
LB:RSXMAC.SML, macro definitions contained in that library override the
macro definitions in LB :RSXMAC.SML .

Use the /ML switch to designate a source file as a macro library . The /ML
switch specifies that macros referenced in the MCALL directive come from
a library other than LB:RSXMAC.SML . When MACRO encounters the
/ML switch, it searches the designated library first . If the macro definition
is not found in the designated library, MACRO then searches
LB:RSXMAC.SML .

When MACRO locates an MCALL directive in the source code, it searches
macro libraries that are named in the command string in reverse order .
Thus, if two or more macro libraries contain definitions of the same macro
name, the macro library that appears last in the command string takes
precedence . For example :

MAC ><output file specification>=ALIB .MLB/ML,BLIB .MLB/ML,XIZ

Assume that each of the two macro libraries, ALIB and BLIB, contains a
macro called BIG, but with different definitions . If source file XIZ contains
a macro call MCALL .BIG, the system includes in the program the defini-
tion of .BIG that appears in the macro library BLIB .

2.2.4 Assembly Pass Switch

Use the /PA :arg switch to specify whether the source file assembles in pass
1 or pass 2 . The /PA:arg switch is meaningful only if you add it to a source
input file specification .

The specification /PA :1 calls for assembly of the file during pass 1 only .
During the first pass, the assembler groups all symbols as either local or
global, performs statement generation, locates all macro symbols, and, if
necessary, reads the macro definitions from libraries . At the end of pass 1,
the assembler will have processed all local references (such as undefined
global symbols) that are to be resolved by the Task Builder .

June 1982

	

Using the MACRO-11 Utility Program

	

2-9

Use the /PA :1 switch for files that assemble completely at the end of pass 1 .
Definition files (prefix files containing only symbol definitions) are a good
example. By specifying /PA :1 for these files, you can cause MACRO to skip
processing of these files in pass 2 . In some cases, this procedure can save
considerable assembly time .

If you have conditional assemblies or use PSECTs in your program, do not
use the /PA:1 switch . Using /PA:1 in these cases can cause errors in the
table of contents listing or can result in link time errors . The next two
paragraphs provide more details about these errors .

The table of contents listing may contain inaccurate page numbers if a
portion of a program is not assembled during pass 2 (using the / PA :1
switch). This is because page numbers are sent to the listing file during
pass 1, while listing pages are sent to the listing file during pass 2 . Page
numbering may change as the result of conditional assemblies (assembled
during pass 2), but these new page numbers will not appear in the table of
contents listing .

You must also be careful in declaring PSECTs, because the GSD (Global
Symbol Definition) portion of the OBJ file is output at the end of pass 1 . If
a portion of your program redefines a PSECT, or changes the size of a
.PSECT, this will not be reflected in the OBJ file and will result in link
time errors .

The specification /PA :2 calls for assembly of the file during pass 2 only .
During the second pass, the assembler actually generates the object module
and listing files, flagging with an error code in the listing file those source
statements containing errors . This switch (/PA :2), though not very useful,
is provided as part of the syntax .

2.3 Error Messages

MACRO can detect two types of errors: input-output and programming .
Input-output errors occur when you specify incorrect command strings to
MACRO or when problems arise with -1/0 devices . These errors appear on
your terminal when you assemble your program . Programming errors are
mistakes in source code syntax or faulty program logic . These codes auto-
matically appear on the assembly listings .

This section describes input-output errors ; see Appendix A for a description
of the single character codes that identify MACRO programming errors .

All the error messages listed here, except for the "MAC - COMMAND 1/0
ERROR" message, cause the current assembly to end . MACRO then tries to
restart by reading another command line. If a command 1/0 error occurs,
MACRO exits because it cannot get additional command line input .

MAC -- COMMAND FILE OPEN FAILURE

Description

MACRO cannot open the indirect command file . See "OPEN FAILURE ON
INPUT FILE" for meaning .

2-10

	

Using the MACRO-11 Utility Program

	

June 1982

Suggested Response

Make sure the command file exists and you have read access to the file .
Check spelling errors in your command line .

MAC -- COMMAND I/0 ERROR

Description

The file system detects an error during MACRO's attempt to read a com-
mand line. This is a fatal error and causes MACRO to exit . The device may
be off line or write-protected, or a bad block may exist in the file .

Suggested Response

Check the command file for correct contents . If the indirect command file
contains a bad disk block, re-create the file .

MAC -- COMMAND SYNTAX ERROR

Description

MACRO detects an error in the syntax of the command line .

Suggested Response

Check the command line for spelling errors . Make sure you have specified
an input file . Check all switches for correct spelling and correct arguments .

MAC -- ILLEGAL FILENAME

Description

The input file specification is missing or the input or output file specifica-
tion contains an illegal character . You cannot use the wildcard characters
(?) and (*) in MACRO file specifications .

Suggested Response

Check for spelling errors in the command line . Check file specifications for
correct format .

MAC -- ILLEGAL SWITCH

Description

MACRO does not recognize the specified switch .

Suggested Response

Check for spelling errors in the command line . Make sure all switch argu-
ments are legal .

June 1982

	

Using the MACRO-11 Utility Program

	

2-11

MAC -- INDIRECT COMMAND SYNTAX ERROR

Description

The name of the indirect command file specified in the MACRO command
line is syntactically incorrect .

Suggested Response

Check for spelling errors in the command line . Make sure there are no
wildcards in your file specification .

MAC -- INDIRECT FILE DEPTH EXCEEDED

Description

Indirect command files are nested to more than three levels .

Suggested Response

Restructure the command files so they are not nested to more than three
levels .

MAC -- INSUFFICIENT DYNAMIC MEMORY

Description

The assembler has run out of space .

Suggested Response

Segment your program and assemble the pieces or have the system mana-
ger increase the system's swap maximum .

MAC -- INVALID FORMAT IN MACRO LIBRARY

Description

The library file is corrupt (contains bad data) or the Librarian Utility Pro-
gram (LBR) did not create it .

Suggested Response

Make sure you are using the correct file . If the library file is corrupt,
rebuild it using LBR. (See Chapter 3 for details .)

MAC -- I/0 ERROR ON INPUT FILE

Description

The file system detected an error while reading a record from a source
input file or MACRO library file. For example, it found a line containing
more than 132 characters . This message can also indicate a problem with a
device, a corrupt source file, or a corrupt MACRO library .

2-12

	

Using the MACRO-11 Utility Program

	

June 1982

Suggested Response

Make sure all input lines do not exceed 132 characters . Check input file
specifications for errors .

MAC -- I/0 ERROR ON MACRO LIBRARY FILE

Description

This message has the same meaning as 1/0 ERROR ON INPUT FILE,
except that the file is a MACRO library file and not a source input file .

Suggested Response

Make sure the library file has the correct format and is not corrupt . Check
all library file specifications .

MAC -- I/0 ERROR ON OUTPUT FILE

Description

The file system detected an error in writing a record to the object output file
or the listing output file . This message can also indicate that a device
problem exists or the device is full .

Suggested Response

Ensure that there is enough space on the output media, the output media is
on line and ready, and the device is not write-locked .

MAC -- I/0 ERROR ON WORK FILE

Description

A read or write error occurred on the work file used to store the symbol
table. A read or write error occurs when there is a hardware problem on a
device or an attempt to write to a device that is full .

Suggested Response

Ensure that there is enough space on the output media, the output media is
on line and ready, and the device is not write-locked .

MAC -- OPEN FAILURE ON INPUT FILE

Description

One of the following conditions causes this error :

1 . The specified device, directory, or file does not exist .

2 . The volume is not mounted .

June 1982

	

Using the MACRO-11 Utility Program 2-13

3 . You do not have access to the file .

4. A hardware problem exists with the device .

Suggested Response

Check for each error condition . Also check for spelling errors in the input
file specifications .

MAC -- OPEN FAILURE ON OUTPUT FILE

Description

One of the following conditions causes this error :

1 . The specified device or directory does not exist .

2. The volume is not mounted .

3. The volume is full or the device is write-protected .

4. A hardware problem exists with the device .

Suggested Response

Check for each error condition. Also check for spelling errors in the output
file specifications .

MAC -- 64K STORAGE LIMIT EXCEEDED

Description

64K words of work file memory are available to MACRO . This message
indicates that the assembler has generated too many symbols (13,000 to
14,000) and it has run out of space . This means either the source program is
too large or it contains a condition that leads to excessive size, such as a
macro expansion that recursively calls itself without a terminating
condition .

Suggested Response

Check for recursive macro expansions . Try to use fewer macros . Segment
the program and assemble the separate parts, using global references .

2-14

	

Using the MACRO-1 1 Utility Program

	

June 1982

Chapter 3
Using the Librarian Utility Program (LBR)

With the Librarian Utility Program (LBR) you can create, update, modify,
list, and maintain user-generated object, macro, and universal library files .
LBR files contain two directory tables : an entry point table (EPT) that
contains entry point names (global symbols), and a module name table
(MNT) that contains module names . Both the EPT and MNT are alphabeti-
cally ordered .
Object module names are derived from .TITLE directives, while entry point
names are derived from defined global symbols . Once an entry point is
located, its associated module can be directly accessed .

Macro module names are derived from MACRO directives ; macro entry
point names are not applicable to library processing.

Universal module names are derived from file names at insert time ; univer-
sal entry point names are not applicable . You can use a universal library to
contain modules inserted from any kind of file .

Chapter 1 describes how to invoke the LBR utility . This chapter contains
descriptions of:

1. Library Files

2. LBR Command Line

3. LBR Switches

4. Procedures for combining Library Functions

5. LBR Restrictions

6. LBR Error Messages

3.1 Library Files

The library file consists of a one-block (256-word) library header, an entry
point table (each entry point has one entry point name four words long),
and a module name table (each entry has one module name four words
long) . In addition, each module has an eight-word header . See Appendix B
for detailed information on the formats and contents of library files .

3-1

1

I

I

3.2 LBR Command Line

LBR command lines have the general format:

outfile[,listfile]=infilel[tinfile2t . . .,infilen]

For a complete description of file specifications, see Section 1 .2 . As an alter-
native to using file specifications, you can use an indirect command file, as
described in Section 1 .3.2.2 . However, LBR does not accept nested indirect
command files.

3.3 LBR Switches

LBR uses switches appended to file specifications to invoke functions .
These switches are summarized in Table 3-1 .

Table 3-1: LBR Switches

3-2

I

I

Using the Librarian Utility Program (LBR)

Option Name
Switch

Mnemonic Function

Compress /CO Compress a library file .

Create /CR Create a library file .

Delete /DE Delete a library module and all of its entry points .

Default /DF Specify the default library file type .

Delete Global /DG Delete a library module entry point .

Entry Point /EP

/-EP

Control (include) the entry of entry point elements in
the library entry point table .

Do not include the entry of entry point elements in the
library entry point table .

Extract /EX Extract (read) one or more modules from a library file
and write them into the specified output file .

Insert /IN Insert a module .

List /LI

/LE

/FU

List module names .

List module names and module entry points.

List module names and full module description .

Modify Header /MH Modify a universal module header .

Replace /RP

/-RP

Replace a module .

Do not replace a module.

Spool /SP

/-SP

Spool the listing for printing .

Do not spool the listing .

Selective Search /SS Set selective search attribute in module header.

Squeeze / SZ

/-SZ

Reduce the size of macro source .

Do not reduce the size of macro source .

3.3.1 Compress Switch (/CO)

The Compress switch physically deletes all logically deleted records, moves
all free space to the end of the file, and makes the free space available for
new library module inserts . In addition, the library table specification may
be altered for the resulting library . LBR accomplishes this by creating a
new file that is a compressed copy of the old library file . In this compression
process, the actual data in the file is compressed; however, the physical
length of the file remains unchanged . The old library file is not deleted
after the new file is created (see Section 3 .3 .3) .

The /CO switch can be appended only to the output file specification . The
format for specifying the Compress switch is :

outfile/ CO :size : ept :mnt=infile

where :

outfile is the file specification for the compressed version of the input
file. The default extension is OLB if the input file is an object
library, MLB if the input file is a macro library, or ULB if the
input file is a universal library . Outfile must not have the same
name as infile .

/CO

	

is the Compress switch .

:size

	

is the size of the new library file in 256-word blocks . If omitted,
the default size is that of the old library file .

:ept is the number of entry point table (EPT) entries to allocate . If the
value specified is not a multiple of 64, the next highest multiple
of 64 is used . If omitted, the default value is the number of EPT
entries in the old library file . This parameter is always set to zero
for macro and universal libraries . The maximum number of
entries is 4096 .

:mnt is the number of module name table (MNT) entries to allocate . If
the value specified is not a multiple of 64, the next highest multi-
ple of 64 is used. If omitted, the default value is the number of
MNTs in the old library file . The maximum number of entries is
4096 .

infile specifies the library file to be compressed. The default file type is
.OLB for object libraries, MLB for macro libraries, and ULB for
universal libraries . The default file type is determined by the
current default file type .

For example :

LBR>LIBFIL/CO :100 . :15G . :70 .=FILE1 .0LB

Using the Librarian Utility Program (LBR)

	

3-3

I

I

I

I

I

I

File FILEI .OLB is compressed, and a new file, LIBFIL.OLB, is created with
the following attributes :

size = 100 blocks
ept = 192 entry points
mnt = 128 module names

NOTE
The numbers for block size, entry points, and module names
include decimal points ; if omitted, the numbers are inter-
preted as octal values . All examples and discussions in this
chapter assume decimal numbers .

3.3.2 Create Switch (/CR)

The Create switch allocates a contiguous library file on a direct access
device such as a disk . It initializes the library file header, the entry point
table, and the module name table . The /CR switch can be appended only to
the output file specifier . The format for specifying the Create switch is :

outfile/CR :size : ept :mnt :1ibtrae :infiletvpe

where :

outfile is the file specification for the library file being created. The
default file extension for libraries being created is OLB for an
object library, MLB for a macro library, or ULB for a univer-
sal library .

/CR

	

is the Create switch .

:size

	

is the size of the library file in 256-word blocks . The default
size is 100 blocks .

:ept is the number of entry point table (EPT) entries to allocate .
The default value is 512 for object libraries . This parameter
is always forced to 0 for macro libraries and universal
libraries. The maximum number of entries is 4096 . Once a
value is specified or defaulted, an error occurs if an Insert or
Replace operation exceeds the value .

:mnt is the number of module name table (MNT) entries to allocate .
The default value is 256 . The maximum number of entries is
4096. Once a value is specified or defaulted, an error occurs if
an Insert operation exceeds the value .

Jibtype specifies the type of library to be created . Acceptable values
are OBJ for object libraries, MAC for macro libraries, and UNI
for universal libraries . The default is the last value specified
or implied with the /DF switch (see Section 3.3 .4), or OBJ if
/DF has not been specified .

I

3-4

	

Using the Librarian Utility Program (LBR)

:infiletype specifies the default input file type for the created universal
library. If this value is not specified, the default input file type
for universal libraries is UNI. This value is not defined for
object or macro libraries .

