
RSTS/E
RMS-11 User's Guide
Order No. AA-P51OA-TC

March 1983

This manual provides information on file and task design using
RMS-11 . The information includes design considerations for writing
application programs in both MACRO-11 and high-level languages .

SUPERSESSION/UPDATE INFORMATION : This revised document
supersedes the RMS-11
User's Guide (Order No .
AA-D538A-TC) .

OPERATING SYSTEM AND VERSION :

	

RSTS/E Version 8 .0

SOFTWARE VERSION :

	

RMS-11 Version 2 .0

digital equipment corporation • maynard, massachusetts

DEC

	

DIBOL
DEC/CMS

	

EduSystem
DEC/MMS

	

IAS
DECnet

	

MASSBUS
DECsystem-10

	

PDP
DECSYSTEM-20

	

PDT
DECUS

	

RSTS
DECwriter

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire . Alaska, and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6146 (all other Canadian)

DIRECT MAIL ORDERS (USA & PUERTO RICO)'
Digital Equipment Corporation
P .O. Box CS2008
Nashua . New Hampshire 03061

'Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

First Printing, march 1983

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation . Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document .

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license .

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies .

Copyright

	

1983 by Digital Equipment Corporation
All Rights Reserved .

Printed in U .S .A .

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation .

The following are trademarks of Digital Equipment Corporations

RSX
UNIBUS
VAX
VMS
VT

d 9a aooa

DIRECT MAIL ORDERS (CANADA)
Digital Equipment of Canada Ltd .
940 Belfast Road
Ottawa, Ontario K1G 4C2
Attn : A&SG Business Manager

DIRECT MAIL ORDERS (INTERNATIONAL)
Digital Equipment Corporation
A&SG Business Manager
c/o Digital's local subsidiary or
approved distributor

Internal orders should be placed through the Software Distribution Center (SDC) . Digital Equipment
Corporation . Northboro . Massachusetts 01532

ZK2168

CONTENTS

PREFACE	 i x

MANUAL OBJECTIVES	 ix
INTENDED AUDIENCE	

*
ix

STRUCTURE OF THIS DOCUMENT	 ix
ASSOCIATED DOCUMENTS . x
CONVENTIONS USED IN THIS DOCUMENT

	

x

SUMMARY OF TECHNICAL CHANGES	 xiii

CHAPTER 1

	

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

1 .1

	

CONCEPTS OF DATA ORGANIZATION AND ACCESS	1-1
1 .1 .1

	

Records	 1-1
1 .1 .2

	

Files	 1-2
1 .1 .3

	

Access	 1-7
1 .1 .4

	

Processing	 1-10
1 .1 .5

	

File Maintenance	 1-10
1 .2

	

RMS-11 IMPLEMENTATION OF DATA ORGANIZATION AND
ACCESS . .

	

•	
1-11

1 .2 .1

	

RMS-11 Record Formats	 1-11
1 .2 .2

	

RMS-11 File Organizations	 1-11
1 .2 .3

	

RMS-11 Record Access Modes	 1-12
1 .2 .4

	

RMS-11 Utilities	 1-12
1 .3

	

RMS-11 PROCESSING ENVIRONMENT	 1-12
1 .3 .1

	

RMS-11 Task Structure	 1-13
1 .3 .2

	

RMS-11 Record Processing	 1-15
1 .3 .3

	

RMS-11 File Processing	 1-16
1 .4 FILE ATTRIBUTES 1-18
1 .5

	

PROCESSING BY BLOCK ACCESS	 1-20

Page

CHAPTER 2

	

APPLICATION DESIGN

2 .1 WHEN TO DESIGN . 2-2
2 .2 DESIGN CONSIDERATIONS 2-3
2 .2 .1

	

Speed	 2-3
2 .2 .2

	

Space	 2-4
2 .2 .2 .1

	

Data Storage	 2-5
2 .2 .2 .2

	

Task Size	 2-5
2 .2 .2 .3

	

Buffer Sizes	 2-5
2 .2 .3

	

Shared Access	 2-5
2 .2 .3 .1

	

Bucket Locking	 2-8
2 .2 .3 .2

	

Sharing among Access Streams	 2-9
2 .2 .3 .3

	

Programming Considerations	 2-10
2 .2 .4

	

Ease of Design	 2-10
2 .3

	

DESIGN PROCESS	 2-11
2 .4

	

SELECTING A FILE ORGANIZATION	 2-11
2 .4 .1 Record Formats 2-15
2 .4 .1 .1 Fixed-Length Format 2-15
2 .4 .1 .2

	

Variable-Length Format	 2-15

111

CONTENTS

2 .4 .1 .3

	

Variable-with-Fixed-Control Format	2-16
2 .4 .1 .4

	

Stream Format	 2-16
2 .4 .1 .5

	

Undefined Format	 2-17
2 .4 .2

	

I/0 Techniques	 2-17

CHAPTER 3

	

SEQUENTIAL FILE APPLICATIONS

3 .1
3 .2
3 .3
3 .3 .1
3 .3 .2
3 .3 .2 .1
3 .3 .2 .2
3 .3 .3
3 .4
3 .4 .1
3 .4 .2
3 .5
3 .5 .1
3 .5 .1 .1
3 .5 .1 .2
3 .5 .1 .3
3 .5 .1 .4
3 .5 .1 .5
3 .5 .1 .6
3 .5 .1 .7
3 .5 .1 .8
3 .5 .1 .9
3 .5 .2
3 .5 .2 .1
3 .5 .2 .2
3 .5 .3
3 .5 .3 .1
3 .5 .3 .2
3 .5 .3 .3
3 .5 .3 .4
3 .5 .4

FILE STRUCTURE	 3-1
RECORD SIZE	 3-2
FILE DESIGN	 3-3

Data Storage Medium	 3-3
Fil e Allocation	 3-4
Initial Allocation	 3-4
Default Extension Quantity	 3-4
Contiguity	 3-5

ACCESS SHARING

	

.	3-6
Record Access to Sequential Files	3-6
Block Access to Sequential Files	3-6

RECORD AND FILE PROCESSING OF SEQUENTIAL FILES . . 3-6
Record and Stream Operations	 3-7
CONNECT	 3-7
DISCONNECT	 3-7
FIND	 3-7
FLUSH	 3-9
GET	 3-9
PUT	 3-10
REWIND	 3-12
TRUNCATE	 3-12
UPDATE	 3-12
Record Transfer Modes	 3-13
Move Mode	 3-14
Locate Mode	 3-14
I/0 Techniques	 3-14
Deferred Write	 3-14
Multiple Buffers	 3-14
Multiple Access Streams	 3-15
Multiblock Count . . 3-15
File and Directory Operations	3-15

CHAPTER 4

	

RELATIVE FILE APPLICATIONS

4 .1

	

FILE STRUCTURE	 4-1
4 .2

	

RECORD SIZE	 4-2
4 .3

	

FILE DESIGN	 4-2
4 .3 .1

	

Bucket Size	 4-3
4 .3 .2

	

File Allocation	 4-3
4 .3 .2 .1

	

Initial Allocation	 4-3
4 .3 .2 .2

	

Default Extension Quantity	 4-4
4 .3 .3

	

Contiguity	 4-5
4 .3 .4

	

Maximum Record Number	 4-5
4 .4 ACCESS SHARING 4-6
4 .4 .1

	

Record Access to Relative Files	4-6
4 .4 .2

	

Block Access to Relative Files	4-7
4 .5 RECORD AND FILE PROCESSING OF RELATIVE FILES . . . 4-7
4 .5 .1

	

Record and Stream Operations	 4-7
4 .5 .1 .1

	

CONNECT	 4-8
4 .5 .1 .2

	

DELETE	 4-8
4 .5 .1 .3

	

DISCONNECT	 4-8
4 .5 .1 .4

	

FIND	 4-8
4 .5 .1 .5

	

FLUSH	 4-10
4 .5 .1 .6

	

GET	 4-10
4 .5 .1 .7

	

PUT	 4-12
4 .5 .1 .8

	

REWIND	 4-13
4 .5 .1 .9

	

UPDATE	 4-13

iv

4 .5 .2
4 .5 .2 .1
4 .5 .2 .2
4 .5 .3
4 .5 .3 .1
4 .5 .3 .2
4 .5 .3 .3
4 .5 .4

6 .1
6 .2
6 .2 .1
6 .2 .2
6 .2 .2 .1
6 .2 .2 .2
6 .2 .2 .3
6 .2 .2 .4
6 .2 .2 .5

'-6 .2 .2 .6
6 .2 .3
6 .2 .4
6 .2 .5
6 .2 .5 .1
6 .2 .5 .2
6 .2 .5 .3
6 .3
6 .4
6 .5
6 .5 .1
6 .5 .2
6 .5 .3
6 .6
6 .6 .1
6 .6 .2
6 .7
6 .7 .1

CONTENTS

Record Transfer Modes	 4-13
Move Mode	 4-13
Locate Mode	 4-13
I/0 Techniques	 4-14
Deferred Write	 4-15
Multiple Buffers	 4-15
Multiple Access Streams	 4-16
File and Directory Operations	4-16

CHAPTER 5

	

INDEXED FILE STRUCTURE AND ACCESS

5 .1

	

PHYSICAL FILE STRUCTURE	 5-2
5 .2

	

CONCEPTUAL FILE STRUCTURE	 5-4
5 .2 .1 Data 5-4
5 .2 .1 .1

	

Level 0~of the Primary Index	 5-5
5 .2 .1 .2

	

Level 0 of an Alternate Index	 5-6
5 .2 .2

	

Indexes	 5-6
5 .2 .3

	

Random Access Using the RMS-11 Indexed File
Structure	 5-7

5 .2 .4

	

Why this Structure?	 5-8
5 .3

	

PROCEDURES FOR PERFORMING RANDOM RECORD
OPERATIONS	 5-10

5 .3 .1

	

Writing a Record	 5-10
5 .3 .1 .1

	

Simplest Case	 5-10
5 .3 .1 .2

	

Bucket Splitting	 5-11
5 .3 .1 .3

	

Incremental Reorganization	 5-13
5 .3 .2

	

Getting and/or Finding a Record	5-13
5 .3 .3

	

Updating a Record	 5-14
5 .3 .4

	

Deleting a Record	 5-16
5 .4

	

PROCEDURES FOR PERFORMING SEQUENTIAL RECORD
OPERATIONS . . .

	

. . . .

	

5-17
5 .5

	

I/0 COST OF PERFORMING RECORD OPERATIONS 5-17

CHAPTER 6

	

INDEXED FILE DESIGN

RECORD SIZE	 6-1
KEY SELECTION	 6-2

Number of Keys	 6-2
Key Data Types	 6-3
String Type	 `	6-3
Two-Byte Signed Integer Type	 6-4
Four-Byte Signed Integer Type	 6-4
Two-Byte Unsigned Binary Type	 6-5
Four-Byte Unsigned Binary Type	6-5
Packed Decimal Type	 6-6
Key Size

	

.

	

•	
6-6

Position of Key in Record	 6-7
Key Characteristics	 6-8
Duplicates	 6-8
Changes	 6-10
Null Key	 6-10

AREAS

	

.

	

. . . 6-10
PLACEMENT CONTROL

	

6-13
BUCKET SIZE	 6-15
Bucket Size for Primary Index	6-16
Bucket Sizes for Alternate Indexes	6-20
Program Syntax	 6-22

FILE ALLOCATION	 6-23
Initial Allocation	 6-23
Default Extension Quantity	 6-26

POPULATION TECHNIQUES	 6-27
Ascending Order by Primary Key

	

6-27

v

CHAPTER 7

	

RECORD AND FILE PROCESSING OF INDEXED FILES

7 .1
7 .1 .1
7 .1 .2
7 .2
7 .2 .1
7 .2 .2
7 .2 .3
7 .2 .4
7 .2 .5
7 .2 .6
7 .2 .7
7 .2 .8
7 .2 .9
7 .3
7 .3 .1
7 .3 .2
7 .4
7 .4 .1
7 .4 .2
7 .4 .3
7 .4 .4
7 .5

CONTENTS

6 .7 .2 Random Insertions after File Population . . . 6-28
6 .7 .2 .1

	

Bucket Fill Size	 6-29
6 .7 .2 .2

	

Mass Insertion	 6-30

ACCESS SHARING	 7-1
Record Access to Indexed Files	7-1
Block Access to indexed Files	 7-2

RECORD AND STREAM OPERATIONS	 7-2
CONNECT	 7-2
DELETE 7-3
DISCONNECT 7-3
FIND	 7-3
FLUSH	 7-5
GET	 7-5
PUT	 7-6
REWIND	 7-6
UPDATE ,

	

7-6
RECORD TRANSFER • MODES 7-7
Move Mode	 7-7
Locate Mode	 7-7

I/0 TECHNIQUES	 7-8
Deferred Write	 7-8
Multiple Buffers	 7-9
Multiple Access Streams	 7-9
Sequentially Reading Write-Shared Files 7-9

FILE AND DIRECTORY OPERATIONS	 7-10

CHAPTER 8

	

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

8 .1

	

TASK BUILDING WITH RMS-11 ROUTINES	8-1
8 .1 .1

	

Disk-Resident Overlays	 8-3
8 .1 .1 .1

	

ODL Files	 8-5
8 .1 .2

	

Memory-Resident Overlays	 8-6
8 .1 .2 .1

	

Task Building against the RMS-11 Resident
Library	 8-6

8 .1 .2 .2

	

Using RMS-11 Operations from within Your Own
Resident Library	 8-7

8 .1 .2 .3

	

Deciding Between Types of Overlays	8-8
8 .2

	

PROGRAM DEVELOPMENT	 8-8
8 .2 .1

	

Flow of Operations Should • Reflect RMS-11 Code
Structure . .

	

.	 8-8
8 .2 .2

	

Task Builder Considerations	 8-9
8 .3

	

VIRTUAL-TO-LOGICAL-BLOCK MAPPING	8-10
8 .3 .1

	

Retrieval Pointers on Disk	 8-10
8 .3 .2

	

Retrieval Pointers in Memory	 8-10
8 .3 .3

	

Optimizing Window Turning	 8-11
8 .4

	

OTHER OPTIMIZATIONS	 8-12
8 .4 .1

	

Data Caching	 8-12
8 .4 .2 Allocating More Resources to the Task 8-12
8 .4 .3

	

Disk Usage	 8-12

APPENDIX A

	

FILE SPECIFICATION PARSING

A .1

	

STANDARD FILE SPECIFICATION SYNTAX	A-1
A .2

	

GENERATION OF A FULL FILE SPECIFICATION	A-2

vi

CONTENTS

vii

APPENDIX B

	

REMOTE FILE AND RECORD ACCESS VIA DECNET

B .1

	

REMOTE NODE SPECIFICATION	
B.2

	

REMOTE ACCESS ENVIRONMENTS	
B.3

	

REMOTE ACCESS POOL CONSIDERATIONS	

B-1
B-2
B-3

INDEX

FIGURES

FIGURE 1-1

	

Record Formats	 1-2
1-2

	

Files	 1-3
1-3

	

Sequential File Organization	 1-4
1-4

	

Relative File Organization	 1-5
1-5

	

Indexed File Organization	 1-6
1-6

	

Indexed File Example	 1-6
1-7

	

Record Access Modes	
•

1-8
1-8

	

RMS-11 Task Structure	 1-14
1-9

	

Records Spanning Blocks	 1-17
2-1

	

Time Factors in an I/0 Operation	2-4
2-2

	

System Protection Concepts	 2-6
2-3

	

Bucket Locking Example	 2-9
2-4

	

Count Field on Disk and Tape	 2-15
3-1

	

RMS-11 Task Structure	 3-13
4-1

	

RMS-11 Task Structure	 • . . 4-14
5-1

	

Indexed File with and without Areas	 5-3
5-2

	

Formatted Bucket	 5-4
5-3

	

Index as a Pyramid	 5-5
R; cord5-4

	

Format for Secondary Index Data Record	 5-6
5-5

	

Example of a Primary Index	 5-7
5-6

	

Search Time Curves	 • • • • • 5 - 9
6-1

	

Single-Area Indexed File	 6-11
6-2

	

Example of Single-Area Indexed File	 6-11
6-3

	

Two-Area Indexed File

	

•	
6-12

6-4

	

Example of Multi-Area Indexed File	 6-13
7-1

	

RMS-11 Task Structure	 7 - 7
8-1

	

Source-to-Task Sequence	 8-2
8-2

	

RMS-11 Tasks	 8-4

TABLE

TABLES

1-1

	

Record Formats and File Organizations	1-20
2-1

	

File Organization Characteristics and
Capabilities	 • • . . . 2-12

2-2

	

File Organization Advantages and Disadvantages

	

2-13
3-1

	

End-of-Block Indicators	• • • • . 3-2
3-2

	

Sequential File Data Sizes (in bytes)	3-3
4-1

	

Relative File Data Sizes (in bytes)	4-2
5-1

	

I/0 Cost of Performing Record Operations 5-18
6-1

	

Key Data Types	 6-6

MANUAL OBJECTIVES

This document is a guide to using RMS-11 capabilities and operations
in file and task design for application programs written in either
MACRO-11 or high-level languages .

INTENDED AUDIENCE

This document is intended for application programmers who want to
achieve optimal performance with new applications they are writing or
with existing applications .

NOTE

Only MACRO-11 programmers can use the
full set of RMS-11 capabilities .
Subsets of these capabilities are
available to high-level language
programmers . See your high-level
language documentation to determine :

•

	

What RMS-11 facilities you can use in
your high-level language

•

	

The syntax for using these facilities

STRUCTURE OF THIS DOCUMENT

This manual contains eight chapters and two appendixes :

• Chapter 1, RMS-11 Concepts and Processing Environment,
introduces the concepts of data organization and access and
the RMS-11 implementation of these concepts .

• Chapter 2, Application Design, presents general considerations
that apply to application design and information that will
help the application designer select a file organization .

•

	

Chapter 3, Sequential File Applications, discusses sequential
file structure, design, and processing .

•

	

Chapter 4, Relative File Applications, discusses relative file
structure, design, and processing .

PREFACE

ix

ASSOCIATED DOCUMENTS

In addition to this user's guide, the RMS-11 documentation set
contains the following manuals .

RSTS/E RMS-11 : An Introduction presents the major concepts of RMS-11,
introduces the RMS-11 operations, and defines key terms required for
understanding RMS-11 capabilities and functions . You should read the
introduction before proceeding to other manuals in the RMS-11
documentation set .

The RSTS/E RMS-11 Macro Programmer's Guide is a reference document for
MACRO-11 programmers that describesthemacros and symbols that make
up the interface between a MACRO-11 program or subprogram and the
RMS-11 operation routines .

The RSTS/E RMS-11 Utilities manual is both a user and a reference
document for all users, both programmers and nonprogrammers . It
describes the RMS-11 utilities that are available for creating and
maintaining RMS-11 files .

In addition, the RSTS/E Quick Reference Guide includes an
easy-reference guide for users who are familiar with RMS-11 and its
documentation . It summarizes the RMS-11 utilities and error codes .

CONVENTIONS USED IN THIS DOCUMENT

Convention

	

Meaning

Uppercase words and letters, used in format examples,
indicate that you should type the word or letter
exactly as shown .

Lowercase words and letters, used in format examples,
indicate that you are to substitute a word or value
of your choice .

PREFACE

• Chapters 5, Indexed File Structure and Access, 6, Indexed File
Design, and 7, Record and File Processing of Indexed Files,
discuss indexed file structure, design, and processing .

• Chapter 8, Task Building and Common Optimization Techniques,
describes techniques that can be used to optimize application
programs that use RMS-11, regardless of the file organization
selected .

• Appendix A, File Specification Parsing, documents RMS-11's
handling of file specifications .

• Appendix B, Remote File and Record Access via DECnet, briefly
describes the remote access environment and remote file
specification syntax .

UPPERCASE

lowercase

quotation marks The term "quotation marks" refers to double quotation
marks (") .

apostrophes

	

The term "apostrophe" refers to a single quotation
mark (') .

x

(]

	

Square brackets indicate that the enclosed item is
optional .

A horizontal ellipsis indicates that the preceding
item(s) can be repeated one or more times . For
example :

file-spec[,file-spec . . .]

A vertical ellipsis indicates that not all of the
statements in an example or figure are shown .

TKB>// In examples of commands you enter and system
responses, all output lines and prompting characters
that the system prints or displays are shown in black
letters . All the lines you type are shown in red
letters .

Unless otherwise noted, all numeric values are represented in decimal
notation .

Unless otherwise specified, you terminate commands by pressing the
RETURN key .

PREFACE

xi

SUMMARY OF TECHNICAL CHANGES

RMS-11 Version 2 .0 supports random access to fixed-format
sequential files and sequential block access to disk files
format and organization .

The RMS-11 Version 2 .0 resident libraries are
means that once a program is linked with this
be rebuilt or replaced without requiring that
rebuilt .

disk
of any

task independent . This
library, the library can
the task linked to it be

RMS-11 Version 2 .0 contains no library equivalent to the RMSSEQ
memory-resident library included with RMS-11 Version 1 .8 . The RMSRES
resident library or the disk-resident ODL files can be used to obtain
equivalent functionality and performance .

