
RSTS/E
MONITOR INTERNALS

Michael Mayfield

May 1983

This manual contains detailed information about the internal format and operation of the RSTS/E
monitor, its disk structures, resident libraries and runtime systems . It is intended for the advanced
system programmer .

OPERATING SYSTEM AND VERSION :

	

RSTS/E V8 .0

SUPERSESSION/UPDATE INFORMATION : This printing supersedes and replaces the November
1982 printing .

NORTHWEST DIGITAL SOFTWARE

NORTHWEST DIGITAL SOFTWARE, INC .

	

BOX 2-743 NEWPORT, WA 99156 (509) 447-2620

I

I

s

Copyright ° 1983 Michael Mayfield, Northwest Digital Software, Inc . and M-Systems, Inc .

No portion of this document may be copied in any form without the express, written consent of the author .

The information in this document is subject to change without notice and should not be construed as a commitment
by Michael Mayfield, Northwest Digital Software, Inc or M-Systems, Inc . No responsibility is assumed for any
errors that may appear in this document .

Digital Equipment Corporation is not responsible for any of the information contained in this document and
makes no commitment as to its accuracy or content .

RPM and WS-11 are trademarks of Northwest Digital Software, Inc . PDP, RSTS, RSX, DECNET, DECWORD,
DIGITAL and DEC are trademarks of Digital Equipment Corporation . CT*OS is a trademark of Compu-Tome,
Inc. WORD-11 and SAVER are trademarks of Data Processing Design, Inc .

Published and sponsored by M-Systems, Inc ., publishers of the VAX/RSTS Professional, DEC Professional,
and Personal and Professional magazines . This document was produced entirely by computer typesetting on
RSTS/E by Data & Staff, Inc ., Seattle, Washington .

6

DEDICATION
This document is dedicated to the members of the RSTS/E development group . Over a period of more than
ten years, these dedicated professionals have consistently produced a product that is unsurpassed in capabilities,
performance and ease of use . From all of us who make our livings with RSTS/E and Digital products, I say
"Thank you, and keep up the good work" .

This document is also dedicated to my wife, Barbara, for the love and support she has shown through the years .
Without her help and understanding during the endless overnight sessions and the months away from home,
I never would have been able to provide a document such as this one .

ii

ABOUT THE AUTHOR

Michael Mayfield started in RSTS over 10 years ago and has been going strong ever since . Few people know
as much about RSTS/E and how to get the most from it as Mike . During his career he has been involved in
the design and development of many successful software products for RSTS/E, including RPM, WS-1 1, CT*OS,
WORD-11/DECWORD, and SAVER .

Mr. Mayfield presently heads Northwest Digital Software, Inc ., a RSTS/E development and consulting firm
located in Newport, Washington . As such, he is involved in the development of an array of quality products
for the RSTS/E environment . He is also involved in providing consulting services in the area of RSTS/E
performance optimization, product design and RSTS/E monitor extensions such as device drivers and custom
modifications .

Mr. Mayfield received his B .S. in Information and Computer Science from the University of California at Irvine,
graduating with honors . From there he worked with Digital Equipment Corporation and Data Processing Design,
Inc. for several years before starting his own organization .

Ill

TABLE OF CONTENTS
Preface	 x

Introduction	 xi

Summary of Changes	 xii

iv

Chapter 1 : DISK STRUCTURES	 1-1
1 .1 TERMINOLOGY	 1-2
1 .1 .1 Logical Block Number(LBN)	 1-2
1 .1 .2 Cluster	 1-2
1 .1 .3 Device Cluster Size(DCS)	 1-2
1 .1 .4 Device Cluster Number(DCN) 1-2. .
1 .1 .5 FIP Block Number(FBN)	 1-2
1 .1 .6 Pack Cluster Size	 1-2
1 .1 .7 File Cluster Size	 1-3
1 .1 .8 MFD Cluster Size	 1-3
1 .1 .9 GFD Cluster Size	 1-3
1 .1 .10 UFD Cluster Size	 1-3
1 .1 .11 FIP Block Sub-block(FBB)	 1-3
1 .1 .12 Directory Link	 1-3
1 .2 RDSO DISK DIRECTORY STRUCTURES	 1-4
1 .2 .1 MFD Label Entry	 1-5
1 .2 .1 .1 MFD Pack Status	 1-5
1 .2 .2 MFD Name Entry	 1-6
1 .2 .2 .1 USTAT- UFD Status	 1-7
1 .2.3 MFD Accounting Entry	 1-7
1 .2.4 MFD Cluster Map	 1-8
1 .2.5 User File Directory (UFD)	 1-8
1 .3 RDS1 DISK DIRECTORY STRUCTURES	 1-9
1 .3.1 Pack Label	 1-10
1 .3.1 .1 Pack Status	 1-11
1 .3.2 Master File Directory (MFD)	 1-11
1 .3.2 .1 Label Block	 1-11
1 .3.2 .2 GFD Pointer Block	 1-13
1 .3.2 .3 Other Blocks	 1-13
1 .3.3 Group File Directory (GFD)	 1-13
1 .3.3 .1 Label Block	 1-14
1 .3.3 .2 UFD Pointer Block	 1-15
1 .3.3.3 Name Entry Pointer Block	 1-15
1 .3 .3.4 Other Blocks	 1-16
1 .3 .3.4 .1 Name Entry	 1-16
1 .3 .3.4.2 Accounting Entry	 1-17
1 .3 .3.4 .3 Attribute Entries	 1-18
1 .3 .4 User File Directory (UFD)	 1-19
1 .3 .4 .1 UFD Label Entry	 1-19
1 .3 .4.2 UFD Name Entry	 1-20
1 .3 .4.2 .1 USTAT - File Status	 1-21
1 .3 .4.3 UFD Accounting Entry	 1-21
1 .3 .4.4 UFD Attributes Entry	 1-22
1 .3 .4.4 .1 RMS-11 Attribute Values	 1-22
1 .3 .4.5 UFD Retrieval Entry	 1-23
1 .3 .4.6 UFD Cluster Map	 1-24
1 .3 .4.7 Unused entries	 1-24

1 .3 .5

	

Directory Links	 1-25
1 .4

	

STORAGE ALLOCATION TABLE (SAT)	 1-26
1 .5

	

SAVE IMAGE LIBRARY (SIL)	 1-27
1 .5 .1

	

SIL Index Block	 1-27
1 .5 .2

	

SIL Module Entry	 1-27
1 .5 .3

	

SIL Symbol Table Entry	 1-29
1 .5 .4

	

SIL Overlay Descriptor Entry	 1-29
1 .6

	

BOOTSTRAP BLOCK	 1-30
1 .7

	

BAD BLOCK FILE	 1-33

Chapter 2 : MONITOR TABLES	 2-1
2.1

	

JOB CONTROL	 2-2
2.1 .1

	

JOBTBL-Job Table	 2-2
2.1 .2

	

J DB- Primary Job Data Block	 2-3
2.1 .2 .1

	

JDFLG - Primary Job Status Flags	 2-4
2.1 .2.2

	

JDFLG2 - Secondary Job Status Flags	 2-5
2.1 .3

	

J DB2-Secondary Job Data Block	 2-6
2.1 .4

	

IOB-I/O Block	 2-7
2.1 .5

	

WRK - Work Block	 2-8
2.1 .6

	

JBWAIT,JBSTAT - Job Status Tables	 2-8
2.1 .7

	

JOBCLK - Job Sleep Time Table	 2-9
2.2

	

LEVEL THREE QUEUE	 2-10
2.3

	

MEMORY CONTROL	 2-12
2.3.1

	

MCB - Memory Control Sub-Block	 2-12
2.3.1 .1

	

M.CTRL - Memory Status Information	 2-13
2.3.2

	

MEMLST - Resident Memory List	 2-13
2.3.2 .1

	

Root Memory Control Sub-Block	 2-13
2.3 .2.2

	

Tail Memory Control Sub-Block	 2-14
2.3 .3

	

RESLST - Desired Residency List	 2-14
2.3 .4

	

RTS - Runtime System Descriptor Block	 2-15
2.3 .4 .1

	

R.FLAG - Runtime System Characteristics	 2-16
2.3 .4.2

	

NULRTS - Disappearing RSX Runtime System	 2-16
2.3 .4 .3

	

RTSLST - Runtime System List	 2-17
2.3.5

	

LIB - Resident Library Descriptor Block	 2-17
2.3.5 .1

	

R.FLAG - Resident Library Characteristics	 2-19
2.3 .6

	

WDB - Window Descriptor Block	 2-19
2.3 .6 .1

	

W.WIN? - Address Windows	 2-20
2.3 .6 .1 .1

	

W$NSTS - Window Status	 2-21
2.3 .6.2

	

Extended Window Descriptor Blocks	 2-21
2.3 .6.3

	

Resident Library Linkages	 2-22
2 .4

	

FILE CONTROL	 2-23
2.4.1

	

File Control Block	 2-24
2 .4.1 .1

	

F$STAT - Status Flags	 2-25
2.4.1 .2

	

FBB- FIP Block Sub-Block	 2-25
2.4.2

	

WCB - Window Control Block	 2-25
2.4.2 .1

	

W$STS - Status Flags	 2-27
2.4.2.2

	

W$FLAG - Flag Bits	 2-27
2.4.2.3

	

W$WCB - File Flags and Link to WCB	 2-28
2.4.2.4

	

Extended WCB	 2-28
2.5

	

DEVICE CONTROL	 2-29
2.5 .1

	

DDB - Device Data Block	 2-29
2.5 .1 .1

	

DDSTS - Device Characteristics Flags	 2-30
2.5 .1 .2

	

DDCNT - Device Flags	 2-31
2.5 .1 .3

	

Small Buffer Control Block	 2-31
2.5 .2

	

DSQ - Disk I/O Queue Entry	 2-32

v

2.5.3

	

Logical Device Tables	 2-34
2.5.3 .1

	

DEVNAM - Device Name Table	 2-34
2.5 .3 .2

	

DEVCNT - Device Unit Count Table	 2-35
2 .5 .3.3

	

DEVPTR - Device Information Pointer Table	 2-35
2.5 .3.4

	

UNTCNT - Disk Unit Status Table	 2-36
2 .5 .3.5

	

DEVTBL - DDB Pointer Table	 2-36
2 .5 .3 .6

	

LOGNAM - Logical Name Table	 2-36
2 .5 .4

	

Device Driver Dispatch Tables	 2-38
2 .5 .5

	

Device Driver Support Tables	 2-38
2.5 .5 .1

	

FLGTBL - Device Characteristics Flags	 2-38
2.5 .5 .2

	

SIZTBL - Line Width	 2-39
2.5 .5 .3

	

BUFTBL - Default I/O Buffer Size	 2-39
2.5 .5 .4

	

JSBTBL - JS .xx Bit for Device	 2-40
2.5 .5 .5

	

DVRAP5 - APR5 Pointers	 2-40
2.5 .5 .6

	

CSRTBL - CSR Addresses	 2-40
2.5 .5 .7

	

TIMTBL - Timeout Counters	 2-40
2.5.6

	

Disk Control Tables	 2-41
2.5.6 .1

	

DEVCLU/CLUFAC - Device Cluster Size, Cluster Ratio	 2-41
2.5.6 .2

	

UNTCLU/UNTERR - Pack Cluster Size, Error Count	 2-41
2 .5 .6.3

	

UNTLVL/UNTREV - Disk unit RDS Level/Revision	 2-41
2 .5 .6.4

	

UNTSIZ- Disk Size	 2-41
2 .5 .6.5

	

UNTLIB - [1,2] Starting Cluster	 2-42
2 .5 .6.6

	

MFDPTR - MFD Pointers	 2-42
2 .5 .6.7

	

UNTOWN/UNTOPT - Unit Owner, Unit Options	 2-42
2 .5 .6.8

	

DSKMAP - FUN to Disk Index	 2-42
2 .5 .7

	

SAT Tables	 2-43
2.5 .7 .1

	

SATCTL, SATCTM - Count of Free Blocks	 2-43
2.5 .7.2

	

SATPTR - DCN of Last Allocated Cluster	 2-43
2.5 .7 .3

	

SATEND - Ending PCN	 2-43
2.5 .7.4

	

SATSTL, SATSTM - Starting FBN of SATT .SYS	 2-43
2.5 .8

	

DECNET Device Control Tables	 2-43
2.5 .8 .1

	

DDCTBL - Number of DECNET Controllers, UCTTBL Bias	2-44
2.5 .8 .2

	

UCTTBL - Number of Units per Controller	 2-44
2.6

	

SEND-RECEIVE	 2-45
2.6.1

	

RIB - Receiver ID Block	 2-45
2.6 .1 .1

	

S.OBJT- Object Types	 2-46
2.6.1 .2

	

S.ACCS - Access Control Bits	 2-47
2.6.2

	

PMB - Pending Message Block	 2-47
2.6.2.1

	

P$TYPE - Message Type	 2-48
2.6.2.2

	

Buffer Format	 2-49
2 .7

	

CCL - CONCISE COMMAND LANGUAGE BLOCK	 2-50
2 .8

	

FIXED MEMORY LOCATIONS	 2-51

Chapter 3: DEVICE DRIVERS	 3-1
3 .1

	

GENERAL STRUCTURE	 3-2
3 .1 .1

	

PSECT Usage	 3-3
3 .1 .1 .1

	

xxDVR - Driver Read-Only Code Section	 3-3
3 .1 .1 .2

	

xxDINT - Interrupt Service Dispatch Section	 3-3
3 .1 .1 .3

	

xxDCTL - Read-Write Data Section	 3-4
3.1 .1 .4

	

xxDTBL - Read-Only Data Section	 3-4
3.2

	

ENTRY POINTS	 3-5
3.2 .1

	

ASN$xx- Assign	 3-5
3.2 .2

	

DEA$xx - Deassign	 3-5
3.2 .3

	

OPN$xx- Open	 3-6
3.2 .4

	

CLS$xx- Close	 3-6

vi

vii

3 .2 .5 SER$xx - I/O Service	 3-7
3 .2.6 SPC$xx - Special Service	 3-8
3 .2.7 INT$xx-Interrupt Service	 3-8
3 .2.8 TMO$xx-Timeout	 3-9
3 .2.9 ERL$xx- Error Logging	 3-10
3 .2.10 SLP$xx-Sleep Check	 3-10
3 .2.11 UMR$xx - Unibus Mapping Register Available	 3-11
3 .2.12 L3Q$xx - Level Three Queue Reentry	 3-11
3 .3 SYMBOLIC VALUES	 3-12
3 .3 .1 STS .xx -DDB Status Byte	 3-12
3 .3 .2 FLG.xx - Device Dependent Flags	 3-12
3.3 .3 SIZ.xx- Line Width	 3-13
3 .3 .4 BUF .xx - I/O Buffer Size	 3-13
3 .3 .5 CNT .xx - Number of Units for Device	 3-13
3.3 .6 DDS .xx - DDB Size	 3-13
3.3.7 CCC.xx-IC Flag	 3-14
3 .3 .8 BFQ.xx-Buffer Quota	 3-14
3 .3 .9 HOR .xx - Horizontal Line Width	 3-14
3 .3 .10 SLP.xx - Check Before Sleeping Flag	 3-15
3 .3.11 UMR .xx - Notify Driver When UMR is Available	 3-15
3 .3 .12 ALT .xx - Alternate Device Name	 3-15
3 .3 .13 TIM.xx - Timeout Clock Setting	 3-16
3 .3 .14 IDX .xx- Driver Index	 3-16
3 .3 .15 JS .xx - JBWAIT/JBSTAT Status Bit	 3-16
3 .3 .16 CSR.xx - Pointer to CSR Address	 3-17
3 .3 .17 DEV .xx - Pointer to DDB for Unit n	 3-17
3 .3 .18 xxDDDB - Address of Unit 0 DDB	 3-17
3 .3 .19 LOG$xx - Enter Error Logging	 3-18
3 .3 .20 WAIT2T - Reenter After Two Clock Ticks	 3-18
3 .4 SYSTEM MACROS	 3-19
3 .4.1 BR - Branch to Following Location	 3-19
3 .4.2 CALLR - Call Following Routine and Return	 3-19
3.4.3 PUSH - Push a Value on the Stack	 3-19
3 .4 .4 POP - Pop a Value from the Stack	 3-20
3.4 .5 ASSUME - Verify Assumption	 3-20
3.4 .6 REGSAV - Save Registers R0-R5	 3-20
3.4 .7 REGSCR - Save Registers Co-Routine	 3-21
3 .4 .8 REGRES - Restore Registers	 3-21
3 .4 .9 DEVICE - Define Device Driver Information	 3-21
3.4 .10 BUFFER - Allocate/Deallocate Small Buffers	 3-22
3.4.11 GETUSR - Get Byte from User Buffer	 3-23
3 .4 .12 PUTUSR - Store Byte in User Buffer	 3-23
3 .4.13 SETERR - Post Error Code	 3-24
3.4.14 ERROR - Post Error Code and Exit	 3-24
3 .4.15 L3QSET - Set Bit in L3Q	 3-24
3 .4.16 MAP - Access Memory Management Registers	 3-25
3 .4.17 SPL - Set Processor Priority	 3-25
3 .4.18 SPLC - Set Program Status Word	 3-26
3 .4.19 CRASH - Crash the System	 3-26
3 .5 MONITOR SUBROUTINES	 3-27
3 .5 .1 FREBUF - Check Small Buffer Availability	 3-27
3 .5 .2 STORE - Store Character in Small Buffer	 3-27
3 .5 .3 FETCH - Get Character from Small Buffer	 3-28
3 .5 .4 CLRBUF - Return All Small Buffers	 3-28
3 .5 .5 BUFFER - Allocate a Large Buffer	 3-28

Chapter 4: RESIDENT LIBRARIES AND RUNTIME SYSTEMS	 4-1
4.1

	

ADDRESS SPACE USAGE	 4-3
4.1 .1

	

Address Requirements for a Resident Library	 4-3
4.1 .2

	

Address Requirements for a Runtime System	 4-3
4.1 .3

	

Writing Position Independent Code	 4-5
4.2

	

SPECIAL LIBRARIES AND RUNTIME SYSTEMS	 4-7
4.2.1

	

Memory Resident Overlays Within a Library	 4-7
4.2.2

	

Common Data Areas	 4-7
4.2.3

	

Coordinating Runtime Systems	 4-9
4.3

	

BUILDING A RESIDENT LIBRARY	 4-10
4.3 .1

	

Building a Position Dependent Library	 4-10
4 .3 .2

	

Building a Position Independent Library	 4-10
4 .3 .3

	

Building a Read-Write Resident Library	 4-11
4 .4

	

BUILDING A RUNTIME SYSTEM	 4-12
4 .5

	

DEBUGGING A RUNTIME SYSTEM	 4-13

Appendix A : QUICK REFERENCE CHARTS
Appendix B : EXAMPLE PEEK SEQUENCES
Appendix C : EXAMPLE DEVICE DRIVER
Appendix D : EXAMPLE RUNTIME SYSTEM

References
Index

3 .5 .6 RETCHN - Return All Large Buffers in a Chain	 3-29
3.5 .7 INTSAV - Enter Interrupt Service Routine	 3-29
3.5 .8 INTSVX - Enter Secondary Interrupt Service Routine	 3-30
3.5 .9 IOFINI-I/O Finished	 3-30
3.5 .10 IOFINC - I/O Conditionally Finished	 3-31
3.5 .11 IOREDO - Stall for I/O Redo	 3-31
3.5 .12 RTI3 - Exit and Check Level Three Queue	 3-31
3.5 .13 RETDEV - Return an Open Device	 3-31
3.5 .14 ERLDVR - Enter Error Log Entry	 3-32
3.5 .15 QUEUER - Enter Item in Queue	 3-34
3 .5.16 FNDJOB - Force a Job Into Memory	 3-34
3 .5.17 UNLOCK- Unlock a Job's Memory	 3-35
3 .5.18 LRRSQ - Clear Residency Quantum	 3-35
3 .5.19 DMPJOB - Dump the Current Job	 3-35
3 .5 .20 MAPBUF - Map a Buffer	 3-36
3 .5 .21 GETUMR - Get a Unibus Mapping Register	 3-36
3 .5 .22 HMADR - Initialize Unibus Mapping for RH70 or RH11	 3-37
3 .5 .23 RELUMR - Return a Unibus Mapping Register	 3-37
3 .6 CSR AND VECTOR ASSIGNMENT	 3-38
3 .7 INSTALLING THE DRIVER	 3-40
3.8 DEBUGGING A DEVICE DRIVER	 3-42
3.8 .1 Notation	 3-42
3.8 .2 Control Registers	 3-43
3.8 .3 Control Tables	 3-44
3.8 .4 Commands	 3-45

This document describes the internal workings and data structures of the RSTS/E monitor, as of version 8 .0 .

The information in this document will be useful for accessing information contained in tables within the monitor,
the disk directory structure, and other monitor tables and structures . It provides the information required to
write a custom device driver and add it to the monitor . It also provide information on writing resident libraries
and runtime systems for custom applications .

The first chapter describes the structures used by the monitor that are resident on disk . These include the directory
structure, disk allocation tables, save image library formats, bootstrap formats and bad block mapping .

The second chapter describes the tables used within the monitor to control system resources and provide program
services . These tables provide job, memory, file and device control, as well as providing program services such
as interjob communication .

The third chapter provides the information needed to write and install a custom device driver . It describes the
entry points and information the driver must provide to the monitor as well as the services the monitor provides
for the driver .

The fourth chapter provides information that enhances information already provided by Digital on writing custom
resident libraries and runtime systems . It concentrates mainly on non-standard uses of resident libraries and runtime
systems .

Appendix A provides several fold out sheets which give a quick reference to most of the information contained
in this document . Appendix B provides examples of the peek sequences required to access most of the monitor
tables . Appendices C and D provide examples of a user-written device driver and runtime system, respectively .

The reader should have a basic understanding of operating system theory and system programming and should
be familiar with the MACRO-11 language . With the exception of offsets, all values used in tables and examples
are in decimal, unless specified otherwise . All values used in MACRO program examples are in octal unless specified
otherwise. All offset values are in octal .

The symbols "[" and "]" specify that the enclosed text is optional . The symbols "{" and "}" specify that one
of the enclosed choices of text must be used .

ix

PREFACE

O

INTRODUCTION

The RSTS community has repeatedly asked for a manual describing the internal workings of RSTS/E. In each
instance, Digital's response has been that, if they provided information about internal structures they would
no longer be able to make changes to these structures if they were needed for a new release of the monitor .

Their point is valid in many respects, but it still doesn't answer the need for this information by a user who
recognizes that the information is subject to change and will not necessarily be upward compatible with new
versions of RSTS/E .

The best solution to this delemma appears to be a manual produced by the user community . Michael Mayfield
has taken the experience he has gained in over 10 years with RSTS/E and written a manual detailing the internals
of the RSTS/E operating system .

This document describes, in detail, the internal workings and data structures of the RSTS/E monitor . It includes
information on disk structures, monitor tables, device drivers, resident libraries and runtime systems .

Bear in mind, however, that information on the internal workings of any program under continual development
is subject to change . As new versions of the monitor become available, information provided in this document
may change . Design any programs you write using this information with this possibility in mind .

Under no circumstances should it be assumed that Digital Equipment Corporation has any responsibility to keep
the internal workings of the RSTS/E operating system compatible between releases .

Xi

SUMMARY OF CHANGES
Several changes and additions were made to the RSTS/E structures in the V8 .0 release . The following is a summary
of the changes that effect this document :

1 . Addition of RSTS Disk Structure Level 1 (RDS1) format directory structure .

2. Addition of UNTLVL table to record disk level for all mounted disks .

3. Addition of MFDPTR table to point to the beginning of the Master File Directory (MFD) for RDS1 format
disks .

4. Replacement of bootstrap with new bootstrap format .

5 . Changes to Secondary Job Descriptor Block (JDB2) required for removal from small buffer pool, EMT
logging, extended spawn features and optional mini-systat .

6 . Removal of small file system structures .

7. Changes to Unit Options table (UNTOPT) to support dual ported disks and disks that require that system
I/O be stalled during dismount .

8. Addition of new send/receive object types .

In addition to the changes required for V8 .0, this document has been redesigned to make it easier to use . All
offsets are now in octal . All bit values now have a quick reference chart to make their use easier .

Changes from the previous release of this document are noted by a change bar in the outside margin . Deletions
are noted by a bullet in the outside margin .

xii

Chapter 1

DISK STRUCTURES
Disks are divided into individual files . Each of these files can be used as if it were a disk unto itself . Files are
created, extended and deleted under the control of the RSTS/E monitor, specifically by the File Processor (FIP) .

In order to catalog all the files on a disk, a directory structure is needed . RSTS V8.0 supports two different
directory structurs ; RDSO and RDS1 . The RDSO directory structure is a combination of a master file directory
and some number of user file directories . The RDSI directory structure uses a combination of master file directory,
(MFD), several group file directories, (GFDs), and several user file directories, (UFDs) . Section 1 .2 describes
the format of the RDSO directory structure . Section 1 .3 describes the RDS1 directory structure .

Allocation and deallocation of disk space is handled automatically by FIP using the Storage Allocation Table
(SAT) contained on each disk . The SAT contains a bit map that specifies which disk blocks are available for
allocation and which are already in use . Section 1 .4 describes the structure of the SAT .

The RSTS/E monitor consists of several independant program modules . These modules are contained in a specially
indexed file structure known as a Save Image Library (SIL) . When the system is started, the INIT program is
brought into memory using a bootstrap contained in the first block on the system disk . The INIT program then
loads the monitor from a SIL file and starts timesharing. Sections 1 .5 and 1 .6 describe the format of a SIL and
the bootstrap block .

In order to provide for the proper handling of bad blocks on each disk, a special file is provided which maps
these bad blocks and keeps them from being used in normal operations . Section 1 .7 describes this bad block file .

1.1 TERMINOLOGY

A basic understanding of the terms used in disk structures is needed for the discussions which follow in this chapter .

1 .1 .1 Logical Block Number (LBN)

Each disk is divided into a number of 512 byte logical blocks . Logical blocks are numbered sequentially, starting
at zero. The total number of logical blocks on a disk depends on the size of the disk . See the RSTS/E System
Generation Manual for more information on disk sizes .

1 .1 .2 Cluster

A cluster is a group of contiguous logical blocks . The number of logical blocks in a cluster is always a power
of two, in the range 1-256 .

1 .1 .3 Device Cluster Size (DCS)

Large disks contain more blocks than can be specified in a 16 bit word . To circumvent this problem, RSTS/E
divides large disks into device clusters . The size of the cluster is calculated such that all the clusters on the disk
can be specified in a 16 bit word . See the RSTS/E System Generation Manual for a list of the device cluster
sizes for all standard disk types .

1 .1 .4 Device Cluster Number (DCN)

Each device cluster on a disk is assigned a unique device cluster number . These numbers start at zero and continue
sequentially through all device clusters .

1 .1 .5 FIP Block Number (FBN)

FIP and the common disk subsystem convert the 16 bit device cluster numbers to 23 bit FIP block numbers
(FBNs), which are used to actually access the disk . FBN 1 corresponds to the logical block number of the first
block in DCN 1 . The following FBNs correspond to the remaining logical blocks numbers .

A special case is FBN 0 . FBN 0 always corresponds to logical block 0 . If the device cluster size of a disk is greater
than one, the remaining blocks in device cluster 0 do not have a corresponding FBN and are, therefore, inaccessable .

1 .1 .6 Pack Cluster Size

When a disk pack in initialized, it is assigned a pack cluster size . This pack cluster size is used as the default
cluster size for all files created on that pack . The pack cluster size is a power of two, in the range 1-16 . The
pack cluster size is always greater than or equal to the device cluster size .

1 -2

1.1 .7 File Cluster Size

The blocks of a file are grouped together in clusters . The directory structure contains the information necessary
to access the first block of each cluster . Since the blocks of a cluster are contiguous, any block within the cluster
can be accessed if the location of the first block is known . The file cluster size is always a power of two, in
the range 1-256, but not less than the pack cluster size .

1 .1 .8 MFD Cluster Size

The Master File Directory (MFD) consists of up to seven clusters . The MFD cluster size can be 1,2,4,8, or 16

in RDSO and in RDS1 . Since the current version of the RDS1 MFD only uses three blocks, specifying a clustersize
greater than four for an RDS1 MFD is of no value in most cases .

1 .1 .9 GFD Cluster Size

Each Group File Directory (GFD) consists of up to seven clusters . The clustersize of the GFD determines the
number of user accounts that can be defined for a particular group . The GFD cluster size can be 4, 8 or 16 .

1 .1 .10 UFD Cluster Size

Each User File Directory (UFD) consists of up to seven clusters . The cluster size of a UFD determines the number
files and the amount of file retrieval information that can be contained in a particular account . The UFD cluster
size is always a power of two, in the range 1-16, but not less than the pack cluster size .

1 .1 .11 FIP Block Sub-Block (FBB)

A FIP Block Sub-Block is used to identify a particular block on a disk . It is used in File Control Blocks (see
section 2 .4.2) and Window Control Blocks (see section 2 .4.3) to access an entry in a directory .

A FIP Block Sub-Block consists of four bytes . The first byte is the FIP Unit Number of the specified disk . The
next byte contains the most significant byte of the FIP block number . The next two bytes (as a word) contain
the least significant bytes of the FIP block number .

1 .1 .12 Directory Link

The entries in a User File directory (UFD) are linked together in a linked list . The elements of this list are connected
together by special directory links .

A directory link is a word that specifies the cluster number of the directory, the block within the cluster and
the offset within the block to access a particular directory entry. See section 1 .3 .5 for a description of directory links .

1-3

1.2 RDSO DISK DIRECTORY STRUCTURES

The RSTS/E Disk Structure Level 0 (RDSO) file system is based on a two level hierarchy : a Master File Directory
to store account information and User File Directories to store file information . The Master File Directory (MFD)
is used to retrieve information about each account on the system . Information about the files belonging to each
account are stored in User File Directories (UFDs) .

The Master File Directory (MFD) contains information about every account on the disk . Each disk contains
exactly one MFD . Using the information in the MFD, the monitor can find the User File Directory (UFD) for
each account. The MFD also contains information about each account's resource usage . It also contains
information necessary to mount and use the disk pack . Since the MFD also doubles as the UFD for account
[1,1], it may contain UFD entries if files are present in account [1,1] .

Since all information about file and UFD placement is based on the directory structure, the root of this structure,
the MFD, must be located at a known location on the disk . The MFD is the only portion of an RDSO disk except
for the bootstrap, that always resides at a fixed location on the disk . The first cluster of the MFD is located
at disk cluster number (DCN) one. The remaining clusters are found using information in the MFD structure .
They may be located anywhere on the disk .

The MFD consists of up to six different types of entries : the Label Entry, Name Entries, Accounting Entries,
Attributes Entries (optional), Cluster Maps and Unused Entries .

The User File Directory (UFD) catalogs a user's files . Each file in the associated account has an entry in the
UFD which completely describes the file, including its protection requirements, current status and information
needed to access the contents of the file . The format of the UFD is identical on RDSO and RDS1 disks . See
section 1 .3 .4 for more information on the UFD .

The UFD is almost identical in format to the RDSO MFD. It contains a Label Entry, Name Entries, Accounting
Entries, Attributes Entries (optional), Cluster Maps and Unused Entries . In addition, it contains Retrieval Entries
which are used to determine the actual location on disk of each block of a data file .

The MFD Name Entry and Accounting Entry for each account are created when the account is created . No space
is allocated for the UFD until the first file is created in the associated account .

The following figure provides a graphic representation of the RDSO directory structure :

MFD:

UFD:

Actng Rib

1-4

R'b

UFD information is kept in a linked list . In most cases, new files are added to the end of the list . However,
it is possible to add a file to the beginning of the list using a special open mode or by specifying "new files first"
when initializing the disk pack (see sections 1 .2 .1 .1 and 1 .3 .1 .1) . Files are added to the beginning of the list on
a logical basis only and are not necessarily physically first unless optimized by the REORDR utility program
or a similar utlity .

Improper arrangement of files in the UFD can have a dramatic effect on the efficiency of disk I/O . If properly
done, disk I/O requires no additional seeks for directory overhead . But, improperly done (alas, the obvious way),
directory links can cross block boundaries dozens, if not hundreds, of times . This can require many overhead
seeks for every disk access request in your program .

Optimal organization of the UFD requires that (1) the order of information in the UFD be optimized using
REORDR or a similar utility, (2) files use optimal clustersizes, (3) contiguous files be used whenever possible .

1 .2.1 MFD Label Entry

The MFD Label Entry contains the information needed to mount and allow access to the disk pack . It is always
the first entry in MFD cluster 0 . It is created by the DSKINT option of INIT or by the DSKINT utility program
during timesharing .

Offset

	

Symbol

1 .2 .1.1 MFD Pack Status

The pack status bits contained in offset 12 of the MFD Label Entry have the following meaning when set :

1

	

15

	

1

	

14

Symbol Offset

0

	

ULNK

	

This word contains the link to the first Name Entry in the MFD . This link will never be
zero since there is always at least one Name Entry in every MFD, the entry for account [1,1] .

14

13

Link to first Name Entry in MFD
-1
0
0

Pack cluster size
Pack status

Pack ID (in RAD50)

1

This word contains a -1 to show that the entry is in use .

Unused

Unused

This word specifies the pack cluster size .

This word contains a set of bits that describe the characteristics of this disk pack as well
as its current status (see section 1 .2 .1 .1) .

These two words contain the logical pack ID in RAD50 . The pack ID is used when the
disk is mounted and as an alternate name for the pack once it has been mounted .

12

	

1

	

11 1 10 1 9

	

1

	

8

1 -5

Description

1 6

	

1

	

5 1 4

Offset

0
2
4
6
10
12
14
16

1

	

2 1

Symbol

ULNK

1 1 0 I

UC MNT CC PR! LCDLW UC TOP

Bit

	

Symbol
<0:8>

<9> UC.TOP

<10>

<11> UC.DLW

< 12:13>

<14> UC.PRI

< 15 > UC.MNT

1 .2 .2 MFD Name Entry

The MFD Name Entry is used to catalog all the accounts on the system . Each account on the system disk has
a Name Entry associated with it . Name Entries and their associated User File Directories are created automatically
on other disks in the public structure as files are created on those disks . Name Entries are created on private
packs only when the associated account is created using the REACT program or the UFD creation SYS call .

The Name Entry contains all the information necessary to identify a desired account and to verify login access
to the account . Name Entries are linked together in the order in which they were created .

Symbol Offset

Offset

	

Symbol

Unused
Description

Link new files to the top of the UFD for files on this disk . This is the "New Files First"
characteristic .

Unused .

The access date for files on this disk should only be updated when they are written into, not
when they are accessed for reading . This is the "Date Last Written" characteristic .

Unused .

This disk is a private pack (as opposed to a disk in the public structure) . System disks are
defined as private packs . When used as the system disk they are treated as part of the public
structure . When explicitly mounted, they are treated as private packs .

This disk is currently mounted . If this bit is already set when an attempt is made to mount
the disk, it was not dismounted properly after its last use and should be "rebuilt" before
being used .

Description

Offset Symbol

0 ULNK
2 UNAM
4
6
10 USTAT
12 UACNT
14 UAA
16 UAR

0

	

ULNK

	

This word contains a link to the next MFD Name Entry . If this is the last MFD Name
Entry, this word will be zero .

2 UNAM This word contains the project programmer number (PPN) of the account associated with
this Name Entry . The programmer number is in the low byte . The project number is in
the high byte. The PPN cannot be [*,255], [255,*] or [0,*], except for account [0,1] .

4 These two words are the account password in RAD50 . A password of ?????? specifies
that the account exists but cannot be logged into . Password verification is the responsibility
of the LOGIN program . It is not checked by the monitor .

10

	

USTAT

	

This byte contains a set of bits describing the status and restrictions of the UFD or file
associated with this Name Entry (see section 1 .2.2 .1) .

11

	

This byte is unused . It corresponds to the protection code in a UFD Name Entry . It always
contains a value of 60 in case UFD protection is provided in a future release of RSTS/E .

12 UACNT This word is used as a pair of bytes to count current accesses to the UFD . The low byte
(offset 12) is currently unused . The high byte (offset 13) is the current login count for this
account .

1-6

Link to next Name Entry in MFD
PPN Project #

	

PPN Programmer #

Password (in RAD50)

Unused Status
Access count

Link to accounting entry
DCN of 1st UFD cluster

14

	

UAA

	

This word is the directory link to the Accounting Entry for this account .

16 UAR This word is the device cluster number (DCN) of the first cluster of the UFD for this account .
If no files have been created for this account on this disk since the account was created
or zeroed, this word will be 0 . Disk space for the UFD is not actually allocated until the
first file is created .

1 .2.2.1 USTAT - UFD Status

The bits in the account status byte, USTAT, in the MFD have the following meaning when set :

i US .DEL

7 6

US.UFD I US. NOK

5

US NO

3

	

2

US. UPD US .WRT

0

US PLC US . OUT

4

Bit

	

Symbol

	

Description
<0> US.OUT Always 0 .

< 1 > US.PLC The UFD was placed at a specific location on the disk .

<2> US.WRT Write privileges for explicit opens of the UFD have already been given out .

<3> US.UPD Always 0 .

<4> US. NOX Always 1 .

<5> US .NOK Always 1 .

<6> US .UFD This bit is always 1 to specify that this is an MFD Name Entry . This allows UFD Name Entries
for [1,1] to be intermixed with MFD Name Entries since the MFD is also used as the [1,1] UFD .

<7> US.DEL Always 0 .

1 .2 .3 MFD Accounting Entry

Every account has an MFD Accounting Entry . The Accounting Entry stores accumulated resource usage counts
for the associated account . Each time a user logs out, his current resource usage (maintained by the monitor)
is added to the existing values in the Accounting Entry for that user .

Link to Attributes Entry
Accumulated CPU time (LSB)
Accumulated connect time
Accumulated kilo-core-ticks
Accumulated device time

CPU time (MSB)

	

KCT (MSB)
Logout disk quota
UFD cluster size

Symbol Offset

	

Offset Symbol

0 ULNK
2 MCPU
4 MCON
6 MKCT
10 MDEV

13 12 MMSB
14 MDPER
16 UCLUS

Offset

	

Symbol

	

Description

0 ULNK This word is available for a link to an Attributes Entry . While RSTS/E doesn't currently
use attributes on an Accounting Entry, a user written program could add attributes to an
Accounting Entry for its own use . (See section 1 .3 .4.4 for a discussion of the Attributes
Entry .)

2 MCPU This word contains the least significant 16 bits of the accumulated CPU time (in tenths
of seconds) used by this account . The most significant 6 bits of CPU time are stored at
offset MMSB . The resulting 22 bit number can hold a total of 116.5 hours of CPU time .

1-7

w

4

	

MCON

	

This word records the accumulated connect time (in minutes) used by this account . This
word can record up to approximately 45 .5 days of connect time .

6 MKCT A kilo-core-tick (KCT) is a combined measurement of CPU and memory usage . KCTs
are calculated at the end of each run burst by multiplying the CPU time used (in tenths
of a second) times the size of the job (in K-words) . MKCT contains the least significant
16 bits of the accumulated kilo-core-ticks for this account . The most significant 10 bits
are stored at offset MMSB . The resulting 26 bit number can hold a total of 67,108,863,
KCTs, or the equivalent of 116 .5 CPU hours at 16K-words .

10 MDEV Device usage time is recorded in device-minutes . A device-minute is equivalent to having
one device assigned (either explicitly or implicitly) for one minute . Having two devices
assigned for one minute is two device-minutes . MDEV contains the accumulated device
usage time for this account, in device-minutes . A maximum of 45 .5 device days may be
recorded .

12

	

MMSB

	

This word contains the most significant 10 bits of the accumulated kilo-core-ticks in bits
0 through 9 (see MKCT) and the most significant 6 bits of the accumulated CPU time
in bits 10 through 15 (see MCPU) .

14 MDPER This word contains the logout disk quota . It is specified when the account is created and
changed with a SYS call. While the RSTS/E monitor does not enforce the logout quota
itself, the LOGOUT program checks this value and will not allow a job to logout if the
quota is exceeded .

16

	

UCLUS

	

This word specifies the UFD cluster size . Given this information, and the cluster map at
the end of each block in the UFD, each block of the UFD can be located .

1 .2 .4 MFD Cluster Map

The MFD cluster map contains pointers (device cluster numbers) to each cluster in the MFD . There is a cluster
map in every block of the MFD, at offset 7608 . Each cluster map in the MFD is identical . When a new cluster
is allocated to extend the MFD, the cluster map in each block of the MFD is updated to show the change .

Symbol Offset

	

Offset Symbol

0
2
4
6
10
12
14
16

Offset

	

Symbol

	

Description

0

	

This word contains the cluster size of the MFD .

2-16 The following seven words contain the device cluster number (DCN) for each corresponding
cluster of the MFD . If less than seven clusters have been allocated to the MFD, the unused
words will be 0 .

1 .2 .5 User File Directory (UFD)

The structures in the User File Directory (UFD) are identical in RDSO and RDS 1 . See section 1 .3.4 for a description
of the UFD .