In the example below, :ept and Jibtype are assigned default values, while
:size has the value 50 and :mnt has the value 160 :

LBR>LIBFIL/CR :50 : :160

If the values you specify are not multiples of 64, the EPT and MNT are
automatically expanded to the next disk block boundary . For example :

LBR>LIBFIL/CR : :12B . :64 . :OBJ=FILEI,FILE2 .FILE3 60

In this example, LBR performs two functions . First, LBR creates the library
file LIBFIL.OLB in the user's account on the public structure (SY:) . LIBFIL
has the following attributes :

:size
:ept
:mnt
:type

= 100 blocks (default size)
= 128 entry points
= 64 module names
= OBJ

Secondly, LBR inserts object modules into LIBFIL from the input files
FILEI .OBJ, FILE2.OBJ, and FILE3.OBJ, which reside in the user's
account on the public structure (SY :) . The Insert switch is the default
switch for input files (see Section 3 .3.8) .

3.3.3 Delete Switch(/ DE)

The Delete switch logically deletes library modules and their associated
entry points (global symbols) from a library file . Up to 15 library modules
and their associated entry points can be deleted with one Delete switch .
When LBR begins processing the /DE switch, it displays the following
message at the user terminal :

MODULES DELETED :

As modules are logically deleted from the library file, the module name is
displayed at the user terminal .

If a specified library module is not contained in the library file, a message
is displayed, and the processing of the current command is terminated . This
message is :

LBR -- *FATAL* - NO MODULE NAMED "name"

The /DE switch can be appended only to the library file specification .

Using the Librarian Utility Program (LBR)

	

3-5

I

I

NOTE

When LBR deletes a module from a library file, the module is
not physically removed from the file but is marked for dele-
tion. This means that, although the module is no longer
accessible, the file space that the module occupied is not
available for use, unless the deleted module is the last mod-
ule inserted . To physically remove the module from the file
and make the freed space available for use, you must use the
/CO switch to compress the library (see Section 3.3.1) .

The form for specifying the Delete switch is :

out file/DE :modulelI :module2 : . . . :modu1enI

where:

outfile is the file specification for the library file .

/DE

	

is the Delete switch .

:module is the name of the module to be deleted .

For example :
LBR>LIBFIL/DE :MOD1 :MOD2 :MOD3 ED
MODULES DELETED :

MOD1

MOD2

MOD3

In this example, LBR deletes the modules MOD1, MOD2, and MOD3 and
their associated entry points from the library file SY :LIBFIL.OLB.

3.3.4 Default Switch (/ DF)

The Default switch specifies the default library file extension . Acceptable
values are OBJ for object libraries, MAC for macro libraries, and UNI for
universal libraries. When /DF is specified without an argument, the de-
fault value of arg is OBJ .

Specifying a default value :

1. Sets the default extension argument for the Create switch (/CR) .

2. Provides an extension default value of MLB for macro libraries, or
.ULB if a universal library is being created, or OLB for object libraries
when opening an output (library) file, except in the cases of /CO and
/CR. When /CO is specified, the default applies to the library input
file. When /CR is specified, the default extension is OLB if an object
library is being created, MLB if a macro library is being created, or
.ULB if a universal library is being created . The /DF switch affects
only the name of the file to be opened ; thereafter, the library header
record information is used to determine the type of library file being
processed.

3-6 Using the Librarian Utility Program (LBR)

The / DF switch can be issued alone or appended to a library file specifica-
tion . The form for specifying the Default switch is :

outfile/DF :1ibtvPe . . .

or

/DF :libtype

where:

outfile

	

is the file specification for the library file .

/ DF

	

is the Default switch .

libtype

	

is OBJ for object library files, MAC for macro library files,
and UNI for universal files .

When you specify an extension other than OBJ, MAC, or ULB, the cur-
rent default library extension is set to object libraries, and the following
message is displayed :

LBR -- INVALID LIBRARY TYPE SPECIFIED

Examples :

1 . LBR > /DF :MAC ED
LBR>LIBFIL=INFILE

File LIBFIL.MLB is opened for insertion .

2 . LBR > /DF :MAC 90
LBR>LIBFIL/DF :OBJ=INFILE 0

File LIBFIL.OLB is opened for insertion .

3 . LBR > /DF :MAC 0
LBR>LI BF IL/CR

Macro library LIBFIL.MLB is created .

4 . LBR >/DF :MACED
LBR >LI BF IL/CR : : : :OBJ

Object library LIBFIL.OLB is created .

5 . LBR > / DF
LBR>TEMP/CO=L IBFIL

LIBFIL.OLB is opened for compression . If LIBFIL.OLB is an object
library, the file TEMP .OLB is created to receive the compressed output .
If LIBFIL.OLB is a macro library (a nonstandard use of the extension
.OLB), the file TEMP.MLB is created .

6 . LBR > / DF : OBJ
LBR>TEMP/CO=LI BF IL .MLB

Assuming that file LIBFIL.MLB is a macro library, the macro library
file TEMP.MLB is created to receive the compressed output .

Using the Librarian Utility Program (LBR)

	

3-7

I

I

I
I

I

I

I

3.3.5 Delete Global Switch (/DG)

The Delete Global switch deletes a specified entry point (global symbol)
from the EPT . Up to 15 entry points may be deleted with one Delete Global
switch. This switch does not affect the object module, which contains the
actual symbol definition .

When LBR begins processing the /DG switch, it displays the following
message on the user terminal :

ENTRY POINTS DELETED :

As entry points are deleted from the library file, each deleted entry point is
displayed on the user terminal . If a specified entry point is not contained in
the EPT, an error message is displayed on the user terminal, and the pro-
cessing of the current command is terminated :

LBR -- *FATAL* - NO ENTRY POINT NAMED "name"

The /DG switch can be appended only to the library file specification .

The format for specifying the Delete Global switch is :

outfile/DG :global 1[:91obai2 : . . . :globaln]

where :

outfile is the library file specification .

/DG

	

is the Delete Global switch .

global is the name of the entry point to be deleted .

For example :

LBR>LIBFIL/DG :GLOB1 :GLOB2 :GLOB3

ENTRY POINTS DELETED :

GLOB1

GLOB2

GLOB3

In this example, the entry points GLOB1, GLOB2, and GLOB3 are deleted
from the library file named SY :LIBFIL.OLB .

3.3.6 Entry Point Switch (/EP)

The Entry Point switch includes or excludes entry point elements in a
library entry point table . This switch can be specified in three ways :

/EP

	

Include entry points in the entry point table .
/-EP

	

Do not include entry points in the entry point table .
/NOEP Do not include entry points in the entry point table .

3-8

	

Using the Librarian Utility Program (LBR)

/EP causes all entry points in a module or modules to be entered in the
library entry point table .

/-EP or /NOEP provides for a module to be included in a library while
excluding the entry points in that module from being entered in the library
entry point table .

/EP and /-EP can be applied in the same command line . For example, a
particular input file with /-EP overrides the effect of /EP in the output file .
/EP is the LBR default ; if the switch is not specified, all entry points are
entered into the library entry point table . The Entry Point switch has no
effect on macro or universal libraries. The formats for specifying the Entry
Point switch are :

outfile[/EP

	

]=infileinfilen
C /-EP]
C /NOEP]

or

outfile=infile[/EP

	

], . . .infilen[/EP

	

]
C /-EP]

	

C /-EP]
C /NOEP]

	

C /NOEP]

or

outfile[/EP

	

)=infile, . . .infi1en[/EP

	

]
C / -EP]

	

C / -EP]
[/NOEP]

	

C /NOEP]

where :

outfile is the output file specification . When the entry point switch is
applied to this file specification, LBR assumes each of the input
files contains modules for which entry points are to be either
included or excluded .

infile is an input file specification . When the Entry Point switch is ap-
plied to an input file specification, LBR assumes only the input
file(s) has the entry point to be included or excluded .

/-EP is useful for including modules that contain duplicate entry point
names in the same library . /-EP lets you enter a module in the library
without including its entry points in the library entry point table .

/-EP is also useful in the case where the Task Builder uses only module
names to search for modules in an object module library . In this case,
entries in the library entry point table are not required . /-EP can be used
to exclude entry points in the library entry point table .

Depending on whether the Entry Point switch is applied to the output
specifier or to an input specifier, it has either a global or a local effect .

When applied to the output file specifier, the Entry Point switch has a
global effect . That is, LBR either includes all entry points in the entry point
table or excludes all entry points from the entry point table .

Using the Librarian Utility Program (LBR)

	

3-9

I

I

When applied to an input file specifier, the Entry Point switch has a local
effect . That is, LBR either includes entry points in the entry point table or
excludes entries from the entry point table for only those modules to which
the switch is applied .
The positive and negative forms of the switch may be applied to both the
output and input file specifiers . For example, the effect of /EP applied to
the output file can be overridden by applying /-EP to a specific input file .

Entry points in an object module are not affected by the Entry Point switch ;
the Entry Point switch permits you to either include or exclude entries in
the library entry point table .

3.3.7 Extract Switch (/EX)

The Extract switch reads one or more modules from a library file and
writes them into a specified output file . If more than one module is
extracted, the modules are concatenated in the output file . The extract
operation has no effect on the library file from which the modules are read ;
that file remains intact . Up to eight modules may be specified in one ex-
tract operation for object and macro libraries ; however, only one module
may be specified in one extract operation for a universal library .

For object and macro libraries, if no modules are specified in the command
line, all modules in the library are extracted and concatenated in the out-
put file in alphabetical order .
For universal libraries, only sequential files can be extracted to a record-
oriented device such as a terminal .

The /EX switch may be applied only to input file specifications . The format
for specifying /EX is :

out file=infile/ EX I :modulename : . . .modulename]

where :

outfile is the file specification for the file into which extracted
modules are to be stored . If the input modules are object
modules, the default extension for this file is OBJ . If the
input modules are macro definitions, the default extension
is MAC . If the library is a universal library, the outfile
retains the infile type of the module extracted . (However,
you are allowed to extract only one universal library mod-
ule at a time .)

infile specifies the library file from which the modules are to be
extracted. The default extension for this file is ULB, OLB
or MLB, depending on the current default library type .

/EX

	

is the Extract switch .

modulename is the name of the module to be extracted from the library .

3-10

	

Using the Librarian Utility Program (LBR)

Consider the following examples :

LBR>DRIVER=LIBRY/EX :DXDRV :DKDRV :TTDRV 0

The object modules DXDRV, DKDRV, and TTDRV are concatenated and
written into the file DRIVER .OBJ .

LBR>KB :=LB :TSTMAC .SML/EX :QIO$$ RE

The macro QIO$$ is displayed at the issuing terminal .

LBR >TEST .OBS=TEST/EX M

All of the modules in the library TEST.OLB are written into the file
TEST.OBS in alphabetical order .

3.3.8 Insert Switch (/IN) for Object and Macro Libraries

The Insert switch inserts library modules into an existing library file . An
LBR command line is limited to 80 characters . Each file specified can con-
tain any number of concatenated input modules . For macro libraries with
nested macros, only first-level macro definitions are extracted from the
input files. All text outside the first-level macro definitions is ignored . The
/IN switch is the default library file option and can be appended only to the
library file specification. Note that the number of MNTs and EPTs inserted
cannot exceed the number defined for the file at its creation .

When you attempt to insert an input module that already exists in the
library file, the following message is displayed on the initiating terminal :

?LBR -- *FATAL* DUPLICATE MODULE NAME "name" IN filename

Similarly, if you try to insert a module containing an entry point that
already exists in the EPT, the following message is displayed on the initiat-
ing terminal :

?LBR -- *FATAL* DUPLICATE ENTRY POINT "name" IN filename

The format for specifying the Insert switch is :

outfile[/IN]=infilel[,infile2, . . .,infilen]

where :

outfile is the file specification for the library file into which the input
modules are to be inserted. The default extension depends on the
current default (see Section 3 .3 .4) . This extension is OLB if the
current default is object libraries and MLB if the current default
is macro libraries .

I IN

	

is the Insert switch .

Using the Librarian Utility Program (LBR)

	

3-11

I

infile is the file specification for the input file containing
modules to be inserted into the library file. The default extension
is OBJ if outfile is an object library and MAC if outfile is a
macro library .

For example :

LBR>LIBFIL/IN=FILEI,FILE2,FILE3 RE

The modules contained in the files FILE1, FILE2 and FILE3, which reside
in your account on the public structure (SY:), are inserted into the library
file LIBFIL, which also resides in your account on SY : . The default exten-
sion for files FILE1, FILE2, and FILE3 is OBJ if LIBFIL is an object
module library and .MAC if LIBFIL is a macro library .

3.3.9 Insert Switch (/IN) for Universal Libraries

The Insert switch works in basically the same way for universal libraries as
it does for object libraries and macro libraries. However, when inserting a
file into a universal library, the /IN switch is normally applied to the input
file. Furthermore, you can specify a module name and descriptive informa-
tion as switch values in the command line . In addition, LBR copies input
file attributes to the module header .

The Insert switch format for universal libraries is :

outfile=infile/IN :name : op :op : . . .

where :

outfile specifies the universal library into which the file infile is to be
inserted .

infile specifies the input file to be inserted into outfile. The default for
the file type is the value indicated at the universal library's crea-
tion time. (See Section 3 .3 .2 .)

I IN

	

specifies the Insert switch .

:name optionally specifies the module name (up to six Radix-50 charac-
ters). The default is the first six characters of the input file name .

:op specifies optional descriptive information (up to six Radix-50
characters) to be stored in the module header . If you define one or
more of the options, you must include colons to hold the place for
each of the preceding options in the specification .

For example :

LBR>RICKLB .ULB=JOE . TXT/IN :MOD1 :THIS :IS :JAN2 :TEXT

In this example, LBR inserts JOE .TXT into the universal library
RICKLB.ULB as MOD1 . "THIS", "IS", "JAN2", and "TEXT" are stored in
the module header.

3-12

	

Using the Librarian Utility Program (LBR)

You can insert JOE .TXT without the Insert switch and its values . As a
result, all the information that you normally specify with switch values
assumes the defaults described in this section .

3.3.10 List Switches (/ Li, / LE, /FU)

The List switches produce a printed listing of the contents of a library file .
Three switches allow you to select the type of listing desired :

/LI

	

Produces a listing of the names of all modules in the library file .
/ LE

	

Produces a listing of the names of all modules in the library file
and their corresponding entry points .

/FU Produces a listing of the names of all modules in the library file
and give a full module description for each ; that is, size, date of
insertion, and module-dependent information .

These switches can be appended only to the output file specification or the
list file specification .

The / LI switch is the default value and need not be specified when a listing
file has been specified or when /LE or /FU is included in the command .

The format for specifying List switches is:

infileC,listfiIeI/switch IesI

where :
infile

	

is the file specification for the library file whose content is to
be listed .

listf le

	

is the optional listing file specification . If not specified, the
listing is displayed at the user terminal .

switch[es]

	

is the list option or options selected .

NOTE

If listfile is specified, its default device and account (PPN) is
the same as the library file . Specify SY : if the listfile is on the
public structure, and specify your own account for listfile if
the library file is not on your account .

For example :

1 . LBR>LIBFIL/LI W

In this example, a listing of the names of all the modules contained in
file SY:LIBFIL.OLB is displayed on the user terminal .

2 . LBR>LIBFIL/LE

In this example, a listing of the names of all the modules and their
entry points (contained in file SY :LIBFIL.OLB) is displayed on the user
terminal .

Using the Librarian Utility Program (LBR)

	

3-13

I
I

I

3 . LBR>LIBFIL/FUt

In this example, a listing of the names of all the modules and a full
description of each module contained in file SY:LIBFIL.OLB are dis-
played on the user terminal .