New versions of the RMS-11 Version 1 .8 ODL files are provided . These
ODL files are : RMS11S .ODL, RMS11X .ODL, RMS12X .ODL, and RMS11 .ODL .
The Version 1 .8 ODL files will still work with Version 2 .0, but the
new versions will be more efficient . RMS-11 V1 .8 ODL structures other
than RMS11S .ODL, RMS11X .ODL, and RMS12X .ODL may not work correctly
with the RMS-11 V2 .0 code ; when in doubt, verify them by comparison
with the V2 .0 RMS11 .ODL file . In addition, two new ODL files are
provided with Version 2 .0 : RMS12S .ODL and DAP11X .ODL .

Files with stream and VFC records can now be created on unit-record
devices to avoid the need for special-case code in copy-type
operations .

•

	

For VFC files, the record header is thrown away on output
unless the file is a "print format" file .

• For stream files, if none of the 3 carriage control bits is
set (print file format, carriage control, or FORTRAN carriage
control), and if the last charactea: is not a linefeed,
formfeed, or vertical tab, the carriage-return/linefeed
(CR/LF) is appended at the end of the record .

• For stream files, if either the carriage control or FORTRAN
carriage control attribute is set, and if the last 2
characters of the record are CR/LF, the trailing CR/LF is
stripped off and then definition of the carriage control
attribute (CR or FTN) is applied .

For similar ease-of-copying reasons, RMS-11 now allows creation of
relative and indexed files for output to nondisk devices (for magtape,
however, the record format must be variable length or fixed length) .

The RMS-11 File Design Utility (RMSDES) is a new utility that allows
you to design and create files interactively . It is fully documented
in the RSTS/E RMS-11 Utilities manual .

RMS-11 Version 2 .0 supports three new directory operations : $PARSE,
$RENAME, and $SEARCH . These operations are fully documented in the
RSTS/E RMS-11 Macro Programmer's Guide .

X111

SUMMARY OF TECHNICAL CHANGES

RMS-11 Version 2 .0 supports a new wildcard file specification facility
and a new print-record output handling format . These are also fully
documented in the macro programmer's guide .

If suitable DECnet facilities exist on your system and on the target
system, RMS-11 Version 2 .0 will allow file and record access to files
on remote network nodes, if those nodes include an RMS-11-based file
access listener (FAL) .

For magtape, RMS-11 now allows fixed-format records to be less than 18
bytes .

Files with stream or VFC records can now be created on unit-record
devices . In addition, RMS-11 now allows the creation of relative and
indexed files for output to nondisk devices, although they will be
treated as sequential files .

<CTRL/Z> and <ESC> are no longer recognized as record terminators for
stream files, and <CTRL/Z> is no longer recognized as a file
terminator for stream files .

RMS-11 Version 2 .0 pads stream files with null characters, to the high
block of the file (not just to the end of the current block) .

The memory-resident library RMSRES can be clustered with any other
resident library that supports clustering .

The /MODE switch can be used with a file specification for OPEN and
CREATE operations to enable or disable certain forms of processing for
various devices .

The /CLUSTERSIZE switch can now be used with a file specification for
CREATE operations . The /SIZE and /FILESIZE switches can now be used
with CREATE operations, and the /POSITION switch can be used with a
file specification to specify the starting cluster for the file .

RMS-11 Version 2 .0 now creates temporary files using the RSTS/E
temporary file mechanism .

The problems associated with non-write-shared access have

	

been
corrected .

NOTE

All new RMS-11 features are fully
accessible only to MACRO-11 programmers .
See your high-level language
documentation for supported features .

xiv

CHAPTER 1

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Your business, whether commercial, scientific, governmental, or
educational, relies on data . That data indicates the current state of
your business and helps you control the future of the business .
Therefore, you want fast, efficient access to the right data when you
need it .

You are familiar with dealing with data on paper and know that records
of transactions and reports on your business's activities can occupy a
very large number of file folders . You also know that finding exactly
the data you need can be a time-consuming process .

Computer hardware, however, with its speed and mass data storage
capabilities, provides the means for fast, efficient access to data .
Computer software provides the means for translating the data from the
format you use to a format the computer system can handle -- and back
again .

RMS-11 is such a translater between you and your system . This chapter
introduces RMS-11 in terms of general concepts of data organization
and access, which apply regardless of whether data is stored on paper
or within a computer's memory . It then discusses the RMS-11
implementation of data organization and access, and the RMS-11 data
processing environment .

1 .1 CONCEPTS OF DATA ORGANIZATION AND ACCESS

This section examines the general concepts of data organization, using
images from the noncomputer environment you may be most familiar with .

1 .1 .1 Records

When data is stored on paper, it is recorded in groups of items whose
form is repeated throughout the data . Each group of items is called a
record . Within each record are the specific items of data you are
concerned with . For example, all the information on an employee
constitutes a personnel record ; all the information on a stock item
constitutes an inventory record .

On paper, a record can be a form ; different types of records require
different forms . Some forms are always the same length ; their
information does not expand with time or use . For example, a product
information form does not vary in size . If the facts about a product
change, you fill out a new form . If a new product is added, you also
fill out a new form .

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Other forms vary in length with time and use, continuing on to new
pages as they grow . For example, an employee with the company for 10
years has more data in his or her personnel record than a new
employee .

Other forms might use a combination of these two formats . For
example, a record of service on a piece of equipment might begin with
control information describing the specific piece of equipment (name,
model number, date of installation, and so on) and continue on to new
pages documenting the service performed on it .

Figure 1-1 illustrates various record formats .

PRODUCT RECORD

END

SALARY HISTORY

.00

MMM
P1••

(MAY CONT .)
(MAY CONT)

(MAY CON)

(MAY CONT .)

Figure 1-1 : Record Formats

1 .1 .2 Files

When data is stored on paper records, it is usually gathered into
files and stored physically in filing cabinets, organized by related
records . For example, all employee records might be stored in one
file and placed in one drawer of the filing cabinet .

A file not only keeps related data in one place, it also segregates
that data from other, unrelated data .

As data grows, the file and storage requirements become more
complicated, and the number of filing cabinets multiplies . Then, the
files acquire names or numbers, the drawers acquire signs indicating
the contents of the drawers and who may use them, and
cross-referencing systems are introduced to help locate data . These
identifying characteristics and restrictions upon who may read or
alter specific files can be called attributes .

Figure 1-2 illustrates data storage using filing cabinets .

ZK-1 170-82

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Figure 1-2 : Files

In general, the person who uses a file establishes a method of
organizing the records within it . This method reflects the file's use
and dictates what information is needed and how much time is required
to locate a record within the file .

There are several typical methods for organizing records in a file,
depending on how the records are used . If you generally use all the
records in a file whenever you open it (that is, you have little or no
need to locate individual records in the file) and the order of the
records is not important, then you can organize the records
sequentially :

• The records assume the physical sequence in which they are
inserted into the file (that is, records are appended to the
file) .

• No empty spaces are left in the sequence of records, where
records could be inserted later . Each record, except the
first, has a record before it ; each record, except the last,
has a record following it .

1-3

ZK-1167-82

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Employee payroll records, for example, might be kept in a sequential
file . Because all the records must be accessed every time the payroll
is done, sequential file organization would allow easy access to the
records .

The overhead and maintenance for sequential files is minimal . To
insert a record into the file, you simply put it after the last record
already there . Figure 1-3 illustrates sequential file organization .

Figure 1-3 : Sequential File Organization

For more access flexibility than sequential files, if you want to be
able to locate individual records easily, you can set up a series of
file folders and number them in sequence from first folder to last .
Each folder is the same size ; it holds only one record, but it can be
empty . Thus, you do not have to look sequentially through the records
to locate the one you want (although you can if you want to access all
the records) . You use the numbers on the folders to locate or insert
records ; each record will be numbered relative to the beginning of
the file . The numbers can relate to some numbering system meaningful
to your business : for example, order numbers or part numbers .

Figure 1-4 illustrates relative file organization .

ZK-1 168-82

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Figure 1-4 : Relative File Organization

If you have a large file and most of the time you want to be able to
locate individual records, you may want to index your files . Indexing
is useful when you want to be able to use several kinds of information
to locate records . For example, in an employee file, you may want to
use last-name information to obtain a report on all employees, and
job-designation information to obtain a report on all clerical
employees .

When you open an indexed file drawer, you find records filed with
numbered tabs separating them . At the front of the drawer is a set of
small card files, containing groups of cards separated by dividers .
The cards in each of these small card files are an index to the
records at the back of the file . To insert a record in the file, you
find the data item marked "key" on the record, and using that
information, consult the appropriate index to determine where the
record should be inserted .

Figure 1-5 illustrates indexed file organization .

To find a record in an indexed file, you look for the specific key
information in the appropriate key file and use that information to
locate the record . For example, if you want the record of a
transaction with the Q,R,&S Company, you open the indexed file drawer
for transactions, which contains data records filed at the back and
indexes at the front . Figure 1-6 illustrates this example .

ZK-1171-82

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Figure 1-5 : Indexed File Organization

Figure 1-6 : Indexed File Example

ZK-1169-82

ZK-1175-82

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

You know that company name is the primary key for records in the file
and that index 0 indexes the primary keys . The first record in index
0 is the root, which lists selected primary key values, that is, the
company names, in alphabetical order . Not all company names appear
here : instead, a small subset of names, distributed fairly evenly
across the full set of names, is used as the highest level of
indexing . By selecting one name, you establish the region of the file
(range of names) that interests you .

You look down the list until you find a name that either matches
Q,R,&S or occurs after this name in the alphabet . You find Rhesus,
Inc with the number 3 alongside it .

You put the root record back in the file and go to the first divider
and the third index record behind it . Again, the set of names here is
incomplete : only a small set of names distributed fairly evenly
across the range covered by the highest level index entry exists .
This provides an intermediate level of indexing, and further limits
the range of names in which you are interested .

Rhesus, . Inc is the last entry on this card, but you scan the list and
find the name Queeg Co, which is the first entry at or after Q,R,&S in
alphabetical sequence . The entry for Queeg Co has the number 7
alongside it .

So you reach into the data records at the back of the drawer to tab
number 7 . You search sequentially through the records behind this tab
until you find the record of the Q,R,&S transaction .

For another example, using the same transaction file, suppose you want
to find a record but all you know is its transaction number .
Fortunately, the second alternate key for the file is transaction
number . Index 2 indexes the second alternate keys (recall from the
previous example, that the indexes are numbered starting with primary
index 0) . You look at the root record in index 2 and move through the
index as you did in the previous example until you find a card listing
the transaction number you are looking for . Next to the number is the
code 7/5 .

So you reach into the data records at the back of the drawer to tab
number 7 and count back to the fifth record behind the tab . You find
that the transaction you are looking for was made with the Q,R,&S
Company .

Here, only one level of indexing -- the root record -- was used . If
many records exist in the file, another intermediate level would also
be used, as it was in index 0 . Use of intermediate index levels
allows the number of entries you must scan in each level to be small,
regardless of the total number of records in the file .

1 .1 .3 Access

Once you have records organized in a file, you can get, or access,
them in two ways :

•

	

You can search all the records one after the other . This is
called sequential access .

•

	

You can use an identifier to locate an individual record .
This is called random access .

Note that access means not only retrieving a record from a file but
putting a record into the file as well .

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Figure 1-7 illustrates the random and sequential access modes .

Figure 1-7 : Record Access Modes

Sequential Access

For sequential access, you pick a point in the file and access the
records beyond that point one at a time . At times, the starting point
is the beginning of the file because you want to look at, or access,
each record in the file . Other times, you may begin midway through
the file .

To read each record, you take it out of the file, marking the position
of the record you just removed with a card or some other marker so
that you know :

•

	

Where to put the record back into the file

•

	

Where the next record is

To insert records sequentially, you reach into the drawer to the place
where you want the records to go and mark the position of that place .
Often, the point at which you will insert the new records will be the
end of the file . At other times, it may be midway through the file .

ZK-1 172-82

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

You insert the records by taking the first record from the stack of
new records and slipping it into position in the file . You then mark
the position after the record you just inserted and add the next
record in that position . You continue in this manner until all the
new records are inserted .

Note that in both retrieving and inserting records you move through
the records consecutively . Each record is retrieved or inserted with
respect to the record accessed right before it .

Random Access

For random access, you determine the location of the record you want
on the basis of some identifier, rather than on the basis of the
record's position within the file . If, for example, you have a list
of locations of records in the file, you can reach into the file to a
record's exact location . Each record selection is independent of the
previously accessed record and of the next record to be accessed .

The record identifier can be a number, as for relative files, or it
can be a key, as for indexed files . Or, the identifier can be a
physical location within the file drawer ; for example, you could
place each record in a numbered slot within the file drawer and use
the slot number to access the records in the file . The slot number
would be the address of the record . This type of random access could
be used with any type of file organization .

Often, you will want to switch the mode of access you use . You may
want to use random access to find the first record in a series and
then use sequential access to retrieve all the records in that series .
For example, if your employee records are grouped by department codes
within the file, you can use a specific department code as the
identifier to randomly access the first record with that department
code and then switch to sequential access to consecutively read all
the records with that code .

Context

In either type of access, sequential or random, the marking of
position in the file is important . This is called context : the
position of the record you are accessing is the current record, and
the position of the record that follows it is the next record .

Access Control

One advantage of the segregation of data provided by files is
controlled access . Some files, such as budget or payroll, should be
available to only a small group of authorized people . Other files,
such as inventory or transaction files, may be used by larger groups
of people . And some files, such as the telephone directory, must be
accessible to everyone .

Files allow you to control who can use what data . You can lock the
filing cabinet that contains the payroll data and give keys to
yourself and the payroll manager only . And you can distribute
telephone directories to every employee .

In addition, within a file, you can further control how the data can
be used within the group of authorized users . Some users may be
allowed to write new data in the file or to modify existing data,
while others may be allowed only to read the data .

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

1 .1 .4 Processing

Once you locate, either sequentially or randomly, a record's position
within a file, you will probably want to do something with the record
that belongs there . Record operations fall generally into the
following categories :

•

	

Verify that the record exists in the right location

•

	

Read the record ; that is, examine its data contents

•

	

Insert a record in the position that you have located

•

	

Revise the contents of the record ; that is, modify some of
its data contents

•

	

Remove the record from the file

1 .1 .5 File Maintenance

Once you establish files and their records and begin using them
regularly, you will want to be able to maintain them to ensure both
the protection of the data within them and their continued usability .

Typically, maintenance might include the following activities .

• The data in a file is valuable or you would not keep it . You
should have duplicates of your records in some other place in
case something happens to the originals . Therefore, you need
the ability to back up files .

•

	

If something does happen to your original data, you must be
able to obtain, or restore, the duplicate records .

•

	

You need the ability to list, or display, your files, with
their names and other attributes .

• Files often grow very large and their usage can change over
time . Therefore, you may want to change a file's organization
from sequential to indexed ; or you may want to reload a file
that has grown very large to use space more efficiently .
Conversely, usage and file size might decrease and you may
want to make a file simpler . It is also possible that the
information in one file is suitable for another application .
In all these cases, you would want to be able to convert a
file into a new one, perhaps changing some attributes
(including organization) to make it more usable .

•

	

You want to be able to design and create files that you
require .

• Creating an indexed file and putting records into it can be
complicated and time-consuming . You would want a procedure --
indexed file loading -- that would produce an optimal indexed
file quickly and efficiently .

1 .2 RMS-11 IMPLEMENTATION OF DATA ORGANIZATION AND ACCESS

RMS-11 provides file structure capabilities that allow you to organize
your data within a computer's memory using the same concepts that were
described in Section 1 .1 for paper records in filing cabinets .

The following sections briefly present the RMS-11 file structure
capabilities . For more details, see RSTS/E RMS-11 : An Introduction .

1 .2 .1 RMS-11 Record Formats

RMS-11 supports the following record formats that allow you to define
the size of your data records :

•

	

Fixed length -- Every record in the file is the same size .

•

	

Variable length -- Records in the file are of different
lengths, up to a maximum size that you can optionally specify .

• Variable with fixed control -- Records in the file are of
different lengths, up to a maximum size that you can
optionally specify, and in addition, a fixed-length control
area precedes the data .

• Stream -- Records consist of a continuous stream of ASCII
characters delimited by a special terminator character or
sequence of characters .

• Undefined -- Records in a file may have no record format or
may be in a format different from the four standard RMS-11
formats .

RMS-11's support of stream and undefined record formats provides
limited support for non-RMS-11 files .

1 .2 .2 RMS-11 File Organizations

RMS-11 supports three file organizations :

•

	

Sequential -- Records are arranged within the file in the
order in which they were written into the file .

• Relative -- Records are stored in the file in cells, or
fixed-length units of storage, one record per cell . The cells
are numbered sequentially . These numbers, called relative
record numbers, are identifiers for the records .

• Indexed -- Records are arranged in the file in ascending order
by key . A key is a data field within the record that RMS-11
usesas an identifier to access the record . An indexed file
must have one primary key and may optionally have other
alternate keys .

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

1 .2 .3 RMS-11 Record Access Modes

RMS-11 provides three record access modes for storing and retrieving
records in files :

•

	

Sequential -- RMS-11 stores and retrieves records
sequentially, one after another .

• Random by key -- RMS-11 uses either a key (for an indexed
file) or a relative record number (for a relative file or for
a disk sequential file with fixed-format records) as an
identifier to gain direct access to an individual record in
the file .

• Random by record file address (RFA) -- RMS-11 uses the RFA as
an identifier to gain direct access to an individual record in
the file . The RFA is a unique identifier that RMS-11
establishes for every record that it writes into a disk file .

1 .2 .4 RMS-11 Utilities

RMS-11 provides utility programs that can help you perform file and
record maintenance :

• RMSBCK -- The RMS-11 File Back-Up Utility transfers the
contents of an RMS-11 file to another file, which may be on
another device, to maintain the file should the original file
be lost or damaged .

• RMSRST -- The RMS-11 File Restoration Utility transfers files
that were backed up using RMSBCK back to you so your programs
can access them .

•

	

RMSDSP -- The RMS-11 File Display Utility produces a concise
description of any RMS-11 file, including back-up files .

• RMSCNV -- The RMS-11 File Conversion Utility reads records
from an RMS-11 file of any organization and loads them into
another RMS-11 file of any organization .

•

	

RMSDES -- The RMS-11 File Design Utility allows you to design
and create sequential, relative, and indexed files .

• RMSIFL -- The RMS-11 Indexed File Load Utility reads records
from an RMS-11 file of any organization and loads them into an
indexed file .

1 .3 RMS-11 PROCESSING ENVIRONMENT

The RMS-11 software routines organize data on your computer,
implementing the concepts discussed in the previous sections, and
provide the interface between your application programs and the
computer system .

Your computer system consists of layers of hardware and software :

•

	

The hardware devices -- magnetic tapes and disks -- to store
the data .

•

	

The operating system software -- file control processor,
device drivers -- controls the hardware to maintain files .

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

•

	

RMS-11 software controls the internal structure of files (as
described in Section 1 .2) .

•

	

Your application program makes use of these hardware and
software facilities to process data records and files .

1 .3 .1 RMS-11 Task Structure

You use the RMS-11 software routines by combining them with a program
you have written in a language that implements RMS-11 .

NOTE

Only MACRO-11 programmers can use the
full set of RMS-11 capabilities .
Subsets of these capabilities are
available to high-level language
programmers . See your high-level
language documentation to determine :

•

	

Which RMS-11 facilities you can use
in your high-level language

•

	

The syntax for using these facilities

Once you write your program, you convert it to object code, using
either a compiler or an assembler .

To combine your object code with the RMS-11 routines, you use the task
builder, which converts object code (modules) to an executable form
called a task . In the process, the task builder not only combines
different object modules, but may also arrange the task so that some
executable modules overlay each other when the task is run .

You can combine RMS-11 routines with your object code in either of the
following ways :

•

	

In the task itself, with nonoverlaid routines or a
disk-resident overlay structure

•

	

In memory-resident overlays, a form apart from your task

The primary difference between these techniques is that
memory-resident overlays can be shared among programs . Nonoverlaid
and disk-resident overlaid routines cannot be shared ; each accessing
program must have its own copy of such routines . In addition,
memory-resident overlays eliminate the I/0 operations needed to bring
disk-resident overlays from disk, thereby making your tasks run
significantly faster .

In either case, your task takes a logical form in which program code
exists in one part of the task and the RMS-11 routines run in another
part . When your program performs an RMS-11 operation, it sets up the
necessary parameters and data and calls the appropriate RMS-11
routine . Control jumps to that part of the task, the routine runs to
completion, and control returns to your program . Figure 1-8
illustrates this logical structure .

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

VIRTUAL
MEMORY PROGRAM

USER BUFFERS

SIZE DEPENDS ON :

	

-I
•

	

NUMBER OF FILES OPENED -Q'MULTANEOUSLY
• BUCKET SIZES IL NUMBER OF RECORD ACCESS STREAMS -- ~

I/O
BUFFERS

INTERNAL
CONTROL

STRUCTURES

Figure 1-8 : RMS-11 Task Structure

Also part of the task are storage structures, which generally take
three forms :

• User buffers -- These buffers are used to pass data records
between your program and RMS-11 . They are available to your
program and the data in them can be manipulated, read,
changed, used for calculations, and so on .