1-8

MFD cluster size
DCN of MFD cluster 0
DCN of MFD cluster I
DCN of MFD cluster 2
DCN of MFD cluster 3
DCN of MFD cluster 4
DCN of MFD cluster 5
DCN of MFD cluster 6

1.3 RDS1 DISK DIRECTORY STRUCTURES

Version 8 .0 of RSTS/E introduced a new directory structure which replaces the Master File Directory (MFD)
structures used in previous releases . This new directory structure is identified as RSTS/E Disk Structure Level
1, or RDS 1 . The previous directory structure is identified as RDSO .

In RDSI the old MFD structure has been replaced by a label block, a new format Master File Directory (MFD)
and a Group File Directory (GFD). The MFD and GFD are used together to form a two level tree structure
with the MFD as the root .

The label block contains information necessary to mount and use the disk pack . It also contains a pointer to
the MFD. This allows the MFD to be placed close to the most used GFDs and files to minimize disk seek overhead .

The MFD and GFDs contain information about every account on the disk . Each disk contains one MFD for
the entire disk, plus one GFD for every group number . Using information in the MFD and GFDs, the monitor
can find the User File Directory (UFD) for each account . The GFD's also contain information about each account's
resource usage .

The MFD contains a pointer to the Group Fil Director, GFD, for each group number used on the system . (The
group number is the first number in an account number .)

The GFD contains a pointer to the User File Directory (UFD) for each user number within the associated group .
It also contains information required to log a user onto the system and to account for their resource usage .

The UFD contains information about the associated account's files . Each file in the associated account has an
entry in the UFD which completely describes the file, including its protection requirements, current status and
information needed to access the contents of the file .

The following procedure is used when opening a file in a specified account :

1 . Read the MFD block to get a pointer to the GFD .

2 . Read the GFD block to get a pointer to the UFD .

3 . Read the first block of the UFD and follow the linked list of name entries until the specified file is found
or the end of the directory is reached .

The following figure provides a graphic representation of the RDSI directory structure :

MFD

GFD

GFD

1-9

UFD

UFD

UFD

UFD

FILE

FILE

FILE

FILE

FILE

Each GFD is created as the first account in the group is created . Name, accounting and attribute entries are
created for each account as the account is created . No space is allocated for the UFD until the first file is created
in the associated account .

UFD information is kept in a linked list . In most cases, new files are added to the end of the list . However,
it is possible to add a file to the beginning of the list using a special open mode or by specifying "new files first"
when initializing the disk pack (see section 1 .3 .1 .1) . Files are added to the beginning of the list on a logical basis
only, and are not necessarily physically first unless optimized by the REORDR program or a similar utility .

Improper arrangement of files in the UFD can have a dramatic effect on the efficiency of disk I/O . If properly
done, disk I/O requires no additional seeks for directory overhead . But, improperly done (alas, the obvious way),
directory links can cross block boundaries dozens, if not hundreds, of times . This can require many overhead
seeks for every disk access request in your program .

Optimal organization of the UFD requires that (1) the order of information in the UFD be optimized using
REORDR or a similar utility, (2) files use optimal clustersizes, (3) contiguous files be used whenever possible .

1 .3.1 Pack Label

The pack label contains the information needed to mount and allow access to the disk pack . The pack label
is the base of the entire directory system on the disk . It points to the Master File Directory (MFD) which, in
turn, points to the Group File Directories (GFDs) which point to the User File Directories .

The pack label is always located at Disk Cluster Number (DCN) 1 on the disk . It is the only structure other
than the bootstrap that must be located at a specific block number on an RDS1 disk .

DescriptionOffset

	

Symbol

0

	

This word always contains a 1 .

2

	

This word always contains a -1 .

4 This word is a pointer to the MFD . It specifies the Disk Cluster Number (DCN) of the
first block of the MFD . This pointer is stored in MFDPTR (see section 2 .5 .6.6) when the
disk is mounted .

6 This word identifies the RDS version and edit level . The low order byte (offset 6) is always
a 1 to specify RDS1 format . The high order byte (offset 7) is currently a 1 to specify edit
level one .

10

	

This word specifies the pack cluster size .

12

	

This word contains a set of bits that describe the characteristics of this disk pack, as well
as its current status (see section 1 .3 .1 .1)

14 PCKID

	

These two words contain the logical pack ID in RAD50 . The pack ID is used when the
disk is mounted and as an alternate name for the pack once its has been mounted .

20-776

	

These words are reserved for future pack attributes . They are currently unused and will
contain zeroes .

1-10

Symbol Offset

	

Offset Symbol

1 0
-1 2

DCN of MFD 4
Disk version number 6

Pack clustersize 10
Pack status 12

14Pack ID (in RAD50) 16
20

Reserved
776

1 .3 .1 .1 Pack Status

The pack status bits contained in offset 12 of the pack label have the following meaning when set :

I

	

is

	

I

	

14

BIT Symbol
< 0:8 >

1 13

Unused

12

	

1

	

II 1 10 1 9

	

1

	

8 1 7 1 6

	

1

	

5

Description

4 1 1

	

2 I 1 0 I
UC MNT UC PRI UC NEW UC RO UC DL UC TOP

<9> UC .TOP Link new files to the top of the UFD for files on this disk . This is the "New Files First"
characteristic .

< 10>

	

Unused .

< 11 > UC .DLW The access date for files on this disk should only be updated when they are written into, not
when they are accessed for reading . This is the "Date Last Written" characteristic .

<12> UC .RO This pack is inherently read-only .

< 13> UC .NEW This is an RDS1 format pack .

< 14> UC .PRI This disk is a private pack (as opposed to a disk in the public structure) . System disks are
defined as private packs . When used as the system disk they are treated as part of the public
structure. When explicitly mounted, they are treated as private packs .

< 15 > UC .MNT This disk is currently mounted. If this bit is already set when an attempt is made to mount
the disk, it was not dismounted properly after its last use and should be "rebuilt" before
being used .

1 .3 .2 Master File Directory (MFD)

The Master File Directory (MFD) is the root of the directory structure used for accessing files . Its main purpose
is to point to the Group File Directory (GFD) (see section 1 .3.3) of the account group . In addition to these pointers,
the MFD contains a label block, and blocks that may be used for group or pack attributes in future releases,
but that are currently unused .

The blocks within the MFD have the following usages (see section 1 .3 .2.1 through 1 .3.2 .3) :

Block

	

Usage

0

	

Label block .

1

	

GFD pointer block .

2

	

Group attribute pointer block .

3-n

	

Reserved for future attribute entries .

1.3.2.1 Label Block

The first block of the MFD (block 0) is a label block . Its purpose is to identify the following group of blocks
as an MFD and to provide information that relates to the MFD as a whole .

This block is typically only used when the pack is mounted . All other accesses to the MFD are made to block
I (the second block) .

1
-1
0
0
0

Pack attribute pointer
255 . 255 .

"MFD" in RAD50

Symbol Offset

	

Offset Symbol

0
2
4
6
10
12

15 14
16
20

Reserved for future
pack and label attributes

MFD clustersize
DCN of MFD cluster 0
DCN of MFD cluster 1
DCN of MFD cluster 2
DCN of MFD cluster 3
DCN of MFD cluster 4
DCN of MFD cluster 5
DCN of MFD cluster 6

Offset

	

Symbol

	

Description

0

	

This word always contains a 1 .

2

	

This word always contains a -1 .

4

	

Unused .

6

	

Unused .

10

	

Unused .

12

	

This word is reserved for possible pack attribute pointer in a future release of RSTS . It
is currently unused .

14

	

This word is used to signify that this is an MFD . It contains a pair of bytes with a value
of 255 each, which signifies an invalid account number used to mark an MFD .

16

	

This word contains the characters "MFD" in RAD50 .

20-756

	

Reserved for future pack attribute or label attributes . Currently unused .

760

	

This word specifies the MFD clustersize . The most significant bit of this word is always
set. This signifies that this is an RDS1 format cluster map .

762-776 These seven words specify the device cluster number (DCN) for each corresponding cluster
of the MFD. If less than seven clusters have been allocated to the MFD, the unused words
will be 0 .

1-12

756
760
762
764
766
770
772
774
776

1.3 .2.2 GFD Pointer Block

The second block of the MFD (block 1) contains a table of pointers to Group File Directories (GFDs) corresponding
to each possible account group number . The account group number is the first number in the PPN . For example,
the group number for account [2,10] is 2 .

The pointers in this block are used as a first level index to access the GFD entry for each account . By accessing
this pointer block and then accessing the GFD pointed by this block, the User File Directory (UFD) for the desired
account can be found in two disk accesses . If files are frequently opened using a specified account number, the
GFD pointer block will typically remain in the directory cache at all times, reducing the number of physical disk
accesses to a maximum of one .

Offset

	

Symbol

Symbol Offset

		

Offset Symbol

0
2
4

DCN for group 0's GFD
DCN for group l's GFD
DCN for group 2's GFD

DCN for group 253's GFD
DCN for group 254's GFD

0

1-13

Description

772
774
776

0-774 These 255 words contain pointers to the GFD for each possible account group number .
The pointers are the device cluster numbers (DCNs) of the first block of the corresponding
GFD. The pointers are sorted by account group number . If a group number is not in use,
the corresponding word will be zero .

776

	

This word will always contain a 0 since account group 255 is not allowed .

1.3.2.3 Other Blocks

The third block of the MFD (block 2) is reserved for future group attribute pointers . This block is currently unused .

The fourth and following blocks of the MFD are reserved for future group or pack attribute entries . These blocks
are currently unused .

1.3.3 Group File Directory (GFD)

The Group File Directory (GFD) is the second level of the directory structure used for accessing files . Its main
purpose is to point to the User File Directory (see section 1 .3 .4) of the account group . In addition to these pointers,
the GFD contains a label block, a name entry pointer block and blocks that are used for UFD name, accounting,
and attribute entries .

The blocks of the GFD have the following usage :

Block

	

Usage

0

	

Label block UFD name, accounting and attribute entries .

1

	

UFD pointer block .

2

	

Name entry pointer block .

3-n

	

UFD name, accounting and attribute entries .

1 .3 .3 .1 Label block

The first block of the GFD is a label block . Its purpose is to identify the following group of blocks as a specific
GFD and to provide information that relates to the GFD as a whole .

This block is typically only accessed for name, accounting and attribute entries . The first 168 bytes are not typically
used by the monitor . They are present for compatability with MFD and UFD label formats and to allow GFDs
to be identified in case of corruption of directory data .

Symbol Offset

	

Offset Symbol

1
-1
0
0
0
0

Group number 255 .
"GFD" in RAD50

0
2
4
6
10
12

15 14
16
20

Offset

	

Symbol

0

	

This word always contains a 1 .

2

	

This word always contains a -1 .

4

	

Unused .

6

	

Unused .

10

	

Unused .

12

	

Unused .

Name, accounting and
attribute entries

GFD clustersize
DCN of GFD cluster 0
DCN of GFD cluster 1
DCN of GFD cluster 2
DCN of GFD cluster 3
DCN of GFD cluster 4
DCN of GFD cluster 5
DCN of GFD cluster 6

Description

756
760
762
764
766
770
772
774
776

14

	

This byte is used to signify that this is a GFD . It contains a byte value of 255, which signifies
an invalid account number used to mark a GFD .

15

	

This byte specifies the group number for this GFD .

16 This word contains the characters "GFD" in RAD50 . GFDs that have been lost through
corruption of the MFD can be found by searching for this value at offset 16 8 in each free
cluster on the disk .

20-756

	

These 236 words are used for name, accounting and attribute entries .

760

	

This word specifies the GFD clustersize . The most significant bit of this word is always
set. This signifies that this is an RDS1 format cluster map .

762-7

	

These seven words specify the device cluster number (DCN) for each corresponding cluster
76

	

of the GFD . If less than seven clusters have been allocated to the GFD, the unused words
will be 0 .

1-14

1.3.3.2 UFD Pointer Block

The second block of the GFD contains a table of pointers to User File Directories (UFDs) corresponding to each
possible account user number within this account group .The account user number is the second number in the
PPN. For example, the user number for account [2,10] is 10 .

The pointers in this block are used as a second level index to access the UFD entry that contains file information
for the desired account. By accessing the MFD pointer block and then accessing this pointer block in the GFD,
the User File Directory (UFD) for the desired account can be found in two disk accesses .

Symbol Offset

	

Offset Symbol

0
2
4

Offset

	

Symbol

Offset

	

Symbol

DCN for user 0's GFD
DCN for user l's GFD
DCN for user 2's GFD

DCN for user 253's GFD
DCN for user 254's GFD

0

1-15

Description

Pointer to user 0's name entry
Pointer to user l's name entry
Pointer to user 2's name entry

Pointer to user 253's name entry
Pointer to user 254's name entry

0

Description

772
774
776

0-774 These 255 words contain pointers to the UFD for each possible account user number . The
pointers are the device cluster numbers (DCNs) of the first block of the corresponding
UFD. The pointers are sorted by account user number . If a user number is not in use,
the corresponding word will be zero .

776

	

This word will always contain a 0 since account user number 255 is not allowed .

1 .3 .3 .3 Name Entry Pointer Block

The third block of the GFD contains a table of pointers to name entries corresponding to each possible account
user number . The pointers in this block are used to access the GFD name entry (see section 1 .3 .3 .4.1) during
login and logout operations . The GFD name entry contains pointers to the GFD accounting entry and a list of
attribute entries .

Symbol Offset

	

Offset Symbol

0
2
4

772
774
776

0-774 These 255 words contain directory links to the name entry for each possible account user
number in this account group . The pointers are sorted by account user number . If a user
number is not in use, the corresponding word will be zero .

776

	

This word will always contain a 0 .

1.3 .3.4 Other Blocks

The fourth and following blocks of the GFD contain name, accounting and attribute entries . Sections 1 .3.3.4 .1
through 1 .3 .3.4.3 describe these entries .

1 .3.3.4.1 Name Entry

The Name Entry contains all the information necessary to identify a desired account . All other information about
the account is accessed using pointers in the Name Entry .

Link to first Attribute Entry
Group number I User number

0
0

Protection Status
Access count

Link to accounting entry
DCN of 1st UFD cluster

Symbol Offset

	

Offset Symbol

0
2
4
6
10
12
14
16

Offset

	

Symbol

	

Description

0

	

This word contains a link to the first Attribute Entry . If there are no attribute entries,
this link will be null .

2 This word contains the project programmer number (PPN) of the account associated with
this Name Entry . The user number is in the low byte. The group number is in the high
byte . The PPN cannot be [*,255], [255,*] or [0,*], except for account [0,1] .

4

	

Reserved .

10

	

This byte contains a set of bits describing the status and restrictions of the UFD or file
associated with this Name Entry (see section 1 .2 .2 .1) .

11

	

This byte is unused . It may be used in a future release of RSTS/E for the UFD protection
code. It currently contains a value of 60 .

12 This word is used as a pair of bytes to count current accesses to the UFD. The low byte
(offset 12) is currently unused . The high byte (offset 13) is the current login count for this
account .

14

	

This word is the directory link to the Accounting Entry for this account .
16 This word is the device cluster number (DCN) of the first cluster of the UFD for this account .

If no files have been created for this account on this disk since the account was created
or zeroed, this word will be 0 . Disk space for the UFD is not actually allocated until the
first file is created .

1-16

1 .3.3.4.2 Accounting Entry

Every account has an Accounting Entry . The Accounting Entry stores accumulated resource usage counts for
the associated account . Each time a user logs out, his current resource usage (maintained by the monitor) is added
to the existing values in the Accounting Entry for that user .

Symbol Offset

13

Offset Symbol

0
2 MCPU
4 MCON
6 MKCT
10 MDEV
12 MMSB
14 MDPER
16 UCLUS

Offset

	

Symbol

0

	

This word is always a 1 .

2 MCPU This word contains the least significant 16 bits of the accumulated CPU time (in tenths
of seconds) used by this account . The most significant 6 bits of CPU time are stored at
offset MMSB . The resulting 22 bit number can hold a total of 116.5 hours of CPU time .

4

	

MCON

	

This word records the accumulated connect time (in minutes) used by this account . This
word can record up to approximately 45 .5 days of connect time .

6 MKCT A kilo-core-tick (KCT) is a combined measurement of CPU and memory usage . KCTs
are calculated at the end of each run burst by multiplying the CPU time used (in tenths
of a second) times the size of the job (in K-words) . MKCT contains the least significant
16 bits of the accumulated kilo-core-ticks for this account . The most significant 10 bits
are stored at offset MMSB . The resulting 26 bit number can hold a total of 67,108,863,
KCTs, or the equivalent of 116 .5 CPU hours at 16K-words .

10 MDEV Device usage time is recorded in device-minutes . A device-minute is equivalent to having
one device assigned (either explicitly or implicitly) for one minute. Having two devices
assigned for one minute is two device-minutes . MDEV contains the accumulated device
usage time for this account, in device-minutes . A maximum of 45 .5 device days may be
recorded .

12

	

MMSB

	

This word contains the most significant 10 bits of the accumulated kilo-core-ticks in bits
0 through 9 (see MKCT) and the most significant 6 bits of the accumulated CPU time
in bits 10 through 15 (see MCPU) .

14 MDPER This word contains the logout disk quota . It is specified when the account is created and
changed with a SYS call. While the RSTS/E monitor does not enforce the logout quota
itself, the LOGOUT program checks this value and will not allow a job to logout if the
quota is exceeded .

16

	

UCLUS

	

This word specifies the UFD cluster size . Given this information, and the cluster map at
the end of each block in the UFD, each block of the UFD can be located .

1-17

Description

I
Accumulated CPU time (LSB)
Accumulated connect time

Accumulated kilo-core-ticks (LSB)
Accumulated device time

CPU time (MSB)

	

KCT (MSB)
Logout disk quota
UFD cluster size

1.3.3.4.3 Attribute Entries

Attribute entries are used for information about an account other than that provided by the name and accounting
entries . It currently includes information about login passwords, and the date and time of the last login, the
last password change and the account creation .

The attribute entries have the following general format :

3-16 AT .KB The following 13 bytes are used to store attribute data . The type of data stored depends
on the attribute type . For a password attribute, the data is the password in ASCIZ . For
a date/time attribute, the data has the format shown below .

The date/time attribute has the following format :

Symbol Offset

	

Offset Symbol

AT.KB

	

3

Offset

	

Symbol

	

Description

0 ULNK This word contains a link to the next attribute entry for this account . If there is no following
attribute entry, this word will have a null link . (See section 1 .3 .5 for information on directory
links .)

2

	

UADAT

	

This byte specifies the attribute type, as follows :

1-18

0

6
10
12
14
16

ULNK
UADAT
AT.LDA
AT.LTI
AT.PDA
AT.PTI
AT. CDA
AT. CTI

Link to next attribute
Last login KB # I Type

Date of last login
Time of last login

Date of last password change
Time of last password change

Date of account creation
Time of account creation

Symbol Offset Offset Symbol

Link to next attribute 0 ULNK
AT.KB 3 1 Type 2 UADAT

4
6

Attribute data 10
12
14
16

Type Symbol Description

1 AA.QUO Quota (currently unimplemented) .
2 AA.PRV Privileges (currently unimplemented) .
3 AA.PAS Password .
4 AA.DAT Creation/Access date and times .

1 .3.4 User File Directory (UFD)

The User File Directory (UFD) catalogs a user's files . Each file in the associated account has an entry in the
UFD which completely describes the file, including its protection requirements, current status and information
needed to access the contents of the file . The format of the UFD is identical in RDSO and RDS1 disks .

The UFD is almost identical in format to the RDSO MFD . It contains a Label Entry, Name Entries, Accounting
Entries, Attributes Entries (optional), Cluster Maps and Unused Entries . In addition, it contains Retrieval Entries
which are used to determine the actual location on disk of each block of a data file .

1.3.4.1 UFD Label Entry

The UFD Label Entry is the root of the UFD structure . The list of Name Entries starts at this Label Entry .
The Label Entry is created when the UFD is created (ie . when the first file is created in this account) . There
is one UFD Label Entry per UFD . It is always the first entry in the first cluster of the UFD .

Link to first Name Entry in UFD
-1
0
0
0
0

PPN project #

	

PPN programmer #
"UFD" in RAD50

Symbol Offset

	

Offset Symbol

0 ULNK
2
4
6
10
12

15

	

14
16

1-19

Offset Symbol Description

0 ULNK This word contains a link to the next attribute entry for this account . If there is no following
attribute entry, this word will have a null link . (See section 1 .3 .5 for information on directory
links .)

2 UADAT This byte contains a 4 to specify an attribute type of date/time .

3 AT.KB This byte specifies the keyboard number of the last keyboard to login to this account . If
the login request was made by a detached job, this byte will contain a -1 .

4 AT.LDA This word specifies the date that someone last logged into this account . It is originally
set to 0 .

6 AT.LTI This word specifies the time that someone last logged into this account . It is originally
set to 0 .

10 AT.PDA This word specifies the date that the password for this account was last changed .

12 AT.PTI This word specifies the time that the password for this account was last changed .

14 AT.CDA This word specifies the date that this account was created .

16 AT.CTI This word specifies the time that this account was created .

Offset

	

Symbol

	

Description

0

	

ULNK

	

This word contains the link to the Name Entry of the first file in the UFD . If no files
exist in the UFD, this link will be null .

2

	

This word is always -1 to mark this entry in use .

4-12

	

Unused .

14

	

This word contains the account number for this UFD . The programmer number is in the
low byte. The project number is in the high byte .

16 This word contains the letters "UFD" in RAD50 . UFDs that have been lost through
corruption of the MFD can be found by searching for this value at offset 16 in each free
cluster on the disk .

1.3 .4 .2 UFD Name Entry

There is a Name Entry in the UFD for every file in an account . The Name Entry contains all the information
necessary to identify the file it belongs to . When opening a file, the monitor follows the linked list of Name
Entries searching for the desired file name . If found, the file's current status and protection code are checked
and the status is changed as necessary .

Symbol Offset

UPROT 11

Offset

	

Symbol

	

Description

0 ULNK UFD Entries are chained together in a linked list . This word contains a link to the next
Name Entry in the UFD . If there is no following Name Entry, this word will have a null
link . New files are normally added after the last Name Entry in the list . If "New Files
First" is used, the new Name Entry is linked between the UFD Label Entry and the first
UFD Name Entry.

2

	

UNAM

	

These three words contain the file name and type (called "file extension" in earlier versions
of RSTS) in RAD50 .

10

	

USTAT

	

This byte contains a set of bits describing the status and restrictions for the file associated
with this Name Entry (see section 3.4.2.1) .

11

	

UPROT

	

This byte specifies the file's protection code .

12

	

UACNT

	

This word is the current runtime system and resident library access count for this file . It
is incremented each time a runtime system or resident library is added and decremented
each time a runtime system or resident library is removed . All other access counts are kept
in memory in File Control Blocks (FCBs) (see section 2 .4 .1) .

14

	

UAA

	

This word is a link to the Accounting Entry for this file .

16

	

UAR

	

This word is a link to the first Retrieval Entry for this file . If there are no Retrieval Entries
for this file (ie . the file is zero length), this link will be null .

1-20

Offset Symbol

0 ULNK
2 UNAM
4
6
10 USTAT
12 UACNT
14 UAA
16 UAR

Link to first Name Entry in UFD

File name (in RAD50)

File type (in RAD50)
Protection code

	

Status
Access count

Link to Accounting Entry
Link to 1st Retrieval Entry

1.3.4.2.1 USTAT - File Status

The bits in the file status byte, USTAT, in the UFD have the following meaning when set :

I	US .

	 IS

DEL

14

	

/3

	

/1

US. UFD

	

US

.NOK I

US.

NOX

/ 1us.
UPD US. WR

10

T

9

US . PLC I US.

8

OUT

Bit

	

Symbol

	

Description
<0> US .OUT This bit is obsolete . If it is set, a protection violation will be generated if the file is opened .
< 1 > US .PLC The file was placed at a specific location on the disk .
<2> US .WRT Write privileges have been given out on a previous open .

<3> US .UPD The file is open for update .

<4> US .NOX The file is contiguous and may not be extended .

<5> US.NOK The file is non-deletable . This bit is normally set and cleared only by the REFRESH option
in INIT .

<6> US.UFD This bit is always O to specify that this is a UFD Name Entry . This allows UFD Name Entries
for account [1,1] to be intermixed with MFD Name Entries since the MFD is also the [1,1]
UFD in RDSO format disks .

<7> US .DEL The file should be deleted when the access count becomes 0 .

1.3.4.3 UFD Accounting Entry

Every UFD Name Entry has an Accounting Entry associated with it . The Accounting Entry contains information
about the file's creation and access date, its current length and static information, such as runtime system name
and cluster size .

Symbol Offset

	

Offset Symbol

0 ULNK
2 UDLA
4 USIZ
6 UDC
10 UTC
12 URTS
14
16 UCLUS

Link to Attributes Entry
Last access date

Number of blocks in the file
Creation date
Creation time

Runtime system name (in RAD50)

File cluster size

Offset

	

Symbol

	

Description

0

	

ULNK

	

This word contains a link to the first Attributes Entry . If there are no Attribute Entries,
this word will contain a null link .

2 UDLA This word contains the date of last access or the date of last modification (if the MFD
Label Entry specifies "Date Last Written") in RSTS/E internal format . (See section 2 .8
for a description of the internal date format .)

4

	

USIZ

	

This word is set to 1 when the file is created and adjusted by the file cluster size each time
a file cluster is allocated . The actual number of blocks in the file is not updated until the
file is closed, unless the file is opened using mode 8 .

6

	

UDC

	

This word is the creation date in RSTS/E internal format . (See section 2 .8 for a description
of the internal time format .)

1-21

10

	

UTC

	

This word is the creation time in RSTS/E internal format . (See section 2 .8 for a description
of the internal time format .)

12 URTS These two words contain the runtime system name, in RAD50 . If a RUN request is issued
for this file, the file will be opened on channel 15 and control will be passed to the runtime
system specified in these two words . The "compiled" bit in the protection code and the
first word of URTS are used to specify that the file may contain more than 65,535 blocks .
If the compiled bit is not set and the first word or URTS contains a zero, the second word
of URTS contains the most significant bits of the file size . These bits are combined with
the value at offset USIZ to create the actual file size .

16

	

UCLUS

	

This word contains the file's cluster size .

1 .3 .4 .4 UFD Attributes Entry

RMS-11 file structures use Attribute Entries to store record and file information . User programs can also use
attributes on a file to record their own file specific information . Up to ten words of attribute values may be
specified . Each Attribute Entry holds up to seven words . If more than seven values are required, an additional
Attribute Entry is linked to the first one .

Symbol Offset

	

Offset Symbol

Offset

	

Symbol

	

Description

0

	

ULNK

	

This word contains a link to the next Attribute Entry for this file . If there is no additional
Attribute Entry, this link will be null .

2-14 These seven words contain the attribute values . These values are set and read by RMS and
by user programs . File attributes are for use by RMS and user programs and are not used
by the monitor. Only the first three words in the second Attribute Entry may be used to
store values . See section 1 .3 .4.4.1 for a description of the RMS-11 file attribute values .

1 .3.4.4.1 RMS-11 Attribute Values

RMS-11 uses file attributes to record extended information about an RMS file . This information includes file
organization, record type, record size and end of file information . (See the RMS-11 Users Guide for more
information .) The contents of each word of the Attribute Entries for an RMS-11 file are as follows :

Word

	

Bits

	

Description

I

	

< 0:3 > Record format :
0 = Undefined
1 = Fixed length records
2 = Variable length records
3 = VFC (Variable with fixed control)
4 = Stream ASCII

1-22

Link to next Attribute Entry
Value 1
Value 2
Value 3
Value 4
Value 5
Value 6
Value 7

< 4:7 > File organization :
0 = Sequential
1 = Relative
2 = Indexed

< 8 :11 > Print control :
1 =FORTRAN
2 = Carriage return
4 = VFC records contain print control
8 = Does not span blocks

1 .3.4.5 UFD Retrieval Entry

Every file in the UFD that contains at least one block has some number of Retrieval Entries associated with
it . In most cases there are Retrieval Entries for a single file, each linked together in a list . These Retrieval Entries
provide all the information necessary to translate the logical block number of a file into a physical block number
on the disk .

For each cluster of a file there is a corresponding entry in one of the file's Retrieval Entries . When a particular
block in a file is desired, its physical location is computed by finding the Retrieval Entry corresponding to the
file cluster which contains the desired block . This entry provides the disk cluster number corresponding to the
beginning of the file cluster that contains the desired block . Since clusters are contiguous, the location of the
desired block can be determined as an offset from the beginning of the cluster .

When a file is opened, the seven cluster pointers contained in the file's first Retrieval Entry are copied into the
corresponding window descriptor block of the Window Control Block (see section 2 .4.2 .) . These seven pointers
in memory are known as a "window" .

When a request is made to access a file, the window is checked to see if any of its cluster pointers correspond
to the desired block . If so, the block is accessed using tghe information contained in the window . No additional
is required .

If the desired block is not mapped by the window, the linked list of Window Control Blocks is searched to see
if any other window contains the desired information . If none of the windows in memory contain the information
needed, the linked list of Retrieval Entries in the directory is followed until the desired Retrieval Entry is found .
The pointers from this Retrieval Entry are copied into the window and used for accessing the file . This procedure
is known as a "window turn" .

1-23

< 12:15 > Unused .

2 Record size (actual size for fixed length records or maximum size for variable length records) .

3 Highest virtual block number (most significant bits) .

4 Highest virtual block number (least significant bits) .

5 End of file block number (most significant bits) .

6 End of file block number (least significant bits) .

7 Offset to first unused byte in the last block of the file .

8 <0:7> This byte contains the bucket size for indexed files .

< 8 :15 > This byte contains the number of bytes in the fixed control area .

9 Maximum length of record actually read by RMS .

10 Default extension quantity .

As you can see from the description above, the cluster size of a file has a tremendous impact on the overhead
required to access a file . If a clustersize can be chosen such that the entire file will fit within one window (ie .
seven clusters), no window turns will be required, and no additional overhead will be incurred .

For this reason, file clustersize should be specified when the file is created whenever possible . This applies even
to contiguous files since contiguous files contain all the Retrieval Entries of a normal file and because a contiguous
file can be transformed into a non-contiguous file by extending it .

Link to next Retrieval Entry
DCN of cluster n + 0
DCN of cluster n + 1
DCN of cluster n + 2
DCN of cluster n + 3
DCN of cluster n + 4
DCN of cluster n + 5
DCN of cluster n + 6

Symbol Offset

	

Offset Symbol

0 ULNK
2
4
6
10
12
14
16

1.3.4.7 Unused Entries

Each block of the MFD and UFD can hold 32 entries . If the first two words of an entry are zero, the entry
is considered to be unused and available for allocation when needed . The contents of an Unused Entry (other
than the first two words) are unused by the monitor .

Offset

	

Symbol

	

Description

0

	

ULNK

	

This word is the link to the following Retrieval Entries for this file . If this is the last Retrieval
Entry in the list, the link will be null .

2-16 These six words contain the device cluster numbers (DCNs) that correspond to each file
cluster . With this information, each block in a cluster can be accessed by an appropriate
offset from the beginning of the cluster . Unused words in the last Retrieval Entry will be 0 .

1 .3.4.6 UFD Cluster Map

The UFD cluster map contains pointers (device cluster numbers) to each cluster in the UFD . There is a cluster
map in every block of the UFD, starting at offset 760 . Each cluster map in the UFD is identical . When a new
cluster is allocated to extend the UFD, the cluster map in each block of the UFD is updated to show the change .

Symbol Offset

	

Offset Symbol

0
2
4
6
10
12
14
16

Offset

	

Symbol

	

Description

0

	

This word contains the cluster size for the UFD .

2-16 The following seven words contain the device cluster number (DCN) for each corresponding
cluster of the UFD. If less than seven clusters have been allocated to the UFD, the unused
words will be 0 .

1-24

UFD cluster size
DCN of UFD cluster 0
DCN of UFD cluster 1
DCN of UFD cluster 2
DCN of UFD cluster 3
DCN of UFD cluster 4
DCN of UFD cluster 5
DCN of UFD cluster 6

1 .3 .5 Directory Links

Directory links are internal pointers between directory entries . Given a link and a cluster map, any directory
entry can be accessed in, at most, one disk access . The link is a packed word with the following format :

Symbol Offset

I 13 12 I 11 I 10 9 I 8

1-25

7 6 5 I 3 2 I 0

Block Cluster Entry Flags

Use

	

Bits

	

Description

Block < 15 :12 > These four bits select the block within the airecwry cluster to tnrough the UFD cluster size) .

Cluster < 11 :9 > These three bits select the cluster within the cluster map (0 through 6) .

Entry <8 :4> These five bits select the entry within the directory block (0 through 31) . Note that by clearing
all the other fields within the link, the link can be used as a byte offset into the directory block .

Flags

	

< 3 :0 > These four bits are used as flags that relate to the current entry or to a block pointed to by
the current entry . They have the following meaning when set :

< 0 > This bit denotes that the link word is in use . It is required in MFD and UFD Accounting
Entries and Attributes Entries where the link field may be zero (null) .

< 1 > When used in an MFD Accounting Entry, the associated UFD contains a bad block .
When used in a UFD Accounting Entry, the associated file contains a bad block. When
used in a Retrieval Entry, one or more of the associated clusters contains a bad block .

< 2 > When used in a Name Entry, the file is marked for data cacheing . When used in an
Accounting Entry, the cacheing is specified as sequential .

< 3 > This bit is set during a clean to mark the entry as being in use . It should not be set
during normal operation .

I

0
0

Unused
Unused
Unused
Unused
Unused
Unused

1.4 STORAGE ALLOCATION TABLE (SAT)
The Storage Allocation Table (SAT) is used to control allocation of space on each disk . The SAT is a bit map .
Each bit corresponds to a pack cluster, beginning with cluster 0 and continuing for all pack clusters on the disk .
The appropriate bit is set when the pack cluster is allocated and cleared when it is deallocated .

The SAT is originally created by the DSKINT option of INIT or the DSKINT utility program . It resides in [0,1]
as the file SATT.SYS . When originally created it shows all blocks as being deallocated except for those used
by the MFD, the UFD for [0,1], bad blocks found by DSKINT and the blocks used by the SATT .SYS file .

The pack cluster number can be used to access the SAT directly using the following indexing :

or :

1

	

15

15 1 14

Block in Sat Word in block Bit in word

1 14 1

13

13 1

12

/2 1

11

11

1 10

10

1 9

9

1

1

8

8

1 7

7

1 6

6

1

1

s

s 1

4

4

1 3

3

1

1

2

2

I

1

1

1 1

0

0

1

I

Block in Sat Word in block Bit in byte

1 .5 SAVE IMAGE LIBRARY (SIL)
Save image libraries (SILs) are used to combine the separate modules that make up the monitor into a single
file. They are also used to contain runtime systems, resident libraries, the INIT monitor program and SAV images
loadable by INIT. The index block contained within the SIL provides all the information needed to load the
different portions of the monitor or other programs into memory and handle overlays when needed .

1 .5 .1 SIL Index Block

The first block of the SIL is an index block . The index block contains entries for up to 15 modules . See section
1 .5.2 for a description of a module entry .

Symbol Offset

Number of modules in SIL

SIL module entry #n, or unused

Checksum of preceding words
"SIL" (in RAD50)

Offset

	

Symbol

	

Description

0

	

This word specifies the number of modules in the SIL (1 through 15) .

2 These sixteen words are the module entry descriptor for the first module in the SIL (see
section 1 .5 .2). If there is more than one module in this SIL, this module entry is followed
by the other entries. If the SIL contains less than fifteen modules, the space between the
last module entry and offset 774 is unused .

774

	

This word contains a checksum of all the preceding words . The checksum is computed
by starting with a value of zero and XORing each word from offset 0 to offset 772 with it .

776

	

This word contains the letters "SIL" in RAD50 .

1 .5.2 SIL Module Entry

Each module within the SIL has a module entry associated with it in the SIL index . Each module entry contains
information about the module, including load and transfer addresses, size, overlay descriptors and a pointer
to the symbol table for the module .

1-27

6

Offset Symbol

0
2

SIL module entry
40

734

772
774
776

Module name (in RAD50)

Module . IDENT (in RAD50)

Block offset to module
Block offset to symbol table

Number of symbols in symbol table
Virtual load address
Virtual size of module
Virtual transfer address

Size of module (in blocks)
Block offset to overlay descriptors
Number of overlay descriptors

Offset to start of module
0

RT-11 emulator parameter

Symbol Offset

	

Offset Symbol

0 SE.NAM
2
4

	

SE.IDN
6
10 SE.BLK
12 SE.STB
14 SE.STN
16 SE.LOD
20 SE .SIZ
22 SE .XFR
24 SE .SZD
26 SE .OVB
30 SE .OVN
32 SE .OFF
34
36 SE.XXX

Offset

	

Symbol

0

	

SE.NAM

	

These two words contain the module name (as specified in the MACRO source file) in
RAD50.

4

	

SE.IDN

	

These two words contain the module IDENT (as specified in the MACRO source file)
in RAD50 .

10

	

SE.BLK

	

This word specifies the block offset within the SIL to the first block of the module . In
the case of a SAV format SIL this offset will be 0 .

12

	

SE.STB

	

This word specifies the block offset within the SIL to the first block of the module's symbol
table (see section 1 .5 .3) . If the module does not have a symbol table, this word will be zero .

14

	

SE.STN

	

This word specifies the number of symbols in the symbol table for this module . If the module
does not have a symbol table, this word will be zero .

16

	

SE.LOD

	

This word specifies the lowest address in the module's image, as follows :
Monitor SIL

	

Low limit
Runtime system

	

Low limit
Non-PIC resident library

	

Lowest limit
PIC resident library

	

1
SAV format SIL and INIT .SYS

	

0

20

	

SE.SIZ

	

This word contains the virtual size of the module . The virtual size added to the low address
results in the address of the first illegal address for the module . The first illegal address
for the module types are as follows :

Monitor SIL

	

High limit
Runtime system

	

177776,
Non-PIC resident library

	

Highest address
PIC resident library

	

Highest address
SAV format SIL

	

Highest address

22

	

SE.XFR

	

This word contains the virtual address for SAV format SILs . This word contains 1 for
all other SIL types to specify that an address does not apply .

24

	

SE.SZD

	

This word specifies the size of the module, in disk blocks .

26 SE.OVB This word specifies the block offset within the SIL to the module's overlay descriptors .
If the module is not overlaid, this word will be 0 . Any module which does not start on
a 10008 boundary (ie . INIT . SYS), which has data below its start (ie . all RT- 11 SAV format
programs), or which is overlaid (ie . some resident libraries) requires overlay descriptors
(see section 1 .5 .4) .

1-28

Description

1 .5.3 SIL Table Entry

Every module within a SIL can contain a symbol table . These symbols are used by the PATCH option of INIT
and by the ONLPAT program when patching SILs .

The symbol table for a module consists of one or more blocks of symbol table entries. Each symbol table entry
contains the value and optional overlay descriptor number for each global symbol specified (in a .STB file) when
the SIL was created .

Symbol Offset

	

Offset Symbol

Offset

	

Symbol

	

Description

0

	

These two words contain the symbol name in RAD50 . If the symbol is less than six characters
long, it is padded with trailing spaces .

4 If this symbol is contained in an overlay, this word will contain the overlay descriptor
number for the overlay segment which contains the symbol . If the symbol is not in an
overlay, this word will contain a zero .

6

	

This word contains the numberic value of the associated global symbol .

1 .5.4 SIL Overlay Descriptor Entry

Every module within a SIL that uses overlays must have an overlay descriptor table . Each entry in this table
defines where an overlay is located in the SIL and where it should be loaded in memory . The first entry corresponds
to the root module of the program . The remaining entries correspond to overlay segments .

Each Overlay Descriptor Entry has the following format :

Symbol Offset

	

Offset Symbol

0
2
4
6

Offset

	

Symbol

	

Description

0

	

This word specifies the lowest virtual address used by the overlay . The overlay code is loaded
starting at this address .

2

	

This word specifies the size of the overlay segment, in bytes .

4

	

These two words specify the byte offset from the beginning of the SIL to the start of the
overlay code. The word at offset 4 is the most significant word .

Base address of overlay segment
Size of overlay segment

Offset to overlay code within SIL

1-29

0Symbol name (in RAD50) 2
Overlay descriptor number 4

Symbol value 6

30 SE .OVN This word specifies the number of overlay descriptors for this module .

32 SE .OFF This word specifies a word offset within the block specified by SE .BLK to the start of
the module .

34 This word is unused and must be 0 .

36 SE .XXX This word is reserved for SAV format SILs and is used by the RT1I emulator .

STRAP BLOCK

i every disk contains a bootstrap . The bootstrap on the system disk contains device dependant
!he RSTS/E monitor . The bootstrap on a non-system disk (ie . a public or private pack) prints
Lung the user that they have attempted to boot a data disk .