4 . LBR>DK1 :[200,200]LIBFIL,LP : /LE/FU

In this example, a listing of the names of all the modules, their entry
points, and a full description of each module for file LIBFIL, residing in
directory [200,200] on DK1 :, is printed on the line printer .

3.3.11 Modify Header Switch (/ MH)

The Modify Header switch pertains only to universal libraries and allows
the user to modify the optional user-specified information in the module
header .

The format of the switch is :

outfile/MH :modu1e :oP :oP . . .

where :

outfile specifies an output file for the universal library. The file type
defaults to ULB .

/ MH

	

specifies the Modify Header switch .

:module specifies the name of the module whose descriptive information is
to be modified .

:op specifies the optional user information (up to six Radix-50
characters) to be stored in the module header. The default is null
and indicates that the corresponding information field is not to be
changed. Entering a pound sign (#) clears the corresponding
information field .

For example, the optional descriptive information for module A of
RICKLB .ULB is :

"CAROL" "BOB" "LONI" "ALICE" "PHRED"

The LBR command is :

LBR>RICKLB/MH :A :BOB :CAROL :TED : :#®

The optional descriptive information for Module A in file RICKLB is
changed to :

"BOB" "CAROL" "TED" "ALICE"

	

"

3-14

	

Using the Librarian Utility Program (LBR)

3.3.12 Replace Switch (/RP) for Object and Macro Libraries

The Replace switch replaces modules in an existing library file with input
modules of the same name. Note that the number of EPTs placed into the
file cannot exceed the number defined for the file at its creation . In addi-
tion, each input file can contain any number of concatenated input
modules .

For macro libraries, only first-level macro definitions are extracted from
the replacement files . LBR recognizes only uppercase characters in macro
directives .

When a match occurs on a module name, the existing module is marked for
deletion, and all of its entries are removed from the EPT . If there is also an
entry point name match, the condition is fatal and terminates the current
command with an error message (see Section 3 .6.2) .

As each module in the library file is replaced, a message is displayed on
the user terminal . This message contains the name of the module being
replaced :

MODULE "name" REPLACED

If the module to be replaced does not exist in the library file, LBR assumes
that the input module is to be inserted and automatically inserts it without
displaying a message .
The /RP switch can be specified in either of the following ways :

1 . Global - The /RP switch is appended to the library file specification,
and all of the input files are assumed to contain modules to be replaced .

2. Local - The /RP switch is appended to an input file specification, and
only. the file to which the /RP switch is appended is considered to con-
tain modules to be replaced .

Global Format:

outfile/RP=infilelC,infi1e2#infi1enI

where :

outfile is the file specification for the library file . The default extension
depends on the current default (see Section 3.3.4) . If the current
default is object libraries, the extension is OLB, and if the cur-
rent default is macro libraries, the extension is MLB .

/RP

	

is the Replace switch .

infile is the input file specification for the file that contains modules to
be replaced in the library file. The default type is OBJ if outfile is
an object library or MAC if it is a macro library .

Using the Librarian Utility Program (LBR)

	

3-15

I

I

I

I

You can use this format of the /RP switch to specify a list of input files
without having to append the /-RP switch to each file .

To override the global function for a particular input file that should not be
replaced, append /-RP to the desired input file specifier .

Local Format :

outfile=infiIeI/RPC,infile2/RP, . . .,infi1en/RPI

where :

outfile is the file specification for the library file . The local format
default is the same as the global format default described above .

infile is the input file specification for the file that contains modules to
be inserted or replaced in the output library file . The local format
default is the same as the global format default described above .

/RP is the Replace switch and, when appended to an input file specifi-
cation, constitutes the local format of the switch . This overrides
the LBR default (Insert) and instructs LBR to treat the modules
contained in the specified file as modules to be replaced .

The files used in the following four examples, and the modules contained
within each file, are listed in Table 3-2 . For the examples, the pertinent
files are assumed to reside in the default directory on the default device,
and the initial state of the library file is assumed to be as listed in
Table 3-2.

Table 3-2 : Sample Files Used in LBR Examples

1. LBR >LI BF IL/RP=FILEA,FILEB,FILEC(0

MODULE "FILEA" REPLACED
MODULE "FILEBI" REPLACED
MODULE "FILEB2" REPLACED
MODULE "FILECI" REPLACED
MODULE "FILEC2" REPLACED

In this example, the global format for the /RP switch is used . Object
modules from the input files FILEA, FILEB, and FILEC replace
modules by the same names in the library file named LIBFIL . The
resulting library file is shown in Table 3-3 .

3-16

	

Using the Librarian Utility Program (LBR)

Output
Library File Input Files

File Name LIBFIL.OLB FILEA.OBJ FILED.OBJ FILEB.OBJ FILEC.OBJ

Object
FILEC1
FILEC2

FILEA FILED1
FILEB2

FILEB1
FILEC2

FILEC1
FILED2

FILEB1 FILEB3 FILEC3
Modules FILEB2

FILEA

Table 3-3: Output Library File After Execution of Example 1

2. LBR>LIBFIL=FILED t FILEA /RPM

MODULE "FILEA" REPLACED

LIBFIL.OLB

FILECI

FILEC2

* FILEC3

FILEB1

FILEB2

* FILEB3

FILEA

*These modules did not exist on the library file prior to
the execution of this example, but they did exist on the
input files. LBR, therefore, assumed that they were to be
inserted . Since LBR handled these modules as a normal
insert, no message was printed on the input terminal .

In this example, the local format of the /RP switch is used . The object
module FILEA from file FILEA is replaced in the library file LIBFIL .
The object modules in the file FILED are inserted in the library file .
(See Section 3 .4.8 .) The resulting library file is shown in Table 3-4 .

Table 3-4: Output Library File After Execution of Example 2

*This module replaced .

**These modules inserted .

	

∎

3 . LBR >LI BF IL/RP=FILEA,FILER,FILEC,FILED/-RP RE

MODULE "FILEA" REPLACED
MODULE "FILECI" REPLACED
MODULE "FILEB2" REPLACED
MODULE "FILEC1" REPLACED
MODULE "FILEC2" REPLACED

Using the Librarian Utility Program (LBR)

	

3-17

LIBFIL.OLB

** FILED1

** FILED2

FILECI

FILEC2

FILEB1

FILEB2

* FILEA

I In this example, the /-RP switch overrides the global format of
the command. Object modules in files FILEA, FILEB, and FILEC are
processed as modules to be replaced, and file FILED is processed as a
file that contains modules to be inserted . The resulting library file is
shown in Table 3-5 .

Table 3-5 : Output Library File After Execution of Example 3

LIBFIL.OLB

** FILED1

** FILED2

FILEC1

FILEC2

* FILEC3

FILEB1

FILEB2

* FILEB3

FILEA

*These modules were inserted by default .

**These modules were specified to be inserted . Had a
module of the same name been present, a fatal error
message would have been issued . See Example 4 .

4 . LBR •L IBFIL/RP=FILERtFILEB/-RP,FILEC RE

MODULE "FILER" REPLACED
?LBR -- *FATAL* -- DUPLICATE MODULE "FILEBI" IN FILEB .OBJ

In this example, only module FILEA from file FILEA was replaced . The
user specified that the modules in file FILEB not be replaced (/-RP),
but inserted . One of the modules contained in file FILEB duplicated an
already existing module in file LIBFIL (see Table 3-2) . Therefore, LBR
issued the fatal error message and terminated the processing of the
current command .

3.3.13 Replace Switch (/RP) for Universal Libraries

Use the Replace switch for universal libraries in the same way as for macro
and object libraries. In addition, you can specify the same values for the
Replace switch as for the Insert switch for universal libraries. (See Section
3 .3 .9 .) You can specify the /RP switch with either the infile or the outfile .

The global Replace switch format for universal libraries is :

outfile/RP :name :oP :oP . . .=infile[tinfile2t . . .infilen]

3-18

	

Using the Librarian Utility Program (LBR)

The local Replace switch format for universal libraries is :

outfile=infile/RP :name : op :op . . .C,infi1e2, . . .infi1enI

where :

outfile specifies the universal library file .

infile specifies the input file that replaces modules in the library file .
The default for the file extension is the value indicated at the
universal library's creation time . (See Section 3.3.2 .)

/RP

	

specifies the Replace switch .

:name optionally specifies the module name to be replaced (up to six
Radix-50 characters) . The default is the first six characters of the
infile name .

:op specifies optional descriptive information (up to six Radix-50
characters) to be stored in the module header . The default is null .
If only part of the information set is specified, all preceding colons
must be supplied .

For example :

LBR ?TEXT .ULB=DEBBIE .TXT/RP : :THIS :IS :JAN3 :UPDATE

MODULE "DEBBIE" REPLACED

In this example, LBR replaces the DEBBIE module in the universal library
TEXT.ULB with an updated module from file DEBBIE .TXT. The date of
replacement is specified by the user optional information and inserted in
the module header. Note that the optional name is omitted .

The initial state of the library file is shown in Table 3-6 . The resulting
library file is shown in Table 3-7 .

Table 3 - 6: Sample Files for Universal Library Replace Example

Table 3-7: Output Library File After Execution of Universal
Library Replace Example

TEXT.ULB;1

DEBBIE
BERNIE

*

*The module DEBBIE was replaced . If a different infile were specified, that file would be
become module DEBBIE and occupy the same location in TEXT .ULB .

Using the Librarian Utility Program (LBR)

	

3-19

I

I

I

Output
Library File Input Files

File Name TEXT.ULB ;1 DEBBIE.TXT

Modules DEBBIE

BERNIE

I

I

3.3.14 Selective Search Switch (/SS)

The Selective Search switch sets the selective search attribute bit in the
module header of each object module inserted into an object library . The
switch has no effect when applied to modules being inserted into a macro
library. You use the switch only on input files for insertion or replacement
operations, and it affects all modules in the input file to which it is applied .
Object modules with the selective search attribute bit set are given special
treatment by the Task Builder . Global symbols defined in object modules
with the selective search attribute are included in the Task Builder's sym-
bol table only if they are previously referenced by other modules . Therefore,
only referenced global symbols are listed with the module in the Task
Builder's memory allocation file, thereby reducing task build time . The /SS
switch should be applied to object files whose modules contain only absolute
(not relocatable) symbol definitions . See the RSTS/E Task Builder
Reference Manual, Appendix C, for more information .

The format for the Selective Search switch is :

outfile=infilel/SSEtinfile2/SS, . . .tinfiIen/SS]

where :

outfile is the file specification for the library file .
infile

	

is the file specification for the input file that contains modules to
be selectively searched .

/SS

	

is the Selective Search switch .

3.3.15 Spool Switch (SP)

The Spool switch determines whether or not the file is queued to the line
printer. If you include the Spool switch, the file is queued and printed, but
only if the spooling package is running . The default is /-SP, which means
that the file is not to be printed .

The /SP switch can be appended only to the list file specifier .

The format for the Spool switch is:

outfile,listfileI/SP] or C/-SP]

where :

outfile specifies the library file .
listfile specifies the listing file .
/SP or /-SP specifies the Spool switch .

3-20

	

Using the Librarian Utility Program (LBR)

Example

LBR>RICKLB/DE :SHEILA . RCKLST/SP

In this example :

1 . The module SHEILA and its associated entry points are deleted from
the library file SY :RICKLB .

2. The listing of the contents of the resulting library file RICKLB is writ-
ten to the list file SY :RCKLST.LST. The file is automatically printed .

3.3.16 Squeeze Switch (/ SZ)

The Squeeze switch reduces the size of macro definitions by eliminating all
trailing blanks and tabs, blank lines, and comments from macro library
files . This switch has no effect on object libraries or universal libraries .

The / SZ switch can be specified in a global or local format .

1 . Global format - The / SZ switch is appended to the library file specifica-
tion, and all of the input files are assumed to contain modules to be
squeezed .

2. Local format - The / SZ switch is appended to an input file specifier,
and only the file to which the /SZ switch is appended is considered to
contain modules to be squeezed .

Global Format

outfile/SZ=infileI [tinfi1e2t . . .,infi1enI

where :

outfile is the file specification for the library file .

/ SZ

	

is the Squeeze switch .

infile

	

is the file specification for the input file that contains modules to
be squeezed before being inserted into the library file .

You can use this format of the / SZ switch to specify a list of input files
without having to append the / SZ switch to each file .

To override the global squeeze function for a particular input file that is to
be inserted but not squeezed, append /-SZ or / NOSZ to the desired input
file specifier .

Local Format

outfile=inf i 1el /SZE ,inf i 1e2 /SZ t . . . tin f i len /SZ]

where :

outfile is the file specification for the library file .

Using the Librarian Utility Program (LBR)

	

3-21

I

I

The / SZ switch scans for semicolons from right to left and deletes text from
right to left until the first semicolon is encountered . Only the rightmost
semicolon and the text to its right are deleted . If the line contains a semi-
colon embedded in meaningful (non-comment) text and you want comments
squeezed, code a dummy comment for that line . The / SZ switch uses only
this rightmost comment during squeeze processing .

Figure 3-1 shows the use of the LBR / SZ switch . A file containing input
text to be squeezed is illustrated, along with the text actually inserted into
the library file after the squeeze operation has been completed .

Figure 3-1 : MACRO Listing Before and After Running LBR with
/ SZ Switch

BEFORE BEING SQUEEZED

.MACRO MOVSTR RX,RY,?LBL

- NOTE :

	

,
s

	

BOTH ARGUMENTS MUST BE REGISTERS

	

;

LBL :

	

MOVE

	

(RX)+,(RY)+

	

;MOVE A CHARACTER
BNE

	

LBL

	

;CONTINUE UNTIL NULL SEEN
DEC

	

RY

	

;BACKUP OUTPUT PTR TO
NULL

;END OR MOVSTR
.ENDM

AFTER BEING SQUEEZED

.MACRO MOVSTR RXtRY,?LBL

- - NOTE
BOTH ARGUMENTS MUST BE REGISTERS

LBL :

	

MOVE

	

(RX)+t(RY)+
BNE

	

LBL
DEC

	

RY
.ENDM

3-22

	

Using the Librarian Utility Program (LBR)

infile

/ SZ

is the file specification for the file that contains modules to be
squeezed before being inserted into the library file .

is the Squeeze switch .

LBR uses the following algorithm on each line to be squeezed and inserts
the resulting line into the library file :

I 1 . LBR searches the line for the rightmost semicolon (;) .

I 2 . If it finds a semicolon, LBR deletes it, along with all trailing characters
in the line .

I 3 . LBR deletes all trailing blanks and tabs in the line .

4 . If the resulting line is null, nothing is transferred to the library file .

3.4 Combining Library Functions

You can request two or more library functions in the same command line .
The only exceptions are that (1) /CO cannot be requested with anything
else except /LI, /LE, or /FU and that (2) /CR and /DE cannot be specified
in the same command line .

Functions are performed in the following order :

1 . / DF

2 . /CR or /CO

3. /DE

4. /DG

5 . I IN, /RP, I SS, / SZ

6 . /LI, /LE, /FU

For example :

LBR :FILE / DE : XYZ : $A ,LP : / LE / FU=MODX tMODY / RP M

In order, LBR :

1. Deletes modules XYZ and $A.

2. Inserts all modules from MODX and MODY, replacing any duplicates
of modules in MODY .

3 . Produces a listing of the resulting library file on the line printer with
full module descriptions and all entry points .

3.5 LBR Restrictions

The following restrictions apply when using LBR :

1 . Limit of 65,536 words per module .

2 . Limit of 65,536 blocks per library .