• 1/0 buffers -- For each file your program has open, RMS-11
normally requires at least one internal I/0 buffer . All data
going to or coming from disk is stored in an I/0 buffer as
follows :

RMS-11 requests the file control processor to move block(s)
from a disk file into this buffer to satisfy your program's
requirements . Each request normally specifies the same
number of blocks, called an I/0 unit . The size of the I/0
unit depends on the file organization, file design, and
settings at access time (such as multiblock count) .

RMS-11 moves records between the I/0 buffer and the user
buffer . Your program can also directly access a record
within the I/0 buffer in certain restricted circumstances .

• Control structures -- RMS-11 control structures, called
control blocks, are used to communicate between your program
and the RMS-11 routines and with each other . Some are
accessible to your program ; others are for RMS-11 internal
use only .

RMS-11

I SIZE DEPENDS ON :

	

I

j • RMS-11 FUNCTIONS USED I
~ • OVERLAY STRUCTURE USED

ZK-1 174-82

1 .3 .2 RMS-11 Record Processing

The RMS-11 stream and record operations are the interface between
program and the data records your program requires .

Before your program can access records in a file, the
open and an access stream must be initiated .

NOTE

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Most high-level languages do not support
access streams at the user level . They
use the RMS-11 access stream facilities
to implement their own file access
techniques .

An access stream is a path to the file's data records ; record
operations are performed via that stream, one operation at a time .
RMS-11 keeps track of the stream's position, or context, in a file, in
terms of current record and next record . The stream'.s position
changes at the completion of an operation . Chapters 3, 4, and 7
discuss context for record operations with the different file
organizations .

The stream operations control the stream associated with a file . They
are :

•

	

CONNECT -- initiates an access stream .

•

	

DISCONNECT -- terminates a stream .

•

	

FLUSH -- writes the currrent contents of I/0 buffers to the
file .

•

	

FREE -- releases control of the record or block most recently
accessed (and locked) by the stream .

•

	

REWIND -- resets the stream context to the first record in the
file .

The record operations process records within . a file . They are :

•

	

FIND -- reads a record from a file to an I/0 buffer and sets
the current-record context to that record .

•

	

GET -- reads a record from a file to an I/0 buffer and then to
a user buffer, and sets the current-record context to that
record .

•

	

PUT -- writes a new record from a user buffer to an I/0 buffer
and then to a file .

• UPDATE -- transfers a modified record from a user buffer to an
I/0 buffer and then to a file, overwriting the previous copy
of the record in the file .

•

	

DELETE -- removes an existing record from a relative or
indexed file .

•

	

TRUNCATE -- effectively deletes all records in a sequential
file from the current record to the logical end-of-file .

your

file must be

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

For the FIND, GET, and PUT operations, your program specifies the
record access mode -- sequential, random by RFA (FIND and GET only),
or random by key -- which determines which record is the target of the
operation .

See RSTS/E RMS-11 : An Introduction, Chapter 4, for a more detailed
introduction to record processing . Chapters 3, 4, and 7 of this
user's guide describe specifically how the record operations work
depending on the file organization selected and (for FIND, GET, and
PUT) the access mode specified .

1 .3 .3 RMS-11 File Processing

RMS-11 must manipulate the contents of files so that it can process
records . However, RMS-11 does!not directly perform the actual file
manipulation, and the flow of data, control, and overlay segments that
the file manipulation entails . RMS-11 issues requests to the file
control processor to perform the actual I/0 and other operations on
the files . Thus, the file control processor's internal operation,
while invisible to RMS-11, can affect your program's performance .

The file control processor is not concerned with the data records in a
file . It knows only virtual and logical block numbers, directories
and other information, and the disk drivers involved . Therefore,
RMS-11 can direct file manipulation as long as it makes the proper
requests to the file control processor . To do so, RMS-11 maintains
the following structures, or I/0 units :

• Blocks -- The I/0 unit for sequential files is the block . You
can adjust the block count for each record access stream so
that more than one block can be moved during each I/0
operation .

In addition, you must decide whether records can cross block
boundaries . When records can cross block boundaries, RMS-11
can pack them with optimal density in the file because a
record can be stored in one or more blocks . This is called
block spanning . Figure 1-9 illustrates block spanning .

When records are restricted by block boundaries, each record
must be no more than 512 bytes (one block) long, and unused
bytes may be left at the end of each block .

• Buckets -- The I/0 unit for relative and indexed files is the
bucket . A bucket consists of one or more blocks that RMS-11
treats as a unit . Records can cross block boundaries but they
cannot cross bucket boundaries . Bucket size is a file
attribute that you specify when you create the file .

Buckets are an RMS-11 concept, so when RMS-11 initiates an
operation for a relative or indexed file, it requests the file
control processor to move a bucket by specifying the virtual
block number for the first block in the bucket and the size of
the bucket in bytes . Note that buckets are fixed within the
file ; once created, buckets contain the same virtual blocks
at all times .

You can also direct RMS-11 to request the file control processor to
place a file on a disk at a specific location . This is called
placement control and can improve performance by taking advantage of,
for example, tracks and cylinders .

A. RECORDS LESS
THAN 512
BYTES

B. RECORDS GREATER
THAN 512
BYTES

C. VARIABLE-LENGTH
RECORDS

ZK-1 173-82

Figure 1-9 : Records Spanning Blocks

RMS-11 provides access sharing ; that is, your program can control who
can gain concurrent access to the data in a file and what type of
operations they can perform on the data . See Section 2 .2 .3 for more
information on access sharing .

The RMS-11 directory and file operations perform the file-level
functions . The directory operations affect file specification entries
in directories (not the contents of the files) . They are :

•

	

RENAME -- replaces an existing disk file specification with a
new one .

•

	

PARSE -- returns file specification information to your
program .

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

I*---BLOCK---r--BLOCK-ij+--BLOCK--'I BLOCK-- -BLOCK- -BLOCK-i1

4
I I

RECORDS

T
RECORDS

i

RECORDS

j

•

	

SEARCH -- examines one or more directories for a specified
file and returns the file specification and location .

NOTE

Most high-level languages do not support
the directory operations . See your
high-level language documentation .

The file operations provide access to files . They are :

•

	

CREATE -- creates a new file with the attributes you specify
and opens it for processing .

•

	

OPEN -- makes an existing file available for processing .

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

•

	

CLOSE -- terminates access to a file .

•

	

ERASE -- deletes a file and removes its directory entry, if
one is specified .

•

	

EXTEND -- increases the allocated size of an open file .

•

	

DISPLAY -- returns file information about an open file to your
program .

See RSTS/E RMS-11 : An Introduction, Chapter 4, for a more detailed
introduction to file processing . Chapters 3, 4, and 7 of this user's
guide describe specifically how the file operations work depending on
the file organization selected .

1 .4 FILE ATTRIBUTES

When you create an RMS-11 file, either through a program (using the
CREATE file operation routine) or by using the RMSDES utility, you
must specify the following information :

• Medium -- Disk or magnetic tape . You can also create files on
unit-record devices, such as line printers and terminals .
Note that relative and indexed files are restricted to disk
devices .

• File specification -- The name you assign to a file enables
RMS-11 to find the file later . Use the file specification
conventions specific to your operating system .

•

	

Protection -- RMS-11 allows you to assign a protection code to
a file when you create it . Use the protection codes specific
to your operating system .

•

	

File organization -- Sequential, relative, or indexed .

•

	

Record format -- Fixed length, variable length, VFC, stream,
or undefined .

• Record size -- For fixed-length records, the size is the same
for every record in the file . For variable-length records,
the size is the maximum length any record can be .

For VFC records, there are two size specifications : (1) the
fixed length of the control area, and (2) the maximum length
of the variable data area .

RMS-11 also keeps the length of the longest record actually
stored in a sequential file for variable-length and VFC
records .

•

	

Block spanning (sequential files) -- Whether records can cross
block boundaries .

•

	

Bucket size (relative and indexed files) The number of
blocks in each bucket .

•

	

Maximum record number (relative files) -- The maximum number
of records that the file will contain .

,RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

• Keys (indexed files) -- The number of keys ; the position and
size of each key ; the data type for each key ; and other key
characteristics .

• Record-output handling -- You can specify three (mutually
exclusive) types of handling for records being written
directly to a unit-record device, although you need not
specify any :

Carriage control -- The device driver inserts a linefeed
character as a prefix to each record and a carriage-return
character as a suffix to each record before passing it to
the device .

FORTRAN -- The device interprets the first byte of each
record as a FORTRAN forms control character .

Print file format (VFC records with a fixed header size of
0 or 2 bytes) -- RMS-11 interprets the first byte of the
header as a prefix for the record and the second byte as a
suffix for the record .

•

	

File allocation -- You must specify two quantities :

Initial allocation -- the size of the file in blocks when
it is created .

Default extension quantity -- the number of blocks to be
added to a file when RMS-11 automatically extends it .

• Contiguity Whether the disk space initially allocated to
the file is to be allocated in continuous, adjacent logical
blocks .

•

	

Placement control -- Where the file is to be physically
located on the disk .

During the file creation process, RMS-11 stores this information,
called the file attributes, in the file directory and, for relative
and indexed files, in the first blocks, or prologue, of the file as
well .

After creation, for the life of the file, RMS-11 gets information
about a file from the file itself . This offers several advantages :

•

	

Most file attributes do not change .

• You can design your RMS-11 files offline . No program
accessing the files need specify attributes (except those that
may be required by high-level languages), because RMS-11
requires only a file specification from a program to open a
file .

• You can open an RMS-11 file with its file specification only .
After that, RMS-11 enables you to read the file attributes .
You can write a program or use the RMSDSP utility to display
those attributes .

Note that some of the attributes are interdependent ; that is, the
selection of one attribute directly affects, or restricts, other
attribute options . File organization, record format, and medium are
all interdependent . For example, if you select magnetic tape medium,
you must use sequential file organization . And if you select VFC
records, you cannot use indexed file organization and you must use a
disk device .

RMS-11 CONCEPTS AND PROCESSING ENVIRONMENT

Table 1-1

	

lists

	

the

	

record

	

format

	

and

	

file

	

organization
interdependencies .

Table 1-1 : Record Formats and File Organizations

Chapters 3 through 7 discuss your file design options in detail,
depending on your selection of file organization . Chapter 2 provides
information to help you make that selection .

1 .5 PROCESSING BY BLOCK ACCESS

Your program can bypass RMS-11 record processing and process any
RMS-11 file in a mode called block access .

Your program can read or write blocks in a file either sequentially or
(on disk only) randomly by virtual block number (VBN) . But your
program must be able to interpret the contents of those blocks .

See RSTS/E RMS-11 : An Introduction for an introduction to block
access and processing. See the RSTS/E RMS-11 Macro Programmer's Guide
for detailed information on block access and processing .

File
Organization Fixed

Record Format :
UndefinedVariable VFC Stream

Sequential :

Magtape Yes Yes No No No
Disk Yes Yes Yes Yes Yes

Relative Yes Yes Yes No No

Indexed Yes Yes No No No

CHAPTER 2

APPLICATION DESIGN

When you write an application program, you want that program to input
data, process it, store it, update it if necessary, and at intervals
output it in the proper formats .

You want all this to happen simply, quickly, and accurately . You must
therefore take the time to design your application by carefully
considering RMS-11 file structure and file and record processing
capabilities . Important RMS-11 considerations are data storage
medium, record format, file organization, access mode, allocation,
overlays, and so on .

If you do not consider RMS-11 capabilities when you design your
application, you may not get the best peformance possible from your
application because of the defaults that will be applied automatically
to your files (see Section 2 .1) .

Example : The first time one user created a file, she used a
high-level language program and took all the defaults . Then she
loaded records into the file ; 'the process was quite lengthy .

However, when she re-examined the file and re-created it applying some
RMS-11 design considerations, the record insertion process went 10
times as fast .

Example : Some users, accustomed to programming with BASIC-PLUS record
I/0, learned that RMS-11 uses 15 bytes of control data in each bucket
and 7 bytes of control data for each fixed-length record in an indexed
file (see Chapter 6) . Then, because they were accustomed to working
with whole blocks, they set up single-block buckets (512 bytes) and
subtracted RMS-11 overhead (22 bytes) to come up with a record size of
490 bytes .

But when they used those files, the users were alarmed to see them
grow at high rates . They had not read that RMS-11 preserves its fast
sequential and alternate key access during random insertions by moving
records and leaving behind 7-byte pointers (see Chapter 5) .
Therefore, when one of those 490-byte records was moved, it left
behind 7 bytes, which meant that no other record fit into that bucket .
Soon the file was filled with practically empty buckets that could not
be used because the designers did not allow for the full implications
of RMS-11 structure .

If you develop an application with a high-level language, you probably
will not worry about RMS-11 . You will accept the language's concept
of design, if any . It is possible, however, that the defaults the
language uses in its interface with RMS-11 are not well suited for
your application .

APPLICATION DESIGN

This chapter presents general design considerations that apply to all
application designs and information that will help you make the first
important design decision : selection of a file organization .

2 .1. WHEN TO DESIGN

There are two times to design an application :

1 . Before you write the application, especially if you have :

•

	

Large file(s)

•

	

Many users simultaneously accessing the file(s)

•

	

A high level of activity (many records read, written,
updated, or deleted in a given time period)

2 . After you write the application, if you are not happy with
its performance .

Often,_ poor performance results from default values that are
inappropriate for your application . You can frequently find
improvements by studying the nature and source of the defaults and how
they affect the structure of your application and your file .

Basically, defaults have three sources :

1 . Source language compilers

In many instances, source language compilers such as COBOL-81
or BASIC-PLUS-2 supply default values for RMS-11 file
attributes and/or facilities .

Example : RMS-11 does not calculate an optimal bucket size
for indexed files . Rather, the program creating the file
must specify a bucket size . When that program is the product
of a compiler, the bucket size can be explicitly specified in
the source code or it can be implicitly set by the compiler,
using a default value .

2 . RMS-11

The interface between the RMS-11 routines and your program
has the same structure in all tasks, regardless of their
source (PDP-11 COBOL-81, RPG, MACRO-11, and so on) . This
interface consists of control blocks (see the RSTS/E RMS-11
Macro Programmer's Guide for details) . The information
provided by your programin these blocks effectively controls
RMS-11, causing it to create, open, access, and close files .
However, when explicit information is, not provided, RMS-11
uses its default values .

3 . Operating system

RMS-11 acts as an intermediary between your task and the
operating system . As such, RMS-11 can supply control
information for system functions such as protection codes .
However, if RMS-11 supplies no control data, the system uses
its defaults .

2 .2 DESIGN CONSIDERATIONS

When you design your application,
four design considerations :

APPLICATION DESIGN

you are concerned primarily with

1 . Speed -- You want to maximize the speed with which the
programs process data .

2 . Space -- You want to minimize the room for the data and the
task on disk and the memory the task takes to run .

3 . Shared access -- You want your data to be exactly as
accessible to the people using the computer system as
necessary .

4 . Ease of design -- You do not want to spend more time than
necessary writing the application .

Remember, the importance of design is proportional to the complexity
of the file organization . That is, design is least important for
applications using sequential files and most important for
applications using indexed files .

2 .2 .1 Speed

You can make many performance (speed) decisions before you have to
consider anything else . Therefore, the first criterion to apply
throughout the design process is minimize I/0 time .

The mechanics of the mass storage devices on your system consume most
of the time for any RMS-11 operation . The memory-resident routines
that prepare the data for I/0 or process it afterwards are very much
faster (one to three orders of magnitude) .

An application's entire environment affects I/0 time :

•

	

File structure -- A variety of file attributes affect I/0
time, including :

bucket size (for a relative or indexed file)
number of keys (for an indexed file)
number of duplicate key values (for an indexed file)
initial file allocation
default extension quantity

• File size -- The number of records in the file affects the I/0
operations required to scan a file sequentially or follow an
index .

• Program -- Your program affects I/0 time by requiring I/0
operations for file operations (OPEN, CLOSE, and so on),
record operations (GET, PUT, and so on), and overlays .

•

	

RMS-11 -- The RMS-11 routines can be structured as
disk-resident overlays or as memory-resident overlays .

APPLICATION DESIGN

• File control processor -- Besides requiring overlay segments
from disk, the file control processor can also request I/0
operations required to map virtual blocks of the file to
logical blocks on the storage device .

• Device hardware -- The storage device that contains the task
and data files is the primary contributor to the length of an
I/0 operation . The type of device chosen (moving-head,
fixed-head, and so on) and the demands on it (amount of I/0
activity for that device within the system) are crucial to I/0
performance .

Figure 2-1 illustrates this environment .

2 .2 .2 Space

RMS-11 requires space for three reasons :

1 . To store data in a file

DEVICE

Figure 2-1 : Time Factors in an I/O Operation

2 . To store the RMS-11 routines either (a) on disk when they are
not in use, or (b) in memory when they are being executed

3 . To buffer data in memory while the task runs

ZK-1163-82

• Relative file organization -- RMS-11 constructs a series of
record storage cells based on the length of the records . The
cells are 1 byte longer than the fixed size of fixed-length
records or 3 bytes longer than the maximum size specified for
variable-length records .

•

	

Indexed file organization -- RMS-11 adds to your data :

An index for each defined key .

15 bytes of formatting information for

A 7-byte header for each record .

A count field for each variable-length record .

Other overhead of varying lengths for records RMS-11 moves
during file activity and for deleted records .

You should keep the size of records to the minimum required for your
application .

2 .2 .2 .2 Task Size - The space RMS-11 routines occupy in a task
depends on the method you use to link the routines with your program .
See Section 8 .1 for more details .

2 .2 .2 .3 Buffer Sizes - You can vary the size of the I/0 buffers
RMS-11 uses to store data in memory . Generally, the larger the
buffers, the faster the task processes data . See Section 3 .5 .3,
Section 4 .5 .3, or Section 7 .4 for the file organization(s) you are
interested in .

2 .2 .3 Shared Access

Shared access revolves around the question : Who is allowed to read
from or write to a file? The answer involves your operating system's
protection codes, your access

	

declaration,

	

and

	

your

	

sharing
declaration .

System Protection Codes : Before you can access an RMS-11 file, you
must log into your computer system using an account number that will
allow you the kinds of access you need when your access request is
validated against the file's protection codes .

Operating systems allow you to assign a protection code to each file
when it is created . This code describes concentric circles of users
who are allowed different levels of access to that file . See your
operating system documentation for specific protection conventions .

2-5

APPLICATION DESIGN

2 .2 .2 .1 Data Storage - The space RMS-11 requires to store data is
proportional to the organization of the file, and to the processing
capabilities of that organization :

• Sequential file organization -- RMS-11 adds to the size of
your data an empty byte, if necessary, to align each
fixed-length, variable-length, or VFC record on an
even-numbered byte boundary . When the file contains
variable-length records, RMS-11 also prefixes a count field to
each record .

each bucket .

APPLICATION DESIGN

Figure 2-2 illustrates the system protection concepts .

RSTS/E
ZK-1130-82

Figure 2-2 : System Protection Concepts

Access Declarations : Your program must declare the types of access
you need by specifying the record or block operations it intends to
perform on the file, as follows :

•

	

Read-only access is granted if your program specifies that
only FIND/GET or READ operations can be performed .

No PUT, UPDATE, DELETE, TRUNCATE, or WRITE operations will be
allowed, nor will any other operation which would modify the
file (an EXTEND operation, for example, will not be allowed
for read-only access) .

• Read/write access is granted if your program specifies that
PUT, UPDATE, DELETE, TRUNCATE, or WRITE operations can be
performed . FIND/GET and READ operations will also be allowed,
as will EXTEND operations .

Note that, in addition to any access declaration, a CREATE
operation always forces read/write access so that the newly
created file can be populated (using PUT operations for record
access or WRITE operations for block access) .

Sharing Declarations : Your sharing declaration specifies the types of
access to the file that your program is willing to allow to other
programs that request access to the file at the same time that your
program is accessing it . These declarations can be :

•

	

No sharing -- You do not want any other program to access the
file .

A no-sharing specification in your sharing declaration
overrides any other sharing specification you may also have
included, and guarantees that no other program will have
concurrent read/write access to the file . That is, no other
program will be able to modify the file .

Note, however, that it is not possible to guarantee that
concurrent read-only accessors will be denied access, unless
your program has declared read/write access .

•

	

Read-only sharing -- You are willing to allow other programs
read-only access to the file .

However, if your program specifies read/write access, no other
accessors of any kind will be allowed (even though your
sharing declaration is read-only), unless you also specify
read/write sharing . This is an operating system restriction .

•

	

Read/write sharing -- You are willing to allow other programs
read/write, as well as read-only, access to the file .

NOTE

High-level languages may use slightly
different terms to designate the access
and sharing declarations, and may not
provide equivalents for all the sharing
options . See your high-level language
documentation .

Once the operating system's protection checks are passed, RMS-11 and
the operating system cooperate to determine whether the type of access
you request (your access declaration) and the type of sharing you
permit (your sharing declaration) are consistent with any other
current accessors of the file .