~ a system disk has a specific format . The first 22 words contain static information used by
e or by INIT . Following this is device specific code for reading the required program (normally
ry and for relocating the bootstrap to location 157000 8 . The remaining space in the bootstrap
list of clusters to load into memory at a specified load address . The last three words of the
d to store the current date and time information, in case of a system restart .

disk is bootstrapped, the hardware reads the first block of the specified disk into memory,
~n zero . It then jumps to location 0 and begins executing the bootstrap code contained in the

le first copies itself into high memory, beginning at location 1570008 . It then uses device specific
cluster specified in the bootstrap block into memory beginning at the specified load address .
usters have been read into memory, the bootstrap jumps to the transfer address and the system

'set

3

1-30

Offset Symbol

0 B.BOOT
2
4

	

B. VE04
6
10 B.VE10
12
14 B.DCS
16 B.CSR
20 B.NAME
22 B.JMP
24 B.XFER
26 B.UNIT
30 B .CSRU
32 B .RFUN
34 B .FUNC
36 B .BLKL
40 B .BLKH
42 B .MEML
44 B .MEMH
46 B .TWC
50 B .RSET
52 B .READ
54 B .SPEC
56

772 B.DATE
774
776

NOP instruction
Branch to setup code

6
HALT

10
HALT

Device cluster size
Device CSR base

Device name (in ASCII)
JMP @(PC)+
Transfer address

Booted unit number
Unit number shifted for controller

Write function

	

Read function
I/O function code

Block number (LSB)
Block number (MSB)
Buffer address (LSB)
Buffer address (MSB)

Xfer word count
Reset entry point

Read/write entry point
Special function entry point

Device specific code for loading
specified blocks from disk

Map of blocks to load

0
0
0

Offset

	

Symbol

0 B.BOOT

2

4 B .VE04

10

	

B.VE10

14 B .DCS

16 B .CSR

20 B.NAME

22 B.JMP

24 B.XFER

26 B .UNIT

30 B .CSRU
B .MMU

32 B.RFUN

33 B.WFUN

34 B.FUNC

36 B.BLKL
B.SPFC

40 B.BLKH

42 B.MEML

44 B.MEMH

Description

This word contains a NOP instruction (240 8), as required by the DEC standard for hardware
bootstraps .

This word contains a branch to the code that performs initial setup and relocation .

This word contains a 6 and the following word contains a 0 (a HALT instruction) . If a
trap to 4 occurs, it will vector to location 6, where it will halt .

This word contains a 12 8 and the following word contains a 0 (a HALT instruction) . If
a trap to 10 8 occurs, it will vector to location 12 8 , where it will halt .

This word specifies the device cluster size for the disk containing the bootstrap . Note that
this is the device cluster size and not necessarily the pack cluster size . This word will be
0 for a tape bootstrap .

This word contains the address of the CSR register in the controller . All references to device
registers will be made as offsets from this address .

This word contains the device name as two ASCII bytes .

This word originally contains the PDP-11 instruction JMP @a (PC) +, which jumps to the
location pointed to by the following word, B .XFER . When a SIL is installed (using the
INSTALL option of INIT) this word changes to MOV (PC) +,PC . The effect of these
two instructions is the same . The new instruction sequence is used as a flag to INIT to
signify that a SIL has been installed .

This word contains the address to transfer control to after completing the bootstrap load .
The transfer address is supplied by the HOOK program when the bootstap is initialized .

Bits < 0 :2 > of this word are used by the device specific bootstrap code to store the unit
number from which the device was booted . INIT accesses this word to determine which
disk unit the system was bootstrapped from . This value is normally 0 on the disk .

This word is used by the device specific bootstrap code for non-UDA disks and magtape
to store the desired unit number shifted appropriately to allow its use is commands to the
controller . For UDA disk bootstraps, this word contains the address divided by 100 8 of
the buffer to use as an MSCP communications area .

This byte is the value to load into the CSR of the disk controller to do a read . It is 0 for
tape bootstraps .

This byte is the value to load into the CSR of the disk controller to do a write . It is 0
for tape bootstraps .

This word is the value to load into the CSR of the disk controller to do the first required
function (initialized to a READ function) . It is 0 for tape bootstraps .

This word specifies the least significant 16 bits of the disk block number to access for disk
I/O. This word also specifies the special function code for magtape special functions . The
only special functions currently supported are rewind (3) and skip forward (4) .

This word specifies the most significant 16 bits of the disk block number to access for
disk I/O . This word will be 0 for magtape bootstraps .

This word specifies the least significant 16 bits of the buffer address used for I/O . The
size of the buffer is specified by B .TWC (offset 46) .

This word specifies the most significant 6 bits of the buffer address used for I/O . The
most significant 10 bits of this word will always be 0 .

1-31

46 B.TWC
B .PARM

50 B .RSET

52 B.READ

54 B.SPEC

56

772 B.DATE

This word is used for several different purposes . It originally specifies the length of the
device specific bootstrap code, in bytes . It is used during the operation of the bootstrap
to specify the number of words to transfer in an I/O operation and to specify the number
of records to skip in a magtape special function .

This location is the subroutine entry point used to perform any device specific initialization
or reset and to select the specified unit for operation .

This location is the subroutine entry point used to perform I/O operations . B.FUNC,
B .BLKL, B .BLKH, B.MEML, B.MEMH, and B.TWC define the desired function, block
number, buffer location and word count, respectively .

This location is used by magtape bootstraps as the subroutine entry point used to perform
a special function operation . This location contains device specific code in disk bootstraps
(see offset 56) .

The words between this location and the beginning of the load map contain device specific
code for the initialization, I/O and magtape special functions . This area also contains code
that copies the bootstrap block into high memory beginning at location 157000 8 . It then
copies the date and time words (from location 1000 8) into offset B .DATE of the relocated
bootstrap block .

The three words beginning at this offset are used to store date and time information during
a bootstrap operation .

Immediately preceding this location is a table that specifies the blocks to be loaded into
memory by the bootstrap loader . This table contains a series of three word entries . The
first word (offset -2) specifies the number of words to load . The second and third words
(offsets -4 and -6) are the MSB and LSB, respectively, of the FIP block number to load .

This table grows backwards toward the beginning of the bootstrap . It is terminated by
a 0 word count . One entry is needed in the table for each non-contiguous area of INIT .SYS
to be loaded . Any space between the highest address of the device specific code and the
lowest address of the load map is unused and will contain zeroes .

1.7 BAD BLOCK FILE

Most large disk packs contain some number of blocks that cannot be read for one reason or another . RSTS/E
handles these bad blocks by allocating them to a bad block file, [0, 1]BADB . SYS . Bad blocks are made known
to the monitor in one of three ways : (1) Pattern tests using DSKINT (2) Block locations recorded on the disk
pack at the factory (3) Bad blocks found during normal use .

When a block is added to the bad block file (either automatically or manually) the pack cluster that contains
the bad block is allocated to the BADB .SYS file . A Retrieval Entry is made for the bad cluster and the file status
is updated to show the change in size . By allocating the bad cluster to this file, it will never be available for
allocation to another file during normal operation .

The BADB .SYS file is treated as a normal file in every way . It is never contiguous and has the no-delete bit
(US.NOK) set .

.

Chapter 2

MONITOR TABLES
The monitor keeps track of everything being done on the system . It assigns memory to jobs as they need it .
It swaps jobs in and out of memory to make room for other jobs . It schedules each job so that it receives a
fair amount of the computer's resources . It interfaces to all the peripherals on the system . It also takes care
of everything necessary to divide each disk into files so that they can be used for many purposes at once .

To provide all this functionality, the monitor needs a lot of information . It keeps this information in tables that
are set up for specific purposes .

Several tables are used to control the memory and CPU usage of user jobs . These tables are described in sections
2.1, 2 .2, and 2 .3 . Other tables control file and device usage . These tables are described in sections 2 .4 and 2 .5 .
Still other tables are used for system calls and miscellaneous functions . These tables are described in sections
2.6 and 2 .7 .

The symbols used in the discussion of monitor tables are defined as local symbols in the KERNEL .MAC and
TBL .MAC files that are supplied with the sysgen kit . The symbols defined in these files should be used whenever
possible to refer to monitor table information .

2.1 JOB CONTROL
RSTS/E can support up to 63 simultaneous jobs . Each of these jobs can be either a user at a terminal or a detached
program . The job control structures allow the monitor to share resources (such as CPU time) properly among
all users . In addition, they provide the means to access the information necessary for almost every other service
provided by the monitor, such as device and file handling .

For example, the scheduler uses the information in the job descriptor block to determine which job to run . The
memory manager uses the memory control sub-block and the residency quantum to set up memory management
registers and perform swapping, if necessary .

The job control structures consist of a combination of tables and blocks . The size of the tables is determined
by the number of jobs specified at sysgen time . The size of a block is typically 16 words .

The tables typically contain one word or byte for each possible job on the system . As a job's status changes,
information in the tables is changed, but the size of the tables remain the same .

The job control blocks, with the exception of the Secondary Job Data Block (JDB2), exist only while a job exists .
They are created (from small buffers) when a job is first created and deleted when the job is removed (eg . by
logging out) .

The location of specific tables can be determined using the GET MONITOR TABLES SYS calls . Once you know
where a table starts, the values within the table can be accessed by adding the required offset to the starting
address of the table . The following example gets the address of the Job Data Block (JDB) for job 5 (see section
2.1 .1 and 2 .1 .2 for information about JOBTBL and JDB) :

10 JOBTBL%=SWAP%(CVT$%(MID(SYS(CHR$(6%)+CHR$(-3%)),11 o,2%)))
!Get starting address of job table (JOBTBL)

20 JDBPTR o=PEEK(JOBTBL%+(5%*2%))
!Get pointer to JDB for job 5 from JOBTBL

2 .1 .1 JOBTBL - Job Table

The job table, JOBTBL, is the root of the job control structures . It points to the Job Data Block which, in
turn, points to the other job related blocks. See Appendix A for information on related job control structures .

JOBTBL contains an entry for each possible job on the system . The job control information for each job can
be accessed by using the job number times two as an offset from the beginning of JOBTBL . The value found
at this location will be the address of the Job Data Block (see section 2 .1 .2) for that job . If a 0 is found, there
is currently no job by that number .

The first word of JOBTBL (at offset 0) corresponds to the entry for the null job . It contains the address of
the JDB for the system job currently using FIP, if any . System jobs are used for error logging and network
service processing . They have the following function and job numbers :

Job

	

Name

	

Function

0 .5 ERRLOG Error logger

1 .5 NSP

	

Network services protocol handler

2.5 TRN

	

Transporter (interprocessor message routing)

The last word in JOBTBL contains a -1 to signify the end of the table . Thus, the total length of JOBTBL, in
words, is JOBMAX (the maximum number of jobs, specified at sysgen time) plus two .

2-2

2.1 .2 JDB - Primary Job Data Block

The Primary Job Data Block (JDB) contains the most commonly used information about a job . It is pointed
to by the entry in JOBTBL corresponding to its job number (see section 2 .1 .1) . The JDB points to three other
job control blocks for the job : JDB2, IOB and WRK (see sections 2 .1 .3, 2 .1 .4 and 2 .1 .5 respectively) .

Information in the JDB is used by many routines within the monitor . The scheduler uses JDPRI and JDBRST
to determine which job to run next . The memory manager uses JDMCTL, JDSIZE, JDSIZM and JDSIZN to
set up the memory mapping registers and to schedule a swap-in . The swapper uses JDRESQ, JDSWAP, JDMCTL
and JDSIZE to swap jobs in and out of memory . The EMT handler uses JDIOST, JDFLG and JDWORK to
process system and I/O calls .

Pointer to IOB
Primary job status flags

Posting mask

	

IOSTS for job
Pointer to job's work block (WRK)

Pointer to ob's JDB2
New job size

	

I Job status flags
Pointer to job's RTS descriptor

Residency quantum

Memory control sub-block

Job size

L3Q bits to set on residency
Run burst Priority

Swap slot number Maximum memory

Symbol Offset

	

Offset Symbol

0 JDIOB
2 JDFLG

POST

	

5

	

4 JDIOST
6 JDWORK
10 JDJDB2

SIZN 13 12 JDFLG2
14 JDRTS
16 JDRESQ
20 JDMCTL
22
24
26 JDSIZE
30
32 JDRESB

BRST 35

	

34 JDPRI
WAP 37

	

36 JDSIZM

JD

JD

JD
JDS

Offset

	

Symbol

0

	

JDIOB

	

This word contains the address of the I/O Data Block (IOB) for this job (see section 2 .1 .4) .

2

	

JDFLG

	

This word contains the primary job status flag bits and a copy of the job's keyword bits
(see section 2 .1 .2.1)

4 JDIOST This byte contains the error code to be returned to the programmer after the completion
of the current monitor call . If the JFIOST bit is set in the job status flags (JDFLG), JDIOST
is moved to the IOSTS word of the user's FIRQB before job execution continues . A value
of 0 indicates that no error occurred. (See the System Directives Manual for more
information on the FIRQB and IOSTS .)

5 JDPOST If the JFPOST bit is set in the job status flags (JDFLG), this byte is used to specify which
information in the job's Work Block (WRK) is to be posted to the job's FIRQB or XRB .
If the value in JDPOST is positive, it is used as a word offset into MSKTBL, a table of
bit masks for posting to the FIRQB . If it is negative, the low order 7 bits are used as a
bit mask for posting to the XRB . Each bit in the mask corresponds to a word in the Work
Block to copy to the job's XRB if the bit is set .

6

	

JDWORK This word contains the address of the Work Block (WRK) for this job (see section 2 .1 .5),

10

	

JDJDB2

	

This word contains the address of the Secondary Job Data Block (JDB2) for this job (see
section 2 .1 .3) .

12

	

JDFLG2

	

This byte contains the secondary job status flags (see section 2 .1 .2 .2) .

13 JDSIZN This byte specifies the size (in K-words) to make this job the next time it is swapped in .
The memory manager uses this location when a job must be swapped out to find additional
memory as it attempts to grow in size . The job's current size setting (JDSIZE) will be
updated when the job is swapped back in .

2-3

Description

14 JDRTS This word contains the address of the Runtime System Descriptor Block (RTS) for the
runtime system currently in use by this job (see section 2.3 .4). If the disappearing RSX
runtime system is in use by this job, JDRTS will contain the address of the null runtime
system descriptor block (NULRTS) .

16 JDRESQ This word contains the current residency quantum for the job . The residency quantum
is used to reduce memory thrashing . When a job is brought into memory it is given a
residency quantum . Each time the job executes, does disk I/O or uses the file processor
(FIP) its residency quantum is reduced in proportion to the amount of time it ran or the
estimated time required to complete the service request . If a job is stalled on I/O to a non-
disk device, its residency quantum is immmediately reduced to zero to allow it to be swapped .
As long as the job's residency quantum is non-zero, the job is not eligible to be swapped out .

20

	

JDMCTL

	

These five words are the Memory Control Sub-Block (MCB) for the job (see section 2.3.1) .

26

	

JDSIZE

	

This byte (within the Memory Control Sub-Block) specifies the current size of the job,
in K-words .

32

	

JDRESB

	

This word specifies the bits to be set in the second Level Three Queue word when the job
is made resident . It is used by the monitor to notify itself when a job is made resident
so that a function that required the job to be resident can be continued (see section 2.2) .

34

	

JDPRI

	

This byte specifies the job's priority . It can range from -128 to + 127 . The scheduler uses
this byte, along with other information, to determine which job to run next .

35

	

JDBRST

	

This byte specifies the job's run burst . The run burst is the amount of time (in clock ticks)
the job may execute without stalling before the scheduler is called to schedule another job .

36

	

JDSIZM

	

This byte specifies the job's private memory size maximum, in K-words .

37 JDSWAP If the job is currently swapped out, this byte specifies the swap file slot number of the
slot containing the job . The swap file number is in bits < 6 :7 > and the swap slot number
is in bits < 0 :5 > . Swap file numbers 0 through 3 correspond to the swap files SWAPO .SYS
through SWAP3.SYS, respectively .

2.1.2.1 JDFLG - Primary Job Status Flags

The job status flags contained in JDFLG are defined as follows :

15

	

1

	

/4 13 12

	

1

	

11 I 10 I 9

	

1

	

8 7

2-4

6 5 I 4 I 3 I 2 1 I 0

JFSPCL I JFLOCK JFBIG JFNOPR JFSYS JFPRIV I JFFPP JFSYST JFREDO JFGO JFPPT JF2CC JFCC JFCEMT JF/OKY JFPOST

Bit

	

Symbol

	

Description

<0> JFPOST The monitor checks this bit before making a job runnable . If it is set, the information in
JDPOST is used as mask for updating the job's FIRQB or XRB (see section 2.1 .2) . The
information in J2PPTR and J2PCNT in JDB2 (see section 2 .1 .3) may also be used to post
large amounts of data to a buffer in the user program .

< 1 > JFIOKY If this bit is set when a job is made runnable, the job's keyword is updated in the job's image
and the contents of JDIOST are posted to the job's FIRQB .

<2> JFCEMT If this bit is set, the monitor resident RSX support is used to post the job information indicated
by JFIOKY, rather than using the standard monitor routines .

<3> JFCC This bit is set when at least one "C is typed at the job's terminal . When the job becomes
runnable, the P .CC pseudo-vector in the runtime system will be entered unless JF2CC is also
set .

<4> JF2CC This bit is set wh en a "C is typed and at least one "C has already been typed since the job
was last run . When the job becomes runnable, the P .2CC pseudo-vector in the runtime system
will be entered .

<5> JFPPT

	

If this bit is set when the job is made runnable, the floating point trap pseudo-vector, P .FPP,
will be entered .

<6> JFGO

	

If this bit is set when the job is made runnable, the I/O redo request specified by the JFREDO
bit will be ignored . This bit is set if a user types "C during a "C interruptable I/O operation .

<7> JFREDO If this bit is set when a job becomes runnable (and JFGO is not also set), the device driver
that requested I/O redo will be reentered at it's SER$xx entry point (see section 3.2 .5) .

<8> JFSYST This bit is set if the job can use temporary privileges . This bit is one of the keyword bits .

<9> JFFPP

	

If this bit is set, the contents of the floating point hardware registers (if any) will be saved
and restored along with the job image. This bit is one of the keyword bits .

< 10> JFPRIV This bit is set if the job is logged into a privileged account . This bit is one of the keyword bits .

< 11 > JFSYS - This bit is set if the job is currently running with temporary privileges. This bit is one of
the keyword bits .

< 12> JFNOPR This bit is set if the job is running without having been logged in . This bit is one of the keyword
bits .

< 13 > JFBIG

	

If this bit is set, the job can exceed its private memory size (as defined in JDSIZM) . This
bit is one of the keyword bits .

2 -5

< 14> JFLOCK This bit is set if the job is locked in memory . This bit is one of the keyword bits .

< 15 > JFSPCL This bit is set is special processing is required before running the job . The flag bits in JDFLG2
specify the special processing to be performed (see section 2.1 .2 .2) .

2.1 .2.2 JDFLG2 - Secondary Job Status Flags

The job status flags contained in JDFLG2 have the following meaning when set :

I

	

7

	

6

	

I

	

5

	

4

	

3

	

1

	

2

	

I

	

0

JFKILL JFKIL

	

JFSWPE JFSTAK JFSWPR I JFRUN

	

JFPRTY JFCTXT

Bit Symbol Description

<0> JFCTXT The job's context should be saved .

< 1 > JFPRTY The special condition shown by JFSPCL is a memory parity error .

<2> JFRUN The special condition shown by JFSPCL is a new program run request .

<3> JFSWPR The special condition shown by JFSPCL is a runtime system or resident library load failure .

<4> JFSTAK The special condition shown by JFSPCL is a stack overflow .

<5> JFSWPE The special condition shown by JFSPCL is a swap error .

<6> JFKIL2 The logout phase of killing a job has completed . The control structures associated with a
job should now be released .

<7> JFKILL The job should be killed .

2.1 .3 JDB2 - Secondary Job Data Block

The Secondary Job Data Block (JDB2) contains information about the job that is used less often or is less time
critical than the information in the JDB . Its primary use is for accounting and directory information .

Symbol Offset

J2CPUM 13

Offset Symbol

0 J2TICK
2 J2CPU
4 J2CON
6 J2KCT
10 J2DEV
12 J2KCTM
14 J2NAME
16
20 J2DRTS
22 J2MPTR
24 J2MPTR
26 J2PCNT
30 J2PPN
32 J2UFDR
34 J2WPTR
36 J2FLAG
40 J2SPWN
42 J2EMLP

J2CPUI

Offset

	

Symbol

	

Description

0 J2TICK This word is incremented at each interrupt when the job is executing . When the job is
descheduled, this value is converted to the equivalent number of 1/10th seconds and added
to J2CPU . Any amount less than 1/10th second is left in this word . The units of this word
depend on how fast the clock is interrupting . For a KW11L clock, running at 60 hertz,
the units are 1 /60th seconds .

2

	

J2CPU

	

This word contains the low order 16 bits of the total CPU time used by this job, through
the last time J2TICK was posted . The units of this value are 1/10th seconds .

4

	

J2CON

	

This word contains the total connect time, in minutes, for this job . Connect time is only
computed while a job is logged in .

6

	

J2KCT

	

This word contains the low order 16 bits of the job's kilo-core-ticks . One kilo-core-tick
is the use of 1 K-word of memory while executing for 1/10th second . Using 2 K-words
for 1/10th second is two kilo-core-ticks .

10

	

J2DEV

	

This word contains the total device time for this job, in device-minutes . A device minute
is the use of one device for one minute . Using two devices for one minute is two device-
minutes .

12

	

J2KCTM

	

This byte contains the high order 8 bits of the job's kilo-core-ticks (see J2KCT, above) .

13

	

J2CPUM

	

This byte contains the high order 8 bits of the job's CPU time (see J2CPU, above) .

14 J2NAME These two words contain the program name, in RAD50 . The program name is specified
using the NAME system call . All the standard runtime systems issue this call to post the
program name when a program is run . The contents of these words are for information
only, and are unused by the monitor .

2 -6

Unposted clock ticks
CPU time (LSB)
Connect time

Kilo-core-ticks (LSB)
Device time

CPU TIME (MSB)

	

KCT(MSB)

Program name

Default runtime system pointer
Receiver ID block pointer
Large data posting pointer

Large data posting byte count
Project-Programmer number

DCN of first UFD block
Pointer to Window Descriptor Block

Extended job flags
Pointer to SPAWN process control area
Pointer to EMT logger message packet

"T CPU time

20 J2DRTS This word is the address of the Runtime System Descriptor Block (RTS) for the job's default
runtime system (see section 2 .3 .4) . When a running program exits, control returns to this
default runtime system . If the default runtime system is no longer installed when the program
exits, the system default runtime system will be used instead .

22

	

J2MPTR

	

If this job is a message receiver, this word contains the address of its Receiver ID Block
(RIB) (see section 2.6.1) . If not, this word will be zero .

24 J2PPTR This word is used as a pointer to a large monitor buffer to be used to transfer information
to or from a user program . It is normally used for large message send/receive buffer
transfers . If the least significant five bits of the pointer are zero, the pointer is an address
in the small buffer area . If the least significant five bits of the pointer are non-zero, it
is a "contorted" pointer into the extended buffer pool . The actual address has been rotated
left seven bits to ensure that the least significant bits are non-zero .

26

	

J2PCNT

	

This word specifies the number of bytes to transfer to or from the buffer specified by
J2PPTR .

30 J2PPN This word contains the job's PPN . The project number is in the high byte (offset 31) . The
programmer number is in the low byte (offset 30) . If the job is not logged in, this word
will be zero .

32

	

J2UFDR

	

This word contains the device cluster number (DCN) of the first cluster of the user's UFD
on SYO : . The value of this word is undefined if the job is not logged in .

34 J2WPTR If the job is attached to any resident libraries, this word contains a pointer to the job's
first Window Descriptor Block (WDB) at offset W.WIN1 (see section 2.3 .6) . If the job
is not attached to any resident libraries, this word will be zero .

36

	

J2FLAG

	

This word contains extended job status flag bits . The only bit currently defined is bit 0
(symbolically J2FSPW) . This bit specifies that this job is being spawned .

40 J2SPWN This word is used during job spawning to hold a pointer to a large buffer that contains
information about the job being spawned . Use of this large buffer allows the job requesting
the spawn to be removed from memory .

42 J2EMLP If the EMT logger option was included during system generation, this word is used to contain
a pointer to the pending EMT message buffer or to contain a value of 177640 8 used to
specify that EMT logging is not desired . If the EMT logging option was not included during
system generation, this word will not be allocated .

J2CPUI If the one-line mini-systat option was included during system generation, this word contains
the least significant 16 bits of the CPU time used by this job when the last " T mini-systat
was taken. If this option was not included, this word will not be included . This word is
at either offset 42 if EMT logging was not included or offset 44 if EMT logging was included .

2.1 .4 IOB - I/O Block

The I/O Block (IOB) is used to access information about each or a job's open channels . It contains one entry
for each of the possible 16 channels . (Note: BASIC-PLUS only allows 12 channels because channel 0 is the user's
terminal and channels 13-15 are used internally by the BASIC-PLUS interpreter for its temp file, source file,
and compiled file, respectively .)

The IOB is 16 words long . Each word is zero if the corresponding channel is closed and non-zero if it is open .
If the channel is open and the device is not a disk, this word will contain a pointer to the Device Data Block
(DDB) for the associated device . If the device is a disk, this word will contain a pointer to the Window Control
Block (WCB) for the associated disk file .

2-7

One exception is the entry in the IOB for channel 0 . This entry corresponds to the DDB for the job's terminal .
If the job is detached and no longer owns a console terminal, this entry will still point to a terminal DDB . However,
the ownership byte (DDJBNO) within the DDB (see section 2 .5 .1) will not contain the job's job number (times two) .

DDB pointer for channel 0
DDB, WCB or SCB pointer for channel 1
DDB, WCB or SCB pointer for channel 2
DDB, WCB or SCB pointer for channel 3
DDB, WCB or SCB pointer for channel 4
DDB, WCB or SCB pointer for channel 5
DDB, WCB or SCB pointer for channel 6
DDB, WCB or SCB pointer for channel 7
DDB, WCB or SCB pointer for channel 8
DDB, WCB or SCB pointer for channel 9
DDB, WCB or SCB pointer for channel 10
DDB, WCB or SCB pointer for channel I1
DDB, WCB or SCB pointer for channel 12
DDB, WCB or SCB pointer for channel 13
DDB, WCB or SCB pointer for channel 14
DDB, WCB or SCB pointer for channel 15

Symbol Offset

	

Offset Symbol

0
2
4
6
10
12
14
16
20
22
24
26
30
32
34
36

2.1 .5 WRK- Work Block

The Work Block (WRK) is a scratch area used to hold information that normally would only be contained in
the user's program area . Copying this information into the Work Block allows device drivers, the file processor
and other modules within the monitor to access information in a user's FIRQB or XRB without requiring an
additional memory management register to access them .

The contents of the FIRQB are copied into the Work Block on SYS calls and file or device opens . The contents
of the XRB are copied into the Work Block on I/O requests or special function (.SPEC) calls . Information from
the Work Block is copied back to the user's FIRQB or XRB when the monitor function completes if the JFPOST
bit is set in the user's JDB (see section 2 .1 .2.1) .

2.1 .6 JBWAIT, JBSTAT - Job Status Tables

Two tables, JBWAIT and JBSTAT, are used to determine if a job is runnable . Each of these tables contain
one word for every possible job on the system, including the null job (job 0) . They are accessed using the job
number times two as an offset from the beginning of the table .

When a job is stalled for any reason (such as waiting on I/O), a bit is set in the job's JBWAIT entry to show
what the job is waiting for . The corresponding JBSTAT entry is set to zero . When the condition the job is waiting
for has been met, the same bit that was set in JBWAIT will be set in JBSTAT .

When the scheduler wants to determine if a job is runnable, it performs a logical AND of the job's JBSTAT
table entry with its JBWAIT table entry . If the result is non-zero, the job is runnable. If the result is zero, the
job is stalled waiting for something and cannot be run .

When a job is stalled for hibernation, both the JBWAIT and JBSTAT words are set to zero . JBWAIT will be
set to a non-zero value when the job is reattached to a terminal .

2-8

The bit values within the JBWAIT and JBSTAT entries show why a job is stalled . They have the following meaning .

2.1 .7 JOBCLK - Job Sleep Time Table

Each entry in JOBCLK contains the sleep time counter for the corresponding job . If the entry is non-zero, the
corresponding job is in a sleep wait state . The value of the entry specifies the number of seconds remaining in
the job's sleep time. When the entry becomes zero, the job will continue execution . The entries in this table are
accessed by job number times two .

2-9

I

	

is

	

I 14

	

I

	

13

	

I

	

12

	

I

	

11

	

10

	

9

	

8

	

7

	

6

	

1

	

5

	

4

	

I

	

1

	

2

	

I

	

I

	

0

	

I

JSBUF I JSTIM

	

JSFIP

	

JSTEL

	

JS xr

	

Js

	

is

	

is

	

is

	

JS u

	

Js

	

JS.r I JS . xz

	

I JS.KB

	

Js SY

Bit

	

Symbol Description

<0> JS.SY This bit is used for I/O on all devices that are not -C interruptable. These devices are normally :
NL, RJ, MT, MM, MS, DT, DX, DD, XK and all disks .

< 1 > JS.KB This bit is used for terminal input .

<2> JS.xx This bit may be assigned at sysgen time to a device that is "C interruptable .

<3> JS.xx This bit may be assigned at sysgen time to a device that is "C interruptable .

<4> JS.xx This bit may be assigned at sysgen time to a device that is "C interruptable .

<5> JS .xx This bit may be assigned at sysgen time to a device that is "C interruptable .

<6> JS .xx This bit may be assigned at sysgen time to a device that is "C interruptable .

<7> JS .xx This bit may be assigned at sysgen time to a device that is "C interruptable .

<8> JS .xx This bit may be assigned at sysgen time to a device that is "C interruptable .

<9> JS.xx This bit may be assigned at sysgen time to a device that is -C interruptable .

< 10> JS.xx This bit may be assigned at sysgen time to a device that is -C interruptable .

< 11 > JSTEL This bit is used for terminal output .

< 12> JSFIP This bit is used for FIP (SYS call) waits .

< 13 > JSTIM This bit is used for timeouts from various time restricted events, such as SLEEP, message
receive timeout, etc .

< 14> JSBUF This bit is set when a monitor routine or device driver checks for small buffer availablity
and there are less than 10 small buffers available on the entire system . The job will be stalled
until there are more small buffers available .

< 15 > This bit is not used, but is reserved for future use .

2.2 LEVEL THREE QUEUE
A typical problem in operating system design is the prevention of a mutual exclusion condition where one routine
in the monitor calls a second routine which eventually calls the first one. The result is a circular call that never
gets resolved. Another problem is the requirement that certain routines operate at a different processor priority
level than the routine that envoked them .

RSTS/E solves both of these problems using the Level Three Queue (L3Q) structure . The Level Three Queue
is a pair of words that are used as a set of 32 bits . Each of these bits is assigned to a specific routine in the monitor .

When a routine within the monitor determines that another routine in the monitor should be executed, it sets
the appropriate bit in L3Q . Before returning to a user program, L3Q is checked. If any bits are found set, the
associated routine will be executed . This process repeats until no bits remain set in L3Q . The monitor then continues
execution of the user program .

For example, if the real-time clock driver determines that a second has passed, it sets the bit in L3Q that envokes
the "once a second, every second" timer service . The clock driver will also set the bit to call the scheduler if
the current user's runburst has been exhausted .

The Level Three Queue is divided into two words . The first word (L3QUE) is mainly used for L3Q bits assigned
to device drivers (see section 3 .2.12). The second word (L3QUE2) is used to envoke routines within the monitor .

The order of the bits in L3Q determines the relative priority of the associated routines . Bit 0 of the first word
of L3Q corresponds to the highest priority routine . Bit 15 of the second word in L3Q corresponds to the lowest
priority routine .

The bits in L3QUE have the following meaning when set :

I

	

15

	

I

	

14

Bit

	

Symbol

14

Bit

	

Symbol

13

13

12 11 10 9

	

1

	

8

QBUFRT Q nn, Q nnn Q nnn Q nnn Q nnn Q nnn Q nnn Q nnn Q nnn Q nnn QFAST

Description

<0> QFAST Reserve for use by some fast device driver . The DU: disk driver redefines this bit as QPHCON
for use with add-on disks and the UDA5O controller .

< 1 :14 >Qxxnnn These bits are available for use by device drivers . The individual bits are assigned during the
TBL assembly using the L3Q bit requirements specified in the DEVICE macro used for each
device driver . The bit name is formed by replacing "xx" by the device name and "nnn" by
the L3Q bit name assigned by the driver . For example, QMTCON specifies the CON bit (used
for a continuation entry point) used by the MT driver .

< 15 > QBUFRT Return small buffers to the monitor pool .

The bits in L3QUE2 have the following meaning when set :

12 11 10 9

	

1

	

8

7

7

2-10

6

6

Description

5

5

<0> QTIMER Once a second, every second timer service .

< 1 > QCACHE Disk cacheing has completed .

<2>

	

Reserved .

<3> QBGBUF Unstall processes waiting on big buffers .

<4> QUMR Unstall processes waiting on unibus mapping registers .

<5> QSWAPC Swap completion .

4

4

1 2

2 1

1

1

1 0

0

QFOIIC L QSCHLD QBRI\G QDL P QLILL Q S/ QTR QIIP QS AP(QLMR QBGBLI QC A C HL

1

Q1111LR

< 12> QBRING Run the memory manager to ensure residency of a job .

< 13 > QSCHED Run the scheduler .

< 14> QFORCE Deschedule the current job .

< 15>

	

Reserved .

<6> QFIP FIP completion or continuation .

<7> QTRN DECNET transfer completion or continuation .

<8> QNSP DECNET network service completion or continuaton .

<9> Reserved .

< 10> QFILE User disk I/O completion .

< 11 > QDUMP Deschedule the current job .

2.3 MEMORY CONTROL

Memory is used for many different purposes . The monitor and cache buffering use a large chunk . Runtime systems
and resident libraries take their toll . And, of course, let's not forget application programs . They are what we
bought this machine for in the first place .

With all these demands on memory, the monitor has to make some pretty smart decisions to control this resource
efficiently . The primary way it provides this control is through memory control sub-blocks .

2 .3.1 MCB - Memory Control Sub-Blocks

The available memory on a system is typically broken down into many pieces, each being used for a different
purpose. Memory Control Sub-blocks (MCBs) are used to keep track of each of these pieces of memory .

An MCB is not a structure by itself . It is a part of other structures that describe functions which use memory,
such as the Job Data Block (JDB) . The structures which contain Memory Control Sub-blocks are : Job Data
Blocks (JDB), Runtime System Descriptor Blocks (RTS), Library Descriptor Blocks (LIB), the RSTS/E monitor,
XBUF, locked out memory and non-existent memory .

The MCB is contained at different offsets within different types of structures . The offset can be used to identify
the type of structure that contains the MCB if all that is available is a pointer to the MCB . The following table
lists the offsets and the type of structure they relate to :

the Memory Control Sub-blocks are always in one of three states : (1) linked into a list of current memory users,
(2) linked into a list of users that desire memory residency, (3) not in memory and not desiring memory residency .

The Memory Control Sub-block has the following format :

Offset

	

Symbol

	

Description

0

	

M.PPRV

	

Pointer to the previous MCB in this memory control list at offset M .PNXT .

2

	

M.PNXT

	

Pointer to the next MCB in this memory control list .

4

	

M.TSIZ

	

Number of K-words mapped by this MCB . This size includes the amount of memory actually
used, plus any available memory that follows it .

6

	

M.SIZE

	

This byte specifies the number of K-words actually used . This size subtracted from M.TSIZ
yields the number of K-words mapped by this MCB which are available for allocation to
other uses .

7

	

M.CTRL

	

This byte contains the memory status information about the portion of memory mapped
by this MCB .

10 M .PHYA

	

This word contains the physical starting address of the piece of memory mapped by this
MCB, divided by 100 8 .

2-12

Offset Symbol Description

0 ML.MON Monitor, ODT or tail MCB .

2 ML .XBF XBUF.

4 ML .LCK Locked out memory (locked by INIT or parity error) .

6 ML.NXM Non-existent memory .

10 ML.RTS Runtime System or Resident Library Descriptor Block .

12-16 Unused .

20 ML .USR User program .

2.3.1 .1 M.CTRL - Memory Status Information

The memory status information bits contained in M .CTRL have the following meaning when set :

Bit

	

Symbol

<8> REQ

<9> OUT

<10> IN

<11 :13>

< 14> SWP

< 15 > LCK

1

	

u I 14

	

I

	

13 12 11

	

10 9 I 8

	

1

LCK SWP IN OUT REQ

Description

Residency is requested but the MCB is not linked into RESLST because it is currently being
swapped out .

Entry should be removed from memory or is currently removed from memory .

Entry should be brought into memory .

Unused .

A swap is desired . OUT and IN determine the direction of the swap .

The memory segment described by M .SIZE is not available for allocation for other uses or
for swapping out .

Some typical combinations of bits in M .CTRL are:
LCK,SWP,OUT

	

The entry is resident but should be swapped out .
LCK,OUT

	

The entry is in the process of swapping out .
LCK,SWP,IN

	

The entry has been allocated memory and should be swapped in now .
LCK,IN

	

The entry is in the process of swapping in .
LCK

	

The entry is not available for swapping out .

OUT

	

The entry is not currently in memory and does not desire to be made resident .

2.3.2 MEMLST - Resident Memory List

All of the memory in a system is mapped by the resident memory list, MEMLST . As memory is divided among
several different usages, the Memory Control Sub-blocks for each usage are linked into MEMLST in ascending
address order. Thus, by following the links between the MCBs in MEMLST, we have seen all the memory on
the system .

The memory control list is based at the location MEMLST . This location is the address of the first entry in the
memory control list, rather than a pointer to the first entry as in most other linked lists . The first entry describes
the memory used by the monitor and any free memory following it .

The memory control list always contains at least three entries . These are the root MCB, the system default runtime
system, and the tail MCB . The root is actually the monitor MCB . The tail terminates the list and shows the
highest memory location addressable on the system .

2.3.2 .1 Root Memory Control Sub-Block

The first entry in the resident memory list is the root MCB . This entry starts at location MEMLST and describes
the memory used by the monitor and any free memory following it .

2-13

The format of the root MCB is as follows :

2.3.2.2 Tail Memory Control Sub-Block

The tail MCB is the last entry in MEMLST . It terminates the list and defines the highest memory address available
on the system . The format of the tail MCB is as follows :

Offset

	

Symbol

	

Description

0

	

M.PPRV

	

The backward link points to the previous entry in MEMLIST at its M .PNXT entry .

2

	

M.PNXT

	

The forward link contains a zero to show that this is the end of the list .

4

	

M.TSIZ

	

The total size for this entry is set to a value of 1, but is not used by the monitor .

6

	

M.SIZE

	

The size of this entry is set to a value of 1, but not used by the monitor since the LCK
bit is set in M .CTRL .

10 M .PHYA The starting physical address of this memory segment corresponds to the address of the
first non-existent memory on the system (divided by 100 8) . Therefore, this value is the total
system memory size (in K-bytes, divided by 100 8) .

2 .3.3 RESLST - Desired Residency List

When an entry is not currently resident in memory and wants to become resident, it is linked onto the end of
the desired residency list, RESLST. The memory manager uses this list in a first-in/first-out basis to keep track
of requests for memory beyond what is available in MEMLST .

When an entry is added to RESLST, the memory manager is scheduled to fulfill the desired residency request .
If there is not enough memory available to honor the residency request, entries that are currently resident in
memory are reviewed. Those which are eligible for swapping are then scheduled to be swapped out . Once sufficient
memory is made available, the requestor is made resident and the MCB is removed from RESLST and added
to MEMLST .

The first entry in the desired residency list is pointed to by the location RESLST . If no entries desire residency,
RESLST will contain a zero .

Memory control sub-blocks in RESLST have the following format :

2-14

Offset Symbol Description

0 M.PPRV The link to the previous entry is zero since this is the first entry in MEMLST .

2 M .PNXT This word contains a pointer to the next entry in MEMLST .

4 M .TSIZ This word specifies the total of the monitor's size plus any free memory following it .

6 M .SIZE This byte specifies the size of the monitor, in K-words .

7 M.CTRL The LCK bit is set to show that the monitor's memory is not available for other uses .

10 M.PHYA The starting physical address is 0 since the monitor always starts at location 0 .

Offset Symbol Description

0 M.PPRV Pointer to the next entry in RESLST or 0 if this is the last entry .

2-5 Unused .

6 M .SIZE The size of this entry, in K-words .

7 M.CTRL The control bits LCK, SWP and IN are set to show that swap-in is desired .

10 M.PHYA This word contains either a 0 to show that no specific memory address is required or it
contains the desired memory address, divided by 100 8 .

d

Pointer to the next RTS block

Runtime system name (RAD50)

Default file type (RAD50)

Memory Control sub-block

Size of RTS

MSB of block # FIP Unit Number
Starting block number of RTS (LSB)

MSB of block # Offset in block
Block # of RTS directory entry (LSB)

Residency count User count
Minimum job size Maximum job size
Characteristics EMT prefix

2.3 .4 RTS - Runtime System Descriptor Block

Every runtime system that is currently installed in the system has a Runtime System Descriptor Block associated
with it . This structure contains all the information about the runtime system, including its name, memory control
information, disk address and characteristics .