3 . Allocate tables to maximum anticipated size . To expand table alloca-
tions, use the /CO switch to copy the entire file .

4. Three conditions result in a fatal error when using the /IN switch to
insert a module into a library :

a. The name of the inserted module matches the name of a module
already in the library. This error can be avoided by using the /RP
switch to replace one module with another module of the same
name.

Using the Librarian Utility Program (LBR)

	

3-23

I

I

I

5 .

6 .

b . The entry point name of the inserted module matches an entry point
name of a module in the library . For further information, refer to
Section 3 .3 .8 .

c. The library cannot be extended because of the lack of disk space .

The use of wildcards, such as * .OBJ, where the * indicates all modules
with extension . OBJ, is not allowed .

There must be enough space in the library's tables for both the modules
being replaced and their replacements, since the new modules are
tered before the old modules are marked for deletion .

3.6 LBR Error Messages

There are two types of LBR error messages : diagnostic and fatal .

Diagnostic error messages describe an existing condition that requires con-
sideration but does not warrant termination of the command . When a hard-
ware error is suspected, examine the system error log to determine the
device and error type . Diagnostic messages are displayed at the user
terminal in the format :

XLBR -- *DIAG* - message

Fatal error messages describe a condition that caused LBR to stop process-
ing a command. When this occurs, LBR returns to the appropriate com-
mand level . For example, if the command is entered in response to the CCL
command, that is,

LBR command RE

then LBR issues the fatal error message and exits . If, however, the com-
mand is entered in response to the LBR prompt, that is,

LBR7command

LBR issues the fatal error message and reprompts .

Fatal error messages are displayed at the user terminal in the format :

?LBR -- *FATAL* - message

3-24

	

Using the Librarian Utility Program (LBR)

en-

If a fatal error occurs during the processing of an indirect command file, the
command file is closed, the fatal error message and command line in error
are displayed on the user terminal, and LBR returns to the appropriate
command level .

3.6.1 Effect of Fatal Errors on Library Files

The status of a library file after fatal errors is :

1 . In general, output errors leave the library in an indeterminate state .

2 . During the deletion process directed by the /DE switch, the library is
rewritten prior to the display of the individual module-entry-point-
deleted messages .

3. During the replacement process directed by the /RP switch, the library
is rewritten prior to the display of the individual module-replaced
messages .

4. During the insert process directed by the /IN switch, the library is
rewritten after the insertion of all modules in each individual input file .

3.6 .2 List of LBR Errors

The following list of LBR error messages provides a description of the error
cause along with suggested user responses .

LBR -- BAD LIBRARY HEADER

Description: Either the file is not a library file or the file is corrupt .

Suggested User Response :

1 . If the file is not a library file, reenter the command line with a proper
library file specified .

2. If the volume is corrupt, it must be reconstructed before it can be used .

LBR -- CANNOT MODIFY HEADER

Description: An attempt was made to modify the module header of a mod-
ule in an object library or macro library. No change is made to the module
header .

Suggested User Reponse : Reenter the command line, specifying a module in
a universal library .

LBR -- COMMAND I/0 ERROR

Description: One of the following conditions may exist :

1. A problem with the physical device (for example, device hung) .

2 . The file is corrupt or the format is incorrect (for example, record length
exceeds 132 bytes) .

Suggested User Response : Reenter the command line, using the correct
syntax .

LBR -- COMMAND SYNTAX ERROR
command line

Description: A command was entered in a format not conforming to syntax
rules .

Using the Librarian Utility Program (LBR)

	

3-25

I

I

I

Suggested User Response: Reenter the command line, using the correct
syntax .

LBR -- DUPLICATE ENTRY POINT NAME "name" IN filename

Description: An attempt was made to insert a module into a library file
when the insert module and a module in the library file have identical
entry point names .

Suggested User Response : Determine if the specified input file is the correct
file. If not, reenter the command line, specifying the correct input file . If the
input file is the correct file, you can delete the duplicate entry point from
the library and try again .

LBR -- DUPLICATE MODULE NAME "name" IN filename

Description: An attempt has been made to insert a module into a library
that already contains a module with the specified name, without use of the
/RP switch .

Suggested User Response : Determine if the specified input file is the correct
file . If the input file is correct, decide whether to delete the duplicate mod-
ule from the library file and insert the new one, or replace the duplicate
module by rerunning LBR with the /RP switch appended to the input file
specification .

LBR -- EPT OR MNT EXCEEDED IN filename

Description : The EPT or MNT table limit has been reached during the
execution of an Insert or Replace command .

Suggested User Response : Copy the library, increasing the table space with
the /CO switch . Reenter the command line .

LBR -- EPT OR MNT SPACE EXCEEDED IN COMPRESS

Description: An EPT or MNT table size was specified for the output library
file that is too small to contain the EPT or MNT entries used in the input
library file .
Suggested User Response : Reenter the command line with a larger EPT or
MNT table size .

LBR -- ERROR IN LIBRARY TABLES* FILE filename

Description: The library file is corrupt or is not a library file .

Suggested User Response : If the file is corrupt, no recovery is possible and
the file must be reconstructed . If the file is not a library file, reenter the
command line with the correct library file .

LBR -- EXACTLY ONE INPUT FILE MUST APPEAR WITH /CO

3-26

	

Using the Librarian Utility Program (LBR)

Description: No file or more than one input library file was specified in the
/CO command .

Suggested User Response: Reenter the command line with only one input
file .

LBR -- FATAL COMPRESS ERROR

Description: The input library file is corrupt or is not a library file .

Suggested User Response : No recovery is possible. The file in question must
be reconstructed .

LBR -- GET TIME FAILED

Description: LBR failed to execute a Get Time Parameters directive . The
error is caused by a system malfunction .

Suggested User Response: Reenter the command line . If the problem per-
sists, submit a Software Performance Report along with the related console
dialogue and any other pertinent information .

LBR -- ILLEGAL DEVICE/VOLUME
command line

Description: Device specifier entered is not a valid device name . A device
specifier consists of two ASCII characters, followed by one or two optional
digits .

Suggested User Response: Reenter the command line with the correct de-
vice syntax specified .

LBR -- ILLEGAL DIRECTORY
command line

Description: The PPN entered does not conform to syntax rules . The PPN
must have the form [n,n], where n can be one to three digits .

Suggested User Response : Reenter the command line with the correct PPN
syntax .

LBR -- ILLEGAL FILENAME
command line

Description: One of the following was entered :

1 . A file specification containing a wildcard .

2. A file specification that neither is a filename nor has an extension .

Suggested User Response : Reenter the command line correctly .

LBR -- ILLEGAL GET COMMAND LINE ERROR CODE

Using the Librarian Utility Program (LBR)

	

3-27

I

I

Description: The system, due to an internal failure, is unable to read a
command line .

Suggested User Response: Reenter the command line . If the problem per-
sists, submit a Software Performance Report along with the related console
dialogue and any other pertinent information .

LBR -- ILLEGAL SWITCH
command line

Description: A switch was not recognized or a legal switch was specified in
an invalid context .

Suggested User Response : Reenter the command line with the correct
switch specification .

LBR -- ILLEGAL SWITCH COMBINATION

Description: You entered switches that cannot be executed in combination .
See Section 3 .4 .

Suggested User Response : Reenter the command line, specifying the
switches in the proper sequence .

LBR -- INDIRECT COMMAND SYNTAX ERROR
command line

Description: An indirect file was specified in a format that does not conform
to syntax rules .

Suggest User Response: Reenter the command line with the correct syntax .

LBR -- INDIRECT FILE DEPTH EXCEEDED
command line

Description: An attempt has been made to exceed one level of indirect com-
mand files .

Suggested User Response : Rerun the job with only one level of indirect
command file .

LBR -- INDIRECT FILE OPEN FAILURE
command line

Description: The requested indirect command file does not exist . One of the
following conditions may exist :

3-28

	

Using the Librarian Utility Program (LBR)

I 1. You tried to read a file and were denied access .

2 . A problem exists on the physical device .

3 . The volume is not mounted .

4 . The specified file directory does not exist .

5 . The specified file does not exist .

Suggested User Response : Determine which of the above conditions caused
the message and correct that condition . Reenter the command line .

LBR -- INPUT ERROR ON filename

Description: The file system, while attempting to process an input file, has
detected an error . A problem exists with the physical device due to some
transient condition .

Suggested User Response: Reenter the command line .

LBR -- INSUFFICIENT DYNAMIC MEMORY TO CONTINUE

Description: Job swap max is too small for LBR .

Suggested User Response : Run LBR with a larger job swap max . (Refer to
the RSTS /E System Generation Manual for more information .)

LBR -- INVALID EPT AND/OR MNT SPECIFICATION

Description: An EPT or MNT value greater than 4096 was entered in a
/CR or /CO switch .

Suggested User Response: Reenter the command line with a valid value .

LBR -- INVALID MODULE FORMATt insertion module

Description: An attempt was made to insert a macro module into an object
library .

Suggested User Response : Determine if an object file should be inserted
into an object library . If so, reenter the command line with the correct
object file . If a macro library was to receive the insertion, reenter the com-
mand line with the correct macro library .

LBR -- INVALID FORMAT, INPUT FILE filename

Description: The format of the input file is not the standard format for a
macro source or object file, or the input file is corrupt .

Suggested User Response : Reenter the command line with the correct input
file .

LBR -- INVALID OPERATION FOR OBJECT AND MACRO LIBRARIES

Description: Module header information was supplied for an object library
or macro library in an Insert or Replace command .

Suggested User Response : No action required . The command is executed as
if the information had not been supplied .

LBR -- INVALID LIBRARY TYPE SPECIFIED

Using the Librarian Utility Program (LBR)

	

3-29

Description: An illegal library extension in a Create (/ CR) or Default (/ DF)
command line. The extensions OBJ and MAC are the only valid specifica-
tions. See Sections 3 .3 .2 and 3 .3 .4 .

Suggested User Response: Reenter the command line with OBJ or MAC
specified .

LBR -- INVALID NAME -- "name"

Description: A module name or entry point that contains a character that is
not in the Radix-50 character set has been specified for deletion . Radix-50
characters consist of the letters A through Z, the numbers 0 through 9, and
the special characters period (.) and dollar sign ($) .

Suggested User Response: Reenter the command line with a valid name .

LBR -- INVALID RAD50 CHARACTER IN "character strin5"

Description: A character you supplied as part of information when you used
the Insert, Replace, or Modify Header switch for a universal library is not a
Radix-50 character .

Suggested User Response: Determine which character of the corresponding
switch value is not a Radix-50 character . Reenter a Radix-50 character in
place of the invalid character .

LBR -- I/0 ERROR INPUT FILE filename

Description: A read error has occurred on an input file . One of the following
conditions may exist :

1 . A problem exists on the physical device .

2 . The file is corrupt or the format is wrong (record length exceeds 132
bytes) .

Suggested User Response: Determine which of the above conditions caused
the message and correct that condition . Reenter that command line .

LBR -- LIBRARY FILE SPECIFICATION MISSING

Description: A command was entered without specifying the library file .

Suggested User Response : Reenter the command line with the library file
specified .

LBR -- MARK FOR DELETE FAILURE ON LBR WORK FILE

Description: When LBR begins processing commands, it automatically cre-
ates a work file marked for deletion . For some reason, this operation failed .

Suggested User Response: Reenter the command line .

3-30

	

Using the Librarian Utility Program (LBR)

LBR -- MULTIPLE MODULE EXTRACTIONS NOT PERMITTED FOR UNV MODULES

Description: An attempt was made to extract more than one module from a
universal library . The first module specified is extracted but others are
ignored .

Suggested User Response: Reenter the command line for each additional
extraction .

LBR -- MISSING OUTPUT FILE SPECIFIER

Description: The outfile specification was not included in the LBR com-
mand line .

Suggested User Response : Reenter the command line with the outfile speci-
fication included.

LBR -- NO ENTRY POINT NAMED "name"

Description: The entry point to be deleted is not in the specified library file .

Suggested User Response: Determine if the entry point is misspelled or if
the wrong library file is specified. Reenter the command line with the entry
point correctly specified .

LBR -- NO MODULE NAMED "module"

Description: The module to be deleted is not in the specified library file .

Suggested User Response : Determine if the module name is misspelled or if
the wrong library file is specified . Reenter the command line with the mod-
ule name correctly specified .

LBR -- OPEN FAILURE ON FILE filename

Description: The file system, while attempting to open a file, has detected
an error. One of the following conditions may exist :

1 . You tried to read a file and were denied access .

2. A problem exists on the physical device .

3. The volume is not mounted .

4. The specified file directory does not exist .

5. The specified file does not exist .

6. There is insufficient contiguous space to allocate the library file (this
applies to the Compress and Create switches only) .

Suggested User Response: Determine which of the above conditions caused
the message and correct that condition . Reenter that command line .

Using the Librarian Utility Program (LBR)

	

3-31

I

I

I

LBR -- OPEN FAILURE ON LBR WORK FILE

Description: While you attempted to open the LBR work file, an error was
detected. One of the following conditions may exist :

1 . The volume is full .

2. The device is write-protected .

-3. A problem exists with the physical device .

Suggested User Response: Determine which of the above conditions caused
the message and correct that condition. Reenter the command line .

LBR -- OUTPUT ERROR ON filename

Description: A write error has occurred on the output file . One of the follow-
ing conditions may exist :

1 . The volume is full .
2 . The device is write-protected .

3 . The hardware has failed .

Suggested User Response: If the volume is full, delete all unnecessary files
and rerun LBR. If the device is write-protected, logically dismount write-
enable, logically remount, then reenter the command line . If the hardware
has failed, assign a new device and reenter the command line .

LBR -- RMS FILES CANNOT BE EXTRACTED TO RECORD ORIENTED DEVICE

Description: An attempt was made to extract to a record-oriented device
(such as a KB: or LP:) a module inserted from a non-sequential RMS file
(such as a relative or index file) . This is a fatal error message .

Suggested User Response : Extract the file to a disk and then use an RMS
conversion to make an RMS sequential file .

LBR -- TOO MANY INPUT FILES

Description: Too many input file specifications were included in the LBR
command line. You are limited to 80 characters .

Suggested User Response: Reenter a command line not exceeding 80
characters .

LBR -- TOO MANY OUTPUT FILES SPECIFIED

Description: More than two output files were specified . LBR makes the
following assumptions:

1. The first output file specified is the output library file .

2. The second output file specified is the listing file .

3-32

	

Using the Librarian Utility Program (LBR)

Suggested User Response : No action is required . LBR ignores any remain-
ing file specifications .

LBR -- POSITIONING ERROR ON filename

Description: The device is write-locked .

Suggested User Response : If the device is write-locked, logically dismount
the device, write-enable it, logically remount it, and reenter the command
line .

LBR -- VIRTUAL STORAGE REQUIREMENTS EXCEED 65536 WORDS

Description: This error may occur with maximum size libraries in conjunc-
tion with a single command line that logically deletes a large number of
modules and entry points, and continues to replace them with an equally
large number of modules and entry points having highly dissimilar names .
Normally, this message indicates some sort of internal system error .

Suggested User Response: Rerun the job, but divide the complicated com-
mand line into several smaller command lines that do the same operations .

LBR -- WORK FILE I/0 ERROR

Description: A write error has occurred on the LBR work file . One of the
following conditions may exist :

1. The volume is full .

2 . The device is write-protected .

3 . The hardware has failed .