If no other tasks have accessed the file at the time that your program
requests access, your access request must only pass the system
protection checks to be granted . However, if one or more programs
already have access to the file, RMS-11 and the operating system will
use the access and sharing declarations of those programs along with
those of your program to determine whether your program will be
allowed concurrent access .

No-sharing and read-only declarations are processed as described above
for files of all organizations and access method (block or record) .
In other cases, however, RMS-11 and the operating system interpret the
access and sharing declarations in the manner best suited to the
file's organization and the access method, as described in Section 3 .4
for sequential files, Section 4 .4 for relative files, and Section 7 .1
for indexed files .

APPLICATION DESIGN

APPLICATION DESIGN

NOTE

As noted, file sharing is a cooperative
effort between RMS-11 and the operating
system . The RMS-11 processing
algorithms depend upon the detailed
nature of this cooperation . If you
access a file concurrently with multiple
programs, some of which use RMS-11 and
some of which do not, the results may be
unpredictable .

2 .2 .3 .1 Bucket Locking - Any time a record is updated, accessing
programs must be assured that the data written to the file is current
until the record is re-accessed and the record updated again .

If no control is placed on access, two or more programs could access
the same record, one after the other, and update it, one after the
other . Only the last update would remain in the file . Access sharing
could . thus impair data integrity .

To ensure data integrity, RMS-11 uses bucket locking for a relative or
indexed file when the file is open for write-shared access . From that
point, RMS-11 requests the operating system to lock each bucket read
from disk until RMS-11 explicitly releases the bucket . After a GET,
FIND, or mass-insert PUT operation, only the bucket containing the
data record remains locked . (See Chapter 7 for information on mass
insertion .) While that bucket is locked, no other program can access
it .

RMS-11 requests the operating system to
of the following occurs :

•

	

The GET, FIND, or PUT operation fails .

•

	

The GET or FIND operation succeeds -- if the program has
declared read-only access to the file .

•

	

The program initiates another record operation that accesses a
different bucket .

After the bucket is unlocked, other programs can access it .

Example : Programs A and P are write-sharing a file named RMSREL .DAT .
Both try to update relative record number 12 . However, program B
initiates the prerequisite GET operation first, locking the bucket
containing the record . The operating system keeps program A from
accessing that bucket while program B uses it . After program B
updates record 12, RMS-11 unlocks the bucket and the operating system
allows program A to get record 12 (including program B's updated
data) . Figure 2-3 illustrates this example .

Bucket locking incurs costs : The operating system administers bucket
locking . It establishes, for each file, a list of virtual blocks that
are locked . The system must scan this list every time RMS-11 performs
an I/0 operation and then either permit the operation or return an
error . In addition to this lock-list overhead, extra instructions are
executed to lock and unlock the buckets .

unlock such a bucket when one

PROGRAM A

TRY AGAIN

PROGRAM B

DO NEXT
RECORD

PROGRAM
A

Figure 2-3 : Bucket Locking Example

APPLICATION DESIGN

PROGRAM B

PROCESS
RECORD

zwnsasz

2 .2 .3 .2 Sharing among Access Streams - In addition to the bucket
locking used when programs allow sharing, RMS-11 provides its own
version of bucket locking when a program accesses a file for
write-type operations . This locking allows multiple streams to share
the file . RMS-11 bucket locking works the same way as the locking
provided by the operating system, except that the locks can be
encountered only by different access streams within the same program .

The overhead for RMS-11 bucket locking is small .

APPLICATION DESIGN

2 .2 .3 .3 Programming Considerations - For the greatest flexibility at
run time, you should assume that access to any record by your program
can be denied because the bucket containing the record is locked .
RMS-11 returns the error code ER$RLK when the bucket is locked by
another access stream in the same or in another program .

Therefore, you should use the following techniques when you write
RMS-11 programs that involve shared access :

• Never keep a bucket locked longer than necessary . You should
follow any successful GET or FIND operation with another
record operation of any type as soon as possible . The second
operation unlocks the bucket locked by the read-type
operation .

Alternatively, you can release the bucket explicitly with a
FREE operation . A FREE operation releases only the bucket
locked by the access stream associated, with the operation .

• If your program detects an ER$RLK error (or its high-level
language equivalent), its error processing depends on the
number of access streams active on the file :

Single stream -- Set up a loop that stalls, then
re-initiates the record operation until RMS-11 indicates a
successful completion .

Multiple streams -- Do not set up a loop that continuously
re-initiates the record operation . You should either (a)
continue processing on the other streams, attempting the
record operation on the locked-out stream periodically, or
(b) release the buckets locked by all other streams, then
re-initiate the record operation that failed . Any
GET-UPDATE or FIND-UPDATE sequences interrupted on the
other streams must be restarted, because the release of a
bucket destroys the record context .

2 .2 .4 Ease of Design

When :you design and write your application, you should consider
yourself and the person who will maintain the application . Keep the
following design guidelines in mind :

• Keep things simple . You can apply this criterion to the whole
development process, from program flowcharts to the record
layouts to file organization and design .

Example : From sequential through indexed, the RMS-11 file
organizations offer increasing capabilities, but they are also
increasingly complex . Choose the organization that supplies
enough capabilities, but no more . For instance, if you want
to randomly access a file by a single key only, you might use
a relative file and a hashing algorithm instead of an indexed
file .

• Apply optimizations one by one until you reach a satisfactory
level of performance . Generally, further improvements are not
necessary .

APPLICATION DESIGN

Example : The optimization of performance of applications
using indexed files can be involved, but you do not have to
use every technique discussed in this manual . You should only
satisfy current performance requirements . For instance, when
an application program needed optimization, the indexed file
being read' was made contiguous (see Chapter 6) and the RMS-11
overlay structure was changed (see Chapter 8) . Execution time
dropped from 16 minutes to 8 .5 . Since this performance was
adequate, no further optimizations were considered .

Some optimizations apply to one type of record operation, but
not to others . Determine whether an optimization will benefit
your processing before you implement it .

2 .3 DESIGN PROCESS

The first step in the design process is the selection of the file
organization . Section 2 .4 presents information to help you make this
selection .

Once you have selected a file organization, go to the appropriate
chapter(s) :

Sequential Chapter 3
Relative Chapter 4
Indexed

	

Chapters 5, 6, 7

Each chapter discusses file structure (physical and conceptual) as
well as design considerations . Indexed files are the most complex to
design because of their power and flexibility .

After you read the file organization chapter(s), go to Chapter 8, Task
Building and Common Optimization Techniques .

Finally, apply the design considerations described in these chapters .
Write your application ; create and populate the files, using the
RMS-11 utilities when they are useful ; use the programs and files in
a simulated environment while you evaluate performance . You may have
to return to this manual, changing your design and/or combining
attributes and RMS-11 facilities in different ways, until the
application runs to your satisfaction .

Good design is important to the success of your RMS-11 application .

2 .4 SELECTING A FILE ORGANIZATION

Table 2-1 lists important features of each file organization --
sequential, relative, and indexed -- to help you decide which one(s)
you need .

Table 2-2 points out advantages and disadvantages of each file
organization .

The sections that follow the tables provide information about two
features of file organization -- record format and I/0 techniques --
to help you select a file organization .

APPLICATION DESIGN

Table 2-1 : File Organization Characteristics and Capabilities

Access Sharing 2

Other Features

Read-only Read/write

	

Read/write

Block-span-

	

Maximum record Areas
ping records

	

number

1 . For fixed-format disk sequential files only .

2 . See exceptions in Section 2 .2 .3, and in Sections 3 .4, 4 .4, and
7 .1 .

Characteristics
and

Capabilities

	

Sequential Relative Indexed

Medium
Disk Yes Yes Yes
Magnetic Tape Yes No No
Unit Record Yes No No

Record Formats
Fixed-length Yes Yes Yes
Variable-length Yes Yes Yes
VFC (disk only) Yes Yes No
Stream (disk only) Yes No No
Undefined (disk only) Yes No No

Overhead per Record None 1 byte 7 bytes

Access Modes
Sequential Yes Yes Yes
Random Yes l Yes Yes
RFA access (disk only) Yes Yes Yes

Record Operations
CONNECT Yes Yes Yes
DELETE No Yes Yes
DISCONNECT Yes Yes Yes
FIND Yes Yes Yes
FLUSH Yes Yes Yes
FREE No Yes Yes
GET Yes Yes Yes
REWIND Yes Yes Yes
TRUNCATE Yes No No
UPDATE (disk only) Yes Yes Yes
PUT Yes Yes Yes

I/0 Unit 1 or more Bucket Bucket
blocks

I/0 Techniques
Deferred write Normal mode Selectable Selectable

of operation
Multiblock count Yes Bucket size Bucket size
Multiple access No Yes

	

Yes
streams

Multiple buffers No Yes Yes
Mass insertion No No Yes

Table 2-2 : File Organization Advantages and Disadvantages

Organization

	

Advantages

Sequential

	

Simplest organization .

Optimal use of disk and
memory :

•

	

minimum overhead on
disk

•

	

block spanning

Optimal if application
accesses all records on
each run, except if file
must be write-shared .

Most versatile in record
formats :

•

	

exchange data with
non RMS-11 systems

•

	

compatible with
RSX-11M/M-PLUS
FCS filesl

•

	

compatible with ANSI
magnetic tape format

•

	

compatible with
RSTS/E stream filesl

Most versatile in storage
media ; file is portable .

Random by key (RRN)
record access available
on fixed-format disk
sequential files .

Relative

	

Random access in all
languages .

Allows deletions .

Allows random GET and
PUT operations .

Optimal if application
accesses all records on
each run and file must
be write-shared .

Random and sequential
access with low overhead .

APPLICATION DESIGN

Disadvantages

To get a record, most
high-level languages
must access all records
before it (no access by
RFA or by key) .2

You can add records only
at end of file . 2

Interactive process is
awkward : operator must
wait as a program searches
for a record .2

Certain compiled programs
cannot access a record
already passed without
closing and re-opening
file (REWIND is not
available) .

You can delete records
only at end of file ; use
TRUNCATE record operation .

Sharing normally restricted
to multiple readers .

Restricted to disk .

File contains a cell
for each cell number
between 1 and last
record in file ; data may
not be stored densely .

Program must know rela-
tive record number or
RFA of record before it
can randomly access the
data ; no generic access
as in indexed file organi-
zation .

1 .RMS-11 can read these file structures and return a record to your program .
However, differences in data storage techniques among programming languages
can keep the program from properly interpreting the contents of that record .

2 . These restrictions do not exist for disk sequential files with fixed-length
record format ; records in such files can be stored and retrieved using random
by key access, depending on your high-level language capabilities .

(Continued on next page)

APPLICATION DESIGN

Indexed

Table 2-2 (Cont .) : File Organization Advantages and Disadvantages

Most flexible random
access :

•

	

by any one of mul-
tiple keys or RFA

•

	

key access by generic
or approximate value

•

	

you access records by
record contents

Duplicate key values
possible .

Automatic sort of re-
cords by primary and
alternate keys ; avail-
able during sequential
access .

Record location is
transparent to user .

Can be write-shared .

Potential range of key
values not physically
present as in relative
file organization .

Variety of data formats
for keys .

You can insert records
only into unused record
cells, but you can update
existing records .

RMS-11 does not allow
duplicate relative record
numbers .

Highest overhead on
disk and in memory .

Restricted to disk .

Least simple program-
ming .

Organization Advantages Disadvantages

Relative Can be write-shared . Interactive access can be
(cont .) awkward if you do not

access records by relative
number .

2 .4 .1 Record Formats

RMS-11 supports all of the record formats described in the following
sections for sequential files, but restricts relative and indexed file
organizations (see Table 2-1) .

2 .4 .1 .1 Fixed-Length Format - Records in the file are the same size,
which is a file attribute . The fixed-length record format requires no
RMS-11 overhead .

RMS-11 limits fixed block-spanning records to 32,765 bytes, while the
minimum valid record is 1 byte of data .

2 .4 .1 .2 Variable-Length Format - Records in the file can be any
length, up to a maximum of 32,763 bytes for block-spanning records .
This file attribute is user-settable and optional . For each record,
RMS-11 maintains a count field specifying the number of data bytes in
the record . The size of this field depends on the storage medium for
the file .

•

	

On disk, the count field is a 2-byte binary count that does
not include the 2 bytes for the field .

• On ANSI magnetic tape, the count field is a 4-character
decimal count that does include the 4 characters for the
field .

Figure 2-4 illustrates the count field for each medium .

DATA RECORD

LENGTH
, A ,

	

DATA RECORD

	

ON MAGTAPE

L 1

Choose the variable-length record format if :

•

	

The data truly varies in length, because the format
length field to each record's size .

•

	

You are designing a new application where future
require records to change length .

APPLICATION DESIGN

1-1

ON DISK

ZK-1 162-82

Figure 2-4 : Count Field on Disk and Tape

adds the

uses may

APPLICATION DESIGN

NOTE

Changing a record's size during an
UPDATE operation is restricted by file
organization . See Sections 3 .5 .1,
4 .5 .1, and 7 .2 for more information on
using the UPDATE operation with the
specific file organizations .

RMS-11 limits variable-length block-spanning records on disk to 32,763
bytes because of the count field . RMS-11 allows records to reach this
maximum only in sequential files ; other file organizations place
further restrictions on record size . The minimum valid record is 2
bytes of zeroes, representing a null record .

2 .4 .1 .3 Variable-with-Fixed-Control Format - A VFC record consists of
two areas :

•

	

A fixed-length control area from 1 to 255 bytes long ; the
length is maintained as a file attribute .

•

	

A variable-length area that can vary in length from zero bytes
to the maximum record size stored as a file attribute .

For each record, RMS-11 maintains a count field specifying the number
of data bytes in the record including fixed and variable areas . The
size of this field is a 2-byte binary count that does not include the
2 bytes for the field .

RMS-11 limits VFC block-spanning records to 32,763 bytes because of
the count field . The minimum valid record is 3 bytes : the length
field plus the minimum fixed area of 1 byte . The maximum variable
area is the difference between 32,763 and the length of the fixed
area .

2 .4 .1 .4 Stream Format - A stream record consists of a series of
contiguous bytes . RMS-11 detects the end of a stream record only by
the presence of one of the following terminators :

Form feed (014 octal)
Line feed (012 octal)
Vertical tab (013 octal)

RMS-11 limits stream format to disk sequential files . In addition,
the format causes the most CPU overhead because RMS-11 must examine
each record character by character for the terminator .

During record operations, RMS-11 processes stream records as follows :

• For FIND and GET operations, RMS-11 scans the stream of bytes,
removing leading NULL (000) characters and searching for the
first occurrence of one of the terminators . If it finds a
form feed, vertical tab, or line feed, RMS-11 includes the
terminator character with the record and considers the record
complete .

APPLICATION DESIGN

If it finds a carriage return, RMS-11 checks the character
following the carriage return . If the next character is a
line feed, RMS-11 discards both characters (carriage return
and line feed) and considers the record complete . Otherwise,
RMS-11 includes the carriage-return character in the record
and resumes its search for a terminator .

During a GET operation, RMS-11 moves each character included
in the record into the user buffer as it scans the stream of
bytes . RMS-11 does not move any data into the user buffer
during a FIND operation .

• For PUT and UPDATE operations, RMS-11 checks the last
character of the record in the user buffer . If it finds a
line feed, vertical tab, or form feed, RMS-11 moves the record
as it is to the I/0 buffer . If it does not find one of these
terminators, RMS-11 moves the record to the I/0 buffer and
adds a carriage-return/line-feed pair to the end of the
record .

2 .4 .1 .5 Undefined Format - The undefined format means that RMS-11
reads only blocks, not records . Your program must interpret the
contents of each block .

2 .4 .2 I/O Techniques

RMS-11 supports the following I/0 techniques so you can adjust the
performance of record operations :

• Multiple access streams -- A stream can handle only one record
at a time, but you can connect more than one access stream to
a relative or indexed file if you want to maintain more than
one context during the processing of a file . Each stream
represents an independent, concurrently active sequence of
record operations .

• Deferred write -- Normally, every write-type record operation
to a relative or indexed file results in a physical I/0
operation . However, you can sometimes have RMS-11 defer this
write function until the I/0 buffer is full or must be used
for another bucket . Deferred write is the normal mode of I/0
for sequential files .

• Multiblock count -- You can open a disk sequential file so
that RMS-11 reads or writes more than one block of the file
into the I/0 buffer at a time . This capability speeds file
processing, though the buffer gets bigger . For relative and
indexed files, you achieve a similar effect by increasing
bucket sizes .

• Multiple buffers -- You can allocate I/0 buffers for a
relative or indexed file beyond RMS-11's minimum requirements :
one for relative ; two for indexed . If the file is not
accessed for read/write sharing, RMS-11 uses the buffers to
save in memory, or cache, buckets from the file, so that they
do not have to be read again from disk if needed .

For indexed files, RMS-11 caches the root buckets from indexes
that are used, saving one I/0 operation on every random record
operation . However, for relative files, RMS-11 makes no
distinction between buckets, saving them until it has to use
the buffer .

2-17

APPLICATION DESIGN

• Mass insertion -- Specified before the insertion of a series
of records already sorted in ascending order by primary key,
this mode enables RMS-11 to store the records tightly and
quickly in the file . Records can be mass inserted only at the
logical end of an indexed file . Mass insertion significantly
improves performance for single-key indexed files . However,
with each additional key defined for the file, the percentage
improvement is smaller .

CHAPTER 3

SEQUENTIAL FILE APPLICATIONS

This chapter discusses sequential file structure, design, and
processing . Sequential file design consists generally of determining
the specific attributes, including record size and format, that will
allow you to store, retrieve, and process your data efficiently within
the sequential file structure . Your task design, along with your file
design, will determine your record and file processing options,
including record access modes .

3 .1 FILE STRUCTURE

Physical Structure -- Sequential files carry almost no RMS-11
overhead . The operating system's file management software stores
attributes in the file directory . RMS-11 stores data records
beginning with virtual block number (VBN) 1 .

• If records cross block boundaries (span blocks), RMS-11 packs
records into the file end-to-end, allowing for control
information and padding .

• If you do not allow records to span blocks, RMS-11 packs
records into each block, allowing for control information and
padding .

NOTE

You will waste space in your file if
both of the following are true :

•

	

You do not allow records to span
blocks .

•

	

Your records do not exactly fit into
a block .

To be compatible with other file management systems, RMS-11 flags
space that is not used at the end of each block . When you allow
records to span blocks, the only unused space starts after the last
record in the file . Table 3-1 lists the end-of-block indicators .

SEQUENTIAL FILE APPLICATIONS

Table 3-1 : End-of-Block Indicators

RMS-11 reads the end-of-file attribute with the other file attributes
when it opens a file . RMS-11 also updates the end-of-file in the file
directory when it closes the file if the end-of-file changed while the
file was open . The end-of-file changes if records were added to the
end of the file or if the file was truncated .

Conceptual Structure -- In most cases, RMS-11 stores records in the
sequence that programs write them, one after the other from the first
record in the file to the last . For these files, RMS-11 can only
access the records sequentially or, for disk files, randomly by record
file address (RFA) .

The exception to this structure is the case of disk sequential files
with fixed-length record format . In this case, RMS-11 stores records
in a series of fixed-length cells ; this is similar to relative file
organization (see Chapter 4) . The cell size is the size of the
fixed-length record . Only one record can be put into a cell, and
RMS-11 assumes that each cell contains a record . RMS-11 numbers the
cells consecutively from 1 to n, where n indicates the last cell in
the file . A cell number indicates the location of the cell relative
to the beginning of the file, and is associated with the record as a
relative record number (RRN) .

RMS-11 can access records in a fixed-format disk sequential
sequentially, randomly by RFA, or randomly by key (RRN) .

NOTE

RMS-11 does not initialize the cells in
a fixed-format disk sequential file, nor
does it "know" whether a cell contains a
valid record . Your application program
must maintain this information .

3 .2 RECORD SIZE

Records in disk sequential files are word aligned, which means that
RMS-11 adds a pad byte to the end of any record with an odd number of
bytes . RMS-11 uses this convention to maintain structural
compatibility with FCS-11 sequential files .

You can define a sequential file so that RMS-11 writes records across
the boundaries between blocks . Such a sequential file is optimally
dense ; all bytes within its allocated space are used, except at the
end of the file where no data has been written .

3-2

file

Medium Record Format End-of-Block Indicator

Disk All but stream -1 in word following last valid byte

Disk Stream nulls (000) to end of file

Magtape All circumflex (") to end of block

For disk sequential files, RMS-11 uses the end-of-file attribute,
stored in the file directory, to determine where the valid data in a
file ends . This attribute includes a VBN and a byte offset within
this block . The virtual block containing the logical end-of-file may
not be the last block allocated to the file .

SEQUENTIAL FILE APPLICATIONS

Table 3-2 shows the maximum data size for records in a sequential
file . They are adjusted for RMS-11 restrictions and overhead .

Table 3-2 : Sequential File Data Sizes (in bytes)

Maximum Size

Format With Block Without Block

	

Data Size Calculation
Spanning

	

Spanning

bytes is divided by 2 :

•

	

MOD(DS/2) = 0 if the data size is an even number of bytes .