The RTS block has the following format :

Symbol Offset

	

Offset

	

Symbol

0 R .LINK
2 R .NAME
4
6 R .DEXT
10 R .MCTL
12
14
16 R .KSIZ
20
22 R . DATA
24
26 R.FILE
30
32 R.CNT

R.MSIZ 35

	

34 R.SIZE
36 R.FLAG

Offset

	

Symbol Description

0

	

R.LINK

	

This word contains the address of the next RTS block in the list . If this entry is the last
in the list, it will contain a 0 .

2

	

R.NAME

	

These two words contain the runtime system name, in RAD50 .

6 R .DEXT This word contains the default file type, in RAD50, for executable files used by this RTS .
If a RUN command is issued without specifying a file type for the file to be executed,
this value will be used for the file type on files executed under this runtime system .

10

	

R.MCTL

	

These five words are the Memory Control Sub-block for the runtime system (see section
2 .3 1) .

16

	

R.KSIZ

	

This byte (within the Memory Control Sub-block) specifies the size of the runtime system,
in K-words .

22 R .DATA This byte is the FIP Unit Number of the disk containing the runtime system . It is used
when loading the runtime system image and when closing the runtime system file when
the runtime system is removed .

23 These three bytes contain the FIP Block Number (FBN) of the first block of the runtime
system image. When a runtime system is loaded into memory it is accessed from the disk
using this block number . Byte 23 is the most significant byte of the block number .

26

	

R.FILE

	

This byte is the offset, in words, to the Name Entry for the RTS file within the directory
block specified at offset 27 .

27 These three bytes contain the FIP Block Number (FBN) of the block that contains the
UFD Name Entry for this runtime system . It is used to close the RTS file when the RTS
is removed . Byte 27 is the most significant byte of the block number .

32

	

R.CNT

	

This byte contains a count of the number of jobs currently using this runtime system .

2-15

33

34 R .SIZE

35 R .MSIZ

36 R.FLAG

2.3 .4.1 R .FLAG - Runtime System Characteristics

The runtime system characteristics flags contained in R .FLAG in the RTS block have the following meaning
when set :

I

Bit

	

Symbol

<0:7>

<8> PF.KBM

<9> PF.1 US

< 10> PF.RW

<11> PF.NER

< 12> PF.REM

< 13> PF.CSZ

< 14> PF.SLA

< 15> PF.EMT

13 I

This byte contains a count of the number of jobs using this runtime system which are
currently resident in memory. If this count is 0, the runtime system is eligible for "swapping
out" . If a runtime system is loaded with the /STAY switch, the high bit of this byte is
set, ensuring that the residency count will never be 0 and the runtime system will always
remain in memory .

This byte specifies the maximum size (in K-words) for a job image using this runtime system .

This byte specifies the minimum size (in K-words) for a job image using this runtime system .

The high byte of this word (offset 37) contains a set of bits that describe the characterstics
of the runtime system (see section 2.3 .4 .1) . If the PF.EMT bit (see section 2 .3 .4 .1) is set
in the high byte of the word, the low byte will contain the special EMT prefix value . See
the RSTS/E Programming Manual for more information .

12 I 11 10 9 I

2-16

8 7

2.3.4.2 NULRTS - Disappearing RSX Runtime System

One of the options at sysgen time is to embed support for the RSX emulator into the monitor . When this is
done, the RSX runtime system disappears after initiating program execution .

Every job on the system is required to have a runtime system associated with it at all times . The monitor meets
this requirement when using the disappearing RSX runtime system by using the Null RTS Descriptor Block,
NULRTS .

The Null RTS Descriptor Block is not linked into RTSLST (see section 2 .3 .4.3) . It is only used to provide an
RTS block for the Job Descriptor Block (JDB) to point to .

6

	

1

	

5

	

I

	

4

	

I

	

3

	

I

	

2

	

I

	

I

	

I

	

0

	

I

PF EMT PF SLA PF CSZ PFREM PF NER PF RW PF]US PF KBM EMT

	

prefix

Description

Special EMT prefix (see PF.EMT below)

The runtime system can act as a keyboard monitor .

The runtime system is single user, non-sharable .

Map runtime system read/write .

Do not log errors occurring under this runtime system .

Remove the runtime system image from memory when R .CNT becomes 0 .

Compute initial job size .

Load runtime system at the address specified by M .PHYA of the MCB .

Low byte of R.FLAG is the special EMT prefix code .

The format of the Null RTS Block is the same as a normal RTS block . All the fields contain 0 except the following :
Symbol

	

Value

R.NAME " . . .RSX" in RAD50

M .CTRL

	

LCK bit set

R.SIZE

	

System swap maximum

R.MSIZ

	

1

2.3 .4 .3 RTSLST - Runtime System List

The RTS blocks are linked together in a list pointed to by the location RTSLST . The first entry is always the
system default runtime system . It links to the other RTS blocks in the order displayed by SYSTAT . The following
figure illustrates the linkages used for runtime system control :

RTSLST

2.3.4.4 DEFKBM - Pointer to Default RTS

The contents of DEFKBM is a pointer to the RTS block for the system default keyboard monitor . This runtime
system is used as each user's runtime system unless they specify a different private runtime system .

2.3.5 LIB - Resident Library Descriptor Block

Each resident library installed in the system is described by a Resident Library Descriptor block (LIB). A LIB
block is very much like an RTS block in that it contains information about the resident library's name, memory
control information, disk address and characteristics .

The LIB blocks for the currently installed libraries are kept in a linked list . The first element in the list is pointed
to by the location LIBLST (which immediately follows RTSLST in memory) . The following elements are linked
by the first word of each LIB block .

Refer to the desciption of the .PLAS call in the System Directives Manual for a complete description of resident
library support and the use of memory windows .

>,
System
Default
RTS

Added
RTS

1
Added
RTS

2-17

The LIB block has the following format :

Symbol Offset

Offset

	

Symbol

0 R .LINK

2 R .NAME

6 L.PPN

10 R.MCTL

16 R.KSIZ

22 R. DATA

23

26 R.FILE

27

32 R.CNT

33

L.PROT 29

2-18

Description

This word contains the address of the next LIB block in the list . If this entry is the last
in the list, it will contain a 0 .

These two words contain the resident library name, in RAD50 .

This word contains the account number (PPN) of the resident library file . It is used when
determining access privileges when a resident library is attached . The project number is
in the high byte . The programmer number is in the low byte .

These five words are the Memory Control Sub-block for the resident library (see section
2 .3 .1) .

This byte (within the Memory Control Sub-block) specifies the size of the resident library,
in K-words .

This byte is the FIP Unit Number for the disk containing the resident library . It is used
when loading the resident library image and when closing the resident library file when
the resident library is removed .

These three bytes contain the FIP Block Number (FBN) of the first block of the resident
library image . When a resident library is loaded into memory it is accessed on disk by this
block number. Byte 23 is the most significant byte of the block number .

This byte is the offset, in words, to the Name Entry for the LIB file within the directory
block specified at offset 27 .

These three bytes contain the FIP Block Number (FBN) of the block that contains the
UFD name entry for this resident library . It is used to close the resident library file when
the library is removed . Byte 27 is the most significant byte of the block number .

This byte contains a count of the number of jobs currently attached to this resident library .

This byte contains a count of the number of jobs using this resident library which are
currently resident in memory . If the residency count is 0, the resident library is eligible
for "swapping out" . If a resident library is loaded with the /STAY switch, the high bit
of this byte is set, ensuring that the residency count will never be 0 and the resident library
will always remain in memory .

Offset Symbol

0 R.LINK
2 R. NAME

4
6 L .PPN
8 R.MCTL
10
12
14 R.KSIZ
16
18 R.DATA
20
22 R.FILE
24
26 R.CNT
28 L .STAT
30 R.FLAG

Pointer to the next LIB block

Resident libary name (RAD50)

PPN of library
Memory control sub-block

Library size

MSB of block #

	

FIP Unit Number
Starting block # of library (LSB)

MSB of block #

	

I

	

Offset in block
Block # of LIB directory entry (LSB)

Residency count User count
Protection code Status

Library characteristics

34 L.STAT This byte is used to differentiate between an RTS block and a LIB block . If bit 7
(symbolically, LS .LIB) is set, this is a LIB block, otherwise it is an RTS block . LS .LIB
is the only bit currently defined for L .STAT .

35 L.PROT This byte is the library protection code . The protection code is used to control access to
the memory space of a resident library . It is identical in usage to the file protection codes
except that bits 6 and 7 have no meaning .

36

	

R.FLAG

	

This word contains a set of bits that describe the characteristics of the resident library (see
section 2.3 .5 .1) .

2.3.5.1 R .FLAG - Resident Library Characteristics

The library characteristic bits contained in R .FLAG in the LIB block have the following meaning when set :

2 .3.6 WDB - Window Descriptor Block

A job's memory space consists of the user low segment, the runtime system and up to five resident libraries,
mapped by up to seven windows. If a job is not attached to any resident libraries, the job's memory requirements
are totally described by the Memory Control Sub-blocks in its JDB and RTS blocks .

However, when a job attaches to one or more resident libraries, an additional control structure is needed to
keep track of the extra memory windows . This structure is the Window Descriptor Block (WDB) .

The WDB consists of up to three small buffers of information that describe up to seven memory windows and
five resident libraries . Up to two windows and five resident libraries can be described with a single small buffer .
An additional small buffer is required for each three additional windows .

2-19

1

	

/5

	

I 13 12

	

/I

	

I

	

/0

	

I

	

9

	

1

	

8

	

7

	

6

	

I

	

5

	

I

	

3

	

2

	

I

	

0

	

I

Pf SL Pf ROM

	

P1 R

	

P l us

Bit Symbol Description

< 0:8 > Unused .

<9> PF.1 US The resident library is single user, non-sharable .

< 10> PF. RW The resident library may be mapped read/write if allowed by the protection code .

Unused .< 11 >

< 12> PF .REM Remove from memory when R .CNT becomes 0 .

< 13> Unused .

< 14> PF .SLA Load at specific address . This bit is always set for a resident library since
libraries must always be loaded at a specific address .

< 15> Unused .

Pointer to next WDB
Pointer to LIB descriptor #5
Pointer to LIB descriptor #4
Pointer to LIB descriptor #3
Pointer to LIB descriptor #2
Pointer to LIB descriptor #1

Address window # 1

Address window #2

The first Window Descriptor Block has the following format :

Symbol Offset

	

Offset Symbol

0 W.LINK
2 W.ALIB
4
6
10
12
14 W .WINI
16
20
22
24
26 W .WIN2
30
32
34
36

2 .3 .6 .1 W.WIN? - Address Windows

If a window is not in use, its first word will be 0 . Address windows have the following

Symbol Offset

	

Offset Symbol

W$NSTS

	

1

2-20

format :

0 W$NAPR
2 W$NSIZ
4 W$NLIB
6 W$NOFF
10 W$NBYT

Window status

	

Base APR
Window size divided by 100 8

Pointer to library descriptor pointer
Offset into library divided by 1008

Window size in bytes

Offset Symbol Description

0 W$NAPR This byte contains the number of the first APR used to map this window .

1 W$NSTS This byte contains a bit pattern describing the status of the window (see section 2 .3 .6 .1 .1) .

2 W$NSIZ This word contains the desired window size, in bytes, divided by 100 8 .

4 W$NLIB This word is the address of the pointer (in W.ALIB) to the library descriptor block for
the library associated with this window .

6 W$NOFF This word is the byte offset into the library, divided by 64, to the beginning of this window .

10 W$NBYT This word is the window size, in bytes .

Offset Symbol Description

0 W.LINK If this job has more than two windows attached, this word contains a pointer to the second
Window Descriptor Block, at offset W .ALIB. Otherwise, this word contains a 0 .

2 W.ALIB These five words contain pointers to the library descriptor blocks for up to five libraries .
If less than five libraries are attached, the unused entries will be 0 . The least significant
5 bits of each word may be used as flags by the monitor and should be cleared before
using the pointer as an address . Note that the first LIB pointer is at offset 12 . The remaining
LIB pointers are at lower numbered offsets .

14 W.WIN1 These five words are the first address window (see section 2.3.6 .1) .

26 W.WIN2 These five words are the second address window (see section 2.3 .6 .1) .

2.3.6.1.1 W$NSTS - Window Status

The current status of each window is described by the bits contained in W$NSTS in each address window . These
bits have the following meaning :

I is /4 I 13 12

Bit

	

Symbol

	

Description
< 8 > WS$WRT Write access is desired .

< 9:14 >

	

Unused .

< 15 > WS$MAP The window is currently mapped .

2.3.6.2 Extended Window Descriptor Blocks

If more than two windows are in use by a job, an additional WDB is allocated and linked to by the primary
WDB. If more than five windows are in use, a third WDB is allocated and linked to from the second one .

The second WDB has the following format :

2-21

1/ /0 9 x

S$MAP WSS HT

Symbol Offset

	

Offset Symbol

Pointer to third WDB 0 W .LINK
2
4

Address window #3 6
10
12
14
16

Address window #4 20
22
24
26
30

Address window #5 32
34
36

The third WDB has the following format :

Symbol Offset

	

Offset Symbol

0 W .LINK
2
4
6
10
12
14
16
20
22
24
26
30
32
34
36

The format of each address window is identical to that of the first WDB (see section 2.3.6.1) .

2.3.6.3 Resident Library Linkages

All the information about a job's resident libraries can be found by following pointers starting at the job's Job
Descriptor Block (JDB) . The following figure illustrates the linkages used for resident library handling . In the
illustration, the job is currently attached to two of the three libraries installed on the system . It has three windows
mapped into these libraries .

JOBTBL

RTSLST
LIBLST

0

Address window #6

Address window #7

Unused

JDB

LIB #1

2-22

JDB2

WDB #1

'I
LIB #2

WDB #2

LIB #3

2.4 FILE CONTROL
A disk is typically broken down into several files . Each file can be treated as if it were a separate disk . The monitor
takes care of finding a place to store data for the file and then retrieving that data when needed .

Less disk overhead is required to open a file for the first user with the large file system control structures . No
disk overhead is required for subsequent users of the same file . In addition, disk overhead associated with window
turns (loading the retrieval window from the directory) is reduced, especially when the file is simultaneously open
by more than one user .

The structures used in the large file system are the File Control Block (FCB) and the Window Control Block
(WCB) . When a file is opened, the list of FCBs for the specified disk or disks is searched . If the desired file
is found in the FCB list, a WCB is allocated for the new open request and linked to the existing FCB . If not,
the directory is searched on disk to find the directory entry for the file . If the desired file is found in the directory,
and FCB is allocated and initialized with information from the directory entry . A WCB is then allocated and
linked to the FCB .

When the same file is opened simultaneously on another channel, or by another user, the information about
the file is already in an FCB . No search of the directory, with its attendant disk overhead, is needed . All the
information about the file is already contained in the existing FCB . A new WCB is allocated for the open request
and is linked to the previous WCB or list of WCBs for this file . No disk accesses are required and FIP is released
immediately .

As you can see, the overhead involved in opening a file is drastically reduced when the file is already open on
another channel or by another job . This can be used to our advantage by writing a small program that opens
the most commonly used files in read-regardless mode (mode 4096) and then detaches and goes to sleep indefinitely .
Data files, commonly used programs and even UFDs can be opened in this way . Once opened, there will be
essentially no overhead the next time any of these files are opened .

To allow the existing FCBs to be searched quickly, they are kept in a linked list . Each disk unit has its own
linked list . A pointer to the first element of each list is kept in the FCBLST table . Each pointer in this table
is accessed using the FIP Unit Number (FUN) times two of the associated disk unit as an offset from the beginning
of the table .

The Window Control Block (WCB) or blocks associated with each file are also kept in linked lists . Each file
has its own list of WCBs . The pointer to the base of each list is kept in each file's FCB . The following diagram
shows the lists of FCBs and WCBs :

FCBLST

Indexed by FUN*2

FCB

	

FCB

	

FCB

-01 File A

WCB

-s File B

WCB

->

2-23

File x

WCB
1\

WCR

2 .4.1 File Control Block

Link to next FCB on this FIP unit
File ID (link to name entry in UFD)

Project # Programmer #

File name

File type
Protection code Status byte
RR access count N/U access count

FBB of first retrieval entry

FBB of name entry

File size (MSB) FIP Unit Number
File size (LSB)
File cluster size

Pointer to first WCB for this file

The File Control Block (FCB) is used to store information about an open file . Each open file has an FCB associated
with it . Only one FCB is required per file, regardless of the number of times the file is opened .

A File Control Block (FCB) has the following format :

Symbol Offset

	

Offset Symbol

0 F$LINK
2 F$FID
4 F$PPN
6 F$NAM
10
12

F$PROT 15

	

14 F$STAT
F$RCNT 17 16 F$ACNT

20 F$WFND
22
24 F$UFND
26

F$SIZM 31 30 F$UNT
32 F$SIZL
34 F$CLUS
36 F$WCB

2-24

Offset Symbol Description

0 MINK This word contains a pointer to the next FCB on this FIP unit. The end of the list is
terminated by a forward link of 0 .

2 F$FID This word contains the file ID for this file . It is used when searching the FCB list during
an open by file ID (not available from BASIC-PLUS or BASIC + 2) .

4 F$PPN This word contains the PPN of the file . The programmer number is in the low byte . The
project number is in the high byte .

6 F$NAM These three words contain the file name and type, in RAD50 . The file name is in the first
two words, the file type is in the third word .

14 F$STAT This byte contains file status bits (see section 2.4 .1 .1) .

15 F$PROT This byte specifies the file's protection code .

16 F$ACNT This byte contains a count of the number of times this file is currently open for normal
or update access .

17 F$RCNT This byte contains a count of the number of times this file is currently open for read-
regardless access .

20 F$WFND This double word is the FIP Block Sub-Block (FBB) of the first retrieval entry for this
file in the directory . (FBBs are described in section 2 .4 .1 .2 .)

24 F$UFND This double word is the FIP Block Sub-Block (FBB) of the name entry for this file in the
directory. (FBBs are described in section 2.4 .1 .2 .)

30 F$UNT This byte specifies the FIP Unit Number for the disk unit containing this file .

31 F$SIZM This byte contains the most significant byte of the file size .

32 F$SIZL This word contains the least significant bytes of the file size .

34 F$CLUS This word specifies the file's cluster size .

36 F$WCB This word contains a pointer to the first Window Control Block (WCB) for this file .

6

2.4.1.1 F$STAT - Status Flags

The status flags contained in F$STAT have the following meaning when set :

1

	

7 I 6

	

1

	

5 4

2 .4 .1 .2 FBB - FIP Block Sub-Block

A FIP Block Sub-Block (FBB) provides all the information necessary to immediately access a specific block on
a disk. An FBB has the following format :

Offset

	

Symbol

	

Description

0

	

This byte contains the FIP Unit Number of the desired disk .

1

	

This byte contains the most significant byte of the FIP Block Number for the desired block .
2

	

This word contains the least significant bytes of the FIP Block Number for the desired block .

2.4 .2 WCB - Window Control Block

The Window Control Block (WCB) contains all the information needed by the monitor for an individual user
of a file . Each opening of a file generates a unique WCB . These WCBs are pointed to by the user's IOB (see
section 2.1 .4) .

When an I/O request is made, the WCB associated with the specified user and channel number is used as the
current retrieval window . If the desired retrieval information is not already present in the WCB, a" window
turn" is performed . The large file system will start following Retrieval Entry links at the current position if the
desired retrieval information is beyond the current position in the linked list of Retrieval Entries .

As the list of retrieval entries is followed, the linked list of WCBs for this file is checked. If the desired retrieval
entry is already contained in a WCB, that WCB is used instead of following the link on disk . When the desired
retrieval entry is found, its information is copied into the current WCB's retrieval entry window .

2-25

I 3

	

1

	

2 1 I 0

US.DEL
I
US .UFD US NOK US NOX US UPD US WRT US PLC US OUT

Bit Symbol Description

<0> US .OUT This bit is obsolete and will never be set .

< 1 > US .PLC This file is placed starting at a specific disk block .
<2> US .WRT Write access has already been given out .

<3> US .UPD This file is open in update mode .

<4> US .NOX This file is contiguous . No extends are allowed .

<5> US .NOK This file may not be deleted or renamed .

<6> US.UFD This file is really a UFD opened in non-file structured mode
(eg . OPEN "DBO:[1,2]" AS FILE 1) .

<7> US.DEL This file has been deleted .

A Window Control Block has the following format :

Symbol Offset

W$STS 1
W$FLAG 3
W$NVBM 5

Offset

	

Symbol

0 W$IDX

1

	

W$STS

2 W$JBNO

3 W$FLAG

4 W$PT

5 W$NVBM

6 W$NVBL

10 W$FCB

12 W$REN

14 W$WCB

16 W$NXT

22 W$WND

2-26

Description

This byte is the driver index . It is always 0 to show that the device associated with the
WCB is a disk device .

This byte contains the file status bits for this user (see section 2.4.2 .1) .

This byte contains the job number, times 2, of the job that owns this WCB .

This byte contains file status bits and locked block information (see section 2 .4.3 .2) .

This byte contains a count of the number of transfers pending on this file by this user .
When an I/O is requested, this byte is set to 1 . If the request requires more than one physical
I/O transfer, this value is increased as necessary . An I/O request can require more than
one transfer if it involves more than one block and the blocks either cross a cluster boundary
or cross a cylinder boundary on a disk that doesn't do automatic cross-cylinder movement
(such as an RL01 /02) .

This byte contains the most significant byte of the next block number to use for sequential
access .

This word contains the least significant bytes of the next block number to use for sequential
access .

This word contains a pointer to the File Control Block (FCB) associated with this WCB .
It points to offset F$CLUS in the FCB .

This word contains the current Retrieval Entry number . It identifies which Retrieval Entry
is currently stored in W$WND of the WCB .

The low order bits of this word are file status bits . The high order bits are a pointer to
the next WCB for this FCB . See section 2 .4.2.3 for more information .

This double-word is the FIP Block Sub-Block (FBB) of the next Retrieval Entry in the
directory . It allows immediate access to the next Retrieval Entry if sequential access is taking
place .

The following seven words are the current retrieval window . They contain the device cluster
number of the first block of each cluster for this retrieval entry .

Offset Symbol

0 W$IDX
2 W$JBNO
4 W$PT
6 W$NVBL
10 W$FCB
12 W$REN
14 W$WCB
16 W$NXT
20
22 W$WND
24
26
30
32
34
36

Status flags Driver index
Flag bits Job number *2

Next block # (MSB) Pending transfers
Next block number (LSB)
Pointer to FCB at F$CLUS
Retrieval Entry number

Pointer to next WCB for this FCB

FBB of next Retrieval Entry

Retrieval entry window

2.4.2.1 W$STS - Status Flags

The status flags in W$WSTS show the status and restrictions placed on the file for the current user . Bear in
mind that each time a file is opened a new WCB is allocated and each WCB has its own set of status flags .
The bits in W$STS have the following meaning when set :

15

I

	

7

14

	

I

	

13

WC$ USE WC$UFD WC$LCK WC$CTG WC$UPD DDWLO DDRLO DDNFS

Bit

	

Symbol

	

Description
<8> DDNFS The disk is opened non-file structured . The remaining status bits apply to the entire disk as

if it were opened file structured .

<9> DDRLO The file is read protected against the user .

< 10> DDWLO The file is write protected against the user .

< 11 > WC$UPD The file is open for update (mode 1) .

< 12> WC$CTG The file is contiguous .

< 13> WC$LCK The current block of the file is implicitly locked .

< 14> WC$UFD The file is really a UFD opened in non-file structured mode
(eg. OPEN "DBO:[1,2]" AS FILE 1) .

< 15 > WC$USE This WCB received the original write privileges .

2.4.2.2 W$FLAG - Flag Bits

W$FLG serves two purposes . First, it defines the number of blocks that are included in an implicit lock . Second,
it contains status bits similar in purpose to W$STS . The format of W$FLG is as follows :

6 5

/2

4

2-27

11 I /0

3

	

2 I

9

I

8

0

	

I
WC$NFC WC$DL W WC$EXT Locked

	

block

	

count

Bit

	

Symbol

	

Description
<0:4> WC$LLK These five bits specify the number of blocks that are included in the current implicit block .

This value may range from 0 to 31 .

< 5 > WC$EXT This WCB is immediately followed in memory by another small buffer of information about
explicitly locked blocks (see section 2 .4 .2.4) .

<6> WC$DLW The file was either written into or has been extended . The file size and date last written need
to be updated when the file is closed .

<7> WC$NFC The file is opened non-file structured in cluster mode (mode 128 was not used) .

2.4 .2.3 W$WCB - File Flags and Link to WCB

Since the small buffers from which WCBs are allocated are always allocated on even boundaries of 32 bytes,
the low order five bits of their address are always 0 . These low order bits are used as extended flag bits . They
are not actually part of the address of the next WCB and should be treated as zeroes when used in a pointer .
The format of W$WCB is as follows :

I

	

15 14 13

Symbol Offset

43

12

	

11 1 10 1 9 I 8

2-28

7 6 I 5 4 1 3 I

-1

z 1 0 I
WCB

	

Address C$CSQ WC$(HE WCSAEX WC$SPU C$RR

Bit

	

Symbol

	

Description
<0> WC$RR The file is open in read regardless mode (mode 4096) .

< 1 > WC$SPU The file is open in special update mode (mode 5) .

<2> WC$AEX Always do a real extend on the file (mode 8) .

<3> WC$CHE The file is open for user data caching (mode 256 or 2048) .

<4> WC$CSQ The user data caching specified by SC$CHE is sequential (mode 2048) .

< 5 :15 > These bits are the address of the next WCB for this FCB, divided by 32 . This pointer is used
by clearing bits <0 :4> of W$WCB and using the result as the address of the next WCB .
If the resulting address is 0, this is the last WCB in the list .

2 .4 .2 .4 Extended WCB

If WC$EXT is set in W$FLAG, the WCB is immediately followed in memory by an Extended WCB . The Extended
WCB is used to specify blocks in a file which are explicitly locked (see the SPEC% function for disks in the
RSTS/E Programming Manual). The first word in the Extended WCB is unused and will normally contain the
value 32 . The remainder of the extension contains seven double-words that each define a locked block range .
The last word in the extension contains the value -1, which terminates the table of double-words .

Offset

40
42
44
46
50
52

76

Symbol

Offset

	

Symbol

	

Description

40

	

This word is unused but will contain a value of 32 .

42

	

This byte is the most significant byte of the starting block number of the locked block
range (see offset 44) .

43 This byte specifies the number of blocks that are locked by the explicit lock (1-31) . If this
byte is zero, this double-word entry is not in use . If negative, this is the end of the extended
WCB .

44

	

This word is the least significant word of the starting block number of the locked range .
It is combined with the byte at offset 42 to form a 24 bit block number .

32
Block count Block # (MSB)

Starting block number (LSB)
Block count

	

Block # (MSB)
Starting block number (LSB)

2.5 DEVICE CONTROL
Device control breaks down into two parts : information needed by the monitor to perform logical operations
(opens, closes, etc .) on the device and information needed by the device driver to interface with the device at
the physical level . For more information on device drivers see Chapter 3 .

The logical operations available to a user are OPEN, CLOSE, GET, PUT, and SPEC . Except for opening a
device, the only structures required are the user's XRB (see the System Directives Manual) and the Device Data
Block (DDB) (see section 2.5 .1) . Opening a device requires the data structures DEVNAM, DEVCNT, DEVPTR,
UNTCNT and DEVTBL, which are used to verify the name and unit standardized between all devices . Other
portions are defined differently by different device drivers .

2.5 .1 DDB - Device Data Block

The Device Data Block (DDB) is used to control physical use of a device by a driver and to communicate between
monitor routines and the driver . A separate DDB is allocated for every unit of every device on the system .

A DDB contains information about device opens and assignment, small buffer usage and printer position, if
appropriate . It also contains other information specific to the particular device, such as controller status and
temporary buffering .

Every DDB must contain a certain amount of specific information . This minimal DDB has the following format
(the information starting at offset 10, is only required if the driver uses small buffers) :

Symbol Offset

DDSTS

	

1
DDUNT 3

DDHORC 21

Driver specific data

Offset

	

Symbol

	

Description

0

	

DDIDX

	

This byte contains the driver index. It is assigned to the device driver by the TBL assembly .
This value is unique to each device driver (see section 3 .3.14 .)

1

	

DDSTS

	

This byte contains a set of bits that describe the characteristics of the device (see section
2 .5 .1 .1) .

2 DDJBNO This byte is the job number, times 2, of the job that has this device unit assigned (either
explicitly by an ASSIGN or implicitly by an OPEN) . This byte is set to 1 by the DISABLE
command in INIT and UTILITY . This effectively preassigns the device so that it cannot
be assigned to any user . If DECNET owns this device, this byte will be set to 3 if the network
services handler (NSP) owns the device or 5 if the network routing handler (TRN) owns
the device .

2-29

Offset Symbol

0 DDIDX
2 DDJBNO
4 DDTIME
6 DDCNT
10 DDFLAG
14
16
20 DDHORZ
22

Device type flags Driver index
Unit number Owner job # *2

Ownership start time of day
Ownership count and flags
Device dependant flag bits
Small buffer empty pointer

Small buffer count
Line width + 1

	

Horiz position

3

	

DDUNT

	

This byte specifies the unit number of this device .
4

	

DDTIME

	

This word contains the system time at the time the device was assigned . It is used to charge
device time when the device is deassigned .

6

	

DDCNT

	

This byte is the ownership count for this device unit . It is incremented each time the device
is opened and decremented when it is closed .

7

	

This byte is a set of device flags (see section 2 .5 .1 .2) .
10

	

DDFLAG This word contains device specific flag bits and is not used by the monitor .
12 DDBUFC The following three words are the Small Buffer Control Block (see section 2 .5 .1 .3) . The

first word (DDBUFC + EP) is the pointer to where bytes are to be removed from the small
buffer chain . The second word (DDBUFC + FP) is the pointer to where bytes are to be
inserted into the small buffer chain . The third word (DDBUFC + BC) is the count of small
buffers remaining in the allocation for this device . When this word reaches 0 or becomes
negative, the program may be stalled until more small buffers become available .

20

	

DDHORZ This byte specifies the current horizontal position of the "print head A value of 0 is
the right hand margin . A value equal to DDHORC is the left hand margin .

21

	

DDHORC This byte specifies the device's line width, plus one .

2.5.1 .1 DDSTS - Device Characteristics Flags

The device characteristics bits in DDSTS have the following meaning when set :

I

	

Is I 14 I 13 I 12

2-30

II 10 9 8 I

DDSTAT DDAU A DDA UX DDNET DDWLO DDRLO DDPRVO

<14> DDAUXA This device is currently bridged to a KMC 11 .

< 15 > DDSTAT This bit is not used by the monitor but is cleared each time the device is closed . The driver
can assign this bit to a condition that should be automatically reset each time the device is
closed .

Bit

	

Symbol Description

<8> DDPRVO Ownership of this device unit requires privileges .
<9> DDRLO Read privileges are never given for this device . This device is inherently write only .
< 10> DDWLO Write privileges are never given for this device . This device is inherently read only .
< 11 > DDNET This device exists elsewhere in a DECNET network .
< 12> Unused .

<13> DDAUX This device can use KMC11 bridge blocks . Bridge blocks provide a means of communication
between the computer and a KMC11 processor .

2 .5.1.2 DDCNT - Device Flags

The device flag bits in DDCNT have the following meaning when set :

Bit

	

Symbol
< 8 :12 >

	

Unused .

Symbol Offset

I

	

15 14 I 13 12

2-31

Description

9 I a
DDASN DDUTIL DDCONS

< 13 > DDCONS This device is its owner's console terminal .

< 14> DDUTIL This device is temporarily assigned to FIP .

< 15 > DDASN This device is explicitly assigned to the job shown in DDJBNO .

2 .5 .1.3 Small Buffer Control Block

Device drivers that do not transfer data directly to and from a user's buffer using DMA transfers store data
in small or large buffers within the monitor while it is being transferred. Use of small buffers requires a Small
Buffer Control Block to control insertion and removal of characters in a chain of small buffers .

The small buffers are chained together in a linked list using the first word of each small buffer as a link . Characters
are inserted at the end of the chain and removed from the beginning of the chain . If an attempt is made to insert
a character and the last small buffer in the chain is totally filled, an additional small buffer is allocated and
linked onto the end of the list . If the last character in a small buffer is removed, the small buffer will be removed
from the list and returned to the small buffer pool .

A device driver can use any number of small buffer chains . Each of these chains requires a Small Buffer Control
Block within each DDB . The Small Buffer Control Block consists of a fill pointer, an empty pointer and a buffer
count. The Small Buffer Control Block has the following format :

Offset

	

Symbol

	

Description

0 EP This word is the "empty pointer ." It is a pointer to the next byte to be removed from
the small buffer chain . If bits < 0 :4 > are zero when a request is made to retrieve the next
byte from the chain, this pointer will be adjusted to point to the first byte in the small
buffer in the list before retrieving the byte . The current small buffer will be returned to
the small buffer pool .

2 FP This word is the "fill pointer ." It is a pointer to the location where the next byte should
be stored in the small buffer chain . If bits <0:4> are zero when a request is made to
store a character in the chain, a new small buffer will be linked onto the end of the chain
and the pointer will be adjusted to store the character in the first byte of the new small buffer .

4 BC This word is the small buffer count . It specifies the remaining small buffer quota for this
chain. It is initially set to the value of the associated small buffer quota (see section 3 .3 .8) .
It is decremented each time a small buffer is added to the chain and incremented each
time one is removed. If the remaining buffer quota becomes negative, a request to add
a small buffer to the list may fail due to a lack of small buffers on the system (see 3.5 .1) .

Offset Symbol

Empty pointer 0 EP
Fill pointer 2 FP

Remaining buffer quota 4 BC

d

2.5 .2 DSQ - Disk I/O Queue Entry

When a disk I/O is requested, a small buffer is allocated for use as a Disk Queue Entry (DSQ) . This entry is
added to a linked list of DSQs waiting for I/O on the desired disk and unit . The base of each linked list is pointed
to by an entry in the DQS$XX table .

The requested I/O will be performed immediately if there are no entries already in the queue for this disk unit .
Otherwise, the request will remain in the queue and will be performed at a later time .

Before a physical I/O is started on a disk unit, the queue of DSQs is reordered to minimize head movement .
The entry that requires the least head movement from its current location will be performed next, unless
circumvented by an expired fairness count .

Each time the queue is reordered, the fairness count in each DSQ is decremented . If an entry's fairness count
becomes zero, the entry will be moved to the head of the queue and will be processed immediately, regardless
of the amount of head movement required . Disk I/O requests for swapping and directory lookups are issued
with a fairness count that is already zero to circumvent normal optimization .

Information in a DSQ is initialized and updated at several different times . Information that can be derived from
the specifications in the XRB is loaded into the DSQ immediately . This information includes job number, retry
count, block number, buffer address, function code and transfer counts . Information about physical disk addresses
and optimization is entered by the disk driver before the queue is optimized . The remaining information is entered
by the disk driver and common disk code during I/O processing .

A DSQ has the following format :

Offset Symbol

0
2 DSQJOB
4 DSQL3Q
6 DSQUNT
10 DSQFBL
12 DSQRFN
14 DSQMAL
16 DSQCNT
20 DSQFUN
22 DSQMSC
24 DSQTOT
26 DSQPDA
30 DSQOPT
32 DSQOUN
34 DSQPTO
36 DSQCTO

Offset

	

Symbol

	

Description

0

	

This word contains a pointer to the next DSQ in this list . If this is the last entry in the
list, this word will contain a zero .

2

	

DSQJOB

	

This byte specifies the job number, times 2, of the job waiting on the I/O .
3 DSQERR This byte contains the retry count and error flag. If this byte is negative, it is the remaining

entry count . If it is zero, an unrecoverable user data error occurred . If it is positive, it
is the error code to return to the caller . The retry count is initially set to -9 .

4

	

DSQL3Q

	

This word points to a word that specifies the L3Q bits to set on I/O completion . The word
pointed to also specifies which completion queue to put this DSQ in when the I/O completes .

2-32

Queue link word
Retry count/Error

	

Job # *2
Pointer to L3Q bits to set

FIP Block # (MSB)

	

FIP Unit Number
FIP Block Number (LSB)

Buffer addr (MSB)

	

RH-11 function
Buffer address (LSB)
Transfer word count

Fairness count

	

Function code
Miscellaneous pointer

Total transfer word count
Physical disk address
Optimization word

Saved function

	

Unit number *2
Offset ointer

Unit number Offset retry cntr

Symbol Offset

DSQERR 3

DSQFBM 7

DSQMAM 13

DSQFAR 21

DSQSAV 33

DSQPUN 37

6

6

	

DSQUNT This byte specifies the FIP Unit Number .

7

	

DSQFBM

	

This byte specifies the most significant byte of the desired FIP Block Number .

10

	

DSQFBL

	

This word specifies the least significant word of the desired FIP Block Number .

12

	

DSQRFN

	

This byte specifies the RH-11 function code for the desired function . If the device does
not use the RH-11, the driver will clear this byte .

13

	

DSQMAM This byte specifies the most significant byte of the 22-bit address of the user's I/O buffer .

14

	

DSQMAL This word specifies the least significant bytes of the 22-bit address of the user's I/O buffer .

16 DSQCNT This word specifies the word count of the requested transfer . It may be less than
the word count requested by the user if the I/O request must be broken into
several separate transfers . The driver may negate this value if the controller
requires a negative word count .

20 DSQFUN

	

This byte specifies the function to be performed by the disk driver . The valid function
codes are :

21

	

DSQFAR

	

This byte contains the fairness count . This value is initially set either to . .FCNT (which
is normally 6) or 0 (to circumvent optimization during swapping and FIP accesses) . It is
decremented each time the queue is optimized . If the fairness count becomes zero, this
DSQ is used as the most optimal, regardless of the head movement required .

22

	

DSQMSC

	

This word is used to contain miscellaneous information. It commonly contains a pointer
to the associated FCB, WCB or SCB .

24 DSQTOT This word specifies the total number of blocks to be transfered . It can be different than
DSQCNT/256 if the request has been broken into several sub-transfer requests . This is
done if the request crosses cluster boundaries, or if it crosses a cylinder boundary on a
disk that does not do automatic cross-cylinder movement .

26

	

DSQPDA

	

This word contains the physical disk address of the requested data . It normally contains
the track and sector address in a format specified by the driver .

30

	

DSQOPT

	

This word contains the head movement optimization word . It normally contains the cylinder
address of the requested disk block .

32

	

DSQOUN This byte contains the physical disk unit number times two .

33

	

DSQSAV

	

This byte can be used by the device driver to save the requested function code .

34 DSQPTO This word is a pointer to the entry in the offset table for this disk type to use when automatic
head offsetting is required . Each offset table contains a list of head offset specifications,
in micro-inches, and is used for correction of minor alignment errors .

36

	

DSQCTO

	

This byte specifies the number of retries remaining at the current head offset specification .

37

	

DSQPUN

	

This byte contains the physical disk unit number .

2-33

WFUN.C 0 Write data with write check
WFUN 2 Write data
RFUN 4 Read data
FRUN.C 6 Write check

6

2 .5 .3 Logical Device Tables
Verifying a device name and unit number and associating the logical name with a DDB (when a device is opened)
or a WCB or SCB (when a file is opened) is performed using a series of related tables . The entries in each table
are ordered so that once an entry is found in one table, the associated information in the other tables will be
found at the same offset .

The following figure shows the relationship between the device tables :

2.5 .3.1 DEVNAM - Device Name Table

The Device Name Table (DEVNAM) contains an entry for every disk type supported by RSTS/E and an entry
for every non-disk device generated into this system . It also contains a list of synonyms for physical device names,
such as MT : for MM :

All of the entries in DEVNAM consist of a pair of ASCII characters, stored in a word . Each disk name and
the name of each configured device is included . DEVNAM has the following format :

Offset

	

Symbol

	

Description

-2

	

This word always contains the ASCII value "SY" . It is used for specifying the system
disk structure, SY : . It is at an offset of -2 to show that it is not a normal device .

0-16 DEVNAM These nine words contain the names of all the disks supported by RSTS/E, in the order :
DC, DF, DS, DK, DL, DM, DP, DR, DB, DU . All disk names are included, even if the
device is not configured in this system .

24

	

DEVNKB

	

This word contains the device name "KB" . It corresponds to all keyboard type devices,
including pseudo-keyboards .

26

	

This word contains the device name "NL" . H corresponds to the null device .

30

	

The device names for all remaining devices configured into this system begin at this word .

+ n DEVSYN Beginning at this word is a list of synonyms for the devices configured into this system .
These synonyms are: TT=KB, CR=CD, MT=MM, MT=MS, DX=DY, plus synonyms
for user written device drivers .

+ n + m

	

This word contains a -1 to show the end of the table .

2-34

UNTCNT

Non-
KB

DDBs
KBn

Dev 0

Dev n

DEVNAM

	

DEVCNT

	

DEVPTR

SY : SY : SY :

Disk Disk Disks

KB KB 10- KB0-

Non- Non- Non-
Disk Disk Disk

Syn Syn

2 .5 .3.2 DEVCNT - Device Unit Count Table

The Device Unit Count Table (DEVCNT) contains one entry for each entry in DEVNAM (except the terminating
-1) . Each entry corresponds to either the maximum unit number for the corresponding device in DEVNAM or
a pointer to a synonym .