Suggested User Response : If the volume is full, delete all unnecessary files
and rerun. If the device is write-protected, logically dismount the device,
write-enable it, logically remount it, and reenter the command line . If the
hardware has failed, assign a new device and retry the command .

Using the Librarian Utility Program (LBR)

	

3-33

Chapter 4
Using The Object Module Patch Utility (PAT)
Program

The Object Module Patch Utility Program (PAT) allows you to patch or
update object code that is in a relocatable binary object module . Although
PAT can in theory patch any binary object file, in practice it is feasible to use
PAT to patch only OBJ files generated by MACRO-11 . PAT accepts a file
containing corrections or additional instructions, and applies these corrections
or additions to the original object module to produce an updated object mod-
ule. Figure 4-1 illustrates this procedure . Also, PAT allows you to increase the
size of object modules since changes are made before the module is linked by
the Task Builder .

This chapter covers the following major topics :

•

	

How PAT Works

•

	

Specifying the PAT Command String

•

	

How PAT Applies Updates

•

	

PAT Messages

4.1 How PAT Works

PAT receives input from two files : the file being corrected and a correction
file. The input file consists of one or more object modules in a single file . You
may correct only one of these object modules with a single execution of PAT .
The correction file consists of previously assembled object code containing
corrections and additions to the input file . When linked by the Task Builder,
the correction file either overlays or is added to the original object module .
Output from PAT is the updated, or new object file .

You can invoke PAT using any of the methods for invoking a utility as de-
scribed in Chapter 1 .

Figure 4-1 shows how PAT updates a file (FILE1) consisting of three object
modules (MOD1, MOD2, and MOD3) by appending a correction file to
MOD2 . The updated module is then relinked with the rest of the file by the
Task Builder to produce an executable task .

Figure 4-1: Updating a Module Using PAT

FILE 1

MOD1

MOD2

MOD3

UPDATE2

PAT

FILE2

MOD1

MOD2

UPDATE2

MOD3

0-MK-00048-00

There are several steps involved when using PAT to update a file . First, you
must create the correction file by using PIP (see RSTS/E System User's
Guide) or a text editor. The correction file must then be assembled to produce
an object module . The input file and the correction file are then submitted to
PAT for processing . Finally, the updated object module, along with the object
modules that comprise the rest of the file, can be submitted to the Task
Builder to resolve global symbols and create an executable task . Figure 4-2
illustrates the processing steps involved in generating an updated task file
using PAT .

4-2 Using the Object Module Patch Utility (PAT) Program

TEXT
EDITOR

CORRECT. MAC

ORIG.OLB

Figure 4-2 : Processing Steps Required to Update a Module Using PAT

CORRECT .MAC

LIBRARY FILE

1 . GENERATE A CORRECTION FILE
USING THE TEXT EDITOR

2. EXECUTE THE ASSEMBLER (OR COMPILER)
TO GENERATE AN OBJECT MODULE
VERSION OF THE FILE .

CORRECT.OBJ

ORIG.OBJ

3. EXTRACT THE ORIGINAL
MODULE TO BE REPATCHED
USING LBR .

NOTE: PREFORM STEP 3 ONLY IF THE ORIGINAL
MODULE IS ON THE LIBRARY FILE.

OPTIONAL STEP

4. EXECUTE PAT USING AS
INPUT THE CORRECTION
FILE AND MODULE TO
BE UPDATED .

CORRECT .OBJ

ORIG .OBJ

O

COPY

UPFILE.OBJ

UPFILE.TSK

5. EXECUTE THE TASK BUILDER
TO RESOLVE NEW ADDRESS
AND GENERATE AN
EXCUTABLE TASK .

I

F-M K-00047-00

Using the Object Module Patch Utility (PAT) Program 4-3

4 .2 Specifying the PAT Command Line

A PAT command line has the following form :

[outfile]=infile[/CS[:number]]tcorrectfile[/CS[:number]]

where :

outfile is the file specification for the output file . Outfile must have a
different name than the infile . If you do not specify an output
file, none is generated .

infile

	

is the file specification for the input file . This file can contain one
object module or several concatenated object modules .

correctfile is the file specification for the correction file . This file contains
the corrections being applied to a single module in the input file .

/CS specifies the Checksum switch (/CS), which directs PAT to gen-
erate an octal value for the sum of all the binary data for the
module in the file to which the switch is applied . (See Section
4.3 .5 .)

number

	

specifies an octal value that PAT compares to the computed
checksum value .

NOTE

PAT accepts indirect command files (see Section 1 .3 .2) .

4.3 How PAT Applies Updates

PAT applies updates to a base input module using additions and corrections
supplied in a correction file . This section describes the format of input and
correction files, provides information on how to create a correction file, along
with pertinent examples .

4.3 .1 The Input File

The input file is the file to be updated, and therefore is the base for the
updated output file produced . The input file must be in object module format .
When PAT executes, the correction file module is applied to this file .

4-4 Using the Object Module Patch Utility (PAT) Program

4 .3.2 The Correction File

The correction file also must be in object module format . It is usually created
from a MACRO-11 assembler source file in the following format :

.TITLE inputname

.IDENT updatenum
inPutline
i n P u t I i n e

*

*

where :

inputname

updatenum

is the name of the module to be updated by PAT, and must be
the same as specified in the input file's TITLE directive for
that module.

is any value acceptable to the MACRO-11 assembler . General-
ly, this value identifies the update version of the file being
processed by PAT, as shown in the examples below .

inputline

	

is each line of input to be used to correct and update the input
file .

During execution, PAT adds the new global symbols defined in the correction
file to the module's symbol table. Duplicate global symbols in the correction
file supersede their counterparts in the input file, provided both definitions
are either relocatable or absolute .

A duplicate PSECT or CSECT supersedes the previous PSECT or CSECT,
provided :

1 . Both have the same relocatability attribute (ABS or REL) .

2 . Both are defined with the same directive (.PSECT or .CSECT) .

If PAT encounters duplicate PSECT names, the length attribute for the
PSECT is set to the length of the longer PSECT and a new PSECT name is
assigned to the other module .

If a transfer address is specified, it supersedes that of the module being
patched .

4.3 .3 Creating the Correction File
Referring to Figure 4-2, the first step in using PAT to update an object file is
to generate the correction file . Use any editor program to generate these addi-
tions and corrections to your file .

The correction file must be in object module format before it can be processed
by PAT. When you have created the source version of the correction file, you
must have it assembled in order to produce an object module that PAT can
process .

Using the Object Module Patch Utility (PAT) Program 4-5

4.3.4 How PAT and the Task Builder Update Object Modules

The following examples show an input file and a correction file to be processed
by PAT and Task Builder, along with a source-like representation of the
output file after PAT and Task Builder complete processing. Programs that
used the patched object module must be re-task built . Before Task-building,
corrections and additions are only appended to the patched object module .
After task-building, the additions and corrections are placed in their proper
locations in the task image . Two techniques are used in this process ; overlay-
ing lines in a module, and appending a subroutine to a module .

4.3.4.1 Overlaying Lines in a Module - The example below illustrates a tech-
nique for overlaying lines in a module using a patch file . First, PAT appends
the correction file to the input file . The Task Builder is then executed to
replace code within the input file . The input file for this example is :

.TITLE ABC

.IDENT

	

/01/
ABC : .

MOV

	

A tC

	

+
CALL

	

XYZ

	

+
RETURN
.END

To add the instruction ADD A,B after the CALL instruction, include the
following patch source file :

.TITLE ABC

.IDENT

	

/01 .01/

ADD

	

A tB

	

;
RETURN
.END

The patch source is assembled using MACRO-11, and the resulting object file
is input to PAT along with the original object file . The updated object module
appears as follows :

4-6 Using the Object Module Patch Utility (PAT) Program

.TITLE

.IDENT
ABC
/01 .01/

ABC : .
MOV
CALL
RETURN

A ,C

	

;
XYZ

	

;
;

=ABC
= .+12

ADD A t B

	

;
RETURN ;
.END

After Task Builder processes these files, the task image appears as follows :

.TITLE ABC

.IDENT

	

/01 .01/
ABC : .

MOV A,C ;
CALL XYZ ;
ADD A fB ;
RETURN ;
.END

The Task Builder uses the .= .+12 in the program counter field to determine
where to begin overlaying instructions in the program . The Task Builder
overlays the RETURN instruction with the patch code :

ADD

	

A tB
RETURN

4.3.4.2 Adding a Subroutine to a Module - This example illustrates a tech-
nique for adding a subroutine to an object module . In many cases, a patch
requires that more than a few lines be added to patch the file . A convenient
technique for adding new code is to append it to the end of the module in the
form of a subroutine . This way, you can insert a CALL instruction to the
subroutine at an appropriate location . The CALL directs the program to
branch to the new code, execute that code, and then return to in-line process-
ing . The input file for the example is :

Using the Object Module Patch Utility (PAT) Program 4-7

1 .ENABL GBL
2
3
4 TITLE ABC
5 IDENT
6 000000 016767 000000G 000000G ABC : : MOV A,B

	

;
7 000006 CALL XYZ

	

;
000006 004767 OOOOOOG JSR PC,XYZ

8 000012 016700 MOV C,RO

	

;000000G
9 000016 RETURN ;

000016 000207 RTS PC
10 ;
11 ;
12 ; *
13 000001 END

The correction file for this example is :
ENABL GBL1

2
3
4 TITLE ABC
5 . IDENT /01 .01/
6 000000 CALL PATCH

	

;
000000 004767 000000G JSR PC ,PATCH

7 000004 000240 NOP ;
8 000000 PSECT PATCH

	

;
9 000000 PATCH :

10 000000 016767 000000G 000000G MOV A,B

	

;
11 000006 016700 OOOOOOG MOV DtRO

	

;
12 000012 006300 ASL RO

	

;
13 000014 RETURN ;

000014 000207 RTS PC
14 000001 END

PAT appends the correction file to the input file, as in the overlay example .
The Task Builder then processes the file and the following output file is
generated :

In this example, the CALL PATCH and NOP instructions overlay the three-
word MOV A,B instruction . The NOP is required because a two-word instruc-
tion replaces a three-word instruction and NOP is required to maintain word
boundary alignment . The Task Builder allocates additional storage for
PSECT PATCH, writes the specified code into this program section . and
binds the CALL instruction to the first address in this section . Note that the
MOV A,B instruction replaced by the CALL PATCH is the first instruction
executed by the PATCH subroutine .

4.3 .5 Determining and Validating the Contents of a File

The Checksum switch (/CS) validates the contents of a module . The Check-
sum switch directs PAT to compute the sum of all binary data in a file. If
specified in the form /CS :number, /CS directs PAT to compute the checksum
and compare that checksum to the value specified as number .

To determine the checksum of a file, enter the PAT command line with the
/CS switch appended to the file specification whose checksum is being deter-
mined, for example :

=INFILE/CS>INFILE .PATRe

PAT responds to this command with the message :

INPUT MODULE CHECKSUM IS CchecKsum>

4-8 Using the Object Module Patch Utility (PAT) Program

1 ENABL GBL
2
3
4 TITLE ABC
5 IDENT

	

01/ .01/
G 000000 ABC : :
7 000000 CALL

	

PATCH

	

9
000000 004767 0000006

	

JSR

	

PCtPATCH
8 000004 000240

	

NOP

	

;
9 000006 CALL

	

(Y2

	

;
000008 004767 OOOOOOG

	

JSR

	

PC ,KYZ
10 000012 016700 0000006

	

MOV

	

CtRO

	

;
11 000016 RETURN

	

;
000016 000207

	

RTS

	

PC
12 ;
13 ;

	

*
14 ;

	

*
15 000000 PSECT PATCH
16 00000C) PATCH :
17 000000 016767 000000G 00[)0006

	

MOV

	

A tB

	

;
18 000006 016700 0000006

	

MOV

	

D,RO

	

;
19 000012 006300

	

ASL

	

Ro

	

;
20 000014 RETURN

	

;
000014 000207

	

RTS

	

PC
21 000001

	

. END

A similiar message is generated when the checksum for the correction file is
requested .

NOTE

A checksum is an octal number which is the sum of all the eight
bit binary values, less carries, comprising an object module .

To validate the changes to a file, enter the Checksum switch in the form
/CS:number . PAT compares the value it computes for the checksum with the
value you specify as number. If the two values do not match, PAT displays
the message:

ERROR IN FILE <:filename} CHECKSUM

A checksum is always a nonzero value .

4.4 PAT Messages

PAT generates messages that state checksum values and messages that de-
scribe error conditions . For checksum values and nonfatal error messages,
PAT prefixes messages with :

%PAT -- *DIAG -

For error messages that describe errors causing PAT to terminate, PAT uses
the prefix :

?PAT -- *FATAL -

Fatal and diagnostic errors may still result in the creation of the requested
output files . All output files created prior to a fatal error should be deleted ; all
diagnostic error output files should be examined and a decision made on
whether or not to keep them .

The messages described below are grouped according to message type, as
follows :

1 . Information messages .

2. Command line errors .

3. Input/output errors .

4. Errors in file contents or format .

5. Internal software errors .

6. Storage allocation errors .

4 .4.1 Information Messages

The following messages describe results of checksum processing .

Using the Object Module Patch Utility (PAT) Program 4-9

CORRECTION INPUT FILE CHECKSUM IS ..checKsum : :-

Description: <checksum> is the module checksum displayed in response to
the /CS switch appended to a correction input file specification . The value is
printed in octal .

Suggested User Response : No response necessary .

INPUT MODULE CHECKSUM IS <checKsufT0

Description: <checksum> is the module checksum displayed in response to
the /CS switch appended to an input file specification . The value is printed in
octal .

Suggested User Response : No response necessary .

4.4 .2 Command Line Errors

The following errors result from failure to adhere to the command line syntax
rules .

COMMAND LINE ERROR <command line>

Description : The displayed command line contains an error detected by the
command line processor.

Suggested User Response : Reenter the command line using the correct syntax .

COMMAND SYNTAX ERROR <command lire>

Description: The command line displayed contains a syntax error .

Suggested User Response : Reenter the command line using the correct syntax .

ILLEGAL INDIRECT FILE SPECIFICATION <command line ::>

Description : The displayed command line contains an indirect file specifica-
tion that contains one of the following errors :

•

	

A syntax error in the file specification .

•

	

Specification of a non-existent indirect file .

Suggested User Response : Check for file specification syntax errors . Check
that the specified file is contained in the User File Directory .

MAXIMUM INDIRECT FILE DEPTH EXCEEDED <command line>

Description : The command line displayed specifies an indirect command file
that exceeds the nesting level (level 2) permitted by PAT .

Suggested User Response : Reorder your files so that they do not exceed the
nesting limit .

4-10 Using the Object Module Patch Utility (PAT) Program

4.4 .3 File Specification Errors

The following messages are caused by errors in the specification of input or
output files or related file switches .

CORRECTION INPUT FILE MISSING :command line>

Description : The command line does not contain the mandatory correction
file input specification .

Suggested User Response : Reenter the command line specification including
the correction file .

ILLEGAL DEVICE/VOLUME SPECIFIED <device name :

Description: <device name> does not adhere to the syntax rule for specifying
device or volume .

Suggested User Response : Check the rules for specifying the device and
reenter the command line with the correct device specified .

ILLEGAL DIRECTORY SPECIFICATION <directory name" ,

Description : The directory string displayed does not adhere to the syntax
rules for specifying directories .

Suggested User Response: Reenter the command line specifying the directory
string in the correct syntax .