•

	

MOD(DS/2) = 1 if the data size is an odd number of bytes .

For VFC, DS = fixed + variable

2 . Assuming a 1-byte terminator character ; however, if the
terminator is CR-LF, then the maximum length without
block-spanning records is 510 bytes . Note that these figures do
not include the terminator characters .

3 .3 FILE DESIGN

For sequential files, the primary design considerations are :

•

	

Record format (see Section 2 .4 .1 for a description of the
RMS-11 record formats)

•

	

Data storage medium

•

	

File allocation

•

	

Contiguity

3 .3 .1 Data Storage Medium

Sequential files can be accessed on both disk and magnetic tape . When
you select the medium for your file, you should consider the
following :

•

	

Speed of access -- How long can each record operation take?
Tape is significantly slower than disk .

• Frequency of use -- How often do you use the file? If you use
it once a month, a quarter, and so on, you could store the
file on tape and save your disk for more immediate purposes .

Fixed

Variable

VFC

Stream

32,766

32,765

32,765

None

512

510

509

511 2

Your data + MOD(DS/2) 1

Your data + 2 + MOD(DS/2) 1

Fixed + variable + 2 + MOD(DS/2) 1

Data + terminator(s)

1 .MOD(DS/2) is the remainder after the size of your data (DS) in

SEQUENTIAL FILE APPLICATIONS

• Transportability -- Do you need to use the file on different
operating systems? RSTS/E disk structure is not compatible
with IAS, RSX-11M/M-PLUS, or VAX/VMS, and vice-versa . If you
need to use the file across these systems, you should consider
using a magnetic tape file .

3 .3 .2 File Allocation

Disk file allocation involves two quantities :

•

	

Initial allocation quantity -- the number of blocks assigned
to a file when you create it .

•

	

Default extension quantity -- the number of blocks added to a
file each time RMS-11 automatically extends it .

3 .3 .2 .1 Initial Allocation - Even with sequential files, where a file
extension requires only an allocation of blocks by the operating
system, total allocation of the file when you create it is much more
efficient .

You calculate the allocation (ALQ), in blocks, for block-spanning
records as follows :

ALQ = (NRF*RSZ)/512

where :

ALQ is the allocation quantity in blocks

NRF is the largest number of records that will be in the file at one
time

RSZ is the size of the record in bytes

For variable-length or VFC records, use the average record size for
RSZ, including 2 bytes for the count field .

For fixed-length records, use the actual record size for RSZ .

Be sure to round RSZ up to a multiple of 2 to account for word
alignment .

This allocation can be done by RMSDES or by your application program,
depending on the capabilities of your high-level language .

3 .3 .2 .2 Default Extension Quantity - Because support of the default
extension quantity (DEQ) for sequential files would result in
additional I/0 operations during file extensions, RMS-11 on RSTS/E
operating systems ignores DEQ for sequential files . However, you may
use the file's cluster size to achieve an effect similar to that of
the DEQ in other environments .

SEQUENTIAL FILE APPLICATIONS

If the file cannot be totally allocated at creation time, you should
establish a reasonable cluster size to minimize the number of (and the
time spent on) file extensions . Even if the file is totally allocated
when you create it, you should establish a reasonable cluster size in
case the file gets bigger than planned . The time required for each
file extension is significant, involving :

•

	

A call to the file control processor

•

	

Possible I/0 operations to bring file control processor
routines into memory

•

	

I/0 operations to read and change file directory information

•

	

I/0 operations to read and change the disk free-block bit map

A good basis for calculation is the number of records added to the
file in a given period of time, such as a day ; use the formula for
allocation quantity in Section 3 .3 .2 .1 .

The cluster size can be set by RMSDES or by your application program,
depending on the capabilities of your high-level language . If you do
not specify a cluster size, it will default to zero whether you create
the file with RMSDES or a high-level language . This means that the
RSTS/E internal file size will increase in units of the default
cluster size .

Example : You are inserting 1000 50-byte fixed-length records into a
sequential file . Records do not span blocks ; therefore, each block
contains 10 records . The file is currently full ; that is, no more
records can be added without an extension .

• If cluster size is zero, the internal file size will grow
according to the cluster size default, which is typically only
a few blocks . Therefore, in this example, if the system
default is 4 blocks, the file is extended 25 times .

•

	

If cluster size is 1, the file is extended for every tenth PUT
operation after the first, for a total of 100 extensions .

•

	

If cluster size is 32, the file is extended 4 times .

•

	

If cluster size is 128 or 256, the file is extended only once .

3 .3 .3 Contiguity

Contiguity can significantly affect performance . Therefore, you
should consider contiguity for a disk sequential file to minimize the
time spent on each I/0 operation .

If the blocks in a file are not contiguous, they may be on different
parts of the disk, and thus require significant head movement to
access the file contents .

Physical contiguity, however, ensures that the file is stored on one
track or, at worst, adjacent tracks . Because the disk can read a
track without moving the heads, file contiguity reduces head movement .
This assumes that no other software is accessing the disk at the same
time .

SEQUENTIAL FILE APPLICATIONS

Contiguity also enhances virtual-to-logical-block mapping (see Chapter
8) .

To ensure that the blocks in the file are physically contiguous,
allocate the whole file when you create it (see Section 3 .3 .2 .1) and
specify that the allocation be performed contiguously .

NOTE

Because the RSTS/E operating system does
not allow you to extend a contiguous
file, you should specify contiguity only
when future extension will not be
necessary .

3 .4 ACCESS SHARING

Access sharing can be specified for disk sequential files, as
described in the following sections . See Section 2 .2 .3 for general
information on shared access .

3 .4 .1 Record Access to Sequential Files

Because of their internal structure, record-structured sequential
files are not read/write sharable in the manner of relative and
indexed files . Thus, a read/write sharing declaration for such a file
is converted internally to a read-only sharing declaration before the
file is processed .

As a result, multiple read-only accessors who have specified
no-sharing, read-only sharing, or read/write sharing can access such a
file concurrently as long as no read/write accessor is present ; or a
single accessor who has specified no-sharing, read-only sharing, or
read/write sharing can access such a file as long as no other accessor
of any kind is present . Other combinations are rejected : the access
and sharing declarations are incompatible .

3 .4 .2 Block Access to Sequential Files

Sequential files can be read/write shared using block access, but the
logical end-of-file mark in the file header will be neither respected
nor updated . (Again, this is because of the internal structure of
sequential files .) Such read/write sharing uses the operating system's
block-locking facilities to coordinate shared access .

When no write accessor is present, sequential files can be shared
among multiple read-only accessors who have specified no sharing or
read-only sharing .

3 .5 RECORD AND FILE PROCESSING OF SEQUENTIAL FILES

The record and file processing capabilities described in RSTS/E
RMS-11 : An Introduction are available for sequential files . This
section discusses the operations and their implementation and
restrictions with sequential files .

3 .5 .1 Record and Stream Operations

The following record and stream operations can be performed on
sequential files :

CONNECT
DISCONNECT
FIND
FLUSH
GET
PUT
REWIND
TRUNCATE
UPDATE

In all record operations, RMS-11 establishes the current record
context (if any) and the next record context (if applicable) . If any
record operation fails, RMS-11 normally sets the current record
context to none and does not change the next record context .

NOTE

For more information on the RMS-11 error
codes referred to in the following
sections, see the RSTS/E RMS-11 Macro
Programmer's Guide .

3 .5 .1 .1 CONNECT - A CONNECT operation affects the record context for
the access stream as follows :

•

	

Current record -- There is no current record . Any operation
requiring a current record fails at this point .

• Next record -- If you did not specify that you were going to
append records to the file, the next record is the first
record in the file .

If you did specify that you were going to append records to
the file, the next record is the end-of-file .

3 .5 .1 .2 DISCONNECT - A DISCONNECT operation destroys the current
record context for the access stream . You cannot resume this context
by reconnecting the stream .

3 .5 .1 .3 FIND - To perform a FIND operation on a sequential file,
RMS-11 :

1 . Determines the location of the record in the file according
to the specified record access mode :

•

	

In sequential-access mode, location is indicated by the
next record pointer .

• In key-access mode, location is determined by the
specified relative record number and match criterion .
(This access mode is available for fixed-format disk
sequential files only .)

SEQUENTIAL FILE APPLICATIONS

SEQUENTIAL FILE APPLICATIONS

• In RFA-access mode, location is determined by the
specified RFA . (This access mode is available for disk
files only .)

2 . Reads the block containing the record, or the first part of
the record if the record spans blocks, from disk into the
task's I/0 buffer, if it is not already in memory . The block
may be in memory if the block was required by a previous
operation .

3 . For disk files, returns the RFA to the program, but does not
transfer the record to the program's user buffer .

4 . Returns the RRN for fixed-format disk sequential files .

If no valid record exists in the location specified, the response
depends on the access mode :

• In sequential-access mode, the error code is ER$EOF, meaning
that no record was located because there are no more records
in the file .

In RFA-access mode, the error code is either ER$RFA, if the
RFA had an invalid format, or ER$EOF, if the RFA specified a
location beyond the end of the file .

• In key-access mode for fixed-format disk sequential files, the
error code is ER$KEY, if the key value had an invalid format,
or ER$EOF, if the key value specified a location beyond the
end of the file .

A FIND operation affects the record context for the access stream as
follows :

•

	

For a sequential-access FIND operation :

Current record is set to value of the record found, that
is, the next record before the FIND operation started .

Example : You have connected a stream to a sequential file
without specifying that records will be appended to the
file (see Section 3 .5 .1 .1) . There is no current record,
but the next record is the first record in the file . If
you execute a sequential FIND operation, the current record
is set to the first record in the file .

Next record is set to the record virtually following the
current record .

Example : From the previous example, the next record is the
second record in the file .

•

	

For an RFA-access or key-access FIND operation :

Current record is set to the record found, that is, the
record identified by the RFA or RRN .

Next record is unchanged .

SEQUENTIAL FILE APPLICATIONS

Example : In the preceding example, you performed a
sequential-access FIND operation after connecting the
stream to the file . You now execute a FIND by RFA . The
current record is set to the record specified, but the next
record is not changed . Therefore, when you perform another
sequential FIND operation, the current record is set to the
second record in the file, not to the record following the
one found by RFA .

You use a FIND operation instead of a GET operation for two reasons :

1 . It is faster because the record is not moved to the user
buffer . Although the time required to move a record from one
part of memory to another is very short, do not expend it
unnecessarily .

2 . It does not change the next record in RFA or key access mode .
This convention allows you to branch off sequential
processing for updating or deleting, and keep your place in
the file .

You can use a FIND operation in the following ways :

•

	

To skip records in sequential access mode by initiating
successive FIND operations .

• To establish a random starting point using RFA or key access
mode . You could then initiate successive GET operations,
where the first operation gets the record found by RFA or by
RRN .

•

	

To establish a current record for an UPDATE or TRUNCATE
operation .

•

	

To determine whether a record cell specified by RRN exists in
a file (for fixed-format disk sequential files only) .

3 .5 .1 .4 FLUSH - A FLUSH operation does not affect the record context
for the access stream .

3 .5 .1 .5 GET - To perform a GET operation on a sequential file,
RMS-11

1 . Determines the location of the record in the file according
to the specified access mode :

• In sequential-access mode, location is indicated by the
next record pointer, if the get operation was not
immediately preceded by a successful FIND operation, or
the current record pointer set by an immediately preceding
successful FIND operation .

• Location is determined by the specified relative record
number and match criterion in key-access mode
(fixed-format disk sequential files only) .

•

	

Location is determined by the specified RFA in RFA-access
mode (disk files only) .

SEQUENTIAL FILE APPLICATIONS

2 . Reads the block containing the record, or the first part of
the record if the record spans blocks, from disk into the
task's I/O buffer, if the block is not already in . memory .

Example : Your records are 50 bytes long . When you read
sequentially through the file, RMS-11 must request a disk I/0
operation for every tenth GET operation that your program
executes .

3 . For disk files, returns the RFA to the program and moves the
record from the I/0 buffer to the specified user buffer in
the program unless the program is operating in locate record
transfer mode (see Section 3 .5 .2) . If the buffer does not
contain the entire record, RMS-11 reads more blocks into the
I/0 buffer and assembles the record in the program's user
buffer, regardless of record transfer mode .

4 . Returns the RRN for fixed-format disk sequential files .

If no valid record exists in the location specified, the response
depends on the access mode :

• In sequential-access mode, the error code is ER$EOF, meaning
that no record was located because there are no more records
in the file .

• In RFA-access mode, the error code is either ER$RFA, if the
RFA had an invalid format, or ER$EOF, if the RFA specified a
location beyond the end of the file .

• In key-access mode for fixed-format disk sequential files, the
error code is ER$KEY, if the key value had an invalid format,
or ER$EOF, if the key value specified a location beyond the
end of the file .

A GET operation affects the current record context for the access
stream as follows :

•

	

Current record is set to the record read .

•

	

Next record is set to the record virtually following the
current record .

Example : You have connected a stream to a sequential file without
specifying that records will be appended to the file (see Section
3 .5 .1 .1) . There is no current record, but the next record is the
first record in the file . If you execute a sequential-access GET
operation, the current record is set to the first record in the file
and the next record is the second record in the file .

3 .5 .1 .6 PUT - To perform a PUT operation on a sequential file,
RMS-11 :

1 . Determines whether the specified access mode is allowed .
Sequential-access mode must be specified unless the file is a
fixed-format disk file ; in that case, key-access mode is
allowed . RMS-11 returns the error code ER$RAC if an illegal
access mode is specified .

SEQUENTIAL FILE APPLICATIONS

2 . Determines the destination of the record in the

	

file
according to the specified access mode :

• In sequential-access mode, the next record pointer
indicates the destination . The destination must be the
end-of-file ; if it is not, RMS-11 returns the error code
ER$NEF .

Your program gets to the end of a sequential file by :

Specifying that records will be appended to the file
when the program connects the record access stream to
the file (see Section 3 .5 .1 .1) .

Initiating sequential FIND and/or GET operations until
RMS-11 returns an ER$EOF error code .

• In key-access mode, the specified relative record number
indicates the destination . Note that RMS-11 does not
check the validity of the designated RRN : if the
destination block is beyond the current end-of-file,
RMS-11 will extend the file to the destination block .

3 . Reads the destination block in the file into the I/0 buffer,
if the block is not already in memory . The block may be in
memory if it was required by a previous operation .

4 . Moves the record from the user buffer to the task's I/0
buffer .

5 . Writes the I/0 buffer to disk only if the buffer is full . If
there is no room for the block(s) in the file, RMS-11 extends
the file (see Section 3 .3 .2) and then writes the buffer to
disk .

6 . For disk files, returns the RFA to the program .

7 . Returns the RRN for fixed-format disk sequential files .

A PUT operation affects the context for the access stream as follows :

•

	

For a sequential-access PUT operation :

Current record -- None . Any operation requiring a current
record fails at this point .

Next record -- End-of-file .

	

A sequential FIND or GET
operation fails with error code ER$EOF .

•

	

For a key-access PUT operation :

Current record -- None . Any operation requiring a current
record fails at this point .

Next record -- Unchanged .

SEQUENTIAL FILE APPLICATIONS

3 .5 .1 .7 REWIND - A REWIND operation affects the record context for
the access stream as follows :

•

	

Current record -- None . Any operation requiring a current
record fails at this point .

•

	

Next record -- Set to the first record in the file .

3 .5 .1 .8 TRUNCATE - A TRUNCATE operation declares end-of-file at the
position of the current record . In doing so, the operation
effectively deletes the current record and all records in the
sequential file following that record .

The TRUNCATE operation requires a valid current record . It therefore
should follow a successful GET or FIND operation ; otherwise, RMS-11
returns the error code ER$CUR .

A TRUNCATE operation affects the context for the access stream as
follows :

•

	

Current record -- None . Any operation requiring a current
record fails at this point .

•

	

Next record -- End-of-file .

After a TRUNCATE operation, you can immediately add records to the
file using PUT operations .

NOTE

The TRUNCATE operation does not reduce
the

	

actual

	

allocated

	

size

	

of

	

a
sequential file on a disk : it merely
specifies a new logical end-of-file
mark .

3 .5 .1 .9 UPDATE - In an UPDATE operation, RMS-11 moves the specified
record from the task's user buffer to the I/0 buffer, replacing the
current record set by a previous GET or FIND operation . However,
RMS-11 does not immediately write the buffer to the file . RMS-11
requests the file control processor to write the changed buffer over
its original location on the disk only when the buffer must be
replaced in memory by another operation .

Example : You get a record by RFA and update it . Then, you get
another record by RFA . RMS-11 writes the buffer containing the first
record you updated only when it must replace the data in the buffer to
satisfy the second GET operation .

UPDATE operations have the following restrictions :

• The operation is valid only on disk sequential files . If you
attempt it on magnetic tape files or unit record devices,
RMS-11 returns the error code ER$IOP .

• The operation requires a valid current record . It therefore
should follow a successful GET or FIND operation ; otherwise,
RMS-11 returns the error ER$CUR .

None of these errors affects the original

An UPDATE operation affects the context for the access stream as
follows :

•

	

Current record -- None . Any operation requiring a current
record fails at this point .

•

	

Next record -- Unchanged .

3 .5 .2 Record Transfer Modes

You can manipulate records either in the I/0 buffer or in your
program's user buffer . Each of these options is called a record
transfer mode . You can change record transfer mode at run time, even
between record operations .

Figure 3-1 shows the I/0 and user buffers .

SIZE DEPENDS ON :

	

- I
•

	

NUMBER OF FILES OPENED SIMULTANEOUSLY
•

	

BUCKET SIZES
~! NUMBER OF RECORD ACCESS STREAMS_ - J

USER BUFFERS

VIRTUAL
MEMORY PROGRAM

Figure 3- 1 : RMS-11 Task Structure

SEQUENTIAL FILE APPLICATIONS

• The size of the record cannot change during an UPDATE
operation . If it changes, RMS-11 returns the error code
ER$RSZ .

•

	

You cannot update stream records . If you attempt it, RMS-11
returns the error code ER$RFM .

record in the file on disk .

I/O
BUFFERS

INTERNAL
CONTROL

STRUCTURES

RMS-11

SIZE DEPENDS ON :

	

I

j • RMS-11 FUNCTIONS USED I
L OVERLAY STRUCTURE USEDI

ZK-1174-82

SEQUENTIAL FILE APPLICATIONS

3 .5 .2 .1 Move Mode - Move mode requires that each record be copied
between the user and I/0 buffers :

•

	

On GET operations, RMS-11 moves the record from the I/0 buffer
to the user buffer before returning control to your program .

• On PUT and UPDATE operations, your program assembles the
record to be written into the file in the user buffer . During
the operation, RMS-11 moves the data into the I/0 buffer
before updating the file .

Move mode is the default record transfer mode for all programming
languages and all file organizations .

3 .5 .2 .2 Locate Mode - Locate mode enables your program to manipulate
records in the I/0 buffer, eliminating the data transfers between it
and the user buffer . However, when you specify locate mode, RMS-11
uses it only when such usage does not compromise data integrity .
Otherwise, RMS-11 uses move mode . Therefore, your program must still
contain a user buffer .

Example : RMS-11 uses move mode instead of locate mode when records
span buffers in a sequential file .

Example : RMS-11 uses move mode instead of locate mode if you opened
the file indicating that you were going to perform UPDATE operations
on it .

RMS-11's use of move mode instead of locate mode is transparent to
your program as long as you use RMS-11 facilities to access the record
data .

For sequential files, your program can both performs both GET and PUT
operations in locate mode . See your high-level language documentation
to determine whether the language supports locate mode and, if it
does, what the programming techniques are .

3 .5 .3 I/0 Techniques

You can use the following techniques to improve the performance of
record operations .

3 .5 .3 .1 Deferred Write - The normal mode of operation for sequential
files is similar to operations using deferred write with the other
file organizations (see Chapters 4 and 7) . Using this technique for
sequential files does not change or improve performance .

3 .5 .3 . 2 Multiple Buffers - The multiple buffer capability is not
available to sequential files .

SEQUENTIAL FILE APPLICATIONS

3 .5 .3 .3 Multiple Access Streams - RMS-11 allows each program to use
only one stream on a sequential file because sequential files are not
formatted to permit simple and economical sharing (see Section 3 .4) .

3 .5 .3 .4 Multiblock Count - Your task can be set up so that more than
one block from a disk sequential file is read or written at one time .
This multiple-block I/0 can improve processing because it tends to
reduce the number of physical I/0 operations . However, it also
increases the size of the task, on a one-for-one basis ; that is, for
each increment of the multiblock count (MBC), the I/0 buffer in the
task grows by 512 bytes .

An MBC greater than 1 is therefore useful for sequential processing,
including file population .

Example : You are using 50-byte records . During sequential
processing, if the MBC is 1, RMS-11 requests a disk I/O operation for
every tenth record operation your program executes, whether the
operations are GET or PUT operations . If you set MBC to 5 for
instance, RMS-11 requests a physical I/0 operation for every 50 record
operations .

3 .5 .4 File and Directory Operations

The following file and directory operations can be performed on
sequential files :

CLOSE
CREATE
DISPLAY
ERASE
EXTEND
OPEN
PARSE
RENAME
SEARCH

See your high-level language documentation for a description of the
support provided .