DEVCNT has the following format :

Offset

	

Symbol

	

Description

-2

	

This word contains a 0 to specify that unit 0 is the only explicit unit number allowed for SY : .

0 DEVCNT The ten words starting here correspond to the maximum unit number for each corresponding
disk type in DEVNAM . A value of -1 indicates that the corresponding disk type does not
exist on this system .

24

	

This word contains the maximum unit number for KB type devices, including pseudo-
keyboards .

26

	

This word contains a 0 to specify that only unit 0 may be specified for NL : .

30

	

Each following word corresponds to the maximum unit number for the corresponding device
in DEVNAM .

+ n

	

Each word beginning at an offset equivalent to DEVSYN is a pointer to the appropriate
physical name in DEVNAM for each synonym .

2.5 .3.3 DEVPTR - Device Information Pointer Table

The Device Information Pointer Table (DEVPTR) contains pointers into one of two other tables . In the case
of disk devices, DEVPTR points into the Disk Unit Status Table, UNTCNT . For non-disk devices, DEVPTR
points into the Device Retrieval Table, DEVTBL .

In both cases, the entry pointed to is the information for unit zero of the associated device . If more than one
unit is present for a device, the entries for the additional units immediately follow the unit 0 entry . See section
2.5.3 .4 and 2 .5 .3.5 for more information on UNTCNT and DEVTBL .

DEVPTR has the following format :

Offset

	

Symbol

	

Description

-2

	

This word contains a pointer to the entry in UNTCNT corresponding to SYO :. This unit
is the device from which RSTS/E was bootstrapped .

0 DEVPTR The ten words beginning here contain pointers to the entries in UNTCNT for unit 0 of
the corresponding disk type. If a disk type does not exist on this system, its pointer is to
the entry in UNTCNT for the next valid disk type. If no following disk types are valid,
this word points to a dummy entry at the end of UNTCNT .

24

	

The words beginning here contain pointers to the entries in DEVTBL corresponding to
unit 0 of each non-disk in DEVNAM .

2-35

2.5.3.4 UNTCNT - Disk Unit Status Table

The Disk Unit Status Table (UNTCNT) contains information about each disk unit configured in this system .
There is one word for each disk type and unit. These words are ordered by disk type in the same order as the
disk names in DEVNAM and, within disk type, by unit number . Each word contains the status and current open
count for the corresponding disk unit .

The last entry in the table is followed by a word containing 177001 $ which denotes a non-mounted disk which
cannot be mounted . This is used for proper termination of DEVPTR entries for non-existent disk types (see
section 2 .5 .3 .3) .

Each word of UNTCNT has the following format :

I

	

15

	

1

	

14

	

1

	

18

	

1

	

12

	

1

	

11

	

1

	

10 I 9 8

2-36

7 6 I 5 4 z

Bit

	

Symbol

	

Description
<0:8> UC.CNT Count of currently open files .

<9> UC.TOP Order the directory with new files first .

< 10> UC.WLO The disk is mounted read only .

<11> UC .DLW Update access date with date last written .

< 12> UC .NFS Non-file structured processing is currently occurring .

< 13> UC .LCK Don't allow non-privileged opens on this disk .

< 14> UC .PRI This disk unit has a private pack mounted .

< 15> UC .MNT This disk unit does not have a pack mounted . Bits 9-14 are meaningless .

2.5.3.5 DEVTBL - DDB Pointer Table

The DDB Pointer Table (DEVTBL) contains a pointer to the DDB for each unit of each non-disk device on
the system. The entries are ordered in the same order as DEVNAM . If more than one unit is present for a device,
the entries for the additional units immediately follow the unit 0 entry .

DEVTBL has the following format :

Offset

	

Symbol

	

Description

0

	

DEVTBL

	

The words beginning here are pointers to the DDBs for the each terminal device and the
pseudo-keyboard unit, beginning with KBO : .

+ n DEVTBE

	

The words beginning here are pointers to the DDBs for each unit of the non-terminal devices,
beginning with NLO : .

2 .5 .3.6 LOGNAM - Logical Name Table

The Logical Name Table (LOGNAM) is used to translate system wide logical device assignments into physical
device names and account numbers. System wide logicals include the pack ID for all mounted disks, the logical
LB: and any additional logical name assignments defined using the ADD LOGICAL command in UTILITY
or the associated SYS call .

I 1 I 0

UC M T UC PRI UC LC UC NFS UC DL W UC WLO UC TOP Open

	

file

	

count

The size of LOGNAM depends on the number of disks present on the system and the number of system wide
logicals declared during system generation . Each system wide logical requires a five word entry in the LOGNAM
table . Each entry has the following format :

Logical name (in RAD50)

Device name (in ASCII)
Unit "real" flag

	

Unit number
PPN

Symbol Offset

	

Offset Symbol

0
2
4
6
10

LOGNAM:

LOGSYS:

Offset

	

Symbol

	

Description

0 For user defined system logicals, these two words contain the logical device name, in RAD50 .
For disks, these two words contain the logical pack ID, in RAD50, for the associated disk
unit . If the disk is not mounted, these words will be zero .

4

	

This word contains the physical device name that corresponds to the logical device name .

6 This word contains the device unit number and the unit number "real" flag . (See the
description of the FIRQB in the RSTS/E System Directives Manual for more information
on device naming .)

10

	

If this entry is for a disk, this word will contain the asscitated account number, if any,
for the logical name . If not, this this word will be zero .

The first entries in LOGNAM correspond to the logical name of each disk unit on the system . The following
entries correspond to system wide logical names for other devices . The first entry is initialized with the definition
for LB: at system startup. The remaining entries are available for user defines system wide logicals . The last
entry is followed by a -1, which terminates the table .

Logical pack ID

Device name
Unit number

0

Other disks

LB :

"S,,
0
1

0
1

2-37

One entry for
each disk on the
system.

LB: definition at
system startup .
May be removed
and modified .

I

System wide
logical defs .

2 .5.4 Device Driver Dispatch Tables

Device drivers are divided into several specific routines . These routines are used to perform the device specific
operations necessary when a request is made of the driver (see Chapter 3) .

The monitor has a group of tables that contain pointers to the entry points of each driver . Each table contains
a one word entry for every non-disk device on the system . The entries are indexed by the device index, which
is a unique number assigned to each device driver by the TBL assembly .

The device driver dispatch tables and their associated entry points are as follows :

2 .5.5 Device Driver Support Tables

Most of the work involved in assigning or opening a device is done by common code in the monitor . This code
checks that the user has the proper privileges to assign the device and that the device is not already assigned
to someone else . It then updates the user's IOB with a pointer to the device's DDB or WCB and updates the
DDB to show the device as being assigned . Once all this housekeeping has been performed, it calls the driver
to perform its own device specific initialization, if any .

In order to provide this generalized handling of devices, each driver defines information that is stored in a group
of monitor tables . In most cases, the information for a particular driver can be found within a table using the
driver index as an offset into the table .

Two exceptions to this are CSRTBL and TIMTBL . These tables contain information for every unit of every
device. The first entry for each device is defined by a global symbol of the form CSR .xx and TIM .xx, respectively,
where "xx" is the device name . Information about the remaining units is accessed using the unit number times
two as an offset from the first entry .

2.5.5.1 FLGTBL - Device Characteristics Flags

Each entry in FLGTBL contains the handler index and a set of bits that describe the characteristics of the associated
device . These bits are returned in FQFLAG of the FIRQB (the STATUS variable in BASIC-PLUS) on an open
call. Each entry in FLGTBL is accessed using the device index (IDX .xx) as an offset .

2-38

Table
Name

Entry
Point Description

ASNTBL ASN$xx Assign

DEATBL DEA$xx Deassign

OPNTBL OPN$xx Open

CLSTBL CLS$xx Close

SERTBL SER$xx I/O service (.READ/ .WRITE)

SPCTBL SPC$xx Special function (.SPEC)

SLPTBL SLP$xx Check before sleeping . If the device does not need to be notified of a sleep, its entry
will be zero .

TMOTBL TMO$xx Timeout

ERRTBL ERL$xx Error logging

UMRKB UMR$xx Unibus mapping register is available . If the device does not use unibus mapping
registers, its entry will be zero .

The characteristics flag bits describe the general characteristics of each device . For example, a lineprinter would
have the DDRLO bit set to signify that input requests are not allowed .

The format of each word of FLGTBL is a follows :

I

Bit

	

Symbol

< 0:7 >

13 12

	

1

	

/1

LGRND FLGKB FLGFRC FLGMOD FLGPOS DDWLO DDRLO DDN9S Handler

	

index

<8> DDNFS This device does not require a file name . If a file name is supplied, it will be ignored .

<9> DDRLO This device is generically read locked . It cannot do input .

< 10> DDWLO This device is generically write locked . It cannot do output .

< 11 > FLGPOS This device keeps track of its own horizontal position and expands tabs automatically . The
current horizontal position can be found in the DDHORZ byte of the DDB for this device
and unit .

< 12> FLGMOD This device used modifiers passed in location XRMOD of the XRB . The modifiers are specified
in BASIC-PLUS using the RECORD clause .

< 13 > FLGFRC This device is byte oriented and does not require a specific number of characters to be
transferred per I/O request .

< 14> FLGKB The device is a terminal . This bit in only used by the terminal driver .

< 15 > FLGRND The device accepts record numbers on GET and PUT (ie . the device is generically a random
access device) .

2.5.5.2 SIZTBL - Line Width

Each word of SIZTBL defines the line width of the associated device . The entries in SIZTBL are accessed using
the device index (IDX .xx) as an offset . Each entry has one of three possible values :

5 * 14 + 1

	

signifies that line width does not apply to this device .

width + 1

	

signifies that line width applies and is permanently fixed at the specified width .

0

	

signifies that line width applies and is variable. The real line width will be found in the
DDHORC byte of the DDB .

2.5 .5.3 BUFTBL - Default I/O Buffer Size

Each word of BUFTBL defines the default buffer size for the associated device . This value is returned in FQBUFL
of the FIRQB .on a device/file open request . Each entry in BUFTBL is accessed using the device index (IDX .xx)
as an offset .

The user can generally use any buffer size desired when processing I/O . The default buffer size is only used
as a suggested size in case the user does not specify a buffer size on a file open . BASIC-PLUS uses the suggested
buffer size unless overridden by the RECORDSIZE option .

10 9

	

8

Description

This byte is the handler index for the associated device . Each device supported by RSTS/E
is assigned a unique handler index (see section 3 .3 .2) . The RSTS/E Programming Manual
lists the standard handler indices .

2-39

7 6 I 5 4 3 2 I 1 0 I

2.5 .5.4 JSBTBL - JS .xx Bit for Device

Each word of JSBTBL specifies the bit in JBWAIT to be set when an I/O service request is initiated for the
associated device . If this bit is still set when the driver returns to the monitor, the calling job will be stalled until
the driver exits its I/O service routine by jumping to IOEXIT (see section 3 .2 .5) . Each entry in JSBTBL is accessed
using the device index (IDX .xx) as an offset .

2.5 .5 .5 DVRAP5 - APRS Pointers

Each word of DVRAP5 contains a pointer to the value to be loaded into memory management register APR5
to map the associated device driver code . This value will be loaded into APR5 before the monitor enters any
of the driver's entry points . Each entry in DVRAP5 is accessed using the device index (IDX .xx) as an offset .

2.5.5.6 CSRTBL - CSR Addresses

CSRTBL contains the address of the most commonly used register for each unit of each device on the system .
For most devices, CSRTBL contains the address of the CSR register for the associated device .

Since a separate entry is provided for each unit of each device, this table cannot be accessed by device index .
Instead, a global symbol of the form CSR .xx (where "xx" is the device name) is equated to the entry within
CSRTBL for unit 0 of the associated device . The CSR address for any remaining units of a device can be found
using the unit number times two as an offset from the entry for unit 0 .

CSRTBL contains entries for user-written device drivers as well as standard devices . The entries for user-written
device drivers will be zero, unless patched to a CSR address . The driver cannot set this value during execution
because CSRTBL may be in the read-only portion of the monitor .

2.5.5.7 TIMTBL - Timeout Counters

TIMTBL is a table of words that contain timeout counters for each unit of each device on the system .
When a device driver stalls a user program while waiting for an interrupt, it sets the associated entry in
TIMTBL to some non-zero value . The monitor will enter the driver's timeout entry point if the time
specified in TIMTBL expires before the device interrupts . This protects against having a job permanently
stalled if an interrupt is lost or in case of hardware failure .

Each entry in TIMTBL can have one of three possible values :

0

	

No timeout is in progress . No action is required of the monitor .

>0

	

A timeout is in progress . Decrement the timer value each second and enter the driver's
timeout entry point if the value decrements to zero .

<0

	

Enter the driver's timeout entry point every second .

Since a separate entry is provided for each unit of each device, this table cannot be accessed by device
index . Instead, a global symbol of the form TIM .xx (where "xx" is the device name) is equated to the
entry within TIMTBL for unit 0 of the associated device. The timeout counter for any remaining units of a
device can be found using the unit number times two as an offset from the entry for unit 0 .

2-40

2 .5.6 Disk Control Tables

There are several monitor tables that contain information used for performing disk I/O . Some of these
tables provide information needed by the drivers and the common I/O routines . Others provide
information used by FIP to find directory information and to convert logical block numbers to FIP Block
Numbers .

The disk control tables contain entries for each disk unit on the system . They are indexed by FIP Unit
Number . A unique FIP Unit Number (FUN) is assigned to each disk unit at sysgen time. The FUNs start
at zero and increase by two for each unit of the system .

2.5 .6.1 DEVCLU/CLUFAC - Device Cluster Size, Cluster Ratio

The low byte of each entry in the combined DEVCLU/CLUFAC table specifies the device cluster size for
the associated disk unit . The high byte of each entry in DEVCLU/CLUFAC specifies the cluster ratio for
the associated disk unit .

This cluster ratio is the ratio of the pack cluster size to the device cluster size . It is calculated by dividing
the pack cluster size by the device cluster size . It will always be at least one and a power of two .

2.5.6.2 UNTCLU/UNTERR - Pack Cluster Size, Error Count

The low byte of each entry in the combined UNTCLU/UNTERR table specifies the pack cluster size of the
pack mounted on the associated unit. If no pack is mounted, this word will be zero .

The high byte of each entry in UNTCLU/UNTERR contains a count of the number of errors that have
occurred on the associated disk pack since it was mounted .

The entries in the low bytes are accessed using the FIP Unit Number times two as an offset from the
symbol UNTCLU . The entries in the high bytes are accessed using the FIP Unit Number times two as an
offset from the symbol UNTERR .

2 .5 .6 .3 UNTLVL/UNTREV - Disk Unit RDS Level/Revision

Each word in the combined UNTLVL/UNTREV table specifies the RSTS Disk Structure (RDS) and
revision level for the corresponding disk unit .

The low byte of each word is the level number . This byte is 0 for RDSO level disks and 1 for RDS1 level
disks . UNTLVL entries are accessed using the FIP Unit Number (FUN) times two as an offset from the
symbol UNTLVL .

The high byte of each word is the RDS revision level . This byte 0 for RDSO level disks and 1 for RDS1
level disks . UNTREV entries are accessed using the FIP Unit Number (FUN) times two as an offset from
the symbol UNTREV .

2 .5.6 .4 UNTSIZ - Disk Size

Each word in UNTSIZ specifies the size of the associated disk unit, in device clusters . This value is
initialized by INIT at system startup time .

2-41

2.5.6.5 UNTLIB - [1,2] Starting Cluster

Each word in UNTLIB contains the device cluster number (DCN) of the first device cluster used by the
[1,2] UFD on the associated disk pack . This value is initialized when the pack is mounted .

2.5 .6.6 MFDPTR - MFD Pointers

Each word of MFDPTR specifies the device cluster number (DCN) of the first block of the MFD for the
associated disk pack . This value is initialized when the pack is mounted . It is used to access the MFD
without requiring it to be at a fixed location at the beginning of the disk pack . The entries in MFDPTR
are accessed using the FIP Unit Number (FUN) times two as an offset from the symbol MFDPTR .

2.5.6.7 UNTOWN/UNTOPT - Unit Owner, Unit Options

The low byte of each entry in the combined UNTOWN/UNTOPT table specifies the job number, times
two, of the job,if any, that owns the associated disk pack . The high byte of each entry in
UNTOWN/UNTOPT specifies the current option settings for the associated disk unit . It is similar in
purpose to the UNTCNT table .

The entries in the low bytes are accessed using the FIP Unit Number times two as an offset from the
symbol UNTOWN. The entries in the high bytes are accessed using the FIP Unit Number times two as an
offset from the symbol UNTOPT .

The bits in UNTOPT have the following meaning when set :

I

	

7 I 6

	

1

	

5

2.5.6.8 DSKMAP - FUN to Disk Index

Each word of DSKMAP contains the Disk Type Index of the corresponding FIP Unit Number . Each disk
type on the system has a unique Disk Type Index . This index identifies which driver to use for device
specific functions . This index is not to be confused with the driver index specified by IDX .XX which is
zero for all disk types .

4

2-42

3 2 0

Co CL Uo Cr UO 7CD Co Ch UO DP UO INI UO CL

Bit Symbol Description

<0> UO .CLN The disk needs cleaning .

I < 1 > UO .INI The disk is being initialized .

<2> Unused .

I <3> UO . DP The disk is dual ported .

<4> UO .NCF Don't cache directory information for this unit .

<5> UO .NCD Don't cache data files for this unit .

<6> UO . WCF Write check all FIP writes .

<7> UO . WCU Write check all writes .

6

2.5 .7 SAT Tables

Every file structured disk pack contains a Storage Allocation Table (SAT) . The SAT maps all the device
clusters available on the disk and shows which clusters are in use and which are available for allocation
(see section 1 .3) .

The monitor uses several tables to store information about the SAT for each disk unit on the system .
These tables provide information such as disk size, number of free blocks, last allocated cluster and the
location of the SAT on each disk. Access to the information in each table is made using the FIP Unit
Number times two as an offset from the beginning of the table .

2 .5 .7.1 SATCTL, SATCTM - Count of Free Blocks

The SATCTL and SATCTM tables specify the number of free blocks on the corresponding disk pack . The
entry in SATCTM contains the most significant word of the block count . The entry in SATCTL contains
the least significant word of the block count .

2.5.7.2 SATPTR - DCN of Last Allocated Cluster

The SATPTR table specifies the device cluster number (DCN) of the last cluster allocated on the
corresponding disk pack . When a request to allocate a new cluster is received, the search for a free cluster
begins at this device cluster . If a free cluster is not found by the end of the SAT, the SAT will be searched
from the beginning .

2 .5 .7.3 SATEND - Ending PCN

The SATEND table specifies the pack cluster number (PCN) of the last cluster on the corresponding disk
pack .

2 .5 .7.4 SATSTL, SATSTM - Starting FBN of SATT .SYS

The SATSTL and SATSTM tables specify the FIP Block Number (FBN) where SATT.SYS begins on the
corresponding disk . The entry in SATSTM contains the most significant word of the FBN . The entry in
SATSTL contains the least significant word of the FBN .

2.5 .8 DECNET Device Control Tables

Version 7 .1 of RSTS/E introduced the notion of circuits for DMC/DMR and DMP/DMV devices used for
DECNET. The device names for these devices were changed to conform with the DECNET standard for
device names . In order to support this new naming convention, two new tables were added : DDCTBL and
UCTTBL . These tables are only used for DECNET communication devices .

2-43

2.5 .8 .1 DDCTBL - Number of DECNET Controllers, UCTTBL Bias

The DDCTBL table is used to check the validity of a specified controller and circuit number . The low byte
of each word in DDCTBL specifies the number of controllers of the corresponding type that are on the
system. The high byte specifies an offset (in bytes) from the beginning of UCTTBL to the information for
controller 0 of the corresponding device .

DDCTBL contains one entry for each DECNET communication device on the system . Since the only
communication devices currently supported for DECNET are the DMC/DMR (XM:) and the DMP/DMV
(XD:), the maximum size of this table is currently two words .

2.5.8.2 UCTTBL - Number of Units per Controller

The UCTTBL table specifies the number of units supported by each corresponding DMC/DMR or
DMP/DMV controller . The DDCTBL table points to the entry in UCTTBL that corresponds to controller
zero of each DECNET device . The entries for additional controllers for that device, if any, will
immediately follow the entry for controller 0 . Since RSTS/E only supports one unit per controller, all
entries in UCTTBL will be set to one .

2.6 SEND RECEIVE

The send/receive capability of RSTS/E allows information to be sent between programs . The data structures
required to provide this capability are the Receiver ID Block (RIB) and the Pending Message Block (PMB) .

Each program that has declared itself to be a receiver is allocated a Receiver ID Block . This ID block is pointed
to by the job's secondary JDB (JDB2) .

The RIBs on the system are linked together in a list of message receivers . When a message is sent, or when a
DECNET link is received, this list is searched to find the specified receiver . Once found, the message is inserted
into the list of pending messages for the receiver .

Each message that is waiting to be received has a Pending Message Block (PMB) associated with it. All the PMBs
for a particular receiver are kept in a linked list pointed to by S .MLST in the receiver's RIB . The list is kept
in first-in, first-out order .

The following figure shows the relationship between RIBs and PMBs :

SNDLST	0~	RIB	RIB	

For more information on the contents of the Receiver ID Block and the Pending Message Blocks see the RSTS/E
Programming Manual and Network Programming in BASIC-PLUS and BASIC-PLUS-2 .

2.6 .1 RIB - Receiver ID Block

When a job declares itself a receiver (using the MESAG monitor directive or SYS(CHR$(6) + CHR$(22)) in BASIC-
PLUS), a Receiver ID Block (RIB) is allocated . The RIB contains all the information necessary to allow receipt
of intra-CPU and inter-CPU messages . It is pointed to by J2MPTR in its owner's JDB2 .

In addition, all the RIBs in the system are linked together in a list . The first element in this list is pointed to
by the location SNDLST . Since the receiver name ERRLOG is always present in the system, SNDLST will never
be 0 .

The Receiver ID Block has the following format :

Offset Symbol

0

	

S.LINK
2

	

S.RCID
4
6
10 S.JBNO
12 S.ACCS
14 S.BMAX
16 S.MMAX
20 S.MLST
22
24 S.LMAX
26 S.LLST
30
32 S.OMAX
34
36

PMB

2-45

PMB PMB I

Link to next RIB

Receiver ID
(6 bytes of ASCII)

Object type Job number *2
Sub-RIB number Access flags

Buffer maximum
Pending count

	

Message maximum
Pointer to first PMB, if any
Pointer to last PMB, if any

Link count

	

Max link count
Pointer to first logical link block
Pointer to last logical link block

Packet/message quota

	

Out link maximum

Reserved for network use

Symbol Offset

S . OBJT 11
S. SRBN 13

S .MCNT 17

S.LCNT 25

S.PQTA 33

6

2.6.1.1 S.OBJT - Object Types

The object types specified by S .OBJT have the following meanings :

Value

	

Meaning

0

	

Local receiver .

1

	

Error logger .

2

	

EMT logger .

3

	

Queue manager .

4-63

	

Reserved .

64

	

Disk initializer program .

2-46

,Offset Symbol Description

0 S .LINK This word contains the address of the next RIB in the linked list . If this is the last RIB
in the list, this word will be 0 .

2 S .RCID These six bytes contain the receiver name as six bytes of ASCII . If the receiver name is
less than six bytes in length, it will be filled with trailing zero bytes .

10 S .JBNO This byte contains the job number, times two, of the job to which this RIB belongs .

11 S.OBJT This byte contains the object type for use in DECNET messages (see section 2 .6 .1 .1)

12 S.ACCS This byte contains the access controls for this receiver (see section 2 .6 .1 .2) .

13 S.SRBN This byte contains the sub-RIB number .

14 S .BMAX This word specifies the buffer usage restrictions made at the time the receiver was declared .

16 S .MMAX This byte specifies the restriction on the number of pending messages made at the time
the receiver was declared .

17 S .MCNT This byte contains a count of the number of messages that are currently pending for this
receiver .

20 S .MLST This word is a pointer to the pending message block (PMB) for the first message pending
for this receiver . If no messages are pending, this word will contain a 0 .

22 This word is a pointer to the pending message block (PMB) for the last message pending
for this receiver . If no messages are pending, this word points to S .MLST .

24 S .LMAX This byte specifies the restriction on the number of pending DECNET messages made at
the time the receiver was declared .

25 S .LCNT This byte contains a count of the number of logical links for DECNET messages currently
pending for this receiver .

26 S .LLST This word is a pointer to the logical link descriptor block for the first logical link pending
for this receiver . If no logical links are pending, this word will contain a 0 .

30 This word is a pointer to the logical link descriptor block for the last logical link pending
for this receiver . If no logical links are pending, this word points to S .LLST .

32I S .OMAX This byte specifies the outgoing network link maximum

33 S .PQTA This byte specifies the quota of packets per message .

34-36 Reserved for network use .

2.6.1 .2 S.ACCS - Access Control Bits

The access control bits contained in S .ACCS have the following meaning when set (see the RSTS/E Programming
Manual for more information on access control bits) :

P$SNDR

	

5

7 6 I 5 4

2.6 .2 PMB - Pending Message Block

2-47

3 a 0

S XOh SA E T A CS SA ISH SA NLT S PRV SA I CI

Link to next PMB if any
Contorted pointer to message buffer

Sender job #*2 Message type
Sender PPN

Unused F_ Sender KB #
Bytes remaining in message

Small message data

Each message waiting to be received has a Pending Message Block (PMB) associated with it . The PMB describes
the data received for large messages and contains the data sent for small messages .

The pending message blocks for each receiver are kept in a linked list, ordered first-in, first-out . The first and
last pending message blocks in the list are pointed to by the two words starting at S .MLST in the associated
RIB (see section 2.6 .1) .

The PMB has following format :

Symbol Offset

	

Offset Symbol

0 P$LINK
2 P$BUFA
4 P$TYPE
6 P$SPPN
10 P$SKBN
12 P$BREM
14 P$PARM
16
20
22
24
26
30
32
34
36

Bit Symbol Description
<0> SA.LCL Local senders may send to this receiver .

< 1 > SA.PRV Local senders must be privileged to send to this receiver .

<2> SA.NET Network senders may send to this receiver .

<3> SA.1 SH This receiver can only handle one logical link at a time .

<4> SA.NCS Do not perform conditional sleep check on this RIB .

<5> Unused .

<6> SA.EVT This RIB is the DECNET event logger .

<7> SA.XOF Receipt of messages from local senders is temporarily disallowed .

s

Offset

	

Symbol

	

Description

0

	

P$LINK

	

This word contains the address of the next PMB in the linked list . If this is the last PMB
in the list, this word will be 0 .

2 P$BUFA This word contains the "contorted" address of the buffer containing the large message
data . If the low order five bits of the address are zero, it is a pointer to a small buffer .
Otherwise, the address has been rotated left seven bits and points into the extended buffer
area, XBUF. If this word is zero, no large message data was sent with this message .

4

	

P$TYPE

	

This byte specifies the type of message described by this PMB (see section 2.6 .2 .1) .

5

	

P$SNDR

	

This byte contains the job number, times 2, of the message sender .

6

	

P$SPPN

	

This word contains the PPN of the message sender .

10

	

P$SKBN

	

This byte contains the sender's keyboard number . If the sender was detached, this byte
will contain 255 .

11

	

This byte is unused .

12 P$BREM This word specifies the number of bytes remaining in the message buffer . It can be less
than the original length of the message if the message was too long to fit in the user's buffer
on a previous receive request and truncation was not requested . See section 2 .6 .2 .2 for
information on the buffer format .

14

	

P$PARM

	

These ten words contain the message data for small message send/receive or the network
parameters for DECNET .

2.6.2.1 P$TYPE - Message Type

If DECNET is not used, the message type (P$TYPE) will always be -1 to signify that a local sender message
was received . However, if DECNET is used, several other message types are possible, as follows :

Type

	

Description
-1

	

Local sender message received .

-2

	

Connect Initiate received .

-3

	

Connect Confirm received .

-4

	

Connect Reject received .

-5

	

Network sender message received .

-6

	

Interrupt received .

-7

	

Link Service received .

-8

	

Disconnect received .

-9

	

Link Abort received .

-10

	

Event logger message received .

2-48

O

2.6.2.2 Buffer Format

Each large message is stored in a buffer of up to 536 bytes (unless an optional patch is entered in the monitor)
using either a block of small buffers or a buffer from XBUF . The actual data of the message is preceded by
a two word header, as follows :

Offset

	

Symbol

	

Description

0

	

This word specifies the buffer size, in bytes .
2 This word points to the first byte to be returned for the message data . It initially points

to offset 4 but is updated if a receive request overflows the user's buffer and truncation
is not requested

4

	

This word starts the message data area . It can be up to 532 bytes in length (unless an optional
patch is entered in the monitor) .

2-49

lom

2.7 CCL - CONCISE COMMAND LANGUAGE BLOCK

Each concise command language (CCL) definition is stored in a CCL block . These blocks are allocated and
deallocated dynamically from the FIP pool or the small buffer pool .

The CCL blocks are kept in a linked list in the order in which they were defined . The first element in the list
is pointed to by the location CCLLST .

The CCL block has following format :

Symbol Offset

Offset

	

Symbol

0

2

4

6

10

12

14

24

26

28

30

Description

Offset Symbol

0
2
4
6
10
12
14
16
20
22
24
26
30
32
34
36

This word contains the address of the next CCL block in the linked list . If this is the last
CCL block in the list, this word will be 0 .

This word is a pointer to the first character in the CCL command text string .

This word is a pointer to the first optional character in the CCL command text string .

This word contains the PPN of the program to run in response to this CCL command .

These two words contain the file name (in RAD50) of the program to run in response to
this CCL command .

This word contains the file no type (in RAD50) of the program to run in response to this
CCL command . A -1 in this word signifies a wildcard file type (eg. LOGIN.*) .

These ten bytes contain the CCL command text . The text is terminated by a byte containing
255 .

This word contains the device name (in ASCII) of the disk device that contains the program
to run in response to this CCL command . A 0 specifies the public disk structure, SY : .

This word contains the device unit number and unit number "real" flag . See the description
of the FIRQB in the RSTS/E System Directives Manual for more information on device
naming.

This word contains a copy of the pointer stored in offset 4 .

This word contains the parameter word to pass to the runtime system when the program
is run . See the RUN monitor directive for more information on the parameter word .

2-50

Link to next CCL block
Pointer to CCL text within CCL block

Pointer to first optional character
Associated program's PPN

Filename of program to run (RAD50)

Filetype of program to run (RAD50)

CCL command text

Associated program's device name
Unit real flag

	

Unit number
Pointer to first optional character

Parameter word, line number for RUN

2.8 FIXED MEMORY LOCATIONS
Several fixed locations in low memory within the monitor are used to store static information and information
about the currently executing job . This information provides a shortcut for accessing the most used job control
information .

The dates and times stored in these locations are in RSTS's own internal format . Dates are stored as
(year-1970)* 1000 + (day of year) . Times are stored as the number of minutes before midnight .

The fixed memory locations have the following values :

2-51

Octal Decimal Symbol Description

44 36 IDATE System startup date .

46 38 ITIME System startup time .

50 40 Start at this location to do a system reload .

52 42 Start at this location to do a crash dump, auto-restart .
54 44 HALT HALT instruction for system crash .

56 46 Start at this location to do a system reload .

1000 512 DATE Today's date .

1002 514 TIME Current time .

1004 516 TIMSEC Seconds to next minute .

1005 517 TIMCLK Ticks to next second .

1006 518 JOB Job number of current job (times 2) . If the null job is running, this byte
will be zero .

1007 519 NEXT If this byte is non-zero, it is the job number (times 2) of the job that was
scheduled to be the current job, but is not yet swapped into memory . This
job will begin execution immediately upon gaining memory residency . If a
job is currently running, it was "sub-scheduled" to use the available CPU
time while waiting for the next job to swap in .

1010 520 JOBDA Pointer to current job's Job Data Block (JDB) .
1012 522 JOBF Pointer to current job's flags (JDFLG) .
1014 524 IOSTS Pointer to current job's IOSTS (JDIOST) .
1016 526 JOBWRK Pointer to current job's Work Block (WRK) .

1020 528 JOBJD2 Pointer to current job's Secondary Job Data Block (JDB2) .
1022 530 JOBRTS Pointer to current job's Runtime System Descriptor Block (RTS) .
1024 532 CPUTIM Pointer to current job's CPU time bucket (J2TICK) .
1026 534 JOBWDB Pointer to current job's Window Descriptor Block (WDB) at offset W .WIN1 .
1040 544 MEMLST Root of memory control list .
1100 576 DFTRTS RTS Block for default runtime system .
1140 608 Tail of memory control list .

1200 640 ERLRIB RIB for ERRCPY receiver .

1240 672 NULRTS RTS Block for null runtime system .

1300 704 FIQUE FIP queue root .

1302 706 FIJOB Job number (times 2) of job currently using FIP or last job to use FIP .

1303 707 FIPRIV If this byte non-zero, the current user of FIP is non-privileged .

1304 708 FIUSER PPN of current job in FIP .

1306 710 FIJBDA Pointer to the Job Data Block (JDB) for the current job in FIP .

1310 712 FIJBD2 Pointer to the Secondary Job Data Block (JDB2) for the current job in FIP .

1312 714 FIPSJN Job number (times 2) of the system job currently-using FIP .

2070 1080 SYSTAK Top of the monitor's stack when the null job is not running . The monitor's
stack is 256 words deep .

2600 1408 FISTAK Top of FIP's stack . FIP's stack is 124 words deep .

Chapter 3

DEVICE DRIVERS

When support is needed for a device not normally supported by RSTS/E, a custom device driver
must be written . Although user written device drivers are not supported by Digital, all the files
necessary to build them are provided in the system generation kit .
User written device drivers are essentially only allowed for non-disk devices. Although user written
disk device drivers are possible, they generally require the source code for INIT so that it may be
rebuilt with extended tables and support code for the new disk . For this reason, disk drivers will not
be specifically discussed .
Even though foreign disk drivers are not supported, various disk related tables and structures used
by the monitor and INIT can be modified to better support foreign disks that look substantially like
supported Digital disks . See Chapter 2 for more information on disk related monitor tables .

The procedure for writing a driver for RSTS/E is very similar to that used for other Digital
operating systems . The driver must provide several "subroutines" for the monitor to use to perform
specific functions . The monitor, in turn, provides a set of routines for the driver's use .

Before a device driver can be written, several design decisions must be considered . Is the device
character oriented or block oriented? How fast is the data being transferred? Can the transfer be
interrupted by a tC? Does the device do DMA transfers? Does the job need to be resident during the
I/O operation? Can the controller support more than one concurrent I/O request? Each of these
considerations will have an effect on how the driver should be written .

Block oriented devices can transfer data directly to and from user buffers using DMA transfers or
one character at a time under control of the driver . The data can be stored in small or large buffers,
or within an area set aside in the Device Data Block (DDB), until needed by a user program .

Character oriented devices store data in temporary buffers within the monitor before transferring it
to the output device or to the user program . Unless the program is stalled waiting on input, or for
buffer availability on output, it can overlap its execution with the transfer of data to or from the I/O
device . Small or large buffers can be used to store the data .
When a user program requests input from an asynchronous device, the input request will be
honored immediately if the input is already totally contained in small buffers . If the input is not
already totally buffered, the user program will be stalled until the data is available . Once the data is
available, the input request is requeued and can now be processed using the buffered data .

When a user program requests output to an asynchronous device, the data is transferred to small
buffers before being sent to the physical device . If there are sufficient buffers available to hold all
the output data, the user program can continue to execute while the data is being transferred to the
device. If insufficient buffers are available, the user program will be stalled until the device driver
has freed up enough buffers to hold the remaining data .

3-1

3.1 GENERAL STRUCTURE
Device drivers must follow very specific rules regarding format and content . There are several global symbols
and specific entry points in every driver . Each driver must be divided into several specific program sections
(PSECTs) with each PSECT having a specific name . There are also optional entry points and program sections
which, if used, must follow specific rules .

Every user written device driver requires at least two files : xxPRE.MAC and xxDVR.MAC (where "xx" is the
name of the device) . In addition, disk device drivers and other drivers that are being included in INIT, require
a third file, xxDEF .MAC. This file provides information about register and bit definitions for the device .

The xxPRE.MAC file contains the information about the driver that is required to build the TBL .MAC module .
This information includes use of the DEVICE macro (which defines the device name and other information)
and definition of several constants used by the TBL assembly to set up monitor tables for this device .

The required constants for the xxPRE .MAC file are CNT .xx (number of units of this device), DDS .xx (size of
the DDB), and CCC.xx (tC interuptable flag). Several other constants are optional. They are BFQ .xx (small
buffer quota), HOR .xx (horizontal width), SLP .xx (check with driver before allowing a conditional SLEEP),
and UMR.xx (driver uses unibus mapping registers) .

The xxDVR.MAC file contains the program code and data for the driver . The driver is divided into two to four
program sections (PSECTs) . Each PSECT has a specific name and is used for a specific purpose . The first PSECT
is named xxDVR and contains the code to perform all the functions required for interfacing with a device . The
second PSECT is named xxDINT and contains a specific set of instructions which map and execute the interrupt
handler in the xxDVR section when an interrupt occurs . An optional PSECT may be included to contain read-
write data for the driver other than that contained in the DDB . This PSECT is names xxDCTL . Another optional
PSECT may be included to contain read-only data that is permanently mapped by the monitor and available
even when the read-only code for the driver is not mapped . This PSECT is named xxDTBL .

Several global constants are defined in the xxDVR file . These constants are used to build tables when the driver
is linked with the monitor. These global constants are : STS .xx (DDSTS value for the DDB), FLG .xx (device
description flags), SIZ.xx (line width), and BUF .xx (default buffer size) .

Several global constants are defined for the driver by the TBL assembly . These constants are : JS.xx
(JBWAIT/JBSTAT bit), IDX .xx (device driver index), TIM .xx (location of timeout table entry for unit 0), CSR .xx
(location of CSR table entry for unit 0), xxDDDB (location of DDB for unit 0), ALT.xx (synonym for device
name), and LOG$xx (EMT to envoke error logging) .

Several specific entry points are required within the xxDVR PSECT . These entry points are defined by the following
global symbols : .ASN$xx (assign), DEA$xx (deassign), OPN$xx (open), CLS$xx (close), SER$xx (read/write),
SPC$xx (.SPEC), INT$xx (interrupt), and TMO$xx (timeout) .

Several additional entry points can be defined when needed . They are : ERL$xx (error logging), SLP$xx (check
before allowing conditional SLEEP), UMR$xx (unibus mapping register is available) and a set of entry points
for Level Three Queue (L3Q) entries .

All communication between the diver and a user program is made via the XRB or the FIRQB . The contents
of the FIRQB are passed to the driver when the device is opened . The contents of the XRB are passed to the
driver when a read, write or special service request is made. Information may also be returned to the user program
by the driver using these structures . See the System Directives Manual for more information on the XRB and
FIRQB .

3-2

The FIRQB or XRB is copied to the user's WRK block before being made available to the driver .
This allows information from the FIRQB or XRB to be accessed even if the job image containing the
FIRQB and XRB is swapped out .
A pointer to the user's buffer is passed to the driver when entered at its SER$xx or SPC$xx entry
point. The beginning of the user's buffer is mapped by memory management register APR6 before
the driver is entered . The pointer refers to data mapped by this memory management register .

Each unit of each device has a Device Data Block (DDB) associated with it . The DDB contains all
the read-write data required to control each device . Portions of the DDB have a specific format,
while other portions are defined by the driver for its own use . See section 2 .5 .1 for more information
about DDBs .

3 .1.1 PSECT Usage
Three program sections (PSECTs) are used when writing a driver . The first two, xxDVR and
xxDINT, are required . The third one, xxDCTL, is optional and is only included when general read-
write data is needed for a driver .