ILLEGAL FILE SPECIFICATION • •'(filename :>•

Description : The filename printed does not adhere to the syntax rules for file
specifications .

Suggested User Response : Reenter the command line using the correct syntax
for the filename .

ILLEGAL SWITCH SPECIFIED <filename :::

Description : An unrecognized switch or switch value has been appended to
the filename displayed .

Suggested User Response : Check the rules for specifying the switch and
reenter the command line .

INVALID FILE SPECIFIED .filename .

Description: The filename displayed :

1 . References a nonexistent device .

2 . References a nonexistent PPN .

Using the Object Module Patch Utility (PAT) Program

	

4-11

Suggested User Response: Correct the device or PPN specification and reenter
the command line .

MULTIPLE OUTPUT FILES SPECIFIED <command line=

Description: Only one output file specification is accepted by PAT .

Suggested User Response : Reenter the command line with only one output file
specified .

REQUIRED INPUT FILE MISSING <command line>

Description: The command line does not contain the mandatory input file
specification .

Suggested User Response : Reenter the command line specification input file .

TOO MAN`(INPUT FILES SPECIFIED ;command liner

Description: The command line displayed contains too many input file speci-
fications. PAT accepts one input and one correction file specification .

Suggested User Response : Reenter the command line specifying the correct
files .

SYMBOL --- IS MULTIPLY DEFINED

Description: Multiple definitions of a symbol has occurred .

Suggested User Response : Rename one or more of the duplicate symbols, then
regenerate correction file .

UNABLE TO FIND FILE <filename`

Description: The specified input or correction file could not be located .

Suggested User Response : Ensure that the file exists . Reenter the command
line .

4.4 .4 Input/Output Errors

The error messages listed below are caused by faults detected while perform-
ing 1/O to the specified file .

ERROR DURING CLOSE : FILE : <filename>

Description : This error is most likely to occur while attempting to write the
remaining data into the output file before closing it . The principal sources of
error in these circumstances are :

1 . Device full .

2. Device write-locked .

4-12 Using the Object Module Patch Utility (PAT) Program

Suggested User Response : Perform the appropriate corrective action and
reenter the command line .

ERROR POSITIONING FILE < ::filename :>

Description: An attempt has been made to position the file beyond end-of-file .

Suggested User Response: Submit a Software Performance Report along with
the related console dialogue and any other pertinent information .

I/0 ERROR ON INPUT FILE <::filename>

Description : An error was detected while attempting to read the specified
input file . The principal cause is a device hardware error .

Suggested User Response: Reenter the command .

I/0 ERROR ON OUTPUT FILE :.filename :?

Description : An error occurred while attempting to write into the named
output file. The most likely causes are :

1 .

2 .

3 .

4 .

Contiguous file cannot be extended .

Device full .

Device write-locked .

Hardware error from device .

Suggested User Response : Perform the
reenter the command .

4.4.5 Errors in File Contents or Format

The following errors represent inconsistencies detected by PAT in the format
or contents of input or correction files .

ERROR IN FILE filename : CHECKSUM

Description : Checksum computed by PAT for the named file does not match
that supplied by the user .

Suggested User Response : Ensure that the correct checksum was specified . If
the checksum was correct, either the input file or the correction file was
incorrect. Rerun PAT and specify the correct file .

FILE (filename> HAS ILLEGAL FORMAT

Description: The format of the named file is not compatible with the object
file format accepted by the Task Builder . The principal causes are :

appropriate corrective action and

Using the Object Module Patch Utility (PAT) Program

	

4-13

1 . Truncated input file .

2 . Input file consists of text .

Suggested User Response : Ensure that the file is a compatible object file and
resubmit it for PAT processing .

INCOMPATIBLE REFERENCE TO GLOBAL SYMBOL <:s mbol name :,

Description : A correction file contains a global symbol whose attributes do not
match any of the following input file symbol attributes :

1 . Definition or Reference .

2 . Relocatable or Absolute .

Suggested User Response : Update the correction input file by modifying the
symbol attributes. Reassemble the file and resubmit it for PAT processing .

INCOMPATIBLE REFERENCE TO PROGRAM SECTION <section name>

Description: A correction file contains a section name whose attributes do not
match one of the input file section attributes :

1 . Relocatable or Absolute .

2 . PSECT or CSECT .

Suggested User Response : Update the correction file by modifying the section
attribute or changing the section type . Reassemble the file and resubmit it to
PAT for processing .

UNABLE TO LOCATE MODULE < mo d u l e n arm

Description: A module name specified in the correction input file could not be
found in the file of concatenated input modules.

Suggested User Response : Update the correction file specification to include
the missing module . Reenter the command line .

UNABLE TO OPEN FILE

Description : An error occurred trying to open a file to which you had no
access .

Suggested User Response : Use a privileged account or change the protection
code of the file you are trying to access .

4.4 .6 Internal Software Error
These errors reflect internal software error conditions . If they persist, submit a
Software Performance Report along with the related console dialogue and any
other pertinent information .

4-14 Using the Object Module Patch Utility (PAT) Program

ILLEGAL ERROR-SEVERITY CODE <error data"

Description: An error message call has been generated containing an illegal
parameter .

Suggested User Action: If the error persists, submit a Software Performance
Report along with the related console dialogue and any other pertinent
information .

4 .4.7 Storage Allocation Error

The following error message indicates that insufficient task memory was
available for storing global symbol and program section data :

NO DYNAMIC STORAGE AVAILABLE ::storage-listhead>•

Description : Insufficient contiguous task memory was available to satisfy a
request for the allocation of storage .

<Storage-listhead> is a display of the two-word dynamic storage listhead
contents in octal .

Suggested User Response: None, this message is not relevent in RSTS/E .
However if this message does appear, submit a Software Performance Report .

Using the Object Module Patch Utility (PAT) Program 4-15

Chapter 5
Using the MAKSIL Utility Program

The MAKSIL utility program accepts as input files the generated output of
the Task Builder, a task image file (extension TSK) and a symbol table
(extension .STB) . Depending on how the program was originally coded and
how you specify the MAKSIL utility program, MAKSIL produces a format-
ted output file that can be loaded into memory as a resident library (.LIB),
a run-time system (.RTS), or a multi-user task .

When generating a run-time system, a new command file (.CMD) can also
be generated. When generating the LIB, RTS, or a task image, you have
the option of including the symbol table (.STB) into RSTS/E Save Image
Library (SIL) format, thus allowing symbolic patching of the output file .

5 .1 Creating a Run-Time System (RTS)

In order to use MAKSIL to format task builder output (task image) into a
loadable run-time system, two conditions must be met .

For the first condition :

1 . The starting address of the task image (the label referenced by the
.END statement) must be within the lowest 1K of memory of the read-
only portion of the task.

2. The highest virtual address for the task must be 177774 (octal) . The
word at 177774 (octal) must contain a valid, non-zero maximum job
image size entry .

The second condition requires the following step :

1 . Task-build the MACRO assembled run-time system code (.OBJ), then
use MAKSIL to format the Task Builder output (.TSK and .STB) .
MAKSIL will print the following error message if the TSK file is not
aligned properly :

TASK MUST BE EXTENDED BY xxxxxxxx BYTES

If the file is not properly aligned, edit the command file (.CMD) to
extend a "dummy" control section by the required number of bytes to
align the last PSECT at the correct boundary and rerun MAKSIL . The
"edit" mode of MAKSIL can be used to automatically modify the com-
mand file (see Section 5.2) .

5-1

I

I

MAKSIL may not work correctly if the Task Builder parameters are out of
range. When you task build run-time system code, specify the following
Task Builder options described in Table 5-1 to set the required virtual and
physical address range . (See the RSTS IE Task Builder Reference Manual .)
Table 5-1 : Task Builder Options for Virtual and Physical Address

Range

Table 5-2 defines the PAR and STACK options for various run-time system
sizes .
Table 5-2 : Task Builder PAR and STACK Options for Various

Sized Run-Time Systems

*PAR= virtual address :number of bytes

The following example shows a control file for a dummy 4K word run-time
system :
FILE/-HD ,FILE .FILE=F00BLD/MP
PAR=FILE :160000 :020000
STACK=O
EXTSCT= .99998 :000000

//

5-2 Using the MAKSIL Utility Program

Size Options

1K - 4K PAR=160000:020000*

5K - 8K PAR= 140000 :040000

9K - 12K PAR=120000:060000

13K - 16K PAR=100000:100000

17K - 20K PAR = 060000 :120000

21K - 24K PAR = 040000:140000

25K - 28K PAR = 020000:160000

1K 5K 9K 13K 17K 21K 25K STACK = 3072
2K 6K 10K 14K 18K 22K 26K STACK = 2048

3K 7K 11K 15K 19K 23K 27K STACK =1024

4K 8K 12K 16K 20K 24K 28K STACK = 0000

Option Description

PAR Define virtual address base and range. PAR also implicitly specifies the larg-
est program (low-segment) area .

STACK The partition size is a multiple of 4K words . If the run-time system is only
3K-words for example, the STACK option would be defined as
"STACK= 1024" to reserve an additional 1K-words. If this is done, the run-
time system will occupy only 3K-words of physical memory when it is loaded .

EXTSCT RSTS/E requires the task to end at virtual address 177774 . The EXTSCT
option extends a control section (usually .99998) so that the vector control
section (.99999) ends correctly .

After task building FILE.TSK and executing MAKSIL, the command file
would be edited to change the PAR, STACK, and EXTSCT options to appro-
priate values . The task builder is then rerun to correctly build the task .

Finally, MAKSIL is rerun to build FILE .RTS .

Run-time systems are built by first specifying the size (4K,8K,etc .) and
then task building so as to include as many modules resident as will fit in
the partition (leaving sufficient patch space) . Then, MAKSIL is run to
ine the EXTSCT value . Finally, the extended task is built and converted to
a run-time system .

5.2 Creating a Resident Library
MAKSIL can also produce a resident library output file . As shown in the
example below, the switch /RTS is not appended to the filename entered in
response to the first MAKSIL prompt . Note that the switch /DEBUG can
be used if required .

RUN $MAKSIL RE

MAKSIL Y70 RSTS/E Timesharing

Resident Library name? TEST ED

Task-built Resident Library input file <::TEST .TSK>? TEST RE

Include symbol table (Yes/No) <Yes >? Yes RE

Symbol table input file <TEST .STB>? TEST RE

Task Image SIL output file eTEST .SIL>? RE

TEST built in 23 K-wordst 548 symbols in the directory

TEST .TSK renamed to TEST .TSK<104>

Ready

5.3 Operating Instructions
Following are the keyboard operating commands and responses for
MAKSIL .

Type :

RUN $MAKSIL M

After displaying its header line, MAKSIL prompts, and the user answers :

Resident Library name? FILE/RTS 0
or
Resident Library name? FILE

Type the name of the resident library (FILE, for example) or the run-time
system name (FILE/ RTS, as shown above) . "RTS" is required if a run-time
system is to be built . The switch /RTS signals that special conditions must
be met by the TSK file before proper conversion to a run-time system Save

Using the MAKSIL Utility Program 5-3

I

Image Library (SIL) format can be made. When the switch /RTS is not
used, MAKSIL assumes that a Resident Library file is to be created . The
switch /DEBUG can be used when creating a run-time system or a resident
library file to initiate printout of internal tables during the create process .

MAKSIL then prompts :

Task-built Resident Library input file <FILE .TSK>? RE

or

Task-built Run-Time System input file <FILE .TSK :>? EE

Type the name of the TSK file, or press the RETURN key if the default
name is acceptable . If a run-time system is to be built, the task is checked
for correct parameters. If a resident library is requested, the next prompt is :

Include symbol table

If in Build Mode, the program checks the format of the file as a run-time
system and responds with either :

The run-time system is correctly aligned

or
The run-time system is riot aligned

If in "Edit Mode", to redefine task-builder parameters .

Edit mode (Yes/No) <Yes> ? M

At this point, in running MAKSIL, you have two options; to enter the edit
mode to redefine task build parameters, or the build mode to construct the
run-time system . This option is presented by the following prompt :

TasK-builder command input file <FILE .CMD ::•? M

If the run-time system is correctly aligned, the program will exit .

The command file is edited to modify the EXTSCT, STACK and PAR
options to extend the task as necessary . The program then prompts :

Corrected command filename 4FILE .CMD>? EE

If you respond with the RETURN key, the old file FILE .CMD will be
renamed to FILE .BAK. The program then reminds you to rebuild the task
and exits :

Please tasK-build again using FILE .CMD

If you answered "No" to the "Edit Mode" question, the program aborts if the
task is not correctly aligned. Perform the task-build . If there are no prob-
lems, the following questions are asked :

Include symbol table (Yes/No) <Yes>? M

5-4 Using the MAKSIL Utility Program

Typing Yes and the RETURN key or just the RETURN key, will append a
symbol table (.STB) to the run-time system . The STB file allows you to
patch the RTS via INIT or the on-line patching mechanism . If a symbol
table is requested, the prompt appears :

Symbol table input file <FILE .STB>?

Type the name of the LIB or RTS file, or press the RETURN key if the
default is acceptable . MAKSIL builds the run-time system or resident li-
brary (with symbol table if requested) into the output file and displays :

Run-Time System output file <FILE .RTS>? M
or
Resident Library output file <FILE .LIB>?
or
TasK Image SIL output file :FILE .SIL?? ED

Type the name of the LIB or RTS file, or press the RETURN key if the
default is acceptable . (When task building, do not give the output file the
same name as the input file, or else the input file could be overwritten .)
MAKSIL builds the run-time system or resident library (with symbol table
if requested) into the output file and displays :

FILE built in 4K wordst 123 symbols in the directory

After the MAKSIL process, the task image file is renamed so that unprivi-
leged users can access the task image with the "HISEG=" or the "LIBR -_ "
switch when task building their programs . The output from running a
multi-user task through MAKSIL is a save image library (FILE .SIL, which
is executable) and a resident library (FILE .LIB, which must be added to the
list of resident libraries in order to be shared by multiple users) . Refer to
the RSTSIE Task Builder Manual for more information about building
multi-user tasks .

5.4 Messages
There are three types of messages that can be encountered while using
MAKSIL:
1 . Fatal error messages(?)
2. Diagnostic messages(%)
3. Informational messages
These three types of messages, their causes, and user responses are
described in the following sections .

5.4.1 Fatal Error Messages

?ODD BASE OR TRANSFER ADDRESS

Description: The TSK file contains an incorrect transfer address or an odd
value for a base address .
Suggested User Response : Re-task build the program, and execute
MAKSIL.

Using the MAKSIL Utility Program 5-5

?GARBAGE WHEN CONVERTING "nnnnn" IN "command" text

Description: A conversion error has occurred .

Suggested User Response: Check the CMD file, re-task build, and execute
MAKSIL .

?COULDN'T FIND ALIGNMENT POINT

Description: The alignment scan could not locate the communication
vector .

Suggested User Response : Check that the task build has been performed
correctly .

?PARTITION OR STACK PARAMETER INCORRECT FOR TASK

Description: You are trying to extend the task too far .

Suggested User Response : Rebuild the task with correct "PAR=" and
"STACK=" commands .

?TASK IMAGE xxxxx .TSK CANNOT BE CONVERTED TO RUN-TIME SYSTEM YYYYv .

Description: Same as message .

Suggested User Response: Check that the task is defined correctly . Com-
mon problems include a starting address that is not in the first 1K memory
segment, a missing vector control section (.99999), or overall incorrect run-
time system design .