CHAPTER 4

RELATIVE FILE APPLICATIONS

This chapter discusses relative file structure, design, and
processing . Relative file design consists generally of determining
the specific attributes, including record size and format, that will
allow you to store, retrieve, and process your data efficently within
the relative file structure . Your task design, along with your file
design, will determine your record and file processing options,
including record access modes .

4 .1 FILE STRUCTURE

Physical Structure -- Relative files contain at least one block of
RMS-11 information known as the prologue . The operating system's file
management software stores attributes in the file directory . RMS-11
stores the prologue in VBN 1 -- unless the bucket size is 2, 4, or 8
blocks . In that case, RMS-11 makes the prologue equal to 1 bucket in
size ; this step can improve performance by aligning buckets with file
clusters . Data records begin in the block following the prologue .

RMS-11 allocates relative files in bucket increments . The first
bucket begins with the first data block . To support deleted record
control, RMS-11 initializes each bucket (sets all bits to 0) when it
allocates the blocks to the file .

The fixed-length cells are set up in each bucket starting with byte 0
and packed end-to-end, byte-aligned, until no more cells can fit in
the bucket (no padding necessary) . Cells cannot span bucket
boundaries, although they can cross block boundaries within multiblock
buckets . The first byte of each cell is used by RMS-11 to provide
deleted record control .

Conceptual Structure -- RMS-11 stores records in a series of
fixed-size cells . Only one record can be put into a cell, but all
cells do not have to contain records . The cell size is based on the
length you specify as the maximum for any record in the file . RMS-11
numbers the cells consecutively from 1 to n, where n indicates the
last cell in the file . A cell number relates its location to the
beginning of the file and is associated with the record in the cell,
if any, as a relative record number .

RMS-11 can access records in a relative file either sequentially or
randomly, both by relative record number (key) and by RFA .

RELATIVE FILE APPLICATIONS

4 .2 RECORD SIZE

RMS-11 calculates the number of bytes in each record cell in the file
(CL) of a relative record cell as follows :

CL = 1+RFO+DS+FSZ

where :

1

	

is a byte for RMS-11 overhead

RFO is bytes for record format overhead :

	

0 for fixed ;

	

2 for
variable or VFC

FSZ is the fixed control size for VFC format ; 0 for other formats

DS

	

is bytes of data

For variable-length or VFC record format, DS is the maximum record
size set for the file .

Table 4-1 shows the maximum data sizes for records in a relative file .
These are the sizes of your data ;

	

they are adjusted for RMS-11
restrictions and overhead .

Table 4-1 : Relative File Data Sizes (in bytes)

Format

	

Maximum Size

	

Record Cell Size Calculation

Fixed

	

7,679

	

Data size + 1
Variable

	

7,677

	

Maximum record size + 3
VFC

	

7,677

	

Fixed + variable + 3

4 .3 FILE DESIGN

For relative files, the primary design considerations are :

•

	

Record format (See Section 2 .4 .1 for a description of the
RMS-11 record formats)

•

	

Bucket size

•

	

File allocation

•

	

Contiguity

•

	

Maximum record number

4 .3 .1 Bucket Size

Buckets are the I/0 units for relative files . Their size is therefore
critical to the space required by a task and the speed with which the
task performs . Sequential access, especially, benefits when there are
multiple records per bucket . There is, of course, a trade-off : the
larger the bucket size, the larger the task, but the faster the task
reads data sequentially :

RELATIVE FILE APPLICATIONS

•

	

Each block added to the bucket size increases the task size by
512 bytes for each access stream .

• The speed of an RMS-11 operation is closely proportional to
the number of I/0 operations involved . RMS-11 requests an I/0
operation each time it requires a new bucket to locate a
record . Therefore, the more record cells in a bucket, the
fewer I/0 operations RMS-11 needs to read a file sequentially .

However, write sharing a relative file counteracts this
optimization if your program has read-only access to the file .
RMS-11 reads a bucket from disk during each GET operation --
even if the next record is in the bucket in memory -- because
the bucket is not locked after each GET operation and a
writing program may have changed the bucket since the record
was last read .

Bucket size can be set by RMSDES or by your application program
depending on the capabilities of your high-level language .

4 .3 .2 File Allocation

File allocation involves two quantities :

•

	

Initial allocation quantity --
to a file when you create it

The number of blocks assigned

•

	

Default extension quantity -- The number of blocks added to a
file each time RMS-11 automatically extends it

4 .3 .2 .1 Initial Allocation - Total allocation of a file when you
create it is the most efficient technique regardless of file
organization, but with relative files initial allocation becomes most
critical . Each allocation, whether at creation time or during an
extension, requires RMS-11 to initialize the new buckets by setting
all bits to zero . You can avoid time-consuming file extensions during
normal processing by totally allocating the file when you create it or
by explicitly extending the file when it is not being used for
processing .

You calculate the allocation (ALQ), in blocks, as follows :

ALQ = PLG+(NRF/NRBKT)*BKS

where :

PLG

	

is equal to 1 block or to BKS if BKS is 2, 4, or 8

NRF

	

is equal to the maximum record number (MRN) or to the number of
records that will be written into the file

RELATIVE FILE APPLICATIONS

BKS

	

is the bucket size in blocks

NRBKT is the number of records in a bucket

You calculate NRBKT as follows :

NRBKT = (512*BKS)/(RSZ+RFO)

where :

RSZ is the size of the record in bytes :

•

	

Data size for fixed-length records

•

	

Maximum record length for variable-length records

•

	

Size of the fixed-length control area plus the maximum size of
the variable-length area for VFC records

RFO is the record format overhead :

•

	

RFO = 1 byte for fixed-length records

•

	

RFO = 3 bytes for variable-length and VFC records

This allocation can be done during file creation by RMSDES or by your
application program, depending on the capabilities of your high-level
language .

The allocation can also be done by using a PUT operation to write the
"last record" into the file first ; that is, the record whose relative
record number is equal to the maximum record number (MRN) . Before
RMS-11 can write this record, it must allocate all record cells from 1
to MRN and initialize the new blocks . After the PUT operation, the
relative file will be completely allocated .

4 .3 .2 .2 Default Extension Quantity If the file cannot be totally
allocated at creation time, you should establish a reasonable default
extension quantity (DEQ) to minimize the number of (and the time spent
on) file extensions . Even if the file is totally allocated when you
create it, you should establish a reasonable DEQ in case the file must
become bigger than planned .

A good basis for calculation is the number of records that are added
to the end of the file in a given time period, such as a day ; use the
formula for allocation quantity in Section 4 .3 .2 .1 .

The DEQ for the file can be set by RMSDES or by your application
program, depending on the capabilities of your high-level language .

If you do not specify a DEQ, it defaults to zero . RMS-11 responds to
a DEQ of zero by requesting 4 times the bucket size in blocks from the
file control processor each time it automatically extends the file .

4 .3 .3 Contiguity

Contiguity can significantly affect performance . Therefore, you
should consider contiguity for a relative file to minimize the time
spent on each I/0 operation . If the blocks in a file are not
contiguous, they may be on different parts of the disk and thus
require significant head movement to access the file contents .

Physical contiguity however, ensures that the file is stored on a
single track or, at worst, adjacent tracks . Because the disk can read
an entire track without moving the heads, file contiguity reduces head
movement . This assumes that no other software is accessing the disk
at the same time .

Contiguity also enhances virtual-to-logical-block mapping (discussed
in Chapter 8) .

To ensure that the blocks in the file are physically contiguous,
allocate the whole file when you create it (see Section 4 .3 .2 .1) .

NOTE

Because the RSTS/E operating system does
not allow you to extend a contiguous
file, you should specify contiguity only
when future extension will not be
necessary .

4 .3 .4 Maximum Record Number

The MRN associated with a relative file limits the size of the file .
RMS-11 will not put a record into a file with a relative record number
greater than the assigned MRN . However, if an MRN is not set (that
is, MRN is zero), RMS-11 only checks whether the record number is
greater than zero before attempting to store a record in a relative
file .

MRN determines the maximum useful size of a file because RMS-11
allocates a record cell for each record between relative record number
1 and the highest relative record number used . You can explicitly
make the file larger than this maximum, but RMS-11 will not use the
space . The actual size can be smaller than the size that would be set
if a record with the MRN were written into the file .

You can calculate the file size (FSZ) in blocks from the largest
relative record number actually present in the file :

FSZ = PLG+1+((LRN-1)/((BKS*512)/(RSZ+RFO)))

where :

PLG is the size of the prologue :

	

BKS if BKS = 2, 4, or 8 ;
otherwise, 1

LRN is the largest RRN actually present in the file

BKS is the bucket size in blocks

RELATIVE FILE APPLICATIONS

RELATIVE FILE APPLICATIONS

RSZ is the size of the record in bytes :

•

	

Data size for fixed-length records

•

	

Maximum record length for variable-length records

•

	

Size of the fixed-length control area plus the maximum size of
the variable-length area for VFC records

RFO is the record format overhead :

•

	

RFO = 1 byte for fixed-length records

•

	

RFO = 3 bytes for variable-length and VFC records

MRN can be set by RMSDES or by your application program, depending on
the capabilities of your high-level language .

4 .4 ACCESS SHARING

Access sharing can be specified for relative files as described in the
following sections . See Section 2 .2 .3 for general information on
shared access .

4 .4 .1 Record Access to Relative Files

Relative files allow fully interlocked read/write sharing, dependent
upon the compatibility of the access and sharing declarations of
multiple accessors, as follows :

• If you have requested read/write access, your request will be
denied unless all other accessors have allowed read/write
sharing . (Otherwise, your read/write access request will
conflict with the sharing declaration of at least one other
accessor .)

• If you have not permitted read/write sharing, your request for
read/write access will be denied if any other read/write
accessor is present . In this case, the read/write accessor
does not meet the requirements of your sharing declaration .
In addition, RSTS/E requires that the effective sharing
declarations be identical for all accessors, so your request
will be denied if the existing sharing declarations permit
read/write sharing .

If you are a read-only accessor who has permitted read/write sharing,
RMS-11 will change your sharing declaration internally to read-only
sharing, if necessary, to be compatible with the sharing declarations
of existing read-only accessors . Note, however, that even if the
other accessors then exit, an otherwise acceptable read/write accessor
will be denied concurrent access because your effective sharing
declaration has been changed to read-only .

4 .4 .2 Block Access to Relative Files

Because block access bypasses the record structure and interlocking
algorithms used with relative files, read/write sharing cannot be
permitted . Any read/write sharing declaration is converted internally
to read-only before the file is processed (this is similar to
record-accessed sequential files) .

Thus, multiple read-only accessors (regardless of their sharing
declarations) can share relative files concurrently using block
access, as long as no read/write record accessor is present .
Read-only block accessors can share files with read-only record
accessors, if the record accessors have effective read-only sharing
declarations . In addition, a single read/write accessor can access a
relative file using block access (regardless of sharing declaration)
as long as no other accessor of any kind is present .

Other combinations are rejected : the access and sharing declarations
are incompatible .

4 .5 RECORD AND FILE PROCESSING OF RELATIVE FILES

The record and file processing capabilities
RMS-11 : An Introduction are available for
section discusses the operations and their
restrictions with relative files .

4 .5 .1 Record and Stream Operations

The following record and stream operations can
relative file :

CONNECT
DELETE
DISCONNECT
FIND
FLUSH
GET
PUT
REWIND
UPDATE

In all record operations, RMS-11 establishes the current record
context (if any) and next record context (if applicable) . If any
record operation fails, RMS-11 normally sets the current record
context to none and does not change the next record context .

NOTE

For more information on the RMS-11 error
codes referred to in the following
sections, see the RSTS/E RMS-11 Macro
Programmer's Guide .

RELATIVE FILE APPLICATIONS

described in RSTS/E
relative files . This
implementation

	

and

be performed on a

RELATIVE FILE APPLICATIONS

4 .5 .1 .1 CONNECT - A CONNECT operation affects the current record
context for the access stream as follows :

•

	

Current record -- There is no current record . Any operation
requiring a current record fails at this point .

•

	

Next record -- The next record is the first record cell in the
file .

4 .5 .1 .2 DELETE - In a DELETE operation, RMS-11 flags the current
record cell to indicate that it contains a deleted record . RMS-11
does this by setting the RMS-11 control byte in the cell to a certain
value . Then, RMS-11 writes the bucket over its original location on
the disk, unless you have specified deferred write (see Section
4 .5 .3 .2) .

A DELETE operation requires a valid current record . Therefore, a
DELETE operation should follow a successful GET or FIND operation ;
otherwise, RMS-11 returns the error code ER$CUR . This error does not
affect the original record in the file on disk .

A DELETE operation affects the current record context for the access
stream as follows :

•

	

Current record -- None . Any operation requiring a current
record fails at this point .

•

	

Next record -- Unchanged .

4 .5 .1 .3 DISCONNECT - A DISCONNECT operation destroys the current
record context for the access stream . You cannot resume this context
by reconnecting the stream .

4 .5 .1 .4 FIND - To perform a FIND operation on a relative file,
RMS-11 :

1 . Determines the location of the record in the file according
to the specified access mode :

•

	

In sequential-access mode, location is indicated by the
next record pointer .

•

	

In key-access mode, location is determined by the
specified relative record number and match criterion .

•

	

In RFA-access mode, location is determined by the
specified RFA .

2 . Reads the bucket containing the indicated cell from disk into
the task's I/O buffer, if the bucket is not already in
memory . The bucket may be in memory if it was required by a
previous operation .

3 . Returns the RFA and the RRN to the program, but does not
transfer the record to the program's user buffer .

RELATIVE FILE APPLICATIONS

If the cell is empty or contains a deleted record, the
response depends on the access mode :

• In sequential-access mode, RMS-11 repeats steps 1 through
3, moving through cells until the MRN is exceeded (ER$MRN)
or the end of the file is reached (ER$EOF) .

•

	

In key-access mode, RMS-11 reacts according to the
specified match criterion :

On an equal match, RMS-11 returns the error code
ER$RNF .

On a greater-than or greater-than-or-equal match,
RMS-11 internally adds 1 to the relative record number
and repeats steps 1 through 3, until either the MRN is
exceeded (ER$MRN) or the end of the file is reached
(ER$RNF) .

•

	

In RFA-access mode, RMS-11 returns the appropriate error
code :

ER$RNF -- No valid record has ever existed at the
specified location .

ER$DEL -- The control byte in the cell indicates that
the record in it was deleted .

A FIND operation affects the record context for the access
follows :

•

	

For a sequential-access FIND operation :

Current record is set to the relative record number of the
record found, that is, the next record before the FIND
operation started .

Example : You have connected a stream to a relative file .
There is no current record, but the next record is the
first record in the file . If you execute a
sequential-access FIND operation, the current record is set
to the first record in the file .

stream as

- Next record is set to a relative record number 1 higher
than the relative record number for the current record .

Example : From the previous example, the next record is the
second record cell in the file .

•

	

For a key-access or RFA-access FIND operation :

Current record is set to the record found, that is, the
record identified by the relative record number or RFA .

Next record is unchanged .

RELATIVE FILE APPLICATIONS

Example : In the preceding examples, you performed a
sequential-access FIND operation after connecting the
stream to the file . You now execute an RFA-access FIND
operation . The current record is set to the record
specified, but the next record is not changed . Therefore,
when you perform another sequential-access FIND, the search
will begin in the second record cell in the file, not in
the cell following the one found by RFA .

You use a FIND operation instead of a GET operation for two reasons :

1 . It is faster because the record is not moved to the user
buffer . Although the time required to move a record from one
part of memory to another is very short, there is no use
expending it if you do not need to .

2 . It does not change the next record in key-access mode or
RFA-access mode . This allows you to branch off sequential
processing for purposes of updating or deleting records, and
keep your place .

You can use a FIND operation in the following ways :

•

	

To skip records in sequential-access mode by initiating
successive FIND operations .

• To establish a random starting point for sequential processing
using RFA-access mode . You could then initiate successive GET
operations, where the first operation gets the record found by
RFA .

•

	

To establish a current record for a DELETE or UPDATE
operation .

•

	

To determine the existence of a record by using a random
access mode .

4 .5 .1 .5 FLUSH - A FLUSH operation does not affect the record context
for the access stream .

4 .5 .1 .6 GET - To perform a GET operation on a relative file, RMS-11 :

1 . Determines the location of the record in the file according
to the specified access mode :

• In sequential-access mode, location is indicated by : (a)
the next record pointer, if the GET operation was not
immediately preceded by a successful FIND operation ; or
(b) the current record pointer set by an immediately
preceding FIND operation .

•

	

In key-access mode, location is determined by the
specified relative record number and match criterion .

•

	

In RFA-access mode, location is determined by specified
RFA .

RELATIVE FILE APPLICATIONS

2 . Reads the bucket containing the indicated cell from disk into
the task's I/0 buffer, if the bucket is not already in
memory . The bucket may be in memory if it was required by a
previous operation .

Example : Your fixed-length records are 50 bytes long ;
bucket size is 2 blocks . When you read sequentially through
the file, RMS-11 must request a disk I/0 operation every
twentieth GET operation that your program executes .

NOTE

If you have opened a relative file with read-only
access and read/write sharing declarations, each GET
operation causes an I/0 operation .

3 . Returns the RFA and the RRN to the program and moves the
record from the I/0 buffer to the specified user buffer in
the program -- unless the program is operating in locate
record transfer mode (see Section 4 .5 .2 .2) .

If the cell is empty or contains a deleted record, the
response depends on the access mode :

• In sequential-access mode, RMS-11 repeats steps 1 through
3, moving through cells until the MRN is exceeded (ER$MRN)
or the end of the file is reached (ER$EOF) .

•

	

In key-access mode, RMS-11 reacts according to the
specified match criterion :

On an equal match, RMS-11 returns the error code
ER$RNF .

On a greater-than or greater-than-or-equal match,
RMS-11 internally adds 1 to the relative record number
and repeats steps 1 through 3, until either the MRN is
exceeded (ER$MRN) or the end of the file is reached
(ER$RNF) .

•

	

In RFA-access mode, RMS-11 returns the appropriate error
code :

ER$RNF -- No valid record has ever existed at the
specified location .

ER$DEL -- The control byte in the cell indicates that
the record in it was deleted .

A GET operation affects the record context for the access stream as
follows :

•

	

Current record is set to the relative record number of the
record read .

•

	

Next record is set to a relative record number 1 higher than
the relative record number for current record .

RELATIVE FILE APPLICATIONS

4 .5 .1 .7 PUT - To perform a PUT operation on a relative file, RMS-11 :

1 . Determines the destination of the record in the

	

file
according to the specified access mode :

•

	

In sequential-access mode, the next record pointer
indicates the destination .

•

	

In key-access mode, the specified relative record number
indicates the destination .

2 . Determines whether the bucket containing the indicated cell
is in the file . If it is, RMS-11 goes to the next step . if
it is not, RMS-11 extends the file until it has enough blocks
for all buckets up to and including the required one . Then,
RMS-11 initializes all newly allocated buckets .

3 . Reads the bucket containing the indicated cell from disk into
the task's I/0 buffer, if the bucket is not already in
memory . The bucket may be in memory if it was required by a
previous operation .

Checks the indicated cell : if it already contains an
existing, valid record, RMS-11 returns error code ER$REX ;
otherwise, RMS-11 goes to the next step .

Note that in some cases, you may be able to update an
existing, valid record in a cell . See your high-level
language documentation .

5 . Moves the record from the user buffer in the program to the
task's I/O buffer .

6 . Returns the RFA and the RRN to the program .

7 . Writes the I/O buffer to disk, unless you have specified
deferred write (see Section 4 .5 .3 .2) .

A PUT operation affects the record context for the access stream as
follows :

•

	

For a sequential-access PUT operation :

Current record -- None . Any operation requiring a current
record fails at this point .

Next record -- The cell with a relative record number 1
higher than the relative record number of the record just
inserted .

•

	

For a key-access PUT operation :

Current record -- None . Any operation requiring a current
record fails at this point .

Next record -- Unchanged .

RELATIVE FILE APPLICATIONS

4 .5 .1 .8 REWIND - A REWIND operation sets the context of the access
stream to the beginning of the relative file . In doing so, it affects
the record context for the stream as follows :

•

	

Current record -- None . Any operation requiring a current
record fails at this point .

•

	

Next record -- Set to the first record cell in the file .

4 .5 .1 .9 UPDATE - In an UPDATE operation, RMS-11 moves the specified
record from the task's user buffer to the I/0 buffer, replacing the
current record set by a previous GET or FIND operation . Then, RMS-11
writes the bucket over its original location on the disk, unless you
have specified deferred write (see Section 4 .5 .3 .2) .

An UPDATE operation requires a valid current record . Therefore, an
UPDATE operation should follow a successful GET or FIND operation ;
otherwise, RMS-11 returns the error code ER$CUR . This error does not
affect the original record in the file on disk .

An UPDATE operation affects the current record context for the access
stream as follows :

•

	

Current record -- None . Any operation requiring a current
record will fail at this point .

•

	

Next Record -- Unchanged .