3.1.1.1 xxDVR - Driver Read-Only Code Section
The xxDVR PSECT contains all the code for the device driver . This section is located in the read-
only portion of the monitor's virtual address space . It does not actually take up address space in the
monitor unless it is in use . When needed, the driver is mapped by kernel memory management
register APR5 at a base address of 120000 8 .
The xxDVR PSECT contains the entry points and associated code for all services provided by the
driver. It is read-only . Any read-write data must be contained in the driver's DDBs or in the optional
program section, xxDCTL .
To define this PSECT use the DEFORG macro as follows (replace "xx" with the device name) :

DEFORG xxDVR

3 .1 .1 .2 xxDINT - Interrupt Service Dispatch Section

The xxDINT PSECT contains code to map the interrupt service code contained in xxDVR, save all
registers and dispatch to the appropriate interrupt service routine . It is contained in the read-only
portion of the permanently mapped section of the monitor .
The interrupt vectors for all devices handled by this driver point into this section . When unit 0 of a
device interrupts, it vectors to the beginning of this section at location xxDINT . The code at this
location calls a routine named INTSAV which loads kernel APR5 with the value 1200 8 . This value
maps the driver into virtual addresses starting at 1200008 . INTSAV then saves registers R0-R5 on the
stack and transfers control to the location specified in the second parameter word of this call
(normally INT$xx) .
If only one interrupt vector is required for this device driver, the following code should be used to
define this section (replace "xx" with the device name) :

DEFORG xxDINT
xxDINT: CALLX

	

INTSAV,R5

	

;Map and enter interrupt routine
+

	

1200

	

;PAR5 value
+

	

INT$xx

	

;Interrupt service routine address
ORG

	

xxDVR

3-3

If more than one interrupt vector is required for the device driver, one of two approaches may be
taken. The preferred method is to point each vector to the same interrupt service routine and store
the associated device unit number in the PSW word of each vector . The monitor multiplies the value
in the least significant four bits of the PSW word of the vector by two and passes this value to the
interrupt service routine in RO when an interrupt occurs . The interrupt service routine can determine
which unit interrupted by checking this value .
The second method is to have a separate interrupt entry point in xxDINT for each interrupt vector .
The following code can be used to define this section in this way (replace "xx" with the device
name) :

DEFORG xxDINT
;Interrupt vector for unit 0

xxDINT: CALLX

	

INTSAV,R5

	

;Map and enter interrupt service
•

	

1200 ;PAR5 value
•

	

INT$xx ;Interrupt service routine address
;Repeat the following for each additional interrupt vector

xxnINT is the symbol for the location to vector
to for unit "n" of the device . INTxxn is the
address of the associated interrupt service routine .

xxnINT: CALLX

	

INTSVX,R5

	

;Map and enter interrupt service
•

	

xxDAP5 ;Pointer to PAR5 value
•

	

INTxxn ;Interrupt service routine address
ORG

	

xxDVR

3.1 .1 .3 xxDCTL - Read-Write Data Section
This PSECT is optional . It is used when the driver needs read-write data that is general to the driver,
as opposed to data kept for each unit of a device . A common example of this is the root word of a
queue used to store overlapping requests for use of a device by more than one job .

To use this section, include the following in the xxDVR module :

DEFORG xxDCTL

	

;Define PSECT for device "xx"
;Read-write data definitions go here

ORG

	

xxDVR

	

;Return to driver code PSECT

If the device supports only one unit, all the read-write information about a device can be stored in its
DDB ; xxDCTL is not required .

3.1.1 .4 xxDTBL - Read-Only Data Section
This PSECT is optional . It is used to contain read-only data that should be included in the permanently mapped
portion of the monitor. Information in this PSECT is available for use by other device drivers and other portions
of the monitor .
To use this section include the following in the xxDVR module :

DEFORG xxDTBL

	

;Define PSECT for device "xx"
;Read-only data definitions go here

ORG

	

xxDVR

	

;Return to driver code PSECT

3-4

3.2 ENTRY POINTS
A device driver actually consists of several modules of code . Each of these modules performs a
separate function when requested by the monitor . For example, there is a module which performs
device specific code for an open request and another module which performs device specific code
for a close request .
The starting address of each of these modules is defined by specially named global symbols . These
global symbols are called entry points . Every driver contains several entry points . These entry points
are used for opens, closes, I/O requests and other functions .
The entry points have specific names, such as OPN$ and CLS$. These names are combined with the
appropriate device name to form a unique symbol for the entry point . For example, the entry point
for open requests for the device DX would be OPN$DX .
Before the monitor enters the driver it verifies that the requested operation is allowed, and sets up
information in the FIRQB or XRB as required . The driver only has to handle the device specific
operations on the requested function . All common functions have already been taken care of by the
monitor .

3.2.1 ASN$xx - Assign
Input : RO Job number of assigner times 2 .

RI Pointer to DDB for appropriate unit of device .

Output : All registers must be preserved .

Exit : RETURN

	

;No error
or : ERROR code

	

;If error in assignment
This is the entry point for device assignment . It is used to perform any necessary device specific
functions at the time a device is assigned . This entry point is entered when the device is explicitly
assigned by an ASSIGN or implicitly assigned by an OPEN when it is not already assigned .

Since this section is entered before the first time the device is opened it can be used to set up the
interrupt vectors in user written device drivers . The address of location xxDINT in PSECT xxDINT
should be put into the first word of the vector . The desired PSW should be stored in the second
word of the vector . See section 3 .6 for a discussion of interrupt vector handling .

3.2.2 DEA$xx - Deassign
Input : RI Pointer to DDB for appropriate unit of device .

Output : All registers must preserved .
Exit : RETURN

This is the entry point for device deassignment . It is used to perform any necessary device specific
functions at the time a device is deassigned . This entry point is entered when the device is explicitly
deassigned by a DEASSIGN or implicitly deassigned by closing the device if it is not also open on
another channel .

3-5

3 .2 .3 OPN$xx - Open

Input : RO

	

Unit number times two .
R1

	

Pointer to DDB for appropriate unit
R4

	

Pointer to FIRQB (in WRK block). Default values have been loaded for FQFLAG
and FQBUFL using the monitor tables FLGTBL and BUFTBL .

R5

	

Pointer to job's IOB entry for this channel .

Output : RO

	

Random
R1

	

Must be preserved
R4

	

Random
R5

	

Must be preserved

Exit : RETURN

	

;For successful open
or : CALLX RETDEV

	

;For unsuccessful open
ERROR code

This routine is entered each time the device is opened . It is used to perform any initialization necessary when
the device is first opened . A common requirement is to use information available in the FIRQB to initialize or
modify parameters in the DDB. Another common requirement is to turn on interrupt for the associated device .

3 .2.4 CLS$ - Close

This routine is entered each time the device is closed . It is used to perform any housekeeping necessary when
the device is closed . A common requirement is to turn off interrupts for the device . Note that data may still
be buffered for I/O at the time the close request is received . Input data should normally be discarded . Output
data should normally continue to be transferred to the output device before turning off interrupts .

There are two different types of close requests : normal and reset. The type of close is signified by the Z-bit of
the PSW. A "reset" close is the same as a normal close except that any buffers currently in use are immediately
released and no housekeeping functions are performed that would access the device . A reset close is signified
in BASIC by a negative channel number in the CLOSE call .

3-6

Input : RO Unit number times 2
R1 Pointer to DDB
R5 Pointer to DDB
Z-bit Set : This is a real close

Clear : This is a "reset" close

Output : RO Random
R1 Random
R5 Must be preserved

Exit : RETURN

3.2 .5 SER$xx - I/O Service

Input : RO

	

Unit number times 2
R1

	

Pointer to DDB for this unit
R2

	

Function code : 2 (.READ) or 4 (.WRITE)
R3

	

Pointer to XRB (contained in WRK block)
R4

	

Calling job number times 2
R5

	

Pointer to user's buffer (mapped through APR6)
Z-bit

	

Set : This is the first entry for this request
Clear: This entry is for an IOREDO

C-bit

	

Set: This entry is for an IOREDO
Clear: This is the first entry for this request

Output : All registers random
XRBC

	

Adjusted for the number of bytes transferred to or from the user's buffer
XRLOC

	

Adjusted for the bytes transferred to or from the user's buffer .
XRBLK

	

0 for non-block structured devices . Next virtual block number for block structured
devices .

Exit : JMPX

	

IOEXIT

	

;I/O completed without error
or : SETERR code,@IOSTS

	

;I/O completed with error
JMPX

	

IOEXIT
or: JMPX

	

IOREDO

	

;Stall the job and then reenter
;SER$xx when the job is unstalled

This routine is entered when an I/O request is received . The monitor has already verified that the device is open
and that the caller has the necessary access rights for the requested function .

Before the monitor enters the driver's SER$xx entry point it stalls the job by setting the JS .xx bit for this device
in the job's JBWAIT word . The job will remain stalled until the driver allows it to continue by jumping to the
IOEXIT routine in the monitor .

If the device uses block mode transfers, the job should be locked in memory, stalled for I/O redo and a DMA
transfer started for the requested function . When the transfer is complete, the interrupt service routine will cause
the driver to be reentered at its SER$xx entry point, but with the Z-bit set and the C-bit clear . The I/O service
routine can then exit with the error condition, if any, shown in IOSTS .

If the device uses buffered asynchronous transfers, one of two things occurs :

(1) If the request is for a READ, the DDB should be checked to see if enough data has already been buffered
to complete the requested input . If so, the data is transferred to the caller and the input request is completed
by exitting to IOEXIT. If not, the caller is stalled waiting on input by exitting to IOREDO . When the interrupt
service routine has buffered enough data to complete the request it uses the IOFINI subroutine to unstall
the waiting job . The job's SER$xx routine will be reentered to redo the input request . This time the required
data will already be available in buffers and the I/O can complete immediately .

(2) If the request is for a WRITE, the data is transferred from the caller into monitor buffers and device
output is started . If there are insufficient small buffers to contain all the data being supplied, the caller
is stalled by exitting to IOREDO . When the interrupt service routine determines that there should now
be enough buffers available to continue, it uses IOFINI to reschedule the entry into SER$xx so that additional
data may be buffered . This process continues until the entire request is buffered, at which time the output
request completes by exitting to IOEXIT .

Whenever a device transfer is initiated, a timeout check should be started . This timeout check ensures that the
I/O will abort if the device hangs for some reason and never responds to the I/O request .

3-7

6

To initiate a timeout check, the location TIM .xx should be set equal to the maximum number of seconds, plus
one, that a device should ever take to respond to a request . For example, if the lineprinter should never take
more than one second to respond to a request, the following sequence would cause a timeout if the printer controller
was to hang :

MOV

	

#2,TIM.LP(RO)

	

;Set LP: timeout counter to 1 (+ 1) seconds

The timeout check can also be used to periodically enter the driver so that time dependant conditions can be
checked . This is especially useful when a device may require periodic correction of an error condition and its
status should be checked regularly . See section 3 .2.8 for more information on timeouts .

3.2 .6 SPC$xx - Special Service

Input : RO

	

Unit number times 2
R1

	

Pointer to DDB for this unit
R2

	

Special function code
R3

	

Pointer to XRB (in WRK block)
R4

	

Calling job number times 2
R5

	

Pointer to XRB (mapped through APR6)

Output : All registers random

Exit : JMPX

	

RTI3

	

;If no error
or : ERROR

	

code

	

;If error

This routine is entered when the user issues a SPEC call . SPEC calls are used to perform device specific special
function handling . An optional parameter can be passed in the SPEC call . This parameter is stored in the second
word of the XRB (XRBC) .

If the driver needs to return any information to the user, it can do so by accessing the mapped XRB directly
or by storing the information in the copy of the XRB in the WRK block . If the WRK block is used, the JFPOST
bit must be set in the job's JDB to request that the data be posted to the user's XRB .

If the driver does not support SPEC calls, it should return the error PRVIOL to the caller using the following
statement :

ERROR PRVIOL

See the description of .SPEC in the System Directives Manual or SPEC% in the RSTS/E Programming Manual .

3 .2.7 INT$xx - Interrupt Service

Input : RO

	

Unit number times two (unit number is found in the least significant four bits of
the PSW word of the vector)

PR

	

Priority is device interrupt priority

Output: All register random

Exit : RETURN

	

;Normal return from interrupt
or : CALLX

	

IOFINI,R5,JS.xx

	

;Reschedule stalled job
RETURN

	

;Return from interrupt

This routine is entered every time the device interrupts . The interrupt vectors to the entry in PSECT xxDINT .
This code maps the driver code using APR5, saves registers RO-R5 and calls this interrupt service routine to process
the interrupt (see section 3 .1 .1 .2) .

3-8

RO is loaded with the unit number times two, taken from the PSW word of the interrupt vector . If the device
supports more than one interrupt vector, they can all interrupt to the same address (xxDINT) . The unit number
for the interrupting device is stored in the least significant four bits of the PSW word of each vector for the
device . This unit number (times two) will be loaded into RO before the interrupt service routine is called and
can be used to determine which device interrupted .

The interrupt service routine controls the rescheduling of I/O service requests (ie . re-entries into SER$xx) that
have been stalled waiting for buffer availability or other conditions . When the interrupt service routine determines
that a condition has been met that the service request is waiting for, it reschedules an entry into the SER$xx
entry point using the IOFINI monitor subroutine .

If the interrupt service routine needs to do any extended processing that does not have to be done at interrupt
priority, it should schedule a reentry into the driver and continue processing after being reentered . A reentry
is requested by setting an appropriate bit in the Level Three Queue (L3Q) . These bits are defined by the DEVICE
macro used in the xxPRE .MAC file see section 3.4 .9) .

When the interrupt service routine exits, the monitor will check L3Q to see if any requests are pending . The
driver will then .b e reentered at its appropriate L3Q entry point and can continue processing at priority level
three . See section 3 .2.12 for more information on L3Q entries .

3 .2 .8 TMO$xx - Timeout

Input : RO

	

Unit number times 2
R1

	

Pointer to the DDB for this unit
R3

	

Pointer to the device CSR (loaded from CSRTBL)
PR

	

Priority is PR3

Output : All registers are random

Exit : RETURN

This routine is entered when the time period specified by TIM.xx has expired . It is typically used to handle devices
that never complete the I/O function requested of them. It can also be used for device specific periodic checks .

The TBL assembly equates a word in the monitor table TIMTBL to the name TIM .xx for each driver . If more
than one unit of a device is present, additional words are allocated immediately following TIM .xx for use by
the additional units (see section 2.5 .5 .7) . This word can be set to one of three ranges of values, depending on
the desired function :

1 .

	

Zero signifies that no timeouts are desired .

2 . A non-zero, positive value indicates the number of seconds desired before a timeout occurs . This value
will be decremented each second by the monitor . If it reaches zero, the associated driver will be entered
at its timeout entry point (TMO$xx) . Note that a full second does not necessarily pass between the time
TIM.xx is set and the first time it is decremented . For this reason the value stored in TIM .xx should
normally be one greater than the desired value .

3 .

	

A negative value indicates that the timeout entry point should be entered each second . Note that less
than a full second may pass between the time TIM .xx is set and the first entry at TMO$xx .

The typical procedure for handling devices that have actually hung (presumably due to a hardware problem)
is to return any monitor buffers currently in use, call error logging, post a hung device error and reschedule
the job for execution . The following procedure will perform these functions for a device that supports one unit
and uses only one chain of small buffers :

3-9

CLR

	

TIM.xx

	

;Reset the timeout indication
Use the following two lines only if error logging is
supported

MOV xxCSR,R3

	

;Point to CSR
LOG$xx

	

;Enter error logging routine
CALLX CLRBUF,R5,DDBUFC + EP ;Clear the small buffer chain
SETERR HNGDEV,@a IOSTS

	

;Post a "Hung device" error
CALLX IOFINI,R5,JS.xx

	

;Mark the job a runnable
RETURN

	

;Return to the monitor

3 .2.9 ERL$ - Error Logging

Input : R1

	

Pointer to DDB for this unit
R3

	

Pointer to CSR for this unit

Output: All registers are random

Exit : RETURN

This routine is entered if the driver requests that an entry be made in the error log . This routine is only needed
if the driver is going to do error logging . If the driver does not do error logging, the symbol ERL$xx should
be globally equated to zero, as follows :

ERL$xx==0

The TBL assembly equates the global symbol LOG$xx to a special EMT code for logging errors for this driver .
When the LOG$xx EMT is executed in a driver, the driver is interrupted and control passes to the ERL$xx entry
point for that driver with all registers preserved . The ERL$xx routine logs the error and then resumes execution
of the driver .

The monitor provides a subroutine (ERLDVR) for logging device specific information . This routine is described
in section 3 .5 .14. The following code is an example of the call to the error logging routine :

ERL$xx : :

	

CALLX ERLDVR,R5
.BYTE error
.BYTE ddbsiz
.BYTE offset,count
.BYTE 0,0

RETURN

3 .2.10 SLP$xx - Sleep Check

;Call the monitor error logger
;Error code (see KERNEL.MAC)
;Size of DDB in bytes
;Offset from CSR and word count
;End of argument list
;Return from EMT

3- 1 0

Input : RO Unit number times 2
RI Pointer to DDB for this unit
R4 Pointer to job's IOB entry for this channel

Output : RO Random
RI Random
R4 Random
C-bit Set: Don't let the job sleep

Clear: Let the job sleep

Exit : RETURN

This routine is entered before allowing a job that has this device open to sleep for a conditional sleep request .
Conditional sleep is specified by a negative value for sleep time . If the device does not wish to allow the job
to sleep, it can return with the C-bit set and the sleep request will not be honored .

This entry point is optional. If the driver supports this entry point, the symbol SLP .xx should be equated to
1 in the prefix file (xxPRE .MAC) used in the TBL assembly . If SLP .xx is not defined, this entry point will not
be used .

3.2.11 UMR$.xx - Unibus Mapping Register Available

Input : RO

	

Pointer to base root of DSQ list for disk device drivers . Random for non-disk drivers .
R3

	

Pointer to CSR for disk drivers . Random for non-disk drivers .
PR

	

Priority is PR5

Output: None

Exit : RETURN

When a driver that does DMA transfers requests a unibus mapping register (UMR), the request will be denied
if there are no UMRs available at the time of the request . If a request is denied, the monitor will remember
that a UMR is still needed . When a UMR becomes available the monitor will enter the UMR$xx entry point
in all drivers that have this entry point .

Entry at the UMR$xx entry point does not indicate that the driver has been allocated a UMR . It only indicates
that at least one UMR is now free . The driver should reissue the GETUMR call to try and allocate a UMR .
The request may still fail because another driver may have already allocated the last free UMR before the request
is made by this driver .

3 .2 .12 nnn$xx - Level Three Queue Reentry

Input : All registers are random
PR

	

Priority is PR3
C-bit

	

Clear

Output: All registers are random
PR

	

Must be preserved

Exit : JMPX

	

RTI3

In some cases it is desirable to split off some portion of the processing required in an interrupt service routine
so that it may be performed at a lower priority . This capability is commonly known as a fork process . RSTS/E
provides this capability using the Level Three Queue (L3Q) .

The L3Q is a set of 32 bits, each of which signifies a separate function to be performed by the monitor . Fourteen
of these bits are available for use by device drivers . Before the monitor returns to a user job, it checks L3Q .
If a bit is set, the routine associated with that bit is entered . This process continues until no bits are set in L3Q,
at which time control returns to the user job .

A device driver signifies that it wants to use the L3Q mechanism using the DEVICE macro in the prefix file
used for the TBL assembly (see section 3 .4.9) . A three character name is specified in the DEVICE macro argument
list for each bit required by the driver .

Each name is used to create two unique symbols : Qxxnnn and nnn$xx, where "xx" is the device name and "nnn"
is the L3Q bit name . The Qxxnnn symbol refers to the associated bit in L3Q . The nnn$xx symbol is the name
of the routine in the driver to enter when the associated bit is set in L3Q . These symbols are globalized by the
TBL assembly .

The L3Q bit name may be any combination of three letters not already used for an entry point name in this
driver. Common names are CON for a continuation point and DNE for I/O completion processing .

3- 1 1

3.3 SYMBOLIC VALUES
Several symbols are used by device drivers . Each of these symbols represents a specific piece of information
that is either used by the driver or is used in the TBL assembly when building the monitor tables .

The following symbols are used in the driver and must be specified at the beginning of each driver : STS.xx,
FLG.xx, SIZ .xx and BUF .xx .

The following symbols are specified in the driver's xxPRE .MAC file. They are used when the monitor tables
are created during the TBL assembly . The symbols are : CNT.xx, DDS .xx, and, optionally, CCC .xx, BFQ.xx,
HOR.xx, SLP.xx and UMR .xx .

The TBL assembly produces several global symbols that are of use to the driver . These symbols are : ALT.xx,
TIM.xx, IDX .xx, JS .xx, CSR .xx, DEV .xx, xxDDB and LOG$xx .

3 .3 .1 STS.xx . - DDB Status Byte

Purpose : Define device status

File : xxDVR.MAC

Scope : Global

Example : STS .LP==DDRLO/400

STS .xx is equated to the desired value of DDSTS in the DDB . This byte describes the static characteristics of
the device . See section 2 .5 .1 for a description of the DDB .

Although DDSTS is a high order byte in the DDB, STS .xx is set up as a low order byte . The usual practice
is to combine the standard symbols representing the bit values in DDSTS and divide the result by 400 8 .

3 .3.2 FLG .xx - Device Dependent Flags

Purpose: Define device dependent flags for FLGTBL

File : xxDVR .MAC

Scope: Global

Example : FLG.PX==DDNFS!DDRLO!FLGPOS!FLGMOD!FLGFRC!376

FLG.xx defines the characteristics flags and handler index for this device . This value is used by the monitor
when building the FLGTBL table . The low byte of this word contains the handler index for the device . The
high byte contains a set of bits that describe the device characteristics . See section 2 .5 .5 .1 for a description of
the FLGTBL table and the characteristics flag bits .

The handler indices are the same for all systems . The values for all standard devices are defined in COM-
MON.MAC. User written drivers may use any handler index value that is not already assigned to a standard
device driver . The suggested method is to start user device handler indices at 376, and decrease this value by
two for each additional user written driver . Handler indices must be even .

3- 1 2

3.3.3 SIZ .xx - Line Width

Purpose : Define line width for the device

File : xxDVR.MAC

Scope: Global

Example : SIZ.LP==O

SIZ.xx defines the line width for this device . It has three possible values :

1 .

	

5* 14 . + 1

	

signifies that line width does not apply to this device .

2 .

	

width + 1

	

signifies that line width applies and is fixed to this size .

3 .

	

0

	

signifies that line width applies and is variable . The real line width will be
found in the DDHORC byte of the DDB .

3.3 .4 BUF.xx - I/O Buffer Size

Purpose: Define default buffer size in BUFTBL

File : xxDVR.MAC

Scope : Global

Example : BUF.LP==132 .

BUF.xx defines the default buffer size (in bytes) for this device . This value is entered into the appropriate word
of the BUFTBL table by the TBL assembly. If the user does not specify a buffer size when the device is opened,
this value will be loaded into FQBUFL in the FIRQB before the driver is entered for the open request . Allowable
values for BUF .xx are 2-32766 (2-77776 8) .

3 .3.5 CNT.xx - Number of Units for Device

Purpose : Define the number of units of a device present on the system

File : xxPRE.MAC

Scope : Local

Example : CNT .LP=2

CNT .xx specifies the number of units for this device . It is used during the TBL assembly to build the DEVCNT
table and to build a DDB for each unit of the device . It must be included in the prefix file included in the TBL
assembly (see section 3 .1) .

3 .3 .6 DDS .xx - DDB Size

Purpose : Define the size of the DDB for this device

File : xxPRE.MAC

Scope : Global

Example: DDS.LP=40

DDS.xx specifies the size (in bytes) of each DDB for this device . It is used to set aside space in the monitor's
read/write area during the TBL assembly . Although DDS .xx is defined as a local symbol in xxPRE .MAC, it
is globalized in the TBL assembly, and therefore may be referenced from the driver and other parts of the monitor .

3- 1 3

3 .3.7 CCC .xx - "C Flag

Purpose : Signify whether the device is "C interruptable

File : xxPRE .MAC

Scope : Local

Example : CCC .LP=l

CCC.xx is an optional flag that signifies whether I/O to this device can be interrupted by a "C . If CCC.xx is
equated to 1, the device uses small buffers for all of its I/O and the user I/O request can be aborted when a
"C is typed . If an I/O request is aborted, the monitor simply clears the JFREDO bit in the user's JDB and unstalls
the job . The driver is not notified of the abort . The TBL assembly will allocate a unique bit (JS .xx) in
JBSTAT/JBWAIT for devices that are "C interruptable (see section 3 .3 .15) .

If CCC.xx is equated to 0, or is not defined, the device performs DMA transfers directly to user buffers and
cannot be interrupted when a "C is typed . If a "C is typed, the JFCC or JF2cc bit will be set in the user's JDB
and can be checked by the driver if necessary . The TBL assembly will equate JS .xx to bit 0 in JBSTAT/JBWAIT
for devices that are not "C interruptable . This bit corresponds to the bit JS.SY.

3.3 .8 BFQ.xx - Buffer Quota

Purpose :

	

Define small buffer quota

File : xxPRE.MAC

Scope :

	

Global

Example: BFQ.LP=20 .

BFQ.xx defines the desired small buffer quota for the device . This value is stored in the DDB at offset
DDBUFC + BC and is used in the FREBUF subroutine call to check for small buffer availability (see section 3.5.1) .

A device's small buffer quota is used to specify the number of small buffers that the device is "quaranteed"
to have available for allocation . The monitor will not refuse a request for small buffers for a device that has
not already exceeded its quota unless less than 20% of the small buffers are available (see section 3.5.1) .

BFQ .xx is an optional parameter . If it is included in the xxPRE .MAC file, it will be assigned a value of zero .
BFQ .xx only has meaning for devices that use small buffers to hold data during I/O .

Since BFQ .xx is stored in the buffer control area of the DDB, the DDB must have been set up to include a buffer
control area and this area must be at the standard offset within the DDB (see section 2 .5 .1) .

3 .3.9 HOR .xx - Horizontal Line Width

Purpose :

	

Specify horizontal line width for device

File : xxPRE.MAC

Scope : Local

Example : HOR.LP=132 .

HOR.xx is an optional parameter that specifies the horizontal line width for this device . If HOR .xx is defined,
its value, plus one, will be stored in the DDHORZ and DDHORC offsets in each DDB for the device . If HOR.xx
is defined, the DDB must be of sufficient size to include DDHORZ and DDHORC and they must be at their
standard offsets within the DDB (see section 2.5.1) .

3- 1 4

3 .3.10 SLP .xx - Check Before Sleeping Flag

Purpose : Specify whether the driver needs notification before honoring a conditional sleep request .

File : xxPRE.MAC

Scope : Local

Example: SLP.LP=O

SLP .xx is an optional flag used to specify whether the driver has a SLP$xx entry point and wants to be notified
before honoring a conditional sleep request for a user who has the device assigned . If SLP .xx is defined and
is non-zero, the driver will be entered at its SLP$xx entry point before honoring conditional sleep requests . If
SLP .xx is defined as 0, or is not defined, the driver does not need a SLP$xx entry point and will not be notified
of conditional sleep requests . Conditional sleep requests are signified by the user by a negative value for the
time to sleep .

3.3.11 UMR.xx - Notify Driver When UMR is Available

Purpose: Specify that the driver contains a UMR$xx entry point and should be notified when
mapping register becomes available .

File : xxPRE.MAC

Scope : Local

Example : UMR .xx=O

UMR .xx is an optional flag used to specify whether the driver has a UMR$xx entry point and wants to be notified
when a unibus mapping register (UMR) is free . If UMR.xx is defined and is non-zero, the driver will be entered
at its UMR$xx entry point when a UMR becomes free if any driver failed in its last request for allocation of
a UMR. Note that this driver may not have been the one that failed . Note also that entry at UMR .xx does not
guarantee that a UMR is available . Another driver may have already allocated the last UMR before this driver
is called .

3 .3 .12 ALT.xx - Alternate Device Name

Purpose : Equated to the alternate device name, if any, specified in the DEVICE macro for this device .

File : TBL.MAC

Scope : Global

ALT.xx is equated to a device's alternate name (synonym) if an alternate name was specified in the DEVICE
macro in the xxPRE .MAC file (see section 3 .4.9) . This symbol is produced by the TBL assembly and will exist
only if the device has an alternate name and that name is not already in use as the name of a previously defined
device .

a unibus

3- 15

3.3 .13 TIM .xx - Timeout Clock Setting

Purpose : Used to specify the amount of time to wait on a device operation request before taking special
action .

File : TBL.MAC

Scope : Global

Example : MOV #5,TIM .LP(RO)

TIM .xx is the address of the first word in the timeout table (TIMTBL) assigned to this device . It is defined by
the TBL assembly. If there is more than one unit configured for this device, the entries for the additional units
follow TIM .xx in the table . They are accessed using the unit number times two as an offset from TIM .xx .

Each time an operaton is started, the word in TIMTBL corresponding to the desired unit should be set to the
maximum number of seconds, plus one, that the operation could take to complete . When the operation completes,
this word should be cleared . The device driver will be entered at its TMO$xx entry point if a device fails to complete
the requested function within the allotted time .

3 .3 .14 IDX.xx - Driver Index

Purpose : Defines the driver index

File : TBL .MAC

Scope : Global

IDX .xx is the driver index code for this device driver . Each device driver is assigned a unique code by the TBL
assembly. This index code is used to access information in many of the monitor's tables . It is stored in each
DDB at offset DDIDX .

3 .3 .15 JS .xx - JBWAIT/JBSTAT Status Bit

Purpose : Bit to set in JBWAIT to stall a job while waiting on I/O from specified device . Bit to set in
JBSTAT to destall a job previously stalled by setting the corresponding bit in JBWAIT .

File : TBL.MAC

Scope: Global

Example : CALLX IOFINI,R5,JS.LP

JS .xx is equated by the TBL assembly to a bit value to set in the caller's JBWAIT word when the job needs
to be stalled by the driver . If the AND of a job's JBWAIT word with its JBSTAT word does not produce a
non-zero result, the job is not runnable . The bit or bits set in JBWAIT signify what the job is waiting for .

When a driver is entered at its SER$xx entry point, the driver's JS .xx bit has already been set in the calling job's
JBWAIT word to show that the job should wait on service by the device . When the service routine exists by
jumping to IOEXIT, the JS .xx bit will be set in the calling job's JBSTAT word, making the job runnable again .
If the service routine exits to IOREDO, the job is left in its non-runnable state .

3- 1 6

3 .3.16 CSR.xx - Pointer to CSR Address

Purpose : Point to the entry in CSRTBL for this device

File : TBL.MAC

Scope: Global

Example : MOV CSR.LP,Rl ;Get CSR address for LPO :

CSR .xx is equated by the TBL assembly to the entry in CSRTBL that corresponds to the CSR address for this
device. CSRTBL is loaded with the starting CSR address for each unit of each standard device . It contains zero
entries for a user written driver .

Since CSRTBL is contained in a read-only area of the monitor it cannot be changed by the driver and, therefore,
is of limited use to a user written driver . It is included here for purposes of understanding standard device drivers .

User written device drivers should define the CSR address in a word in the xxDVR PSECT . This word can then
be used in the same way CSR .xx is in standard drivers . This word should be globalized to allow easy change
to the CSR address . See section 3 .6 .

3 .3 .17 DEV .xx - Pointer to DDB for Unit n

Purpose : Entry in DEVTBL where the DDB pointers for this device start .

File : TBL.MAC

Scope : Global

Example : MOV DEV .LP(RO),R3 ;Get DDB pointer for unit in RO

DEV .xx is equated by the TBL assembly to the address in DEVTBL where the DDB pointers for this device
start . If this is a disk device, DEV .xx is equated to the address in UNTCNT where information for this device starts .

If the device has more than one unit, the entries for the additional units will immediately follow the entry for
unit 0 at DEV .xx . By using the unit number times two as an offset from DEV .xx the address of the DDB (or
UNTCNT entry) can be retrieved for the appropriate unit of a device .

3.3 .18 xxDDDB - Address of Unit 0 DDB

Purpose : Point to first DDB for this device

File : TBL.MAC

Scope: Global

Example : MOV LPDDDB,RO

	

;Get pointer to DDB for LPO :

xxDDDB is equated by the TBL assembly to the address of the beginning of the first DDB for this device . If
the device supports more than one unit, the D DDB's for the additional units are located immediately following
the unit 0 DDB . The DDB for a specific unit can be found by indexing from xxDDDB by the unit number times
DDS .xx. Note that xxDDDB is a symbol that is equated to the address of the DDB . It is not a location that
contains a pointer to the DDB .

3- 17

3 .3.19 LOG$xx - Enter Error Logging

Purpose : Initiate error logging

File : TBL.MAC

Scope : Global

Example : LOG$LP

LOG$xx is equated by the TBL assembly to a unique EMT instruction for each device . If the LOG$xx symbol
is executed as an instruction, the driver will be entered at it's ERL$xx entry point . This routine will then log
a device specific error using common error logging code within the monitor and return . LOG$xx is only used
if the driver logs errors .

3 .3.20 WAIT2T - Reenter After Two Clock Ticks

Purpose : Reenter at L3Q entry point after two clock ticks

File : Not applicable

Scope :

	

Global

Example: BIS #QPXCON,WAIT2T

WAIT2T is a global location within the monitor . It is used to specify bits that are to be set in L3QUE after
waiting for two clock ticks . This is very useful if a driver needs to wait for less than a second for some condition
before continuing execution .

To use WAIT2T, OR the appropriate L3Q bit assigned to the driver into the global location WAIT2T . Only
bits in L3QUE may be set . No bits can be set in L3QUE2. After two clock ticks have passed, the specified bit
will be set in L3QUE and the driver will be reentered at the specified L3Q entry point .

3.4 SYSTEM MACROS
Several useful macros are defined in the COMMON.MAC, KERNEL.MAC and CHECK .MAC source files that
come with the RSTS/E distribution . These macros should be used when writing a device driver to ensure
standardization of coding and to help guarantee the integrity of device related monitor tables .
Some of these macros are described in the System Directives Manual. These macros are : TITLE, DEFORG,
ORG, TMPORG, UNORG, INCLUDE, DSECT, BSECT, EQUATE, GLOBAL, BLKWO, JMPX, CALL,
CALLX, CALLR, CALLRX, and RETURN . These macros are already described in the System Directives Manual
and will not be discussed here .

Several other macros are available for use in device drivers . They are : . BR, CALLR, PUSH, POP, ASSUME,
REGSAV, REGSCR, REGRES, DEVICE, BUFFER, GETUSR, PUTUSR, SETERR, ERROR, L3QSET, MAP,
SPL, SPLC and CRASH . These macros are described in the following section .

3 .4.1 BR - Branch to Following Location

Format : BR

	

loc

Arguments: loc

	

Location to branch to

Example : BR

	

DMPFIL

The BR macro is used when a branch is required to a routine that immediately follows the current location .
This macro verifies that the desired location immediately follows the BR call . If it does not, an assembly error
is generated . The BR macro does not generate any executable code . This macro should be used when a routine
would normally fall through into another routine rather than branching to it .

3.4.2 CALLR - Call Following Routine and Return

Format : CALLR

	

loc

Arguments: loc

	

Location to call

Example: CALLR PRTAL

The CALLR macro performs the same function as the BR function . It is used when a CALLR is required to
the location immediately following the . CALLR usage . This macro should be used when a routine would normally
fall through into another routine rather than calling it with the CALLR macro .

3.4.3 PUSH - Push a Value on the Stack

The PUSH macro pushes a single value or a list of values onto the SP stack . If no argument is provided with
this macro call, a zero will be pushed . This macro generates the following code for each value in the argument list :

MOV value,-(SP)

3- 19

Format : PUSH value
or : PUSH < list >

Arguments : value Value to be pushed on the stack
list List of values to be pushed on the stack

Example : PUSH < R0,R1 >

3 .4 .4 POP - Pop a Value from the Stack

The POP macro pops one or more values from the SP stack into the specified destination. The destination may
be any of the standard instruction destination types . If no argument is provided with this macro call, the top
element of the stack is discarded . This macro generates the following code for each value in the argument list :

MOV (SP)+,destin

3 .4 .5 ASSUME - Verify Assumption

The ASSUME macro is used to verify assumptions, such as the value of certain symbols or the current program
location. The condition codes speicfied by "cond" are the same as used in conditional branches . If the condition
is specified by "cond" is not true for the two arguments, an assembly error is generated .

3.4 .6 REGSAV - Save Registers RO-R5

Format : REGSAV [inline]

Arguments : inline

	

"INLINE" specifies that the code to save RO-R5 should be generated inline
at the current location . If this parameter is not specified, a call will be made
to a routine to save the registers .

Example: REGSAV
or: REGSAV INLINE

The REGSAV macro causes registers RO through R5 to be saved on the SP stack . These values can
be restored using the REGRES macro, described in section 3 .4.8 .

REGSAV defines the local symbols TOS .RO, TOS.R1, TOS .R2, TOS.R3, TOS .R4, TOS .R5,
TOS .PC, and TOS.PS. These symbols correspond to the offset from (SP) to the saved values of RO,
R1, R2, R3, R4, and R5, as well as PC and the PSW, which will be already on the stack if REGSAV
is called during interrupt processing . The INTSAV and INTSVX subroutines call this subroutine
before dispatching to the interrupt service routine .

3-20

Format: POP destin
or : POP < list >

Arguments : destin Destination to pop top of stack into
list List of destinations to pop top of stack into

Example : POP < R 1,R2 >

Format : ASSUME argl cond arg2

Arguments : argl First value
arg2 Second value
cond Assumed relation between argl and arg2

Example : ASSUME XRBC EQ 2

3 .4 .7 REGSCR - Save Registers Co-Routine
Format : REGSCR

Arguments : None

Example: REGSCR

The REGSCR macro is identical to the REGSAV macro except that the REGRES macro is not used to restore
the registers . Instead, the REGSCR subroutine, which the REGSCR macro calls, returns to the caller as a co-
routine . When the calling routine exits with an RTS PC, the saved values of RO-R5 will be automatically restored .
The caller must be a subroutine that was called with a JSR PC .

REGSCR defines the local symbols TOS .RO - TOS .R5 to the same values as used by the REGSAV macro (see
section 3 .4.6) . The symbols TOS .PC and TOS .PS are not defined by this macro . Instead, the symbol TOS.RA
is defined as the offset from (SP) that corresponds to the saved return address .

3 .4 .8 REGRES - Restore Registers

Format : REGRES

Arguments : None

Example : REGRES

The REGRES macro is used to restore the registers saved with the REGSAV macro (see section 3 .4.6) . It restores
registers RO through R5 from the stack .

3 .4 .9 DEVICE - Define Device Driver Information

This macro is used during the TBL assembly to define the information needed for all device related monitor
tables for this device . It is always contained in the xxPRE .MAC file that is used in the TBL assembly (see section
3 .7) . If the device name synonym conflicts with the name of a standard RSTS/E device or synonym already
included in this system, the synonym will be ignored .

If a driver needs to establish additional entry points for performing extended processing for an interrupt service
routine, it can do so by defining a bit in L3Q for each additional entry point required . See section 3 .2.12 for
a discussion of L3Q entry points . If any L3Q bit names are specified, they must follow the rules for L3Q bits
specified in section 3 .2 .12 .

If an L3Q bit name is entered in the form < 13gbit,apr > , the contents of the location specified by "apr" will
be used to load APR5 before dispatching to the L3Q entry point . This allows the use of coordinating drivers .
For example, DEVICE KB,TT, < < FMS,FMS > > defines an L3Q bit named QKBFMS and specifies that the
value in FMSAP5 should be used to load APR5 before dispatching to the L3Q entry point, FMS$KB . This allows
non-phased device drivers to be larger than 4 K-words .

The DEVICE macro defines the following global symbols for the driver : JS .xx, IDX.xx, LOG$.xx, TIM.xx,
CSR.xx, xxDDDB and, ALT .xx. See section 3 .3 for more information on these symbols .

3-2 1

Format : DEVICE name,[alt][, < 13gbit >]

Arguments : name Two character device name
alt Synonym for device name (optional)
13gbit List of L3Q bit names to define for this device (optional)

Example : DEVICE DY,DX, < CON >

3.4 .10 BUFFER - Allocate/Deallocate Small Buffers

The BUFFER macro is used to allocate and deallocate monitor buffers . The first parameter of the BUFFER
call specifies what type of function should be performed, as follows :

GETSML allocates a small buffer from the monitor pool . A pointer to the allocated buffer is returned in R4 .
The number of small buffers to leave in the monitor pool after allocating this one is specified by the "leave'
parameter . This value is used to ensure that the monitor will never get into a situation where it is totally out
of small buffers, causing a crash . A driver should typically specify a value of 20 (decimal) for "leave' .

When the driver requests allocation of a small buffer, the monitor performs several checks before granting the
request . If the request is fulfilled, GETSML will return with the V-bit clear . If the request is denied, the V-bit
will be set .

The "clear' parameter is used to specify the number of bytes to clear in the small buffer after it is allocated .
Unless the driver specifically needs the buffer to start with a sequence of zero bytes, this parameter should not
be specified or should be specified with a value of zero .

RETSML returns a large buffer to the monitor pool or XBUF . Register R4 points to the buffer to return . This
buffer must have been previously allocated from the monitor small buffer pool using the GETSML function .

RETURN returns a large buffer to the monitor pool or XBUF . (See section 3 .5 .5 for information on allocating
large buffers .) Register R4 is a "contorted' pointer to the buffer header of the buffer to return .

A contorted address is used to point to buffers that may be in either the small buffer pool or the extended cache
area, XBUF . If the low order five bits of the address are zero, the pointer is the address of a buffer in the small
buffer pool. If the low order five bits are non-zero, the pointer is an address in the extended buffer pool that
has been rotated left seven bits to ensure that the low order bits are non-zero .