?ERROR REOPENING SYMBOL TABLE

Description: Opening the STB file resulted in an error after the file had
once successfully been opened .

Suggested User Response : Re-execute the MAKSIL program .

?ERROR WHEN OPENING file .ext -- text

Description: An error was encountered when opening the file "file .ext"
described in error message "text" .

Suggested User Response : Type in correct filename in response to question .

?DISK FILES ONLY, PLEASE

Description: An attempt has been made to open a non-disk file for input or
output operations .

Suggested User Response: Enter only filenames that reside on the disk in
response to MAKSIL questions .

5 -6 Using the MAKSIL Utility Program

?ILLEGAL SYMBOL TABLE FORMAT

Description: The symbol table (.STB) file does not have the file attributes of
either formated binary or variable length records .

Suggested User Response: Either an improper symbol table file has been
specified, or the file has been corrupted . The program will build without the
symbol table. Re-run the program with a valid symbol table file to include a
symbol table .

?ERROR GETTING A GSD ENTRY

Description: In processing the symbol table (.STB) file, an error occurred
that prevents finding a valid symbol table entry .

Suggested User Response : Either an improper symbol table file has been
specified, or the file has been corrupted .

The program will build without the symbol table . Re-run the program with
a valid symbol table file to include a symbol table .

?LONG FORMATTED-BINARY RECORD .

Description: The symbol table (.STB) file contains a formatted binary rec-
ord greater than 512 bytes .

Suggested User Response: Either an improper symbol table file has been
specified, or the file has been corrupted . The program will build without the
symbol table . Re-run the program with a valid symbol table file to include a
symbol table .

?ILLEGAL FORMATTED-BINARY RECORD

Description: The symbol table (.STB) file contains a formatted record start-
ing at an odd byte boundary .

Suggested User Response: Either an improper symbol table file has been
specified, or the file has been corrupted . The program will build without the
symbol table. Re-run the program with a valid symbol table file to include a
symbol table .

?ILLEGAL VARIABLE-LENGTH RECORD

Description: The symbol table (.STB) file contains a variable length record
which either is greater than 512 bytes in length, or starts at an odd byte
boundary .

Suggested User Response: Either an improper symbol table file has been
specified, or the file has been corrupted . The program will build without the
symbol table . Re-run the program with a valid symbol table file to include a
symbol table .

Using the MAKSIL Utility Program 5-7

?ADDRESSING OUTSIDE OF TASK LIMITS

Description: The program tried to access beyond the calculated end of the
.TSK file . The task image is incorrect .

Suggested User Response : Task build the program again and execute
MAKSIL.

?ERROR GETTING BLOCK xx -- text

Description: A GET command was performed on block xx of the output file
(.RTS or .LIB), which resulted in an error, as described in error message
text .

Suggested User Response: Execute the MAKSIL program again .

?ERROR PUTTING BLOCK xx -- text

Description: A PUT command was performed on block xx of the output file,
which resulted in an error, as described in the error message text .

Suggested User Response: Execute the MAKSIL program again .

?ERROR GETTING FROM xxxx .STB -- text

Description: An error occurred when performing a GET command from the
symbol table (.STB) file, as described in error message text .

Suggested User Response : Re-execute the programs .

?FATAL ERROR -- text

Description: An unexpected error has occurred .

Suggested User Response : Send a Software Performance Report along with
an appropriate listing of the error .

5.4.2 Diagnostic Messages

%RUN-TIME SYSTEM MAXIMUM JOB SIZE (xx) EXCEEDS CALCULATED MAXIMUM OF (rr)

Description: The maximum size of a particular job (O .SIZE) as defined in
the TSK, is too great for the run-time system. For example, while assem-
bling a run-time system requiring 16K words, a job size of 28K words had
been defined. Since the run-time system and a job cannot exceed 32K
words, the RSTS/E Monitor adjusts the maximum job size to 16K words .

Suggested User Response : No response is required .

%MULTIPLE command : "first command"t "command line"

5-8 Using the MAKSIL Utility Program

Description: A PAR, STACK, or EXTSCT command appears more than
once. Only the first command, of a particular type, is used .

Suggested User Response: No response is required .

5.4.3 Informational Messages

INCORRECT FILE SIZE xx . COMPUTED=yy

Description: The actual file size is less than that calculated from parame-
ters contained in the TSK file .

Suggested User Response: No response is required .

THE RUN-TIME SYSTEM IS NOT ALIGNED

or

THE RUN-TIME SYSTEM IS CORRECTLY ALIGNED

Description: One of the two messages above is displayed, depending on the
outcome of the task verification phase .

Suggested User Response: No response is required .

THE COMMAND FILE IS ALREADY CORRECT .EXITING .

Description: The edit mode was selected even though the task is correct .
This may happen if MAKSIL is run from a batch stream

Suggested User Response: No response is required .

THE TASK- BUILDER COMMANDS HAVE BEEN CHANGED AS FOLLOWS
OLD Par

	

NEW Par
OLD stack

	

NEW stack
OLD extsct

	

NEW extsct

<filename> will load in a xx K-words Partition using Yy K-words
Physical memory
zz (octal) bytes may be used for expansion .
Please task-build again using <filename> .CMD

Description: The above message is displayed to log the edit mode changes .

Suggested User Response: Re-task build using the edited command file .

UTILITY ADD SUPPRESSED

Description: This message is printed if the run-time system was not written
to account [0,1] .

Suggested User Response : No response is required .

Using the MAKSIL Utility Program 5-9

Appendix A
MACRO-11 Diagnostic Error Message Summary

A diagnostic error code is printed as the first character in a source line which
contains an error detected by MACRO-11 . This error code identifies a syntac-
tical problem or some other type of error condition detected during the pro-
cessing of a source line . An example of such a source line is shown below :

Q

	

26 000236 010102

	

MOV Ri ,R2 to

The extraneous argument A in the MOV instruction above causes the line to
be flagged with a Q (syntax) error .

Error Code

	

Meaning

A Assembly error . Because many different types of error conditions produce this
diagnostic message, all the possible directives which may yield a general assem-
bly error have been categorized below to reflect specific classes of error condi-
tions :

CATEGORY 1 : Illegal Argument Specified .

.RADIX -- A value other than 2, 8, or 10 is specified as a new radix .

.LIST/.NLIST -- Other than a legally defined argument is specified with
the directive .

.ENABL/.DSABL -- Other than a legally defined argument is specified with
the directive .

.PSECT -- Other than a legally defined argument is specified with the
directive .

.IF/ .IIF -- Other than a legally defined conditional test or an illegal argu-
ment expression value is specified with the directive .

.MACRO -- An illegal or duplicate symbol found in dummy argument list .

CATEGORY 2 : Null Argument or Symbol Specified .

.TITLE -- program name is not specified in the directive, or first non-blank
character following the directive is a non-Radix-50 character .

.IRP/.IRPC -- No dummy argument is specified in the directive .

.NARG/.NCHAR/.NTYPE -- No symbol is specified in the directive .

.IF/ .IIF -- No conditional argument is specified in the directive .

CATEGORY 3: Unmatched Delimiter/Illegal Argument Construction .

/ASCII/.ASCIZ/.RAD50/.IDENT -- Character string or argument string del-
imiters do not match, or an illegal character is used as a delimiter, or an
illegal argument construction is used in the directive .

.NCHAR -- Character string delimiters do not match, or an illegal character
is used as a delimiter in the directive .

CATEGORY 4 : General Addressing Errors

This type of error results from one of several possible conditions :

1 . Permissible range of a branch instruction . i .e ., from -128 to +127 words,
has been exceeded .

2. A statement makes invalid use of the current location counter, e.g ., a
".=expression" statement attempts to force the current location counter
to cross program section (.PSECT) boundaries .

3. A statement contains an invalid address expression. In cases where an
absolute address expression is required, specifying a global symbol, a
relocatable value, or a complex relocatable value results in an invalid
address expression. Similarly, in cases where a relocatable address ex-
pression is required, either a relocatable or absolute value is permissible,
but a global symbol or a complex relocatable value in the statement
likewise results in an invalid address expression . Specific cases of this
type of error are those which follow :

.BLKB/.BLKW/.REPT -- Other than an absolute value or an expression
which reduces to an absolute value has been specified with the directive .

4. Multiple expressions are not separated by a comma . This condition
causes the next symbol to be evaluated as part of the current expression .

CATEGORY 5: Illegal Forward Reference .

This type of error results from either of two possible conditions :

1. A global assignment statement (symbol==expression) contains a for-
ward reference to another symbol .

2. An expression defining the value of the current location counter contains
a forward reference .

B

	

Bounding error . Instructions or word data are being assembled at an odd address .
The location counter is incremented by 1 .

D

	

Doubly-defined symbol referenced. Reference was made to a symbol which is
defined more than once .

A-2 MACRO-11 Diagnostic Error Message Summary

E End directive not found. When the end-of-file is reached during source input and
the END directive has not yet been encountered, MACRO-11 generates this
error code, ends assembly pass 1, and proceeds with assembly pass 2 .

I

	

Illegal character detected . Illegal characters which are also non-printable are
replaced by a question mark (?) on the listing. The character is then ignored .

• Input line is greater than 132 characters in length . Currently, this error condition
is caused only through excessive substitution of real arguments for dummy argu-
ments during the expansion of a macro .

M

	

Multiple definition of a label . A label was encountered which was equivalent (in
the first six characters) to a label previously encountered .

•

	

A number contains a digit that is not in the current program radix . The number is
evaluated as a decimal value .

• Opcode error. Directive out of context . Permissible nesting level depth for condi-
tional assemblies has been exceeded . Attempt to expand a macro which was
unidentified after MCALL search .

• Phase error . A label's definition of value varies from one assembly pass to another
or a multiple definition of a local symbol has occurred within a local symbol
block. Also, when in a local symbol block defined by the ENABL LSB directive,
an attempt has occurred to define a local symbol in a program section other than
that which was in effect when the block was entered . A P error code also appears
if an ERROR directive is assembled .

•

	

Questionable syntax . Arguments are missing, too many arguments are specified,
or the instruction scan was not completed .

R Register-type error. An invalid use of or reference to a register has been made, or
an attempt has been made to redefine a standard register symbol without first
issuing the DSABL REG directive .

T Truncation error . A number generated more than 16 bits in a word, or an expres-
sion generated more than 8 significant bits during the use of the BYTE directive
or trap (EMT or TRAP) instruction .

• Undefined symbol . An undefined symbol was encountered during the evaluation
of an expression ; such an undefined symbol is assigned a value of zero . Other
possible conditions which result in this error code include unsatisfied macro
names in the list of MCALL arguments and a direct assignment (symbol=expres-
sion) statement which contains a forward reference to a symbol whose definition
also contains a forward reference ; also, a local symbol may have been referenced
that does not exist in the current local symbol block .

Z

	

Instruction error . The instruction so flagged is not compatible among all members
of the PDP-11 family .

MACRO-11 Diagnostic Error Message Summary A- 3

--l

Appendix B
Librarian Utility Program (LBR) Files and Formats

A library file consists of a library header, an entry point table, a module
name table, the library modules, and (usually) free space . The entry point
table has zero length for macro and universal libraries . See Figure B-1 .

B .1 Library Header

The header section is a full block (256 words) in which the first 24 words
describe the current status of the library . Its contents are updated as the
library is modified, so LBR can access the information it needs to perform
its functions (such as Insert, Compress) . The 24th word in the library
header is the default insert file extension for universal libraries and is
undefined for macro and object libraries . See Figure B-2 .

B.2 Entry Point Table

The entry point table consists of 4-word elements that contain an entry
point name (words 0-1) and a pointer to the module header where the entry
point is defined (words 2-3). See Figure B-3 . This table is searched when a
library module is referenced by one of its entry points . The table is
sequenced in order of ascending entry point names . The entry point table is
not used for macro or universal library files .

B.3 Module Name Table

The module name table is searched when the library module is referenced
by its module name rather than by one of its entry points . It is comprised of
4-word elements; a module name (words 0-1) and a pointer to the module
header (words 2-3) . See Figure B-4. The module name table is sequenced
in order of ascending module names .

B-1

I

I

I

I

I

B.4 Module Header

Each module starts with a header of 8 words for object and macro modules
and 32 words for universal modules, identifying the type and status of the
module, its length (number of words), and so forth (see Figure B-5) .

For object modules, the low-order bit of the attributes byte is set if the
module has the selective search attribute . (See Section 3.3.14, Selective
Search Switch (/ SS) . The selective search attribute reduces task build
time.) In addition, for object modules, the two words of type-dependent
information contain the module identification defined by the .IDENT direc-
tive at assembly time. For macro modules, these two fields are undefined .

For universal modules, type-dependent identification is derived from the
file extension of the input file . See Figure B-7 .

Universal libraries allow module header changes (optional descriptive
information) by the / MH switch .

Figure B-1 : Standard Library File Format

Library
Header

Entry Point
Table

Module Name
Table

Module 1 Header

Module 1

Module n Header

Module n

Available Space

If

if

Fixed-
Length
Records

Variable-
Length
Records

B-2

	

Librarian Utility Program (LBR) Files and Formats

I

Block
Boundaries

Figure B-2: Universal Library File Format

Library
Header

Entry Point
Table

Module Name
Table

Module 1 Header
Unused Space

Module 1

Unused Space

Module 2 Header
Unused Space

Module 2

Unused Space

Module N Header
Unused Space

Module N

Available Space

t

A(

Fixed-
Length
Records

Variable-
Length
Records

NOTE

All universal module headers and the first
record of each universal module will start on
a block boundary .