4 .5 .2 Record Transfer Modes

You can manipulate records either in the I/0 buffer or in your
program's user buffer . Each of these options is called a record
transfer mode . You can change record transfer mode at run time, even
between record operations . Figure 4-1 illustrates the RMS-11 task
structure .

4 .5 .2 .1 Move Mode - Move mode requires that each record be copied
between the user and I/0 buffers :

•

	

On GET operations, RMS-11 moves the record from the I/0 buffer
to the user buffer before returning control to your program .

• On PUT and UPDATE operations, your program assembles the
record to be written into the file in the user buffer and,
during the operations, RMS-11 moves the data into the I/0
buffer before updating the file .

Move mode is the default record transfer mode for all programming
languages and all file organizations .

4 .5 .2 .2 Locate Mode - Locate mode enables your program to manipulate
records in the I/O buffer, eliminating the data transfers between it
and the user buffer . However, when you specify locate mode, RMS-11
uses it only when such usage does not compromise data integrity .
Otherwise, RMS-11 uses move mode . Therefore, your program must still
contain a user buffer .

RELATIVE FILE APPLICATIONS

Example : RMS-11 uses move mode instead of locate mode when a relative
file is shared .

Example : RMS-11 uses move mode instead of locate mode if you opened a
file indicating you were going to perform UPDATE operations on it .

RMS-11's use of move mode instead of locate mode is transparent to
your program as long as you use RMS-11 facilities to access the record
data .

SIZE DEPENDS ON :

	

-I
•

	

NUMBER OF FILES OPENED SIMULTANEOUSLY
•

	

BUCKET SIZES
L NUMBER OF RECORD ACCESS STREAMS _ _ J

I

USER BUFFERS

VIRTUAL
MEMORY PROGRAM

I/O
BUFFERS

INTERNAL
CONTROL

STRUCTURES

RMS-11

I SIZE DEPENDS ON :

	

I

j • RMS-11 FUNCTIONS USED I
LOVERLAY STRUCTURE USEDI

ZK-1174-82

Figure 4-1 : RMS-11 Task Structure

For relative files, your program can only perform GET operations in
locate mode . See your high-level language documentation to determine
whether the language supports locate mode and, if it does, what the
exact programming techniques are .

4 .5 .3 I/0 Techniques

You can use the following techniques to improve the performance of
record operations .

RELATIVE FILE APPLICATIONS

4 .5 .3 .1 Deferred Write - Normally, each write-type record operation
(DELETE, UPDATE, and PUT) results in a bucket being written to disk .
This convention emphasizes data integrity : you know that when a
write-type operation has ended successfully, the file reflects that
operation .

However, you can improve the performance of sequential write-type
operations by using deferred write . Basically, deferred write directs
RMS-11 to write a bucket to disk only when RMS-11 must use the I/0
buffer for some other purpose .

NOTE

Deferred write, although not illegal, is
essentially invalidated while a relative
file is being shared by multiple tasks
or streams . In that environment, every
write-type operation results in an I/0
operation so that :

• The bucket locked by the previous GET
or FIND (for UPDATE and DELETE
operations) or by the PUT operation
can be released .

•

	

The new data is available to the
other tasks or streams .

Therefore, if you perform sequential write-type operations on a
nonshared relative file, deferred write improves performance . RMS-11
writes out the buffer only when it must read another bucket to
complete an operation .

Example : Your records are 304 bytes long and the bucket size is 3
blocks . During sequential write-type operations, deferred write
causes I/0 operations per bucket to drop from 5 to 1 .

Deferred write offers little or no benefit to random write-type
operations or read-type operations in any access mode .

4 .5 .3 .2 Multiple Buffers - When you open a relative file, RMS-11
normally allocates 1 bucket-sized I/0 buffer in your task's address
space . RMS-11 uses this buffer during record operations . However,
you can direct RMS-11 to allocate more than the one buffer .

RMS-11 uses any extra buffers to keep, or cache, buckets in memory .
When a record operation requires that a bucket be read from disk,
RMS-11 checks its cache first . RMS-11 does not perform an I/0
operation if both of the following are true :

•

	

The requested bucket is already in memory .

•

	

That bucket is still valid, that is, the file is not shared
and/or the bucket has been kept locked .

You do not benefit from multiple buffers during sequential operations .
You can improve performance with multiple buffers during random
operations only if your program accesses the same buckets often .

RELATIVE FILE APPLICATIONS

4 .5 .3 .3 Multiple Access Streams - RMS-11 allows each program to use
multiple streams on a relative file .

4 .5 .4 File and Directory Operations

The following file and directory operations can be performed on
relative files :

CLOSE
CREATE
DISPLAY
ERASE
EXTEND
OPEN
PARSE
RENAME
SEARCH

See your high-level language documentation for a description of the
support provided .

CHAPTER 5

INDEXED FILE STRUCTURE AND ACCESS

DIGITAL designed the RMS-11 indexed file organization to achieve the
following goals :

• Content-addressable record access -- Each record in the file
can be located on the basis of the values in designated
portions of the data, called key fields .

• Uniform random access time -- Each record in the file can be
located with approximately the same number of I/0 operations,
regardless of when it was added to the file .

• Alternate key capabilities (comply with ANSI COBOL Level 2) --
Each record in the file can be located via more than one key
field .

• Very good performance on sequential access by primary key -- A
program can sequentially read a reasonably designed indexed
file by primary key almost as fast as it can sequentially read
a sequential file .

• Good performance on sequential access by alternate keys --
Each record in the series can be accessed with (typically) one
to three I/0 operations .

• Unique record address for the life of the file (data base key
concept) -- A record in a file can be located via a unique
identifier (record file address) established by the PUT
operation . The record may be deleted, but its unique
identifier is never reused .

• Preserve the state of processing despite a system failure --
Normally, each logical write operation results in a physical
transfer of data from memory to disk . Therefore, the file
reflects each record inserted . However, you can override this
mode with deferred write in some cases .

More importantly, RMS-11 performs record operations so that both of
the following are true :

•

	

File corruption is avoided or minimized even if a system
failure occurs during a write-type record operation .

•

	

Even if some corruption exists, user data can
accessed .

NOTE

You should still reorganize your file if
the system fails during write-type
processing on an RMS-11 indexed file .

still be

INDEXED FILE STRUCTURE AND ACCESS

5 .1 PHYSICAL FILE STRUCTURE

On disk, an indexed file consists of three kinds of blocks :

•

	

Prologue -- RMS-11 information about the file, including
attributes ahd key and area descriptions

•

	

Index -- Index records for primary and alternate keys pointing
the way to a data record

•

	

Data -- Your data records and index data records

The prologue contains information about the keys and areas of the
file . RMS-11 allocates at least one block for the key descriptors and
at least one block for the area descriptors . RMS-11 uses more blocks
as needed . Size calculations are discussed in Section 6 .6 .1 .

Areas are portions of an indexed file that are treated independently
for initial allocation, extensions, placement, and bucket sizes . Like
subfiles, but invisible to the operating system, areas allow you to
divide indexed files logically into separate units for each index and
for the data records to improve performance ; see Section 6 .3 for more
information on areas .

In addition, RMS-11 extends the prologue to an integral multiple of
the area 0 bucket size, if the area 0 bucket size is 2, 4, or 8
blocks . This can improve performance when RSTS/E data caching is used
by aligning buckets with file clusters . To take advantage of this,
you must define all buckets in the file to be equal in size, and
specify all allocations and extensions as an integral multiple of this
size . See Section 6 .5 for more information on bucket sizes .

The location of the index and data blocks is up to you :

• If the file is a single area, RMS-11 allocates data and index
blocks in buckets as it needs them ; they are therefore
interspersed throughout the file .

• If the index and data are set up in separate areas, RMS-11
allocates each type of bucket from the appropriate area ; the
index is therefore set apart physically from the data portion
of the file .

Figure 5-1 illustrates an indexed file both with and without areas .

RMS-11 formats buckets in an indexed file as it requires them for
record storage . The RMS-11 control bytes are set to their initial
values :

•

	

14 bytes, beginning with byte 0 of the bucket contain bucket
control information .

•

	

The last byte of the last block duplicates the first byte of
the bucket for checking I/0 completion .

RMS-11 packs index or data records, including record format overhead,
into each bucket, beginning with byte 14, end-to-end and byte-aligned .

Figure 5-2 shows the RMS-11 bucket format .

• To determine the combinations of bucket sizes where Equation 2
is true, compare the values in the NIRBK**3 row one at a time
to each of the values in the NRF/NDRBK row . Where the
NIRBK**3 value is greater than or equal to NRF/NDRBK, a valid
bucket size combination exists .

Example : The first NIRBK**3 value is 19683 . This is less
than 25000, the first NRF/NDRBK value, but it is greater than
12500, the second NRF/NDRBK value . Therefore, index bucket
size of 1 (from NIRBK**3 row) and data bucket size of 2 (from
the NRF/NDRBK row) is a valid combination .

• Compare the values in the NIRBK**2 row one at a time to each
of the values in the NRF/NDRBK row . Where the NIRBK**2 value
is greater than or equal to NRF/NDRBK, a valid bucket size
combination exists .

Example : The first NIRBK**2 value is 729 . This is too small
to use, as is the second value in the row . However, the third
value is 7056 . This is less than 25000 (the first NRF/NDRBK
value) as well as the next two values, but greater than 5556,
the fourth NRF/NDRBK value . Therefore, index bucket size of 3
(from NIRBK**2 row) and data bucket size of 4 (from the
NRF/NDRBK row) is a valid combination .

As a result of the comparisons in steps 6 and 7 above, Equation 2 is
true in the following cases :

NIRBK**3

DBKS

	

IBKS

	

IOB (bytes)

1

	

2

	

2048
2

	

1

	

2048

INDEXED FILE DESIGN

• Calculate NIRBK**3 for the values of NIRBK corresponding to
bucket sizes 1 through 6 . Round the result up to the nearest
integer .

BKS 1 2 3 4 5 6

NIRBK 27 56 84 112 141 169

NDRBK 2 4 7 9 12 14

NRF/NDRBK 25000 12500 7143 5556 4167 3572

NIRBK**3 19683 175616 592704 1014049 2803220 4826810

NIRBK**2 729 3136 7056 12544 19881 28561

INDEXED FILE DESIGN

NIRBK**2

DBKS

	

IBKS

	

IOB (bytes)

1

	

6

	

6144
2

	

4

	

4096
4

	

3

	

4096

where :

DBKS is the data bucket size from the NRF/NDRBK row

IBKS is the index bucket size from the NIRBK**n rows

IOB

	

is the maximum I/0 space required by the largest bucket size of
the pair

The choice of bucket size pairs depends on what you need to optimize
most in the application : task size or access time . After you choose,
make data and index bucket sizes equal to the larger size selected .

6 .5 .2 Bucket Sizes for Alternate Indexes

The selection of bucket sizes for alternate indexes follows the same
procedure as that of primary key bucket sizes .

Step 1 :

The records-per-bucket equations for alternate indexes are :

NIRBK = ((512*BKS)-15)/(AKL+BPL)

and

NDRBK = ((512*BKS)-15)/(AKL+(DBPL*DF)+4+DO)

where :

AKL

	

is the alternate key length in bytes

DBPL is the data bucket pointer length :

DBPL is 4 for pointers to the first 65,535 blocks in the file

DBPL is 5 for pointers to the blocks numbered between 65,536
and (2**24)-1

DBPL is 6 for pointers to the blocks numbered between 2**24 and
(2**32)-1

DF

	

is the duplicate factor :

DF is 1 if you allow no duplicates

DF is the average number of records with the same key values
for any key value present in the file

DO

	

is the duplicate overhead :

NOTE

The DF factor does not compensate enough if DF is
greater than the number of data records that fit in
a bucket . RMS-11 must then use continuation buckets
to store the records with duplicate values .

INDEXED FILE DESIGN

DO is 0 if you allow no duplicates

DO is 4 if you allow duplicates

No record movement or space/deletion overhead occurs in index buckets .

Studies have shown that the packing efficiency factor for alternate
keys is normally about 0 .5 . However, this factor applies only to the
lower levels of the index and to the data level, and not to the root .
The packing efficiency of any index's root is always 1 .

Therefore, the index depth equation for alternate indexes is :

(PF**n)*(NIRBK**n) <_ NRF/NDRBK

where :

PF is the packing efficiency factor .

Step 2 :

RMS-11 cannot load buckets in alternate indexes as efficiently as in
the primary index because alternate key values inevitably fall in
random order (unless you use the RMSIFL utility described in the
RSTS/E . RMS-11 Utilities manual) . The ideal values resulting from the
equationss inSection 6 .5 .1 must be reduced by a packing efficiency
factor, unless RMSIFL is used to load the file .

Example : Using the file in the
10-byte first alternate key,

primary key example and adding a
allowing no duplicates, the following

grid can be filled in (NRF=50,000 since there is one SIDR per data
record) :

BKS 1 2 3 4 5 6

NIRBK 38 77 117 156 195 235

NDRBK 28 57 85 113 142 170

NRF/NDRBK 1811 892 592 443 354 295

0 .125*NIRBK**3 6859 57067 200202 474552 926860 1622240

0 .250*NIRBK**2 361 1483 3423 6084 9507 13807

INDEXED FILE DESIGN

The index depth equation for alternate indexes is true in the
following cases :

NIRBK**3

DBKS

	

IBKS

	

IOB (bytes)

1

	

1

	

1024

NIRBK**2

DBKS

	

IBKS

	

IOB (bytes)

1

	

3

	

3072
2

	

2

	

2048

Do not choose a bucket size smaller than that selected for the primary
index (Section 6 .5 .1) .

6 .5 .3 Program Syntax

RMS-11 requires bucket size as a whole number of blocks . However,
some high-level language compilers require or allow you to specify the
bucket size in number of records . This syntax can lead to a different
number of records per bucket than you are counting on .

Example : A BASIC-PLUS-2 program contains the following clause in an
OPEN statement that creates an indexed file :

BUCKETSIZE 5%

The record format is fixed ; record length is 100 bytes . The compiler
makes the following calculation :

100

	

bytes for the data
+ 7

	

bytes for the record header

107

	

bytes for each record
x 5

	

records specified in a bucket

535

	

bytes for the records in a bucket
+15

	

bytes for the bucket overhead

550

	

bytes required to be in the bucket

A bucket must be a whole number of blocks long, so the compiler rounds
the bucket size to 2 blocks and passes that to RMS-11 to create the
file .

However, 2 blocks contain 1024 bytes ; that leaves 1009 bytes for
record storage after the bucket overhead is subtracted . Since each
record is 107 bytes long, the buckets that were originally supposed to
contain only 5 records now can contain 9 (1009/107) .

Bucket size can be set by RMSDES or by your application program,
depending on the capabilities of your high-level language .

6 .6 FILE ALLOCATION

RMS-11 requests the file control processor to allocate blocks to a
file at three different points in the file's life :

•

	

When the file is created

•

	

When RMS-11 must dynamically extend the file to complete an
operation

•

	

When you explicitly instruct RMS-11 to extend the file

The allocation of blocks to a file takes time, mainly I/0 time as the
operating system performs its function . If RMS-11 has to request an
allocation every time it requires a new bucket, this time can be a
significant factor in an application's performance, especially during
file population .

You can help optimize performance by minimizing allocation overhead in
the following areas :

•

	

Initial allocation

•

	

Default extension quantity

6 .6 .1 Initial Allocation

Total allocation of an indexed file when you create it is most
efficient .

The total allocation for a file is the sum of the prologue and the
allocations for the different indexes that make up the file ; an
index's allocation is the sum of the allocations for all levels in the
index . You should start with the primary level 0 and "build" each
level of each index on paper, as shown in the following steps .

1 . Calculate the number of buckets in level 0 (NBK@0) :

NBK@0 = NRF/NDRBK

where :

NRF

	

is the total number of records in the file

NDRBK is the number of data records in a bucket in level 0
(see Section 6 .5 .1 for the method of determining this
value)

NOTE

The method described in section 6 .5 .1 assumes that
you will put records into the file in order by
ascending primary key value . However, if you will be
loading the file in random primary key value order,
you should divide the NDRBK value obtained using the
method described in Section 6 .5 .1 by 2 . You will
need twice as many data buckets .

INDEXED FILE DESIGN

INDEXED FILE DESIGN

2 . Calculate the number of buckets in level 1 (NBK@1) :

NBK@1 = NBK@O/NIRBK

where :

NBK@O is the number of buckets in level 0 (calculated in
Step 1)

NIRBK is the number of index records per bucket in the index
(see Section 6 .5 .1 for the method of determining this
value)

NOTE

The method described in Section 6 .5 .1 assumes that
you will put records into the file in order by
ascending primary key value . However, if you will be
loading the file in random primary key value order,
you should divide the NIRBK value obtained using the
method described in Section 6 .5 .1 by 2 for every
index level but the root . You will need twice as
many index buckets .

3 . Calculate the number of buckets in level 2 :

NBK@2 = NBK@1/NIRBK

4 . Continue this sequence of calculations until you reach the
root level, that is :

NBK@n = 1 = NBK@(n-1)/NIRBK

where :

NBK@n is the number of buckets in the root, which is 1 by
definition

n

	

is the index depth

5 . Calculate the allocation in blocks for each level :

AQ@0 = NBK@O * DBKS
AQ@1 = NBK@1 * IBKS

AQ@n = IBKS

where :

AQ@n is the allocation quantity in blocks for level n (0 for
level 0, 1 for level 1, and so on)

DBKS is the data bucket size in blocks

IBKS is the index bucket size

INDEXED FILE DESIGN

6 . Calculate the allocation for each alternate index as shown in
Steps 1 through 5 ; see Section 6 .5 .2, for equations .

NOTE

Alternate indexes are normally populated in random
key value order . Therefore, you should divide the
NDRBK and NIRBK values obtained using the method
described in Section 6 .5 .2 by 2 except for the root
level .

7 . The total allocation quantity for the file (ALQ) is the sum
of the index allocation quantities plus the prologue :

ALQ = PLG + AQPK + AQAK1 + . . . + AQAKn

where :

n

	

is the last alternate key defined for the file

The prologue of an indexed file can be from 2 to 84 blocks long . The
size is the sum of the key descriptor blocks and the area descriptor
blocks :

•

	

VBN 1 describes the primary key (and contains other attribute
information) .

•

	

Each key descriptor block covers up to 5 alternate keys .

•

	

Each area descriptor block covers up to 8 areas .

Finally, RMS-11 extends the prologue to an integral multiple of bucket
size if the criteria described in Section 6 .5 are met .

Example : Given an indexed file of 100,000 fixed-length user data
records with the following attributes, calculate a reasonable initial
allocation size in blocks :

Data size = 200 bytes

Primary key = 20-byte string ; no duplicates allowed

Alternate key = 8-byte packed decimal ; no duplicates allowed

Data bucket size = indexed bucket size = 3 blocks

Calculate the primary index first :

1 . AO = 0, so

NDRBK = ((512*3)-15)/(200+7) = 7 data records per bucket

2 .

NBK@0 = NRF/NDRBK = 100000/7 = 14,286 buckets in level 0

66 index records per bucketNIRBK = ((512*3)-15)/(20+3) =

3 .

NBK@1 = NBK@0/NIRBK = 14286/66

NBK@2 = NBK@1/NIRBK = 217/66 =

= 217 buckets in level 1

4 buckets in level 2

INDEXED FILE DESIGN

ALQ = 50,370 blocks for the whole file

This allocation can be done by RMSDES or by your application program,
depending on the capabilities of your high-level language .

6 .6 .2 Default Extension Quantity

If the file cannot be totally allocated at creation time, you should
establish a reasonable default extension quantity (DEQ) to minimize
the number of (and the time spent on) file extensions . Even if the
file is totally allocated when it is created, you should establish a
reasonable DEQ in case the file gets bigger than planned .

NOTE

If the number of buckets in the level under the root
is very much less than the number of index records
that fit in a bucket, you may be able to use a
smaller bucket size without increasing the index
depth .

4 .

5 .

NBK@3 = NBK@2/NIRBK = 4/66 = 1 bucket in level 3, the root

AQ@0 = NBK@0*DBKS =

AQ@1 = NBK@l*IBKS =

AQ@2 = NBK@2*IBKS =

AQ@3 = NBK@3*IBKS =

14286*3 = 42,858 blocks in level 0

217*3 = 648 blocks in level 1

4*3 = 12 blocks in level 2

1*3 = 3 blocks in level 3

AQPK = 43,521 blocks in the primary index

Now calculate the alternate index (DF=1, DO=0) :

1 . NDRBK = ((512*3)-15)/(8+(4*l)+4)

= 89 data records per bucket

NBK@0 = NRF/NDRBK = 100000/89 = 1124*2 = 2,248 buckets
level 0

in

The doubling compensates for a packing efficiency of 0 .5 .

2 . NIRBK = ((5l2*3)-15)/(8+3) = 138 index records per bucket

3 .

NBK@1 = NBK@0/NIRBK = 17*2 = 34 buckets in level 1

NBK@2 = NBK@1/NIRBK = 1 bucket in level 2, the root

4 . AQ@O = NBK@O*BKS = 2248*3 = 6,744 blocks in level 0

AQ@l = NBK@1*BKS =

AQ@2 = NBK@2*IBKS =

34*3 = 102 blocks in level 1

1*3 = 3 blocks in level 2

5 .