3-22

Format: BUFFER GETSML, clear, leave
or : MOV

	

smlptr,R4
BUFFER RETSML

or: MOV

	

lrgptr,R4
BUFFER RETURN

Arguments : clear

	

Number of bytes in the small
GETSML.

buffer to preset to 0 before returning from

buffers to leave in the monitor pool after
buffers .

return .
for buffer to return .

leave

	

Minimum number of small
allocating the requested small

smlptr Address of small buffer to
lrgptr

	

Address of large buffer header

Example : BUFFER GETSML,,20 . ;Get a small buffer
or : MOV BUFPTR,R4 ;Point to buffer to return

BUFFER RETSML ;Return the small buffer
or : MOV BUFPTR,R4 ;Point to buffer header

BUFFER RETURN ;Return the large buffer

The RETURN function requires that the buffer starts with a buffer header . The buffer header has the following
format :

Symbol Offset

	

Offset Symbol

0 BF.SIZ
2 BF.OFF
4 BF.LNK
6 BF.CNT

Offset

	

Symbol

	

Description

0

	

BF.SIZ

	

This word specifies the size of the buffer in bytes .

2

	

BF.OFF

	

This word specifies a byte offset from the beginning of the buffer (ie . BF.SIZ) to the data
in the buffer . This offset is almost always 8 for buffers used by device drivers .

4 BF.LNK This word contains a pointer to the next buffer header in a linked list . If the low order
five bits of the pointer are non-zero, the pointer is the "contorted' address of the next
buffer in the extended buffer pool, XBUF .

6

	

BF.CNT

	

This word specifies the number of bytes of data contained in this buffer .

3.4.11 GETUSR - Get Byte from User Buffer

Format : GETUSR

Arguments : R2

	

Receives byte from user buffer
R5

	

Pointer to byte in user buffer to be retrieved
R2

	

Receives byte from user buffer

Example : GETUSR

The GETUSR macro is used to fetch a character from the user's buffer . It is normally used to copy data from
a user's buffer into small buffers in the SER$xx routine of a driver .

Before the monitor enters a driver at its SER$xx entry point, it maps the buffer pointed to by XRLOC in the
user's XRB using APR6 and returns a pointer to this buffer in R5 . This pointer is used in the GETUSR call .

Each time the GETUSR macro is executed the character pointed to by R5 is retrieved from the user buffer . The
value of R5 is automatically incremented after each use . If an attempt is made to access a character past the
end of the portion of the user's buffer that is currently mapped, APR6 will be automatically updated to map
the next portion of the buffer .

3.4.12 PUTUSR - Store Byte in User Buffer

Format : PUTUSR

Arguments : R2

	

Character to store in user buffer
R5

	

Pointer to location in user buffer to receive character

Example : MOV

	

#40,R2

	

;Load a SPACE for PUTUSR
PUTUSR

	

;Put the SPACE in user buffer

The PUTUSR macro is used to store information in a user's buffer . It is normally used to transfer data from
monitor buffers into the user's data buffer .

Before the monitor enters a driver at its SER$xx entry point, it maps the buffer pointed to by XRLOC in the
user's XRB using APR6 and returns a pointer to this buffer in R5 . This pointer is used in the PUTUSR call .

Buffer size
Offset to data in buffer

Link to next buffer
Size of data

3-23

6

Each time the PUTUSR macro is executed the character contained in R2 is transferred to the user's buffer at
the location pointed to by R5 . The value of R5 is automatically incremented after each use. If an attempt is
made to store a character past the end of the portion of the user's buffer that is currently mapped, APR6 will
be automatically updated to map the next portion of the buffer .

3 .4.13 SETERR - Post Error Code

The SETERR macro moves a standard error code to the specified destination . The most common destination
for an error code is the first byte of the calling job's FIRQB . This byte is pointed to by the location IOSTS
in the monitor and can be referenced using @a IOSTS .

If the third argument in the macro is the word "WORD', the error code will be moved to the destination as
a word. This clears the high byte of the destination .

The error code is globalized . It will be resolved when the driver is linked with the monitor. The standard error
codes are contained in the file ERR .STB and are listed in the RSTS/E System Directives Manual .

3 .4.14 ERROR - Post Error Code and Exit

Format: ERROR

	

errcod

Arguments: errcod

	

RSTS/E error code to post to IOSTS

Example: ERROR

	

PRVIOL

The ERROR macro is equivalent to using the SETERR macro to post an error to IOSTS, followed by a RETURN .
The error code is globalized . It will be resolved when the driver is linked with the monitor . See section 3 .4 .13
for more information .

3.4.15 L3QSET - Set Bit in L3Q

Format : L3QSET

	

bit[,bit2]

Arguments : bitl :

	

Bit to set in L3QUE or L3QUE2
bit2 :

	

Optional bit to set in L3QUE

Example: L3QSET

	

QDXCON

The L3QSET macro is used to set bits in the Level Three Queue (L3Q) . The specified bit or bits can be any
of the standard L3Q bits defined in KERNEL .MAC or they can be the L3Q bits defined for the driver in the
DEVICE macro . To specify a bit in L3QUE, bit 15 should be set in "bitl' . If it is not set, the specified bit will
be set in L3QUE2. See sections 3 .2.12 and 2 .2 for a discussion of the Level Three Queue .

3-24

Format : SETERR errcod,destin[,WORD]

Arguments : errcod RSTS/E error code to post to the destination .
destin Location to receive error code .
WORD The error code should be moved as a word .

Example : SETERR HNGDEV,@a IOSTS

3 .4.16 MAP - Access Memory Management Registers

Format : MAP

	

source ,[OFFSET= offset,]APR=aprval[,CODE][, DATA][, PIC]
PUSH
POP

Arguments: source

	

Value to load into selected APR . If "PUSH' is used, the current value of the
specified APR is pushed on the SP stack . If "POP' is used, the top of the
SP stack is popped into the specified APR .

offset

	

Constant offset to add to the value specified in "source" .
aprval

	

APR number
CODE

	

The I-space register should be used on processors that support I and D space .
DATA

	

The D-space register should be used on processors that support I and D
space .

PIC

	

Generate position independent code .

Example : MAP

	

LPDAP5,APR=6,DATA
or : MAP

	

XBUAP5,OFFSET= 100,APR=6,CODE,DATA
or : MAP

	

PUSH,APR=6,DATA
or : MAP

	

POP,APR=6,CODE

The MAP macro is used to access the memory management registers . It must be used whenever the memory
management registers are accessed .

If "source' is a value, that value will be loaded into the specified APR register . If an offset is specified, that
offset is added to the value loaded into the APR . If used, the offset value must be a constant .

If the source is specified as "PUSH', the current contents of the specified APR will be pushed onto the SP stack .
If "POP' is specified, the contents of the SP stack will be popped and stored in the specified APR .

The only destination that can be specified for the MAP macro is the top of the stack or an APR . If you need
to move the contents of an APR to a location other than the top of the stack, the following code can be used :

MAP PUSH,APR=6,DATA
POP destin

The only memory management register available to a driver is APR6 . This register can be used to map such
areas as the extended buffer area (XBUF), the FIP pool, or user buffers . Note that the monitor maps (using
APR6) the user's XRB on a SPEC, READ, or WRITE call before entering the driver .

Since RSTS/E supports I and D space on processors that support it, the MAP macro must specify which space
to use. It can specify CODE, DATA, or both . By specifying PIC in the macro call, position independent code
will be generated .

3 .4.17 SPL - Set Processer Priority

Format : SPL

	

prlvl

Arguments: prlvl

	

Desired priority level

Example : SPL

	

7

The SPL macro sets the processor status word (PSW) to a specific priority . The condition codes and trap bit
contained in the PSW are not effected .

3-25

3 .4.18 SPLC - Set Program Status Word

Format : SPLC

	

prlvl

Arguments: prlvl

	

Desired priority level

Example: SPLC

	

7

The SPLC macro is identical to the SPL macro except that is also clears the condition codes and trap bit in
the program status word . See section 3 .4.17 for a description of the SPL macro .

3.4.19 CRASH - Crash the System

I

Format : CRASH

Arguments : None

Example: CRASH

The CRASH macro is used to crash the monitor in an orderly fashion and cause an automatic restart . This macro
should obviously be used with great discretion . A driver should always take any other action that is possible
rather than crashing the entire system .

This macro generates a . WORD 107 . This is a special reserved instruction used to note a software forced system
crash . If monitor ODT has been loaded, ODT will be entered for an external breakpoint before the system crashes .

3.5 MONITOR SUBROUTINES
Several subroutines are provided within the monitor for use by device drivers . These subroutines control job
status and small buffer usage and perform error logging .

The following subroutines will be described in this section : FREBUF, STORE, FETCH, CLRBUF, BUFFER,
RETCHN, INTSAV, INTSVX, IOFINI, IOFINC, IOREDO, RTI3, RETDEV, ERLDVR, QUEUER, FNDJOB,
UNLOCK, CLRRSQ, DMPJOB, MAPBUF, GETUMR, RHMADR and RELUMR .

3 .5.1 FREBUF - Check Small Buffer Availability

The FREBUF subroutine checks that enough small buffers are available to allocate at least as many small buffers
as specified in the buffer quota, BFQ .xx . The C-bit shows the results of the check. If the C-bit is clear, sufficient
buffers were available . Note that FREBUF only checks for availability, it does not actually allocate any buffers .

The request will only succeed if the following conditions are met : (1) There are more than 10 small buffers available
in the monitor pool . (2) The device is under its buffer quota. (3) The device is over its quota, the system has
at least 20% of its buffers available and this device has not already been allocated 25% of the total small buffers .

If there are not at least 10 small buffers available when FREBUF is called, the caller will be stalled until the
system recovers from this critical shortage of buffers .

3 .5 .2 STORE - Store Character in Small Buffer

The STORE subroutine is used to store characters in a small buffer chain . Each small buffer chain controlled
by the driver has a small buffer control area in the DDB (see section 2.5 .1 .3). The STORE subroutine requires
an argument which is the fill pointer for the buffer chain in the DDB .

When the store subroutine determines that the current small buffer is full, it will attempt to allocate a new one .
If there are sufficient small buffers available in the pool, this allocation succeeds . The new small buffer is linked
into the buffer chain and the character is stored in the new small buffer .

If there are not enough small buffers in the pool to honor the request, the allocation will fail and the character
will not be stored . In this case the driver should stall the job by exitting through IOREDO if it is in the I/O
service routine, or post an error or take device specific action if it is in the interrupt service routine .

3-27

Call : CALLX STORE,R5,ddbufc + FP

Input : ddbufc Offset within the DDB to the small buffer control area for the buffer chain
in use. This is DDBUFC, unless the DDB contains more than one buffer
chain .

R1 Pointer to DDB .
R2 Byte to store in small buffer .

Output : R4 Random
C-bit Set: Store failed due to small buffer shortage

Clear: Store succeeded

Example : CALLX STORE,R5,DDBUFC + FP

Call : CALLX FREBUF,R5,BFQ.xx

Input : BFQ .xx Initial small buffer quota
R1 Pointer to the DDB for this unit

Output : R4 Random
C-bit Set: Insufficient buffers are available .

Clear: Sufficient small buffers are available .

Example : CALLX FREBUF,R5,BFQ.LP

3.5.3 FETCH - Get Character from Small Buffer

The FETCH subroutine retrieves a character from the specified small buffer chain (see section 2.5 .1 .3) . The
characters are stored in a first-in first-out basis . If there are no characters pending in the small buffer chain,
FETCH will return with the C-bit set to signify failure . If a small buffer becomes empty, it will be returned
to the small buffer pool .

This subroutine uses the BUFFER macro to return small buffers to the monitor pool as they become empty .

3 .5.4 CLRBUF - Return All Small Buffers

The CLRBUF subroutine returns all the small buffers in the specified small buffer chain . Any data stored in
the small buffers will be lost. This subroutine is normally used to flush any pending input when a device is closed .

3 .5 .5 BUFFER - Allocate a Large Buffer

3-28

Call : CALLX FETCH,R5,ddbufc+EP

Input : ddbufc Offset within the DDB to the small buffer control area for the buffer chain
in use. This is DDBUFC, unless the DDB contains more than one buffer
chain .

RI Pointer to DDB

Output : R2 Character fetched (if successful)
R4 Random
C-bit Set: Fetch failed (no more data in small buffers)

Clear: Fetch succeeded

Example : CALLX FETCH,R5,DDBUFC+EP

Call : CALLX CLRBUF,R5,ddbufc+EP

Input : ddbufc Offset within the DDB to the small buffer control area for the buffer chain
in use. This is DDBUFC, unless the DDB contains more than one buffer
chain .

RI Pointer to DDB

Output : R4 Random

Example : CALLX CLRBUF,R5,DDBUFC+EP

Call : CALLX BUFFER,R5,start

Input : start Global symbol corresponding to the buffer pool to start searching in for free
space. The global symbols can be MONPOL, for the small buffer pool,
LRGPOL, for the large buffer pool, and EXTPOL, for the large buffer pool
that is permanently mapped for DMA transfers .

R1 Requested buffer size (in bytes)
R2 Number of buffers to leave in the monitor's pool (MONPOL)

Output : R1 Size of buffer allocated . If the requested buffer size was not mod 40 8 from
MONPOL or mod 1008 from LRGPOL or EXTPOL, its size will be rounded
up appropriately .

R4

	

Pointer to the buffer allocated . If the least significant five bits are zero, the
pointer is to a buffer in MONPOL . If not, the pointer is a "contorted"
address (see section 3 .4 .10) into LRGPOL or EXTPOL and APR6 has been
mapped to the base of the buffer . In either case, a null buffer header has
been built at the beginning of the buffer (see section 3 .4.11) .

C-bit

	

Set: The request failed due to lack of buffer space .
Clear: The request succeeded .

Example: CALLX

	

BUFFER,R5,LRGPOL

The BUFFER subroutine is used to allocate a buffer which is typically more than 16 words in size . It is allocated
from the monitor pool or XBUF space unless a specific starting point in XBUF is specified .

Use the BUFFER (RETURN) macro to return a buffer allocated with this subroutine . See section 3 .4 .10 for
more information .

3 .5.6 RETCHN - Return All Large Buffers in a Chain

Call : CALLX

	

RETCHN

Input : R4

	

Address of first buffer in the chain . If the least significant five bits of the
address are non-zero, the address is a "contorted" pointer to a buffer in
XBUF space. See section 3 .4.10 for more information on contorted address
poiners .

Output : R3

	

Random
R4

	

Random

Example : MOV

	

BUFPTR,R4

	

;Point to first buffer in chain
CALLX

	

RETCHN

	

;Return all buffers in chain

The RETCHN subroutine returns all large buffers in a chain to their appropriate buffer pool . The individual
buffers may belong to any of the buffer pools. Each buffer is headed by a standard buffer header (see section
3.4.10). The buffers are linked using the BF .OFF word in the headers .

3 .5 .7 INTSAV - Enter Interrupt Service Routine

Call : CALLX

	

INTSAV,R5
•

	

1200
•

	

INT$xx

Input : 1200

	

The interrupt service routine is mapped using APR5, therefore its virtual base
address corresponds to 120000 8 . The number 1200 8 corresponds to this
address .

INT$xx

	

This word specifies the address of the interrupt service routine within the
driver .

Output : All registers preserved .

Example : CALLX

	

INTSAV,R5
•

	

1200
•

	

INT$LP

3-29

The INTSAV subroutine is used to map the interrupt sevice routine and save all registers before entering the
interrupt service routine to process a device iterrupt . The call to INTSAV must be contained in the first four
words of the xxDINT PSECT . In most cases the xxDINT PSECT contains only this call .

When the device interrupt is vectored to xxDINT, the call to the INTSAV subroutine will save RO through R5,
map the driver to a base address of 120000 8 using APR5 and enter the interrupt service routine at the driver's
INT$xx entry point . See section 3 .2.7 for information on the INT$xx entry point .

3 .5.8 INTSVX - Enter Secondary Interrupt Routine

Call : CALLX

	

INTSVX,R5
•

	

xxDAP5
•

	

entry

Input : xxDAP5

	

This global symbol points to the APR5 base value specified in the INTSAV
subroutine call .

entry

	

This word specifies the entry point within the interrupt service routine to
transfer to .

Output : All registers preserved .

Example : CALLX INTSVX,R5
• LPDINT + 4
•

	

INTLP2

The INTSVX subroutine is identical to the INTSAV subroutine, except that the first parameter is a pointer to
the value to load into APR5, whereas the first parameter in the INTSAV subroutine is the actual value .

The INTSVX subroutine is used in device drivers that support multiple interrupt vectors and that choose not
to combine all the vectors into one entry point (see section 3.1 .1 .2) . Since the preferred method for supporting
multiple vectors is to use only one entry point, the INTSVX subroutine is seldom needed .

3 .5.9 IOFINI - I/O Finished

The IOFINI subroutine is used by an interrupt service routine to signify that the associated job should be made
runnable. The bit corresponding to JS .xx (which was set in JBWAIT to stall the job) will be set in the job's
JBSTAT word . The next time the scheduler is envoked the job will be eligible for execution . If there are no
other jobs currently executing, the scheduler will be envoked immediately . The call to IOFINI is normally followed
by the RETURN that exits from the interrupt service routine .

Note that, if the job is marked for I/O redo (JFREDO set in JDFLG), the driver will be reentered at its SER$xx
entry point when the job is scheduled for execution . The user program will not be executed until the I/O service
routine exits to IOEXIT . See sections 3 .2.5, 3 .3 .15, and 3 .5 .11 .

3-30

Call : CALLX IOFINI,R5,JS .xx

Input : BFQ .xx Initial small buffer quota .
count Minimum number of small buffers available in quota to allow IOFINI .
JS .xx JBSTAT bit to set to make the job runnable .
RI Points to the DDB for this unit .

Output : R4 Job number times 2

Example: CALLX IOFINI,R5,JS.LP

3.5 .10 IOFINC - I/O Conditionally Finished

The IOFINC subroutine performs the same function as IOFINI, but only if a specified number of small buffers
are "guaranteed" to be available to the driver . It is useful for continuing execution of the job (or performing
an I/O redo) before the driver's small buffer chain is totally empty . This tends to maintain continuous output
on the device .

The INFINC subroutine checks the number of small buffers currently allocated to the device . If the device can
allocate the number of small buffers specified by "count" and not exceed its buffer quota, IOFINI will be called
to set the specified bits in JBSTAT . See section 3 .5.9 .

3 .5 .11 IOREDO - Stall for I/O Redo

Call : JMPX

	

IOREDO

Input : None

Output: None. This is an exit routine .

Example: JMPX

	

IOREDO

The IOREDO is used when the I/O service routine (SER$xx) needs to be reentered at a later point . This is normally
caused by a need to wait for small buffer availability . If the I/O service routine exits to this routine, the JFREDO
bit is set in the job's JDFLG word and the job is stalled .

When the interrupt service routine exits through IOFINI the driver will be made resident, if necessary, and reentered
at its SER$xx entry point . The C-bit will be set and the V-bit will be cleared to signify that this is an I/O redo .

This exit should be taken by the I/O service routine any time it needs to wait for something that the interrupt
service routine has control over . The normal use of this exit is to wait until the interrupt service routine needs
the I/O service routine to move data between small buffers and the user's buffer .

3 .5.12 RTI3 - Exit and Check Level Three Queue
Call : JMPX

	

RTI3

Input : None

Output : None. This is an exit routine .

Example: JMPX

	

RTI3

The RTI3 routine is used as the normal exit point for the special service entry point, SPC$xx . It restores registers
RO through R5 and checks L3Q for any pending requests . If requests are found, it dispatches to the appropriate
routine to service the request . Many of the exits from other entry points in a driver enter RTI3 automatically
before returning to the caller .

3-3 1

Call : CALLX IOFINC,R5 < BFC .xx-count,JS .xx >

Input : BFQ.xx Initial small buffer quota .
count Minimum number of small buffers available in quota to allow IOFINI .
JS.xx JBSTAT bit to set to make the job runnable .
R1 Points to the DDB for this unit .

Output : R4 Job number times 2

Example: CALLX IOFINC,R5, < BFQ .LP-4,JS.LP >

5 .3.13 RETDEV - Return an Open Device

OThe RETDEV subroutine is used in the open routine (OPN$xx) of a device driver if the open fails . The RETDEV
subroutine cancels all setup for the open that was previously done by the monitor . RETDEV must be called
any time an open fails for device dependent reasons .

3.5 .14 ERLDVR - Enter Error Log Entry

Call : CALLX

	

ERLDVR,R5
.BYTE

	

errcod
.BYTE

	

ddbsiz
.BYTE

	

offset,regcnt

.BYTE

	

0,0

Input : errcod

	

Error code to enter in error log
ddbsiz

	

Size of DDB
offset

	

Offset from CSR to first register to log
regcnt

	

Number of registers to log
R 1

	

Pointer to DDB
R3

	

Pointer to CSR for this device

Output : RO

	

Pointer to timeout flag in error log table
R 1

	

Random
R2

	

Pointer to terminator in error log table
R3

	

Random
R5

	

Pointer to error logging control table

Example : CALLX

	

ERLDVR,R5
.BYTE

	

377
.BYTE

	

DDS.AR
.BYTE

	

0, 8 .
.BYTE

	

0,0

The ERLDVR subroutine is used to log errors . The TBL assembly defines a macro instruction, LOG$xx, which
can be used to initiate eror logging. When the LOG$xx instruction is executed, the driver's error logging routine
is entered at ERL$xx . The code at ERL$xx then calls the ERLDVR routine and passes it a list of information to log .

The first argument to ERLDVR is an error code to identify the type of error . The current error codes are defined
in KERNEL .MAC as ERC$xx . In addition to the codes defined by KERNEL, code 55 is used for unrecognized
messages and code 56 is used for SHUTUP requests . A user written driver can use any code not already in use
up to a value of 61 .

The second argument specifies the size of the DDB, in bytes. The entire DDB pointed to by RI will be copied
to the error log .

The following arguments are a list of byte pairs . The first byte in each pair is an offset from the beginning of
the CSR (pointed to by R3) to the first device register to copy into the error log . The second byte specifies the
number of registers to copy .

3-32

Call : CALLX RETDEV

Input : R1 Pointer to DDB for this unit
R5 Pointer to job's IOB entry for this channel

Output : R2 Random

Example: CALLX RETDEV

If the device supports the RH70 massbus interface, there can be at most three byte pairs . Otherwise, there can
be up to four byte pairs . The last byte pair is followed by a byte pair of zeroes. The maximum number of byte
pairs includes the special entries described below .

ERLDVR returns a pointer to a location to use as a timeout flag in R0 . The pvalue at this location is returned
as zero . If the error is due to a timeout, this value should be made non-zero .

ERLDVR also returns a pointer to the end of the control table . This pointer can be used to modify the error
log to include information about a device that is not normally available in its device registers . This information
is entered using a special routine in the driver . A pointer to this special routine is appended to the control table,
as follows :

ERLDVR returns with a pointer to the end of the control table in R2 . Store a number in the byte pointed to
by R2 that specifies the number of words that will be supplied by the special routine . Store a -4 in the following
byte . Store the address of the special routine in the following word . Follow this word with a -1 .

When the monitor error logging routine is entering information in the error log message, it will call the specified
special routine . R5 will point to the next available entry in the message buffer . The special routine then loads
each succeeding word in the message buffer with the appropriate information and returns with R5 pointing to
the next available word in the message buffer .

The following example shows the use of this special capability :

;+
ERLDXM - Special error logging data

3-33

ERL$DX: : CALLX
.BYTE
.BYTE
.BYTE

ERLDVR,R5
ERC$DX
DDS.DX

;Call error logger
;Error code is DX error
;Size of DDB for DX driver
;Offset from CSR = 0, Registers = 20,2

.BYTE 0,0 ;End of table
COM
MOV

(RO)
#-4*400+ 1,(R2)+

;Set timeout indicator
;Set word count and -4

MOV
MOV

#ERLDXM,(R2) + ;Point to special data log routine
;Reterminate the control table#-1,(R2)

RETURN ;Return from error log routine

R3 -> CSR
R5 -> Error log message buffer

RETURN

R5 -> New position in error log message buffer

ERLDXM:
10$:

MOV
TSTB

#17,(R3)
(R3)

;Function : READ ERROR REGISTER
;Check low byte of CSR

BPL
MOV
RETURN

10$
2(R3),(R5)+

;Wait for TR to set
;Store error register in error log
;Return from special error logger

3.5.15 QUEUER - Enter Item in Queue

The QUEUER subroutine is used to enter an item into a specified queue . The queue is ordered first-in, first-out .
The first element of the queue is pointed to by a root word . The link word in the last entry in the queue is zero .

To use the queuing mechanism, the driver needs to set aside a word to use as the root of the queue . This word
is typically contained in the driver's xxDCTL PSECT (see section 3 .1 .1 .3) . Any item that is to be entered into
the queue must contain a word to use as a link to the following entries in the queue . The typical structures Oused
for queue elements are DDBs, the user's OXRB (contained in WRK), and DSQs .

To remove the top element from the queue, move the contents of the link word of the first element in the queue
to the root word .

3.5 .16 FNDJOB - Force a Job Into Memory

Call : CALLX

	

FNDJOB

Input : RO

	

Job number times 2 of job to find
R3

	

L3Q bits to set on residency if non-resident
R5

	

Pointer to user's buffer (unmapped)

Output : RO

	

Random
R2

	

Physical location of job, bits < 16 :21 >
R3

	

Physical location of job, bits <0 :15>
R5

	

Pointer to user's buffer (mapped by APR6)
C-bit

	

Set: The job was non-resident and is coming into memory .
Clear: The job is resident .

Exit: Non-skip

	

A fatal error occurred when loading the job image, its associated RTS or
LIBs .

Skip

	

The job image and its associated RTS and LIBs are OK .

Example : MOV

	

#1*2,RO

	

;Force job 1 into memory
MOV

	

#QDXCON,R3

	

;Set QDXCON in L3Q on residency
CALLX

	

FNDJOB

	

;Get the job into memory
BR

	

FTLERR

	

;Error in residency attempt
BCS

	

WAIT

	

;Wait for residency
;Continue with job resident

The FNDJOB subroutine is used to ensure residency of a job before the driver attempts to perform a DMA
transfer to or from a buffer in the job image. If the specified job is already in memory, the value passed in
R5 will be used to map the job's buffer using APR6 .

If the job is resident when FNDJOB is called, the job will be locked in memory (LCK will be set in M .CTRL
in the job's MCB) . FNDJOB should only be called once for each time the job is unlocked (see section 3 .5 .17) .
If any bits are set in M .CTRL when FNDJOB is called (including the LCK bit set by FNDJOB), the job will
be considered to be non-resident .

3- 34

Call : CALLX QUEUER,R5,root

Input : root Address of location that contains a pointer to the first element in the queue .
R4 Pointer to the link word of the item to enter into the queue .

Output: R4 Preserved
C-bit Set: This item is the first in the queue

Clear: This item is not the first in the queue

Example: MOV #ITEM + LINK,R4
CALLX QUEUER,R5,DXQROT

The FNDJOB subroutine has two possible return points . If an error occurs while loading the job, its runtime
system or any of its libraries, FNDJOB will return to the location immediately following the call . This location
should contain a branch to a routine to handle a swap/load error . If no error occurs, FNDJOB will skip the
word immediately following the call and return to the following location .

If the specified job is not already resident, the specified bits will be set in L3Q when the job is made resident .
This allows the driver to exit and continue processing (at an L3Q entry point) after the job becomes resident .
If a driver has to wait for job residency, the FNDJOB routine should be called again after the job is resident
so that swap and load errors can be checked and so that the user's buffer can be mapped .

3 .5 .17 UNLOCK - Unlock a Job's Memory

Call : CALLX

	

UNLOCK

Input : RO

	

Job number times 2

Output : R2

	

Random

Example : MOV

	

JOBNUM,RO

	

;Get desired job number *2
CALLX

	

UNLOCK

	

;Unlock it

The UNLOCK subroutine is used to mark a job's memory as being available for swapping out . It is used in
synchronous I/O drivers that must control the residencey of a job while performing I/O .

This subroutine only marks the job as being available for swapping out . It will not be actually swapped unless
the memory is needed for another job .

3 .5 .18 CLRRSQ - Clear Residency Quantum

Call : CALLX

	

CLRRSQ

Input : R1

	

Pointer to Job Data Block (JDB) for job

Output : None

Example : MOV

	

JOBTBL(RO),R1

	

;Get JDB pointer for job
CALLX CLRRSQ

The CLRRSQ routine clears the residency quantum for the specified job . If any other job is waiting for residency,
the specified job will be swapped out to make room .

3.5 .19 DMPJOB - Dump the Current Job

The DMPJOB routine stops the execution of the currently executing job. It clears
unlocks its memory, making it eligible to be swapped out if necessary .

3-35

its residency quantum and

Call : CALLX DMPJOB

Input : None .

Output : RO Random

R1 Random

R2 Random
R5 Random
APR6 Random

Example : CALLX DMPJOB

3 .5.20 MAPBUF - Map a Buffer

The MAPBUF subroutine ensures that the large buffer pointed to by R4 is properly mapped by memory
management . If the least significant five bits of the pointer are zero, it points to a monitor buffer ; no mapping
is necessary. If the least significant five bits are non-zero, it is a "contorted" pointer to a buffer in XBUF . This
buffer will be mapped using APR6 . The original pointer will be modified to point to the base of the mapped buffer .

3.5 .21 GETUMR - Get a Unibus Mapping Register

Processors with 22-bit addressing can address up to 4 megabytes of physical memory . Since unibus device controllers
that do DMA transfers only support 18-bit addressing, a mechanism is necessary for mapping the 18-bit addresses
into 22-bit adresses during DMA transfer . This mechanism is provided by the unibus mapping registers (UMRs) .

All device drivers that perform DMA transfers directly to or from a user buffer need to initialize unibus mapping
registers when running on processors that support unibus mapping . The GETUMR routine provides the capability
for doing this initialization in a common way on all processor types .

If GETUMR is called on a processor that does not support unibus mapping, it will return immediately . If the
processor supports unibus mapping, GETUMR will allocate the number of unibus mapping registers necessary
to map the buffer for the transfer . Note that the call to GETUMR uses indirect addressing . This allows the code
for GETUMR to be replaced by a RETURN and the remaining code to be converted to small buffers on processors
that do not support unibus mapping .

If allocation of a UMR is requested when an insufficient number of UMRs are available, the request will fail
(shown by the C-bit) . The driver should stall the calling job (by exiting to IOREDO) and wait for a UMR to
become available .

If a GETUMR request fails, the monitor will enter the driver at its UMR$xx entry point when a UMR becomes
available. Note that an entry at the driver's UMR$xx entry point does not guarantee that a UMR is available .
All drivers that use UMRs will be entered if a UMR becomes free . A previously entered driver may have allocated
the UMR by the time a later driver is entered .

3-36

Call : CALL @a GETUMR

Input : RO Negative of word count to transfer
R1 MSB of 22-bit bus address
R2 LSB of 22-bit bus address
R4 Pointer to DDB or DSQ

Output : R1 Most significant two bits of unibus address for use in DMA transfer .
Unchanged if request failed or processor does not support UMRs .

R2 Least significant 16 bits of unibus address for use in DMA transfer .
Unchanged if request failed or processor does not support UMRs .

C-bit Clear: UMR was allocated .
Set: Insufficient UMRs were available or UMRs are not supported . No
UMRs were allocated .

Example : GLOBAL GETUMR
CALL @a GETUMR

Call : CALLX MAPBUF

Input : R4 Contorted address

Output : R3 Mapped address
APR6 Altered if address is in non-monitor buffer

Example : MOV BUFPTR,R4

	

;Point to the large buffer
CALLX MAPBUF

	

;Map the buffer and point to it

Once allocated, a UMR should be released as soon as possible . The RELUMR routine releases UMRs allocated
by a previous GETUMR or RHMADR call (see section 3 .5 .22 and 3 .5.23) .

A portion of the large buffer pool is permanently mapped by UMRs. This permanently mapped pool is named
EXTPOL. If I/O takes place using a large buffer from this pool, no special settup of UMRs is required . It has
already been done by the monitor .

The following code will convert a contorted buffer address (contained in R1) to an 18-bit address suitable for
loading into a device register :

The GETUMR routine is only used for devices that do not use the RH70 and RH11 massbus interfaces . If the
device uses the RH70 or RH11, the RHMADR routine (see section 3 .5 .22) should be used instead of GETUMR .

3 .5 .22 RHMADR - Initialize Unibus Mapping for RH70 or RH11

Call : CALLX

	

#RHMADR

Input : RO

	

Negative of word count to transfer
R1

	

MSB of 22-bit bus address
R2

	

LSB of 22-bit bus address
R3

	

Address of RH70 CSR
R4

	

Pointer to DDB or DSQ

Output : Extended bus address loaded into RH70 or RH11
C-bit

	

Clear : UMR was allocated .
Set: Insufficient UMRs were available . None were allocated .

Example: GLOBAL RHMADR
CALL

	

@RHMADR

The RHMADR routine is identical to the GETUMR routine (see section 3 .5.21), except that it is used for devices
which use the RH70 and RH11 massbus interfaces .

3 .5.23 RELUMR - Return a Unibus Mapping Register

The RELUMR routine returns the unibus mapping registers (UMRs) allocated by the GETUMR or RHMADR
routines . Register R4 must contain the same pointer to the DDB or DSQ that was used when the UMR was
originally allocated .

3-37

Call : CALLX @RELUMR

Input : R4 Pointer to DDB or DSQ

Output : None

Example : GLOBL RELUMR
CALL @RELUMR

ASHC #-7,R1 ;Convert contorted address to APR value
ADD EXTPOL,R1 ;Adjust for base of EXTPOL buffer pool
ASHC #6,RO ;Convert to 18-bit unibus address

;MSB is in R0, LSB is in R1
GLOBAL <EXTPOL>

3.6 CSR AND VECTOR ASSIGNMENT

The CSR and vector addresses for all standard device drivers are stored in tables within the monitor . These tables
may be modified by the HARDWARE option of INIT if any CSR or vector addresses need to be changed . All
access to the CSR or vector information for a standard device driver is made through these tables .

The HARDWARE option uses an additional table of information about every possible standard device when
accesssing the CSR the vector tables . Since this table obviously does not contain information about nonstandard
devices the HARDWARE option cannot be used to change information about nonstandard devices . A different
approach is needed for these devices .

The suggested approach for defining the CSR addresses for a user written device driver is to allocate a word
in the xxDVR PSECT for each unit of the device . The CSR address for the associated device can be specified
in each of these words . The contents of these words can then be patched if a particular device is at a nonstandard
CSR address .

All access to the device registers should be made using the CSR addresses defined in the driver . For example :

The suggested approach for defining vector addresses for a user written driver is very similar to that used for
CSR addresses. Allocate two words in the xxDVR PSECT for each unit of the device . The first word contains
the vector address . The second word contains the desired PSW and unit number . The unit number is contained
in the least significant four bits of the PSW value .

The driver will be entered at its ASN$xx entry point when the device is first opened or assigned . At this time
the vector locations in the monitor can be initialized using the table of information . The following example shows
one implementation of this approach :

If the device only requires one vector location :

xxVEC: :

	

WORD

	

170

	

;Vector address for device
.WORD

	

PR5 + 0

	

;PSW and unit number

ASSIGN entry point
ASN$xx : : PUSH

	

R2
MOV

	

xxVEC,R2

	

;Get pointer to vector table
MOV

	

#xxDINT,(R2) +

	

;Load vector with xxDINT address
MOV

	

xxVEC + 2,(R2)

	

;PSW and unit number in 2nd word
POP

	

R2
;Continue with ASN$xx code

3-38

xxCSR : : WORD 170400 ;Table of CSR addresses for "xx"
.WORD 170400+20

SER$xx: : MOV xxCSR(RO),R3 ;Get CSR address for this unit
MOV (R3),R4 ;Access CSR for this unit

If the device requires more than one vector location :
Table of vector locations, PSW values and unit numbers
Each vector requires two words . The table is terminated

xxVEC : :
by a 0 word .
.WORD
.WORD

170
PR5 + 0

;Unit 0

.WORD

.WORD
174
PR5+ 1

;Unit 1

ASN$xx: :

.WORD 0 ;Terminate table with 0 word

;All registers must be preserved
ASSIGN entry point

PUSH <R2,R3>

2$:
MOV
MOV

#xxVEC,R2
(R2) + , R3

;Point to base of vector table
;Get pointer to vector location

BEQ 4$;End of table
MOV
MOV

#xxDINT,(R3) +
(R2) +,(R3)

;Set vector to xxDINT
;PSW + unit in 2nd word of vector

BR 2$;Repeat for each vector in table
4$: POP <R3,R2>

;Continue with ASN$xx code

3.7 INSTALLING THE DRIVER
Installing a user written device driver in RSTS/E requires four steps : (1) Assemble the driver (2) Assemble TBL
to include the driver information (3) Link all portions of the monitor (4) Build the monitor with SILUS .

To assemble the driver, type the following, where xxDVR .MAC is the name of the source file for the driver :

****$RUN MACRO
*****xxDVR,xxDVR/C=COMMON, KERNEL,xxDVR

The driver source file (xxDVR .MAC) must contain the definitions for the symbols STS .xx, FLG.xx, SIZ .xx and
BUF.xx (see section 3.3) . It must contain the interrupt mapping code in the xxDINT PSECT (see section 3 .1 .1 .2) .
It must also contain the driver code in the xxDVR PSECT (see section 3 .1 .1 .1) .

Assembling TBL requires a prefix file that defines the information needed by TBL to build monitor tables to
include the user written driver . This file, xxPRE .MAC, must contain the following code (see sectin 3 .3 and 3.4 .9) :

DEVICE xx,[alt][, < 13gbits >]
CNT .xx= number of units
DDS.xx= size of DDB in bytes
CCC .xx= 1 if device is"C interruptable

0 if not
BFQ .xx= buffer quota (optional)
HOR.xx= width (optional)
SLP .xx= 1 if driver should be notified of conditional SLEEP requests

0 if not (optional)
UMR .xx=1 if driver uses unibus mapping registers (UMRs)

0 if not (optional)

The assembly of the TBL .MAC file in the SYSGEN .CTL command file must be changed to include the xxPRE
file for the new driver . The link of the monitor must also be changed to include the new driver code .

The assembly of TBL .MAC is changed by inserting the name of the prefix file for the driver (xxPRE .MAC)
immediately before the TBL .MAC file in the assembly line . The resulting command line is changed

from :

$R MACRO .SAV
TBL,TBL/C=IN:COMMON, KERNEL, DK :CONFIG, IN: CHECK,TBL

to :

$R MACRO .SAV
TBL,TBL/C=IN:COMMON,KERNEL,DK :CONFIG,IN :CHECK,DK:xxPRE,IN :TBL

The procedure for linking the monitor (RSTS .SAV) is changed by inserting the name of the driver object module
(xxDVR.OBJ) into the link command stream immediately after the terminal driver root module (TTDINT) . The
resulting command line is changed

from :

$R LINK.SAV
RSTS/Z,RSTS/A/W,RSTS =TBL,$ERR.STB/X/B:O/E :#12500/U :#1000/I/C
TTDINT/C
IN:RSTS
MORBUF

3-40

to :

$R LINK.SAV
RSTS/Z,RSTS/A/W,RSTS =TBL,$ERR .STB/X/B:0/E:#12500/U:#1000/I/C
TTDINT/C
xxDVR/C
IN :RSTS
MORBUF

The remainder of the SYSGEN .CTL file remains unchanged . The following EDIT commands will make all the
required modifications to the SYSGEN .CTL file. When the sysgen process prints "If you have any editing changes,
stop now and do them then type R SYSBAT ." Stop and type the following commands (change "xx" to the
appropriate driver name) :

.R EDIT.SAV
#EBSYSGEN. CTL$FTBL . OBJ$OA V$$
TBL.OBJ,TTDINT .OBJ,TTDVR.OBJ/DE :NOWARN
##K$$
*F, TBL /C$FCHECK, $ V$$
TBL,TBL/C=IN:COMMON,KERNEL,DK :CONFIG,IN:CHECK,TBL
*IDK: xxPRE, IN.•$ V$$
TBL,TBL/C=IN:COMMON,KERNEL,DK:CONFIG,IN :CHECK,DK :xxPRE,IN :TBL
*FIN.•RSTS$V$$
IN:RSTS
*IxxDVR/C$$
$$
*EX$$
.R SYSBAT

Once the monitor is built, it is installed and used in the normal fashion . See the RSTS/E System Generation
Manual for more information on the sysgen procedure . Also see section 3 .8 for information on startup options
for debugging .

If the monitor needs to be rebuilt during the debugging process, the monitor files do not need to be reassembled
unless the prefix file for TBL (xxPRE .MAC) is changed. Only the commands in SYSGEN .CTL following the
assemblies need to be repeated to rebuild the monitor .

Note that the SIL that is being rebuilt cannot have the same name as the currently installed SIL . Install a different
SIL while rebuilding the SIL used for developing the device driver .

3-4 1

3.8 DEBUGGING A DEVICE DRIVER

RSTS/E provides two versions of ODT : one for INIT and one for use during timesharing . Since INIT does not
support any user written drivers, its debugger is not normally required . On the other hand, the ODT available
from the monitor is invaluable for debugging user written drivers .

To load ODT under INIT type "ODT" at the OPTION question . INIT will immediately enter ODT and display
a prompt of a letter followed by an underline (eg. K_). The letter signifies the memory management mode currently
in effect (see M command, section 3 .8 .4), as follows :

•

	

Kernel . I & D space is not in use or is not available .
I Kernel I-space .
•

	

Kernel D-space .
•

	

User I-space .
•

	

User defined mapping (see control table Y in section 3.8 .3) .