Block
Boundaries

Librarian Utility Program (LBR) Files and Formats

	

B-3

Figure B-3 : Contents of Library Header

OFFSET

*Undefined for
macro and object
libraries

B-4

	

Librarian Utility Program (LBR) Files and Formats

NON ZERO ID LIBRARY TYPE

LBR (LIBRARIAN) VERSION

(.IDENT FORMAT)

YEAR

MONTHDATE AND

TIME OF LAST DAY

HOURINSERT

MINUTE

SECOND

RESERVED SIZE EPT ENTR'S

EPT STARTING RELATIVE BLOCK

NO. EPT ENTRIES ALLOCATED

NO . EPT ENTRIES AVAILABLE

RESERVED
1

	

SIZE MNT ENTR'S

MNT STARTING REL BLOCK

NO. MNT ENTRIES ALLOCATED

NO. MNT ENTRIES AVAILABLE

LOGICALLY DELETED

AVAILABLE (BYTES)

CONTIGUOUS SPACE

AVAILABLE (BYTES)

NEXT INSERT RELATIVE BLOCK

START BYTE WITHIN BLOCK

*UNIVERSAL DEFAULT INSERT TYPE

WORD 0

2

4

6

10

12

14

16

20

22

24

26

30

32

34

36

40

42

44

46

50

52

54

56

Figure B-6: Module Header Format

OFFSET FROM
START OF

MODULE HEADER

0

2

4

6

10

12

14

16

O=NORMAL MODULE
1 =DELETED MODULE

Librarian Utility Program (LBR) Files and Formats

	

B-5

ATTRIBUTES

	

STATUS

SIZE OF

MODULE (BYTES)

DATE YEAR
MODULE
INSERTED MONTH

DAY

TYPE DEPENDENT

INFORMATION

Figure B-4: Format of Entry Point Table Element

WORD 0 GLOBAL SYMBOL

1 NAME (RAD50)

2 ADDRESS OF

	

RELATIVE BLK .
-MODULE

HEADER

	

BYTE IN BLOCK

Figure B-5 : Format of Module Name Table Element

WORD 0 MODULE NAME

1 (RAD50)

2 ADDRESS OF

	

RELATIVE BLK .
-MODULE
HEADER

	

BYTE IN BLOCK

Figure B-7: Module Header Format for Universal Libraries
OFFSET FROM
START OF
MODULE HEADER

0

2

4

6

10

12

14

16

20

22

24

26

30

32

34

36

40
42
44

76

B-6

	

Librarian Utility Program (LBR) Files and Formats

ATTRIBUTES STATUS

SIZE OF

MODULE (BYTES)

DATE YEAR

MONTHMODULE

DAYINSERTED

IDENT

OPTIONAL

1INFO

OPTIONAL

2INFO

OPTIONAL

3INFO

OPTIONAL

4INFO

USER
FILE
ATTRIBUTES

Index

A
ABS argument, 2-8t
Accessing utilities, 1-3
Adding a subroutine to modules, 4-7
AMA argument, 2-8t
Arguments

for /EN and /DS switches, 2-8t
for /LI and /NL switches, 2-7t

Assembly pass switch (/PA), 2-9 to 2-10

B
BEX argument, 2-7t
BIN argument, 2-7t
Build mode, with MAKSIL, 5-4

C
CCL, running MACRO-11 with, 2-4, 2-5
CCL command names, 1-4

for RSX-based utilities, 1-4t
CDR argument, 2-8t
Checksum switch

for file contents, 4-8
numeric value of, 4-9
in PAT command line, 4-4

CND argument, 2-7t
COM argument, 2-7t
Combining library functions, 3-23
Command
CCL names for, 1-4
indirect, for entering lines, 1-5, 1-6
RUN, entering, 1-4

Command files
indirect (LBR), 3-2
indirect (MACRO), 2-5 to 2-6

Command line
entering, 1-5
fixing errors, 4-10
format, 1-1
LBR, 3-2
PAT, specifying, 4-4

Command String format, 2-5
Compress switch, 3-2t, 3-3
Continuation lines in MACRO, 2-5
Correction file

creating, 4-5
used with PAT utility, 4-5

Create switch, 3-2t, 3-4
CSECT in PAT command line, 4-5

CTRL/C in MACRO DCL, 2-3
CTRL / Z

with indirect command files, 2-6
in MACRO DCL, 2-3

D
DCL
command line expansion, 2-2
command line format, 2-2
/LIBRARY qualifier in MACRO, 2-3
MACRO file specification, 2-2
running MACRO in, 2-2 to 2-3

Default switch, 3-2t, 3-6
Defaults

of file extensions, 1-3t
of file specifications, 1-2t

Delete Global switch, 3-2t, 3-8
Delete switch, 3-2t, 3-5
Diagnostic error messages
MACRO-11, A-1
MAKSIL, 5-8

/DS switch in MACRO-11, 2-6t

E
Edit mode with MAKSIL, 5-4
/EN switch in MACRO-11, 2-6t
Entry Point switch, 3-2t, 3-8
Entry Point table, B-1

format of elements, B-5f
and library module referencing, B-1

Error codes for MACRO-11, A-1 to A-3
Error messages
LBR, 3-24 to 3-32
MACRO, 2-10 to 2-14
MAKSIL, 5-5 to 5-8
PAT, 4-9

Errors, types of
command line, 4-10
in file contents, 4-13
in file format, 4-14
file specification, 4-11, 4-12
1/0, 4-12, 4-13
internal software, 4-14
storage allocation, 4-15

Extensions, file, default, 1-3t
Extract switch, 3-2t, 3-10
EXTSCT Task Builder option, 5-2t

Index-1

Index-2

F
Fatal errors

effect on library files, 3-24
MAKSIL error messages, 5-5 to 5-8

File contents
determining, 4-8
validating, 4-8, 4-9

File extensions, default, 1-3t
File specification

defaults, 1-2t
errors in, 4-11, 4-12
example of, 1-2, 2-4
MACRO-11 switches, 2-6
MACRO 1/0 format, 2-4 to 2-5
RSTS/E, 1-2

Files
errors in contents, 4-13
errors in format, 4-14
indirect command (LBR), 3-2
indirect command (MACRO), 2-5 to 2-6
library, 3-1
standard library format, B-2
universal library format, B-3f

FPT argument, 2-8t
Function control switches, 2-8
Functions, combining library, 3-23

G
GBL argument, 2-8t

H
Header

library, contents of, B-1, B-4f
module, format of, B-2, B-5f

I
1/0, errors, 4-12 to 4-13
IDENT directive, to identify a module,

B-2
Indirect command

for entering lines, 1-5
examples, 1-6

Indirect command files
with LBR, 3-2
with MACRO, 2-5 to 2-6
nesting, 2-6

Information messages
with MAKSIL, 5-9, B-4
with PAT, 4-9, 4-10

Input / Output
errors, 4-12
MACRO-11 file specification format, 2-4

Insert switch
in object and macro libraries, 3-2t, 3-11

Insert switch (Cont .)
in universal libraries, 3-12

Internal software errors, 4-14

L
LBR, 3-1
command line, 3-2
error messages, 3-24 to 3-32
files, sample, 3-16t, 3-17t
files and formats, B-1
restrictions, list of, 3-23

LBR switches, 3-2t
Compress, 3-2t, 3-3
Create, 3-2t, 3-4
Default, 3-2t, 3-6
Delete, 3-2t, 3-5
Delete Global, 3-2t, 3-8
Entry Point, 3-2t, 3-8
Extract, 3-2t, 3-10
Insert (object, macro, universal), 3-2t
Insert (object and macro libraries), 3-11
Insert (universal libraries), 3-12
List, 3-2t, 3-13
Modify Header, 3-2t, 3-14
Replace, 3-2t, 3-16, 3-17
Replace (object and macro libraries), 3-15
Replace (universal libraries), 3-18, 3-19
Selective Search, 3-2t, 3-20
Spool, 3-2t, 3-20
Squeeze, 3-2t, 3-21, 3-22

LC argument, 2-8t
LD argument, 2-7t
/LI switch in MACRO-11, 2-6t
Librarian Utility Program (LBR), 3-1
CCL name for, 1-4t
entering LBR command lines, 1-5
files and formats, B-1
to invoke, 1-4

Libraries, MACRO, 2-9
Library

functions, combining, 3-23
header, B-1
resident, 5-3, 5-4
standard, file format for, B-2f
universal, file format for, B-3f

Library files, 3-1
examples, 3-16t
fatal error messages, 3-24
sample output, 3-17t, 3-18t
standard, format of, B-2f
universal, format of, B-3f

Library header, B-1
contents, B-4f
and library status, B-1

/LIBRARY qualifier in MACRO DCL, 2-3

Library switch, MACRO, 2-9
List switches, 3-2t, 3-13
Listing control switches, 2-7
LOC argument, 2-7t
LSB argument, 2-8t

M
MACRO-11

assembly process output files, 2-1
CCL name for, 1-4t
continuation lines in, 2-5
DCL examples in, 2-2, 2-3
default file types, 2-2
defaults, 2-3
diagnostic error messages, A-1
error codes, A-1 to A-3
error messages, 2-10 to 2-14
file specification switches, 2-6
I/O file specification format, 2-4 to 2-5
with indirect command files, 2-5 to 2-6
libraries, 2-9
library switch, 2-9
listing with Squeeze switch, 3-22f
module names and LBR, 3-1
running MACRO in DCL, 2-2
switches, 2-6t
utility program, 2-1

MAKSIL (Make Save Image Library)
as CCL name, 1-4t
creating a run-time system with, 5-1
diagnostic messages, 5-8
fatal error messages, 5-5 to 5-8
information messages, B-4
operating instructions, 5-3, 5-4

MC argument, 2-7t
.MCALL directive, 2-9
MD argument, 2-7t
ME argument, 2-7t
MEB argument, 2-7t
Messages

command line errors, 4-10
diagnostic errors, A-1
fatal errors and library files, 3-24
file content errors, 4-13
file format errors, 4-13, 4-14
file specification errors, 4-11
1/0 errors, 4-12, 4-13
information, 4-9, 4-10
internal software errors, 4-14
LBR error, 3-24 to 3-32
MACRO errors, 2-10 to 2-14
MAKSIL diagnostic, 5-8
MAKSIL fatal errors, 5-5 to 5-8
MAKSIL informational, 5-9
PAT errors, 4-9

Messages (Cont .)
storage allocation error, 4-15

/ML switch, 2-9
in MACRO-11, 2-6t

Modify Header switch, 3-2t, 3-14
Modules
adding a subroutine to, 4-7
header, described, B-2
header, format, B-5f
name table, B-1, B-2
name table, format, B-5f
names and LBR, 3-1
object, updated with PAT, 4-6
object, updated with Task Builder, 4-6
overlaying lines in, 4-6
updating with PAT, 4-2f, 4-3f

N
/NL switch in MACRO-11, 2-6t
/NOLIST in MACRO DCL, 2-3
/NOOBJ in MACRO DCL, 2-3
/NOSP switch in MACRO-11, 2-6t

0
Object module names and LBR, 3-1
Object modules

patch utility, 4-1
updated with PAT, 4-6
updated with Task Builder, 4-6

Operating instructions for MAKSIL, 5-3,
5-4

Output library file, 3-17t, 3-18t
Overlaying lines in a module, 4-6

P
/PA switches, 2-9 to 2-10
/PA:1 switch in MACRO-11, 2-6t
/PA:2 switch in MACRO-11, 2-6t
PAR option

Task Builder, 5-2t
for various sized run-time systems, 5-2t

PAT command line, 4-4
checksum switch, 4-4

PAT utility, 4-1
correction file, 4-5
information messages, 4-9, 4-10
input file, 4-4
kinds of error messages, 4-9
starting, 1-4, 4-2
for updating a module, 4-2f, 4-3f
updating object modules, 4-6
using PAT to apply updates, 4-4

Patch Object Module, CCL name for, 1-4t

Index-3

Patches installing with PAT utility, 4-1
Physical address range, Task Builder option

for, 5-2t
PNC argument, 2-8t
PSECT in PAT command line, 4-5

R
REG argument, 2-8t
Replace switch, 3-2t, 3-16, 3-17

in object and macro libraries, 3-15
in universal libraries, 3-18

Resident library, creating, 5-3, 5-4
RSX-based MACRO-11 assembler, 2-1
RSX-based utilities, CCL names for, 1-4t
RTS, 5-1 . See also Run-time system
RUN command

entering, 1-4
MACRO-11, 2-4

Run-time system
creating, 5-1
PAR and STACK options, 5-2t

S
Selective Search switch, 3-2t, 3-20
SEQ argument, 2-7t
Software errors, internal, 4-14
/SP switch in MACRO-11, 2-6t
Spool switch, 3-2t, 3-20
Squeeze switch, 3-2t, 3-21, 3-22
MACRO listing of, 3-22f

SRC argument, 2-7t
STACK option

used with Task Builder, 5-2t
for various sized run-time systems, 5-2t

Standard library file format, B-2f
STB, symbol table, 5-5
Storage allocation error, 4-15
Subroutines, added to a module, 4-7
Switches
arguments for /EN and /DS, 2-8
arguments for / LI and / NL, 2-7
Checksum, 4-8, 4-9
Compress, 3-2t, 3-3
Create, 3-2t, 3-4
Default, 3-2t, 3-6
Delete, 3-2t, 3-5
Delete Global, 3-2t, 3-8
Entry Point, 3-2t, 3-8
Extract, 3-2t, 3-10
in file specification, 2-6
function control, 2-8
Insert (object, macro, universal), 3-2t
Insert (object and macro libraries), 3-11
Insert (universal libraries), 3-12
LBR, 3-2t

Index-4

Switches (Cont .)
List, 3-2t, 3-13
listing control, 2-7
MACRO-11, 2-6t
Modify Header, 3-2t, 3-14
placement of in command string, 2-7
Replace, 3-2t, 3-16, 3-17
Replace (object and macro libraries), 3-15
Replace (universal libraries), 3-18, 3-19
Selective Search, 3-2t, 3-20
Spool, 3-2t, 3-20
Squeeze, 3-2t, 3-21, 3-22

SYM argument, 2-7t
Symbol table, appended to run-time system,

5-5
System MACRO library

(LB:RSXMAC.SML), 2-9

T
Tables

entry point, B-1
entry point element format, B-5f
module name, B-1
symbol, appended to run-time system, 5-5

Task Builder
options, for physical address range, 5-2t
options, for virtual address range, 5-2t
options, PAR and STACK, 5-2t
processing files with, 4-7
updating object modules with, 4-6

TOC argument, 2-7t
TTM argument, 2-7t

U
Universal libraries

file format, B-3f
sample files, 3-19t

Universal module names and LBR, 3-1
Updating modules with PAT, 4-1
Utilities

accessing, 1-3
command lines, entering, 1-4, 1-5
command lines, format, 1-1
LBR, files and formats, B-1
Librarian, 1-4, 3-1, B-1
MACRO-11, 2-1
MAKSIL, 1-4, 5-1
PAT, 1-4, 4-1
RSX-based, CCL names for, 1-4

V

Virtual address range, Task Builder option
for, 5-2t

HOW TO ORDER ADDITIONAL DOCUMENTATION

DIRECT TELEPHONE ORDERS

In CanadaIn Continental USA
and Puerto Rico call 800-267-6146
call 800-258-1710

DIRECT MAIL ORDERS (U .S . and Puerto Rico*)

DIGITAL EQUIPMENT CORPORATION
P.O. Box CS2008

Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD .
940 Belfast Road

Ottawa, Ontario, Canada K1G 4C2
Attn: A&SG Business Manager

INTERNATIONAL

DIGITAL EQUIPMENT CORPORATION
A&SG Business Manager

c/o Digital's local subsidary
or approved distributor

Internal orders should be placed through the Software Distribution Center (SDC), Digital
Equipment Corporation, Northboro, Massachusetts 01532

*Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary :

809-754-7575

In New Hampshire,
Alaska or Hawaii
call 603-884-6660

I

Reader's Comments

Note: This form is for document comments only . Digital will use comments submitted on this form at
the company's discretion . If you require a written reply and are eligible to receive one under
Software Performance Report (SPR) service, submit your comments on an SPR form .

Did you find this manual understandable, usable, and well-organized? Please make suggestions for
improvement .	

Did you find errors in this manual? If so, specify the error and the page number .

Please indicate the type of user/reader that you most nearly represent .

El Assembly language programmer
El Higher-level language programmer
El Occasional programmer (experienced)
El User with little programming experience
El Student programmer
O Other (please specify)	

Name	 Date

Organization

Street
Zip Code

City	 State		or
Country

RSTS/E
Programmer's Utilities Manual

AA-D749A-TC
AD-D749A-T1, T2

1
I
I
I
I

	Do Not Tear - Fold Here and Tape	 ~

da9

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO .33 MAYNARD MASS .

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: Commercial Engineering Publications MK1-2/H3

DIGITAL EQUIPMENT CORPORATION

CONTINENTAL BOULEVARD

MERRIMACK, N .H . 03054

--Do Not Tear - Fold Here and Tape	

No Postage
Necessary

if Mailed in the
United States

1

I

dC

b

0
A
eo>~0Id
0
U

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106