If for some reason the system crashes before reaching the OPTION question, ODT can be envoked by setting
the console switch register to the RAD50 equivalent of "ODT" . ODT will then be entered immediately after
starting INIT .

The most useful debugging tool for user written drivers is the monitor version of ODT . Monitor ODT is envoked
by the "Memory allocation changes" option of the START and DEFAULT commands in INIT . (ODT.SYS
is contained on the system generation kit and must be copied to [0,1]ODT .SYS before being used .

If invoked by the START command, ODT will only be loaded for this timesharing session . If envoked by the
DEFAULT command, ODT will be loaded every time timesharing is started .

The ODT option requires specification of the address where ODT will be loaded during timesharing . It is normally
loaded immediately after the monitor and resident runtime system, but can be loaded at other locations if there
is a conflict with resident runtime systems or libraries . ODT requires 3 K-word of memory .
Once loaded, monitor ODT will be entered any time a tP is typed on the console terminal or
whenever a breakpoint is encountered in a monitor routine . (The character used to enter ODT from
the console can be changed to something other than tP by changing location $$ODTP to the desired
character code.) A breakpoint will also be entered before the system crashes .

When entered by tP or a crash, ODT will assume it was entered with an external breakpoint and will
print "BEr,a", where "r" is an optional relocation register and "a" is the address where the
breakpoint occurred. All ODT commands may be used at this point .
The remainder of this section will describe the commands available from monitor ODT that are applicable to
debugging device drivers . In many cases the monitor ODT commands are identical to the ODT debugger described
in the IAS/RSX-11 ODT Reference Manual supplied in the RSTS/E documentation kit . An understanding of
the standard ODT debugger is assumed for the following discussion .

3 .8.1 Notation

All values in ODT are considered to be unsigned, octal numbers in the range 0-177777 8 . If a decimal point is
appended to a number, it is considered to be a decimal value . If the number is preceded by a minus sign, the
two's complement of the number is used. If a value greater than 177777, is entered, only the least significant
16 bits of the value will be used .

3-42

There are three special characters which can be used interchangably with numeric values . These special characters
have the following meanings :

C Equivalent to the value stored in control register $C .

Q Equivalent to the last quantity displayed . This quantity is stored in control register $Q .

. Equivalent to the address of the last or currently open location .

In the descriptions which follow, several abbreviations are used for specific values in commands or expressions .
These abbreviations have the following meanings :

v Represents a 16 bit value . This value can be a number or an expression .

r Represents a number in the range 0-7 . These numbers are used to specify register numbers for control
registers .

n Represents a number in the range 0-7 . These numbers are used to specify relocation registers and
control table entries .

$n Represents the value of processor registers R0-R7 .

$c Represents one of the control register names (see section 3 .8 .2)

$nt Represents an element of one of the control tables (see section 3.8 .3) . "n" specifies which element
of the table, "t", to use .

Any value other than a register number or control table entry can be an expression . Expressions consist of values
or constant registers combined by any of the following operators :

+ Add the following argument to the preceding value .

Subtract the following argument from the preceding value .

* Multiply the preceding value by 50 8 and add the following argument .

! Shift the preceding value the number of bits specified by the following argument . If the following
argument is positive, the preceding value will be shifted to the left, otherwise it will be shifted to
the right .

& Perform a logical AND between the preceding value and the following argument .

< sp > A space is treated like a " + " unless it is preceded or followed by another operator .

3.8 .2 Control Registers

Control registers are used to define or access information used by ODT . To access information in a control register,
use the register name as a value in an open command . For example, $C/ will display the current value of the
constant register .

To change the value in a control register, open the register with the "/" command, enter a new value and press
RETURN . For example, the following sequence will change the constant register from a value of 0 to a value of 2 :

$C/ 000000 2 < CR >

The control registers have the following meanings :

$A This register is used as the argument in the search commands (see the W, N and E commands) .
Its value can be explicitly set using this register or implicitly set through the W, N or E commands .

$C This register contains the value used as the constant register, "C" (see section 3.8 .1) . This register
is initialy loaded with ODT's starting address .

$F This register specifies the print format for addresses displayed by ODT . If it is set to zero (default),
all addresses will be displayed relative to a relocation register, if possible . If it is non-zero, all
addresses will be displayed as absolute values .

3-43

$H This register is used to specify the ending address for commands that access a range of locations
in memory. These commands include W, N, E, L and F . The value of this register can be explicitly
set or implicitly set through in the W, N, E, L or F commands .

$L This register is used to specify the starting address for commands that access a range of locations
in memory. These commands include W, N, E, L and F .

$M This register is used as a mask in the search commands (see the W, N and E commands) . When
a search command is executed, the contents of the argument register ($A) and the value from memory
will each be ANDed with this mask before being compared . The value of this register can be explicitly
set or implicitly through the W, N, E, or L commands .

$P This register specifies the priority ODT should run at . If it is set to 377 $, ODT will run at the same
priority that was in effect at the time of the breakpoint . If it is not set to 377, the register's contents
will be used for ODT's run priority . The priority should range from 0-7 or be set to 377 8 .

$Q This register is set to the last value displayed by ODT .

$S This register is the processor status word (PSW) at the time of the last breakpoint . It is loaded
with the current PSW each time a breakpoint occurs . It may be modified to change the priority
the driver or other monitor routine will run at when it continues execution .

$= This register specifies the print format for numeric values other than addresses . If it is set to zero
(default), values are printed in octal . If it is negative, values will be printed in signed decimal . If
it is positive, values will be printed in unsigned decimal .

3 .8.3 Control Tables

Control tables are used to define or access tables of information used by ODT . The contents of a control table
can be accessed by specifying the desired table element number between the "$" and the table name . For example,
$2R/ will display the current value of relocation register two .

The control tables have the following meanings :

$nB This table contains the locations corresponding to the eight breakpoints, 0-7 . It corresponds to
the values specified in the B command .

$nD This table contains the action routine number to execute when the corresponding breakpoint is
entered . It corresponds to the argument on the D command .

$nG This table contains the proceed counts for each corresponding breakpoint . It corresponds to the
values specified in the P command .

$nR This table contains the relocation address for each corresponding relocation register . If a relocation
register is not in use its value will be -1 .

$nT This table contains four words which specify the address of the console device DL-11 interface
to use for ODT . These values should not be changed as individual table entries . Use the T command
to change the console device address, if necessary . These words have the following meaning :

$OT : Keyboard CSR
$1T : Keyboard data buffer
$2T : Printer CSR
$3T : Printer data buffer

$nE This table contains memory management register pointers that are saved when a breakpoint occurs
and restored when execution continues . The registers have the following meaning :

$OE :

	

APR6 value used for memory management work .
$1E :

	

Saved KDSAR6 value .
$2E :

	

APR6 value used for ODT .
$3E :

	

Pointer to the saved APR6 value .
$4E :

	

Pointer to the saved DAPR6 value .
$5E :

	

Saved MMUSR3 value .
$6E-$12E Saved values for trap vectors .

3-44

$nI This table contains memory management register pointers that are saved when a breakpoint is set .

$nV This table contains the kernel mode I space page address register (PAR) values currently in use
by the monitor. Table entries $OV through $7V correspond to KISARO through KISAR7,
respectively . Table entries $10V through $17V correspond to KISDRO through KISDR7, respectively .

$nW This table contains the kernel mode D space page address register (PAR) values currently in use
by the monitor . Table entries $OW through $7W correspond to KDSARO through KDSAR7,
respectively .

nX This table contains the user mode, I-space page address register (PAR) values currently in use by
the monitor. Table entries $OX through $7X correspond to UISARO through UISAR7, respectively .

$nY This table contains page address register (PAR) values to use with the Mx command (see section
3 .8.4) for user defined memory management mapping . Table entries $OY through $7Y correspond
to through APR7, respectively .

3.8 .4 Commands

The commands for monitor ODT have the following meanings :

n,v The contents of the relocation register specified by "n" is added to the value "v" to form a
new value .

v/ Open location "v" as a word and display its contents .
V\ Open location "v" as a byte and display its contents .

v' Open location "v" as a byte and display its contents as an ASCII character .

v" Open location "v" as a word and display its contents as two ASCII characters .

v% Open location "v" as a word and display its contents as three RAD50 characters .

< CR > Close the currently open location . If the carriage return is preceded by a value, this value will
be stored in the currently open word or byte before it is closed .

< LF > Close the currently open location and open the following one . If the line feed is preceded by
a value, this value will be stored in the currently open word or byte before it is closed .

Close the currently open location and open the preceding one . If the uparrow is preceded by
a value, this value will be stored in the currently open word or byte before it is closed .

Close the currently open location and use its contents as a PC relative offset to a new location
to open. If the underline is preceded by a value, this value will be stored in the currently open
word or byte before it is closed .

@ Close the currently open location and use its contents as the new location to open . If the @
is preceded by a value, this value will be stored in the currently open word or byte before it
is closed .

> Close the currently open location and use the low order byte of its contents as a PC relative
offset to the new location to open . If the > is preceded by a value, this value will be stored
in the currently open word or byte before it is closed .

< Close the currently open location and reopen the last explicitly opened location . If the < is
preceded by a value, this value will be stored in the currently open word or byte before it is closed .

3-45

Print the value preceding the equal sign using the print format specified in the $= register . A
useful technique for displaying a negative number as the equivalent positive number is to type
-Q= after displaying the negative number .

nA Execute action routine "n" .

v;nB Set breakpoint "n" at location "v" .
v;B Set breakpoint at location "v" . Let ODT pick the breakpoint number .
nB Remove breakpoint number "n" .
•

	

Remove all breakpoints .

nl ;n2D Execute action routine "nl" when breakpoint "n2" is entered .
nD Remove the action routine associated with breakpoint "n" .
•

	

Remove action routines from all breakpoints .

• Print all locations between the limits specified by $L and $H that have the same effective address
as the contents of $A using the mask $M . If the E command is preceded by one or two arguments
in the form vl ;E, ;v2E or vl ;v2E, $L will be set to "vl" and $H will be set to "v2" before
executing the E command . The contents of a location are considered to be the same effective
address if any of the following conditions are met in relation to $A : (1) They are equal . (2) The
PC=relative address is equal . (3) The branch displacement based on the low byte is equal .

F Fill all memory locations between the limits specified by registers $L and $H with the value
contained in register $A . If the F command is preceded by a value (nF), that value is loaded
into $A before executing the F command .

G

	

Start execution at the location specified by register $7 . If the G command is preceded by a value
(nG), that value is loaded into $7 before executing the G command .

k Determine which relocation register is closest to (but not greater than) the address contained
in the currently open word . Use this relocation register to print the value of the currently open
location as an offset from the relocation register .

nK Print the address contained in the currently open word as an offset from relocation register "n" .
v;nK Print the address specified by "v" as an offset from relocation register "n" .

L Print all locations between the limits specified by $L and $H . Eight values are printed per line .
The value of $L used for the print is equivalent to $L ANDed with 177770 8 . If the L command
is entered in the form vl ;v2;v3L, "v l" specifies the desired output device (0 or null for console
device, 1 for LP11), "v2" specifies $L if non-null, "v3" specifies $H if non-null .

Ms Use memory management mode "s" for accessing memory locations, where "s" is one of the
following :
•

	

Kernel. I & D space is not in use or is not supported . Same as mode I when D space
is not supported .

I

	

Kernel I space .
•

	

Kernel D space .
•

	

User I space .
•

	

User defined mapping (see control table Y in section 3 .8.3) .

N The N command is identical to the W command except that only those locations that do not
meet the test for the W command will be printed .

vO Print the PC-relative offset and branch displacement from the currently opened word to location
"v"

vl ;v2O Print the PC-relative offset and branch displacement from address "vl" to address "v2" .

•

	

Proceed from the current breakpoint . If the P command is preceded by a value (nP), that value
specifies the number or times to proceed through the current breakpoint before stopping again .

v;nR Set relocation register "n" to value "v" .
v ;R Set relocation register 0 to value "v"
nR Clear relocation register "n" .
R Clear all relocation registers .

3-46

S Execute one instruction and enter breakpoint 8 . If the S command is preceded by a value (nS),
the specified number of instructions will be executed before stopping .

vT Use the device located at location "v" in the I/O page as the console terminal . If the T command
is not preceded by a value, the console terminal will be reset back to the standard assignment
of 1775608 . A global location (.ODTKB) can be patched to specify a different value to reset
the console back to if necessary . The console terminal must use a DL-11 interface. DZ-11, DJ-11
and DH-11 interfaces are not supported .

W Print all locations between the limits specified by $L and $H that are equal to the value in $A
using the mask $M . If the W command is preceded by one or two arguments in the form vl ;W,
;v2W or vl ;v2W, $L will be set to "vl" and $H will be set to "v2" before executing the E
command .

n(. .) The (command is used to define action routine "n" . This action routine is a sequence of up
to 31 bytes of ODT commands terminated by a ")" . The action routine can be executed by
the A command or at the time of a breakpoint, by the D command .

n) Display action routine "n" .

v[. .] Execute the ODT commands within the brackets if the value of expression "v" is non-zero .
1 ;v[. .] Execute the ODT commands within the brackets if the value of expression "v" is zero .

< RO > A rubout will abort any command currently in process .

O

Chapter 4

RESIDENT LIBRARIES

AND RUNTIME SYSTEMS
Resident libraries and runtime systems provide a means of sharing information and program code that would
normally be contained in each copy of a program . For example, if twenty people are all using an order entry
program, they can share one copy of the program instead of having twenty separate copies . This can drastically
reduce swapping and memory requirements and improve overall system performance .

Another common example is the execution support code used by all programs written in the same language .
By putting this code in a resident library or runtime system, only one copy of the code is required, regardless
of the number of programs using the language .

For example, the BASIC-PLUS runtime system contains all the code needed to compile and execute BASIC-
PLUS programs . Only one copy of this code is needed, regardless of the number of programs using BASIC-
PLUS. The BASIC2 runtime system contains all the code needed to execute BASIC-PLUS-2 programs and provide
RSX emulation. The BASICS resident library contains the same execution support code but is used in conjunction
with the RSX runtime system .

The creation and use of resident libraries and runtime systems is described in the RSTS/E manual set . The .RSTS/E
Programmer's Utilities Manual and the RSTS/E Task Builder Reference Manual contain information on building
and accessing resident libraries and runtime systems . The RSTS/E System Directives Manual and the RSTS/E
Programming Manual contain information on how the monitor supports resident libraries . The RSTS/E System
Manager's Guide contains information about adding and removing resident libraries and runtime systems .

This chapter provides information not currently available in any of the documents described above . It concentrates
on special ways to use resident libraries and runtime systems that are not discussed in the standard documentation .

Although resident libraries and runtime systems are similar in many ways, they also also have several distinct
differences. In general, resident libraries are used used to extend the functionality of a program . The resident
library is under the control of the program and is accessed as needed . Runtime systems are used to extend the
functionality of the monitor . The program is under the control of the runtime system, which interfaces to the
monitor on the program's behalf .

4-1

The decision of whether to use a resident library or a runtime system to make a program's code sharable depends
on several factors . The following table lists some of the decision criteria necessary :

Use a resident library if :

The program needs to use the capabilities provided by an existing runtime system .

The program does not use any of the capabilities of an existing runtime system, but the sharable code will
be under the control of the program (ie . it is support code, subroutines or data used by a program) . A
runtime system could also be used in this case but would generally be more difficult to implement .

The virtual address space used by a program needs to be reduced by using memory resident overlays .

Use a runtime system if:

The sharable code controls the execution of a program .

The sharable code emulated another operating system or environment .

The sharable code or user program uses EMT, TRAP, IOT or BPT instructions in a non-standard way .

The sharable code requires control as a keyboard monitor .

Chapter 2 of the RSTS/E System Directives Manual should be read and understood before continuing your reading
in this section . This chapter provides an explanation of the relationship between virtual and physical memory
addresses, the use of memory management registers, the user program area and runtime system pseudo vectors .

4.1 ADDRESS SPACE USAGE
A "job" in RSTS/E consists of a user program, a runtime system and one or more optional resident libraries .
User program addresses always start at virtual address 0 . Runtime system addresses always end at virtual address
177774 8 . The virtual address space betwen the end of the user program and the beginning of the runtime system
is used by resident libraries or is unused .

The virtual addresses used by a job are mapped into physical memory locations by the memory management
hardware. Each segment of a job (ie . the user program, resident library or the runtime system) is contained in
a separate section of physical memory . Although the contents of each section of a job are contiguous in memory,
the individual sections are not necessarily contiguous .

Because the PDP-11 memory management hardware maps memory in 4 K-word increments, a portion of the
virtual address space may not be available . Any remaining virtual address space between the end of the user
program or resident library and its next 4 K-word boundary will be unused. The same is true for the virtual
address space between the beginning of a 4 K-word boundary and the beginning of a runtime system .

Resident libraries are mapped as needed using the memory management hardware . For this reason, they also
use virtual address space in 4 K-word increments . If a resident library uses memory resident overlays, each overlay
region uses one or more additional 4 K-word segments .

4.1.1 Address Requirements for a Resident Library

Resident libraries can be built to run at specific virtual addresses or they can be position independent . Each has
its own advantages .

Resident libraries designed to run at a specific address are easy to build but they restrict the flexibility of the
application using them . If a library is built to run at a specific address, it cannot be used in the same program
with another library built to use the same address range . The size of the program is also restricted by the starting
address of the library, since the program's addresses cannot overlap those of the library .

Position independent resident libraries do not have the problems of non-position independent libraries but they
are somewhat more difficult to write. Certain addressing modes cannot be used in position independent code .
Although this makes programming slightly more difficult, position independent code should be used whenever
possible because it minimizes the address space problems inherent in position dependent code .

Any application that can be written position dependent can also be written position independent . (See section
4 .1 .3 for more information on position independent code .)

4 .1.2 Address Requirements for a Runtime System

Runtime systems have very specific address requirements . The last 18 words of the runtime system are a pseudo
vector region used to interface between the monitor and the runtime system . The runtime system must be built
such that the pseudo vector region ends at location 177774 8 . The runtime system code immediately precedes the
pseudo vector region .

The pseudo vector region is used to provide information to the monitor and to provide pointers to routines that
perform specific functions at the monitor's request . The ordering of the contents of this region is important .
Each pointer or piece of information is accessed at a fixed address at the high end of the virtual address space .

4-3

A complete description of the pseudo vector region is provided in the RSTS/E System Directives Manual. The
contents of the pseudo vector region will not be described in detail here . See the RSTS/E System Directives Manual
for more information. The following table should serve as a quick reference to the pseudo vectors (addresses
are in octal) :

Symbol

	

Address

	

Description

P .FLAG 177732 Flags describing the runtime system :
PF.EMT Monitor EMTs require a special prefix (specified in the low byte

of this word) .
PF.CSZ Compute initial memory requirements, in K-words, as

(filesize + 3)/4 .
PF.REM Remove the runtime system from memory when its user count

becomes zero .
PF.NER Do not log errors occurring within the runtime system .

PF.RW Write access is allowed in this RTS .
PF.IUS Only one job may use this runtime system at a time .
PF.KBM The runtime system contains a keyboard monitor .

P .DEXT 177734 Default extension (in RAD50) for files running under this runtime system .

P .ISIZ 177736 Unused. Reserved for future use .

P .MSIZ 177740 Minimum size of user job image (in K-words) .

P .FIS

	

177742 Pointer to FIS exception trap handling routine .

P .CRAS 177744 Pointer to routine to handle crash recovery system startup (system default
runtime system only) .

P .STRT 177746 Pointer to routine to handle normal system startup (system default runtime
system only) .

P.NEW 177750 Pointer to routine to handle control of a job when a run request is not desired .
The contents of XRB + 2 and XRB + 4 plus the JFNOPR bit in the keyword
(KEY) are used to specify why the runtime system was entered, as follows :

New Job on System :
JFNOPR Set to 1 .
XRB + 2 0
XRB + 4 0

Switch to Runtime System with Logged Out Job :
JFNOPR Set to 1 .
XRB + 2:4 Calling runtime system name (in RAD50) .

Normal Switch to Runtime System :
JFNOPR Cleared to 0 .
XRB + 2:4 Calling runtime system name (in RAD50) .

P .RUN 177752 Pointer to routine to handle RUN requests . The XRB, FIRQB and KEY areas
contain information about the RUN request .

4-4

P.BAD 177754 Pointer to routine to handle unexpected error conditions and traps . These
errors are :

B.4

	

Trap to 4 (odd address) .
B.10

	

Trap to 10 (reserved instruction trap) .
B.250

	

Trap to 250 (memory management violation) .
B.STAK Stack overflow .

4.1 .3 Writing Position Independent Code

The taskbuilder typically builds a program so that it can only be loaded and executed at a specified virtual address .
If more than one resident library is built for a specified virtual address range, the libraries cannot be used in
the same program .

It is possible to write code so that is does not require being loaded at any specific position . Code written in this
way is called "position independent", or "PIC" . If the resident libraries are position independent, the taskbuilder
will automatically build them in different virtual address ranges . This allows the libraries to be taskbuilt with
little or no impact on the main program or other libraries .

To code a resident library so that it is position independent requires the proper use of instruction addressing
modes . If the following rules are followed, all memory references will be to fixed locations outside of the library
or to locations within the library that are referenced using offsets from the current location counter . The actual
location of the library is unimportant . (See Appendix G of the MACRO-11 Language Reference Manual for
more information on writing position independent code .)

1 .

	

All code must be in PSECTs . ASECTs cannot be used, except to define fixed data values and offsets .
2 .

	

All addressing modes that only involve registers are position independent :
MOV

	

RO,R1
MOV

	

(RO),(Rl)+

3 .

	

Relative mode addressing is position independent when a relocatable address is referenced from a relocatable
instruction :

MOV

	

#1,DESTIN

	

;DESTIN is a relocatable address
CLR

	

DESTIN

	

;DESTIN is a relocatable address

4-5

B.SWAP Fatal disk error during swap .
B .PRTY Memory parity error .

P .BPT 177756 Pointer to routine to handle BPT instruction and T-bit traps .
P .IOT 177760 Pointer to routine to handle IOT instruction traps .
P .EMT 777762 Pointer to routine to handle EMT instruction traps . Control will not be passed

to the runtime system for EMT instructions that are valid RSTS/E monitor
calls unless the runtime system specifies that a special prefix is required for
RSTS/E monitor calls (see PF.PFX in P .FLAG) .
Pointer to routine to handle TRAP instruction traps .P.TRAP 177764

P.FPP 177766 Pointer to routine to handle floating point processor exception traps .
P.CC

	

177770 Pointer to routine to handle interruption by a single tC .
P.2CC 177772 Pointer to routine to handle interruption by two or more tCs .
P .SIZE 177774 Maximum size of user job image (in K-words) .

O

4 .

	

Absolute mode addressing is position independent when the address is fixed, regardless of the location of
the instruction :

MOV

	

#1,@#FIRQB

	

;FIRQB is always at a fixed location
CLR

	

@#XRB

	

;XRB is always at a fixed location
MOV

	

@#FIRQB,RO

	

;FIRQB is always at a fixed location

5 .

	

Immediate mode references are position independent when the value is fixed, regardless of the location
of the instruction :

MOV

	

#1,RO

	

;Absolute values are always fixed
MOV

	

#FIRQB,RO

	

;FIRQB is always at a fixed location

6 .

	

Indexed mode references are position independent if the index value is fixed, regardless of the location
of the instruction :

MOV

	

RO,2(R1)

	

;A non-symbolic value is always fixed
MOV

	

XRB(R3),RO

	

;XRB is always at a fixed location

The following instructions are NOT position independent because they violate one of the rules above :

.ASECT

	

;Violation of rule 1 : Code within an
MOV

	

RO,R1

	

;ASECT is not position independent .

TST

	

FIRQB+22

	

;Violation of rule 3 : FIRQB+22 is not a
relocatable address . Use TST @#FIRQB+22
instead .

LOC :

	

MOV

	

@#LOC,RO

	

;Violation of rule 4 : The value of LOC depends
; on the location of the instruction .

LABEL : MOV

	

#LABEL,RO

	

;Violation of rule 5 : The value of LABEL depends
; on the location of the instruction .

As the example above shows (violation of rule 5), instructions that reference a relocatable location using an absolute
addressing mode are not position independent . MOV instructions that are not position independent, such as :

LOC :

	

MOV

	

#LOC,RO

can be made position independent using the MOVPIC macro provided in COMMON .MAC . This macro generates
the following code :

LOC :

	

MOVPIC #LOC,RO
MOV

	

PC,RO

	

;This code is generated by the macro . It calculates
ADD

	

#LOC- .,RO

	

; the actual address of LOC using an offset from
the current instruction location .

4-6

4.2 SPECIAL LIBRARIES AND RUNTIME SYSTEMS
User written resident libraries are normally included in a user program without any special mapping requirements .
The entire library is included in the program and used as needed . This section describes some additional ways
to use resident libraries . Use of these techniques allows efficient use of virtual address space and system resources .

Runtime systems are normally used to control execution of a program or to emulate another operating environment .
A different technique that is very effective involves using runtime systems as coordinating programs that share
a common data area. Vastly improved system performance can be achieved using this technique .

4 .2.1 Memory Resident Overlays Within a Library

A resident library normally consists of one or more subroutines that are mapped by the main program and called
as needed . The entire library may be mapped and accessed at once, or an individual section may be mapped
and accessed while the remainder of the library is inaccessable .

Mapping a small section of a resident library reduces the amount of virtual address space required for the library
but sometimes makes creating the library more difficult . Libraries which must be completely mapped in order
to be used are easier to write but can take excessive amounts of virtual address space from a program .

Care should be excercised when deciding to use memory resident overlays within a resident library . Careless use
can significantly impact the virtual address requirements of a resident library . Virtual addresses are allocated
to the resident library and each memory resident overlay region within it in 4 K-word increments . Any address
space that is unused within the root segment and any overlay regions will be wasted .

Since the resident library always uses at least 4 K-words of virtual address space, there is no need to use memory
resident overlays if the entire library will fit within 4 K-words . Similarly, since a resident library with a memory
resident overlay uses at least 8 K-words of virtual address space, there is no need to use a memory resident overlay
if the entire library and its subroutines will fit within 8 K-words .

The best application of memory resident overlays in resident libraries is when a library requires more than 8
K-words of virtual address space and when the code of a library consists of a root segment that approaches 4
K-words in length and that references more overlayed subroutines than will fit within an additional 4 K-word region .

4 .2.2 Common Data Areas

Resident libraries can be used to share data as well as program code . The data can be a table of constant values,
information read and written by more than one program, or information written by one program and read by
another . The information can be read-only or read-write .

The most valuable use of libraries that serve as common data areas is for sharing read-write data between two
or more programs. Programs that would normally send large amounts of data using send receive or a disk workfile
can be designed to use a shared memory area to pass this information . This can drastically reduce the overhead
required for send/receive character handling and disk I/O .

BASIC-PLUS-2 (BP2) programs can use resident common areas as easily as MACRO . The resident common
area is included by naming a COMMON area in the BP2 program to the same name as the PSECT name in
the MACRO program which defines the resident common area . The following example shows the use of this
capability :

4-7

Macro source (COMBUF.MAC) :
.TITLE COMBUF Resident Library Common
.PSECT COMBUF GBL,D,RW

LOCK :

	

.WORD

	

-1

	

;Semaphore : 0 = Locked
BYTCNT: WORD

	

0

	

;Buffer byte count
BUFFER: BLKB

	

128 .

	

;128 byte buffer
.END

BASIC-PLUS-2 source (REDBUF .BP2) :

Data Area

1

	

EXTEND
10

	

COMMON (COMBUF) LOCK%,

	

! Semaphore : 0 = Locked &
BYTCNT%,

	

Buffer byte count &
BUFFER$=128%

	

128 byte buffer
20

	

IF LOCK%>=0% &
THEN PRINT "%The buffer is locked . Please wait . . ." &

\

	

SLEEP 2% UNTIL LOCK%<O%
30

	

PRINT LEFT(BUFFER$,BYTCNT%)
40

	

END

Once both tasks have been assembled, they are taskbuilt using the following commands :

For the resident library :
TKB>COMBUF/-HD/PI,COMBUF,COMBUF=COMBUF
TKB>/
TKB>ENTER OPTIONS :
TKB>STACK=O
TKB>PAR=BUFFER :0 :4000
TKB>//

For the BASIC-PLUS-2 program accessing the resident library :
TKB>REDBUF,REDBUF=REDBUF,LB :BP2COM/LB
TKB>/
TKB>ENTER OPTIONS :
TKB>RESLIB=COMBUF/RW :6
TKB>UNITS=12
TKB>ASG=SY :5 :6:7 :8 :9 :10 :11 :12
TKB>//

All read-write resident libraries must be task built as position independent (the /PI taskbuilder switch) . This
causes the . PSECT name to be included in the symbol table along with the global symbols . Assuming the common
area does not make any absolute references to any locations within itself, no special considerations need to be
observed to make the common area position independent since it does not contain any instructions .

There are several disadvantages that go along with using resident libraries as common data areas . The first is
that the resident library uses at least 4 K-words of the virtual address space available to the program . This can
be a serious problem for large programs or programs that use several non-clustered resident libraries .

Another problem is the lack of locking or semaphore mechanisms available between jobs . The programs must
include their own code for restricting access to the read-write data while it is being updated . The following example
shows the use of a user written locking semaphore :

4-8

The only way to notify another program about a change in information in the common data area, other than
the continual checking used in the preceding example, is to use small message send receive . This works well when
a program needs to wait a relatively long period of time for another program to take some action before accessing
the common data area . Additional information about the status of the common data area can be passed in the
parameter area of the small message without incurring additional overhead .

4.2.3 Coordinating Runtime Systems

The monitor call that passes control between runtime systems has a parameter that allows control to pass from
one runtime system to another without effecting the contents of the low segment . This capability can be used
to develop coordinating runtime systems .

Programs of virtually unlimited size can be written by building a set of runtime systems that share data in a
common low segment . Each runtime system can perform a specific function on the data in the low segment and
then pass control to another runtime system .

This technique can typically be applied to an order entry system . One runtime system performs all screen handling
and data collection . Once the data is collected, the first runtime system transfers control to another runtime
system which processes the order using the collected data . The second runtime system then returns control to
the first runtime system, which continues with the next order . This technique can obviously be expanded to more
than two coordinating runtime systems .

Any number of people could be using this order entry system simultaneously . All of the code will be shared .
Each user will have only a small data area to swap . Since each user's job image is so small, swapping would
be minimal or non-existent .

Many of the same advantages of coordinated runtime systems can be achieved using resident libraries by combining
the coordinating "programs" into one large library and accesssing the proper entry in the library from a small
user program . The disadvantage of this approach is that the programs become less autonomous and, therefore,
more difficult to support if they are combined into one large library .

4-9

; This code is within the read-write resident library :
LOCK :

	

WORD

	

-1

	

;Semaphore : 0 = Locked

This code is accessed by each program that needs
common data area . The data area should be locked
is changed or when the data should not be changed

to lock the
before it
while it is

being accessed .
.GLOBL LOCK

LOCKIT : :INC LOCK ;Attempt to set the lock
BEQ 2$;Lock succeeded
DEC LOCK ;Area was already locked, wait and try again later
MOV #2,@#XRB ;Specify a 2 second sleep
.SLEEP ;Sleep for 2 seconds
BR LOCKIT ;Try to lock the area again

2$:

	

RETURN ;Return with area locked

;This code unlocks the area locked by LOCKIT

	

It must be called
;each time an area is locked .
.GLOBL LOCK

UNLOCK : :DEC LOCK ;Unlock the data area
RETURN ;Return with data area unlocked

4.3 BUILDING A RESIDENT LIBRARY
The RSTS/E Task Builder Reference Manual contains a thorough description of the use of the task builder to
build and reference resident libraries . The RSTS/E Programmer's Utilities Manual describes the use of the utilities
used in the examples .

4.3 .1 Building a Position Dependent Library

In the following example, the resident library will be built to use fixed virtual addresses of 140000 8-157777 8 .
This is the virtual address range mapped by APR6. The files FILEA .OBJ and FILEB .OBJ are object modules
which contain the resident library code .

>TKB
TKB>LIB/-HD,LIB,LIB=FILEA,FILEB
TKB>/
TKB>ENTER OPTIONS :
TKB>PAR=LIB :140000 :20000
TKB>STACK=O
TKB>//

RUN $MAKSIL
MAKSIL V8 .0-04 RSTS V8 .0-04 Northwest Digital
Resident Library name? LIB
Task-built Resident Library input file <LIB .TSK>?
Include symbol table (Yes/No) <YES>?
Symbol table input file <LIB .LIB>?
Resident Library output file <LIB .LIB>?
LIB built in 1 K-words, 2 symbols in the directory
LIB .TSK renamed to LIB .TSK<40>

>PIP LIB .STB<40>/RE

4 .3.2 Building a Position Independent Library

In the following example, the resident library will be built position independent . It can use any virtual address
range when it is bound to a controlling task . The files FILEA .013J and FILEB.OBJ are object modules which
contain the resident library code . All code was written using position independent coding techniques (see section
4.1 .3) .

4 .3 .3 Building a Read-Write Resident Library

In the following example, the resident library contains only common data areas . Each .PSECT will be included
in the symbol table file (.STB) and can be referenced as a resident library or as a named COMMON in BASIC-
PLUS-2, COBOL or FORTRAN-FOUR-PLUS . The file FILEA .OBJ contains the definition of all PSECTs
and the allocation of space for data within each PSECT .

TKB>COM/-HD/PI,COM,COM=FILEA
TKB>/
TKB>ENTER OPTIONS :
TKB>PAR=COM :0 :4000
TKB>STACK=O
TKB>//

>RUN $MAKSIL
MAKSIL V8 .0-04 RSTS V8 .0-04 Northwest Digital
Resident Library name? LIB
Task-built Resident Library input file <LIB .TSK>?
Include symbol table (Yes/No)<YES>?
Symbol table input file <LIB .STB>?
Resident Library output file <LIB .LIB>?
LIB built in 1 K-words, 1 symbols in the directory
LIB.TSK renamed to LIB .TSK<40>

>PIP LIB .STB<40>/RE

Note that the resident library was built using the /PI switch, which indicates position independent code . The
use of this switch causes the name of each .PSECT to be included in the symbol table file . The .PSECT name
is used to reference the start of a named COMMON area . All access to the data within the common area is
by relative offset from the beginning of the COMMON area .

4.4 BUILDING A RUNTIME SYSTEM
Building a runtime system is described in the RSTS/E Programmer's Utilities Manual . However, some additional
discussion is in order .

The only major conditions placed on a runtime system by the monitor are that the last 18 words of the runtime
system must contain the pseudo vector area and that the last virtual address used by the runtime system must
be 1777748 .

The first of these conditions is met in one of two ways . One method is to include the entire runtime system within
one PSECT with the pseudo vectors as the last code in the section . A second method is to use multiple PSECTs
and to order the PSECTs such that the pseudo vector code is contained the last PSECT .

Bear in mind that the taskbuilder normally arranges PSECTs in alphabetical order . To ensure that the pseudo
vector area is the last PSECT in the module, the pseudo vector area should be defined in a PSECT with a name
of .99998 (a name that will always sort higher than any other PSECT name except .99999, which is used by
the runtime system debugger, RTSODT) or the /SQ switch should be used in the taskbuilder to order the PSECTs
in the same order in which they were defined .

The second condition, that of ensuring that the runtime system ends at location 177774, is a little more difficult
to meet using the taskbuilder. Since the taskbuilder does not have an option to allow the specification of a desired
ending address, an extend section must be used to move the runtime system code to the proper address so that
it will end at 1777748 .

Aligning a runtime system against the proper upper boundary is a two step process . The runtime system is first
taskbuid using a taskbuild command file without regard to the ending address . The MAKSIL program is then
run using the task just built .

MAKSIL will modify the taskbuild command file to extend the .99998 PSECT (using the EXTSCT option in
the taskbuilder) to the proper size to cause the task to end at location 177774 8 . When the task is rebuilt using
the updated command file it will be aligned at the proper boundary . The MAKSIL program is now run again
and the runtime system SIL image is produced .

The following example shows the steps involved in building a runtime system . Note that two passes through
the taskbuilder and MAKSIL are normally required in order to force the pseudo vector to end at location 177774 8 .

>TKB @EXAMPL
>RUN $MAKSIL
MAKSIL V8 .0-04 RSTS V8 .0-04 Northwest Digital
Resident Library name? EXAMPL/RTS
Task-built Run-Time System input file <EXAMPL .TSK>?
The run-time system is not aligned
Edit mode (Yes/No) <YES>?
Task-builder command input file <EXAMPL .CMD>?
The task-builder commands have been changed as follows

PAR=EXAMPL:160000 :020000

	

PAR=EXAMPL :160000 :020000
STACK=3072

	

STACK=3072
EXTSCT=.99998 :001726

EXAMPL will load in a 4 K-word partition using 1 K-words physical memory .
001726 (octal) bytes may be used for expansion .

Corrected command file name <EXAMPL .CMD>?
Please task build again using EXAMPL .CMD

>TKB @EXAMPL
>RUN $MAKSIL
MAKSIL V8 .0-04 RSTS V8 .0-04 Northwest Digital
Resident Library name? EXAMPL/RTS
Task-built Run-Time System input file <EXAMPL.TSK>?
The run-time system is correctly aligned
Edit mode (Yes/No)<Yes>? NO
Include symbol table (Yes/No) <YES>?
Symbol table input file <EXAMPL .STB>?
Run-Time System . output file <SY :[0,1JEXAMPL.RTS>?
EXAMPL built in 1 K-words, 1 symbols in the directory
EXAMPL .TSK renamed to EXAMPL .TSK<40>

4-12

4.5 DEBUGGING A RUNTIME SYSTEM
The RSX object library (LB :SYSLIB.OLB) contains a version of ODT called RTSODT . RTSODT is designed
specifically for debugging runtime systems . It is taskbuilt with the runtime system object modules and becomes
part of the runtime system .

The commands available in RTSODT are identical to those available in ODT . Please refer to section 3 .8 and
the ODT Reference Manual for information on these commands .

RTSODT contains its own psuedo vector region. When taskbuilt with the runtime system code, the pseudo vec-
tors for RTSODT immediately follow those of the runtime system . Thus, the monitor uses ODT's pseudo vec-
tors while ODT uses the runtime system's pseudo vectors .

When the monitor enters the runtime system at any of the entry points specified in the pseudo vector region,
RTSODT will stop execution with a breakpoint and wait for commands . If the procede command (P) is issued,
the pseudo vector entry point for the runtime system will be entered and execution will continue normally .

If you want an entry point to continue straight through to the runtime system without breakpointing, the follow-
ing patch should be applied at RTSODT command level . The patch should be repeated as necessary for all entry
points that are to be disabled :

P .????/xxxxxx @

	

(P.???? is the name of the pseudo vector)
xxxxxx/000003 240

When RTSODT is include in a runtime system, the following global symbols must be defined in the runtime
system code :

Symbol

	

Description

O .FLAG Value to use for P .FLAG. This value is normally equated to PF .REM!PF.NER!PF.1US . The
PF .CSZ,PF.EMT and PF.KBM bits can also be set, if needed . If the PF.RW bit is not set, the
runtime system must always be loaded with the /RW switch .

O .DEXT

	

Value to use for P .DEXT. This value should normally be the same as that used for P .DEXT in
the runtime system code .

O .MSIZ Value to use for P.MSIZ. This value should normally be the same as that used for P .SIZE in the
runtime system code . Since RTSODT will add 4056 bytes to the runtime system size, the value
of P .SIZE used during debugging may have to be less than that used during normal operation .

The command file used to taskbuild the runtime system must be modified to include a reference to RTSODT
in the system object library (LB:SYSLIB.OLB). This is done by adding the object module specification
"LB:SYSLIB/LB:RTSODT" after the last object module to include in the taskbuild .

The order of the normal runtime system object modules must be the same as used to taskbuild the runtime system
without RTSODT . The runtime system pseudo vector region must remain at the highest address in the runtime
system code. The pseudo vector region of RTSODT is taskbuilt immediately after the runtime system pseudo
vector region .

The partition size specified with the PAR option of the taskbuilder will have to be changed if the additional
size caused by including RTSODT extends the task image size beyond that specified by the existing PAR option .
The STACK option may also have to be changed to compensate for the additional task size caused by adding
RTSODT .

4-13

The following example shows the changes required for taskbuilding with RTSODT . UWRTS .OBJ contains the
object module code for the runtime system .

>TKB
TKB>UWRTS/-HD,UWRTS,UWRTS=UWRTS,LB :SYSLIB/LB:RTSODT
TKB>/
TKB>PAR=UWRTS :160000 :020000

	

(This value varies with each program)
TKB>STACK=O

	

(This value varies with each program)
TKB>//

The first user to enter a runtime system containing RTSODT obtains control of the debugger . Subsequent users
are ignored by RTSODT, which is transparent to the user . If PF.IUS is set in P .FLAG, or if the /IUSER switch
is used when the runtime system is loaded, only one user will be allowed access to the runtime system .

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146
	page 147
	page 148
	page 149
	page 150
	page 151
	page 152
	page 153
	page 154
	page 155
	page 156
	page 157
	page 158
	page 159
	page 160
	page 161
	page 162