AQAK = 6,849 blocks in the alternate index

Finally :

ALQ = PLG + AQPK + AQAK1 = 3 + 43,518 + 6,849, or

A good basis for calculation is the number of records that are added
to the file in a given period of time, such as a day ; use the formula
for allocation quantity in Section 6 .6 .1 . The DEQ should equal a
multiple of the bucket size .

If you do not specify a DEQ, it defaults to zero whether you create
the file with RMSDES or a high-level language . RMS-11 responds to a
DEQ of zero by requesting 4 times the bucket size in blocks from the
file control processor each time it automatically extends the file .

The DEQ for the file can be set by RMSDES or by your application
program, depending on the capabilities of your high-level language .

6 .7 POPULATION TECHNIQUES

File population entails a large burst of records written into the file
after it has been created and before it is made available for normal
processing . You can populate a file with the RMSIFL or RMSCNV utility
programs, or with an application program, depending on the
capabilities of your high-level language .

The aim of populating an RMS-11 indexed file is to avoid bucket splits
and record movement during the population and during later use of the
file . The techniques to achieve this goal are :

•

	

Inserting records in ascending order by primary key

•

	

Use of fill numbers

6 .7 .1 Ascending Order by Primary Key

The best way to populate an indexed file is to insert the records in
ascending primary key value order . You do not need to insert the
records all at once . This technique :

•

	

Minimizes population time

• Avoids the creation of RRV records, allowing RMS-11 to fill
buckets with data records and thereby find records with the
least access time .

Contrast this technique with records loaded in descending order by
primary key value . In that case, you introduce the packing efficiency
factor p to the primary key equations . Normally, p is 1, when you
insert records in ascending order and the factor drops out of the
equation, as shown here :

NIRBK**n ? NRF/NDRBK

But when p < 1, the equation becomes :

(p**n) (NIRBK**n) ? NRF/NDRBK

INDEXED FILE DESIGN

INDEXED FILE DESIGN

Since p is a fraction, the introduction of this factor reduces the
left side of the equation, at times dramatically, thereby potentially
increasing :

•

	

The index depth needed to cover a specific number of data
records

•

	

Frequency of bucket splitting (an important factor in the time
required to populate an indexed file)

As mentioned in Section 6 .5 .2, alternate indexes are a prime example
of packing inefficiency, a situation avoided only with the RMSIFL
utility . The best general approximation for p in the case of
alternate indexes is 0 .5, the value used in Section 6 .5 .2 .

You can populate a file with records in ascending order by primary key
as follows :

•

	

Use the RMSIFL utility . This utility :

Sorts your input file into ascending order by the output
file's primary key, if the file is not already sorted that
way

Transfers the records from the input file to the output
file

RMSIFL uses techniques not available to you to further improve
the population of an indexed file .

•

	

Use the RMSCNV utility, specifying the mass-insertion mode
(/MA) switch .

•

	

Write a MACRO-11 program to populate the file and specify :

In the FAB, deferred write when you open the file

- In the RAB, when you connect to the file :

	

mass-insertion
mode and sequential access mode

See the RSTS/E RMS-11 Macro Programmer's Guide for more
information .

Be sure to sort your input records into ascending order by the
indexed file's primary key before you run the program .

6 .7 .2 Random Insertions after File Population

If you will be inserting records into an indexed file after it is
populated, you should consider ways to optimize these operations :

•

	

If the new records to be inserted span the full range of
primary key values, you should use a bucket fill size .

• If the inserted records are sorted into ascending order by
primary key value and added at the logical end-of-file, you
should use mass-insertion mode .

INDEXED FILE DESIGN

6 .7 .2 .1 Bucket Fill Size - You can optimize for evenly distributed
random insertions by leaving free space in buckets during the initial
population of the file . To do this, you specify a bucket fill size as
a set amount of bytes for each area in your file . Normally, RMS-11
ignores this number, but you can direct RMS-11 to obey it : RMS-11
then fills each bucket in the file to the level specified by the
number .

Example : Your bucket size is 2 blocks ; you set the bucket fill size
to 768 bytes . When you tell RMS-11 to honor the fill size, it only
uses 768 out of 1024 bytes in each bucket -- the buckets are logically
three-quarters size .

You use the bucket fill size when you populate a file to improve its
performance during normal operations : if free space is available in
every bucket in the file, any record randomly inserted into the file
is likely to fit without causing a bucket split .

The size of the bucket fill size depends on :

	 . The amount of insertion activity you expect .

Allow room (including record header) for the number of records
you will add to each bucket during normal operations .
Occasional insertions might not warrant the use of bucket fill
sizes, whereas heavy insertion can require room for multiple
additional records in each bucket to optimize, but not
eliminate, bucket splitting activity .

•

	

The type of bucket (data or index) involved .

Because of the difference in record sizes and frequency of
insertion, data and index buckets should normally have
different bucket fill sizes .

Example : The file contains 240-byte fixed-length records with a
primary key field 24 bytes long . To optimize random insertions, the
fill size for data buckets should therefore be at most : bucket length
minus bucket overhead (15) minus record length (240) minus record
overhead (7) . This number leaves room for one data record .

This same bucket fill size for index buckets leaves room for 9 index
records . A more reasonable bucket fill size for index buckets is :
bucket length minus bucket overhead minus 2 times 27 bytes . This
number leaves room for 2 index records, where : the primary key length
(24) plus the bucket pointer length (3) equals the index record length
(27) .

See Section 6 .5 .2 for a more complete discussion .

NOTE

RMS-11 ignores a bucket fill size of
less than 50 percent of the bucket
length and uses the 50 percent figure .

The bucket fill size for a file can be set by RMSDES or by your
application program, depending on the capabilities of your high-level
language .

INDEXED FILE DESIGN

6 .7 .2 .2 Mass Insertion - You use mass-insertion mode when you have a
series of records to add to an indexed file and :

•

	

You have sorted the records into ascending order by the file's
primary key .

• The lowest key value in the records is greater than the
highest key value in the file ; that is, the records will be
inserted at the logical end-of-file .

While the mass-insertion bit is on, RMS-11 performs a PUT operation
normally (see Section 5 .3 .1) except that it :

•

	

Does not unlock the primary level 0 data bucket

•

	

Keeps a pointer to the primary level 1 bucket that pointed to
the proper level 0 bucket

These extra steps enable RMS-11 to :

•

	

Write the next record without following the primary index (if
the mass insertion bit is still on) .

• Rapidly split the primary level 0 bucket when it is full :
since RMS-11 has a pointer to the primary level 1 bucket that
will contain the index record for the new bucket, it can
update that bucket without following the index .

By using these techniques, RMS-11 can extend the primary level 0
bucket by bucket, packing records into the buckets in the order they
are written . As each bucket becomes full, RMS-11 creates a new one,
beginning with the next record inserted, and notes its existence in
the primary level 1 index bucket .

NOTE

Mass insertion significantly improves
performance for single-key indexed
files . The percentage of improvement
lessens with each additional key defined
in the file .

You can enhance mass insertion performance by using deferred write
(see Section 7 .4) .

CHAPTER 7

RECORD AND FILE PROCESSING OF INDEXED FILES

The record and file processing capabilities described in RSTS/E
RMS-11 : An Introduction are available for indexed files . This
chapter discusses the operations and their implementation and
restrictions with indexed files .

7 .1 ACCESS SHARING

Access sharing can be specified for indexed files as described in the
following sections . See Section 2 .2 .3 for general information on
shared access .

7 .1 .1 Record Access to indexed Files

Indexed files allow fully interlocked read/write sharing, dependent
upon the compatibility of the access and sharing declarations of
multiple accessors, as follows :

• If you have requested read/write access, your request will be
denied unless all other accessors have allowed read/write
sharing . (Otherwise, your read/write access request will
conflict with the sharing declaration of at least one other
accessor .)

• If you have not permitted read/write sharing, your request for
read/write access will be denied if any other read/write
accessor is present . In this case, the read/write accessor
does not meet the requirements of your sharing declaration .
In addition, RSTS/E requires that the effective sharing
declarations be identical for all accessors, so your request
will be denied if the existing sharing declarations permit
read/write sharing .

If you are a read-only accessor who has permitted read/write sharing,
RMS-11 will change your sharing declaration internally to read-only
sharing, if necessary, to be compatible with the sharing declarations
of existing read-only accessors . Note, however, that even if the
other accessors then exit, an otherwise acceptable read/write accessor
will be denied concurrent access because your effective sharing
declaration has been changed to read-only .

RECORD AND FILE PROCESSING OF INDEXED FILES

7 .1 .2 Block Access to Indexed Files

Because block access bypasses the record structure and interlocking
algorithms used with indexed files, read/write sharing cannot be
permitted . Any read/write sharing declaration is converted internally
to read-only before the file is processed (this is similar to
record-accessed sequential files) .

Thus, multiple read-only accessors (regardless of their sharing
declarations) can share indexed files concurrently using block access,
as long as no read/write record accessor is present . Read-only block
accessors can share files with read-only record accessors, if the
record accessors have effective read-only sharing declarations . In
addition, a single read/write accessor can access an indexed file
using block access (regardless of sharing declaration) as long as no
other accessor of any kind is present .

Other combinations are rejected : the access and sharing declarations
are incompatible .

7 .2 RECORD AND STREAM OPERATIONS

The following record and stream operations can be performed on indexed
files . See also the discussions of read- and write-type record
operations in Chapter 5 .

CONNECT
DELETE
DISCONNECT
FIND
FLUSH
GET
PUT
REWIND
UPDATE

In all record operations, RMS-11 establishes the current record (if
any) and next record (if applicable) context . If any record operation
fails, RMS-11 normally sets the current record to none and does not
change the next record .

NOTE

For more information on the RMS-11 error
codes referred to in the following
sections, see the RSTS/E RMS-11 Macro
Programmer's Guide .

7 .2 .1 CONNECT

A CONNECT operation affects the context for the access stream as
follows :

•

	

Current record -- There is no current record . Any operation
requiring a current record fails at this point .

• Next record -- The next record is the first record in the file
according to the collating sequence of the specified key of
reference .

RECORD AND FILE PROCESSING OF INDEXED FILES

Example : In an indexed file with multiple keys, the next
record varies by the key specified in the instruction
initiating the CONNECT operation :

If the primary key is specified, the next record is the
first record in primary level 0, the one with the lowest
primary key value in the file .

If an alternate key is specified, the next record is
indicated by the first SIDR in the alternate index's level
0 ; the record itself can be located anywhere in the
primary level 0 .

7 .2 .2 DELETE

In a DELETE operation, RMS-11 flags the header of the current record
to indicate that it is a deleted record . The prerequisite GET or FIND
operation brought the bucket containing the record into the I/0
buffer .

Then, RMS-11 writes the bucket over its original location on the disk,
unless you specified deferred write (see Section 7 .4 .2) .

A DELETE operation affects the context for the access stream as
follows :

•

	

Current record -- None . Any operation requiring a current
record fails at this point .

•

	

Next record -- Unchanged .

7 .2 .3 DISCONNECT

A DISCONNECT operation destroys the context for the access stream .
You cannot resume this context by reconnecting the stream .

7 .2 .4 FIND

Section 5 .3 .2 describes how RMS-11 performs a key-access FIND
operation . Section 5 .4 describes how RMS-11 performs a
sequential-access FIND operation .

If the record does not exist or has been deleted, RMS-11 returns an
error code depending on the access mode :

•

	

In sequential-access mode, the error code is ER$EOF .

•

	

In key-access mode, the error code is ER$RNF .

•

	

In RFA-access mode, the error code is :

ER$RFA -- no valid record has ever existed at the specified
location .

ER$DEL -- the record header indicates that the record was
deleted .

RECORD AND FILE PROCESSING OF INDEXED FILES

A FIND operation affects the context for the access stream as follows :

•

	

For a sequential-access FIND operation :

- Current record -- Is set to the value of the record found .

Example : You have connected a stream to an indexed file,
specifying 0 as the key of reference . There is no current
record, but the next record is the first record in primary
level 0 . If you execute a sequential-access FIND
operation, the current record is set to this record .

Next record -- Is set to the record logically following the
current record in the index of reference .

NOTE

RMS-11 enacts this logical sequence only when it
actually accesses the next record :

1 . RMS-11 locates the current record, reading a
bucket if necessary .

2 . RMS-11 locates the record logically following
the current record, reading another bucket if
necessary .

If the indexed file is shared, the actual record in
the next record position can change between the
operation that accesses the current record and the
one that finds the next record .

Example : From the previous example, the next record is the
record in the file with the next higher primary key value .

•

	

For a key-access or RFA-access FIND operation :

Current record -- Is set to the record found, that is, the
record identified by the RFA .

Next record -- Unchanged .

Example : In the previous examples, you did a
sequential-access FIND operation after connecting the
stream to the file . You now execute an RFA-access FIND
operation . The current record is set to the record
specified, but the next record is not changed . Therefore,
if you do another sequential-access FIND operation, the
current record will be set to the second record in primary
level 0, not the record following the one found by RFA .

You use a FIND operation instead of a GET operation for two reasons :

1 . It is faster because the record is not moved to the user
buffer . Although the time required to move a record from one
part of memory to another is very short, do not expend it if
you do not need to .

2 . It does not change the next record in key-access mode or
RFA-access mode . This convention allows you to branch off
sequential processing for the purpose of updating or deleting
records, and keep your place .

RECORD AND FILE PROCESSING OF INDEXED FILES

You can use a FIND operation in the following ways :

•

	

To skip records in sequential access mode by initiating
successive FIND operations .

•

	

To establish a current record for a DELETE or UPDATE
operation .

•

	

To determine the existence of a record by using key-access
mode .

7 .2 .5 FLUSH

A FLUSH operation does not affect the context for the access stream .

7 .2 .6 GET

Section 5 .3 .2 describes how RMS-11 performs a key-access GET
operation . Section 5 .4 describes how RMS-11 performs a
sequential-access GET operation .

If the record does not exist or has been deleted, RMS-11 returns an
error code depending on the access mode :

•

	

In sequential-access mode, the error code is ER$EOF .

•

	

In key-access mode, the error code is ER$RNF .

•

	

In RFA-access mode, the error code is :

- ER$RFA -- No valid record has ever existed at the specified
location .

- ER$DEL -- The record header indicates that the record was
deleted .

A GET operation affects the context for the access stream as follows :

•

	

Current record -- Is set to the value of the record read .

•

	

Next record -- Is set to the record logically following the
current record in the index of reference .

NOTE

RMS-11 enacts this logical sequence only when it
actually accesses the next record :

1 . RMS-11 locates the current record, reading a
bucket if necessary .

2 . RMS-11 locates the record logically following the
current record, reading another bucket if
necessary .

If the indexed file is shared, the actual record in
the next record position can change between the
operation that accesses the current record and the one
that finds the next record .

RECORD AND FILE PROCESSING OF INDEXED FILES

7 .2 .7 PUT

Section 5 .3 .1 decribes how RMS-11 performs a key-access PUT operation .

A PUT operation affects the context for the access stream as follows :

•

	

For a sequential-access PUT operation :

Current record -- None . Any operation requiring a current
record fails at this point .

Next record -- Undefined . The record retrieved by a
sequential-access FIND or GET operation at this point is
not specified .

•

	

For a key-access PUT operation :

- Current record -- None . Any operation requiring a current
record fails at this point .

- Next record -- Unchanged .

7 .2 .8 REWIND

A REWIND operation sets the context of the access stream to a logical
beginning of the indexed file . In doing so, the operation affects the
context for the stream as follows :

•

	

Current record -- None . Any operation requiring a current
record fails at this point .

•

	

Next record -- is set to the first record in the file
according to the specified key of reference .

7 .2 .9 UPDATE

In an UPDATE operation, RMS-11 moves the specified record from the
task's user buffer to the I/0 buffer, replacing the current record set
by the previous GET or FIND operation . Then, RMS-11 writes the bucket
over its original location on the disk . Section 5 .3 .3 describes the
UPDATE operation in detail .

An UPDATE operation requires a valid current record . Therefore, an
UPDATE operation should follow a successful GET or FIND operation ;
otherwise, RMS-11 returns the error code ER$CUR . This error does not
affect the original record in the file on disk .

An UPDATE operation affects the context for the access stream as
folows :

•

	

Current record -- None . Any operation requiring a current
record fails at this point .

•

	

Next record -- Unchanged .

7 .3 RECORD TRANSFER MODES

You can manipulate records either in the I/0 buffer or in your
program's user buffer . Each of these options is called a record
transfer mode . You can change record transfer ,mode at run time, even
between record operations . Figure 7-1 illustrates the RMS-11 task
structure .

SIZE DEPENDS ON :

	

1
•

	

NUMBER OF FILES OPENED SIMULTANEOUSLY
•

	

BUCKET SIZES I
L NUMBER OF RECORD ACCESS STREAMS

USER BUFFERS

VIRTUAL
MEMORY PROGRAM

RECORD AND FILE PROCESSING OF INDEXED FILES

I/O
BUFFERS

INTERNAL
CONTROL

STRUCTURES

RMS-11

I SIZE DEPENDS ON :

	

I

j • RMS-11 FUNCTIONS USED I
L! OVERLAY STRUCTURE USEDI

ZK-1 174-82

Figure 7-1 : RMS-11 Task Structure

7 .3 .1 Move Mode

Move mode is the default record transfer mode for all programming
languages and all file organizations .

•

	

On GET operations, RMS-11 moves the record from the I/0 buffer
to the user buffer before returning control to your program .

• On PUT and UPDATE operations, your program assembles the
record to be written into the file in the user buffer, and
during the operation, RMS-11 moves the data into the I/0
buffer before updating the file .

7 .3 .2 Locate Mode

Locate mode enables your program to manipulate records in the I/0
buffer, eliminating the data transfers between it and the user buffer .
However, when you specify locate mode, RMS-11 uses it only when such
usage does not compromise data integrity . Otherwise, RMS-11 uses move
mode . Therefore, your program must still contain a user buffer .

RECORD AND FILE PROCESSING OF INDEXED FILES

Example : RMS-11 uses move mode instead of locate mode when an indexed
file is shared .

Example : RMS-11 uses move mode instead of locate mode if you opened
the file indicating that you were going to perform UPDATE operations
on it .

RMS-11's use of move mode instead of locate mode is transparent to
your program as long as you use RMS-11 facilities to access the record
data .

For indexed files, your program can only perform GET operations in
locate mode . See your high-level language documentation to determine
whether the language supports locate mode and, if it does, what the
exact programming techniques are .

7 .4 I/O TECHNIQUES

You can use the following techniques to improve the performance of
record operations .

7 .4 .1 Deferred Write

Normally, each write-type record operation (DELETE, PUT, and UPDATE)
results in a bucket being written to disk . This convention emphasizes
data integrity : you know that when a write-type operation ends
successfully, the file reflects that operation .

However, you can improve the performance of mass-insert sequential (by
primary key) PUT or DELETE operations by using deferred write .
Basically, deferred write directs RMS-11 to write a bucket out to disk
only when RMS-11 must use the I/0 buffer for some other purpose .

NOTE

Deferred write should only be used with
mass-insert PUT operations . Although
not illegal, deferred write is
essentially invalidated while an indexed
file is shared by multiple tasks --
except when you are also using mass
insertion mode . In the
non-mass-insertion, write-shared
environment, every write-type operation
results in an I/0 operation so that :

• The bucket locked by the prerequisite
GET or FIND (for UPDATE and DELETE
operations) or by the PUT operation
can be released .

•

	

The new data is available to the
other tasks or streams .

Example : Your records are 114 bytes long and the bucket size is 2
blocks . During sequential write-type operations, deferred write could
cause I/0 operations per bucket to drop from 9 to 1 .

Deferred write offers little or no benefit to
operations or read-type operations of any mode .

7 .4 .2 Multiple Buffers

When you open an indexed file,
bucket-sized I/0 buffers in your
both buffers for record operations .
use more than the two buffers .

RMS-11 uses any extra buffers to keep, or cache, index root buckets
either of the following is true :

•

	

The file is shared only by tasks with read-only access .

•

	

The file is not shared .

RMS-11 caches the roots as it uses them. Therefore, only keys
specified or implicit in record operations have their index root
buckets cached :

RECORD AND FILE PROCESSING OF INDEXED FILES

random write-type

RMS-11 normally sets up two
task's address space . RMS-11 uses
However, you can direct RMS-11 to

if

• During normal PUT operations, RMS-11 typically accesses all
indexes in a file . You benefit from root caching only when
the number of extra buffers equals or exceeds the number of
indexes .

• During mass-insertion mode PUT operations, one extra buffer
provides some benefit, regardless of sharing and number of
indexes . If the file is not being shared, you benefit from
root caching only when you provide one more extra buffer than
indexes .

• During GET operations, RMS-11 accesses one index (associated
with the key of reference) . You benefit from root caching
when you provide an extra buffer for each different key you
reference .

• During UPDATE and DELETE operations, RMS-11 accesses the
alternate indexes where a SIDR must be inserted or deleted .
You benefit from root caching when you provide an extra buffer
for each alternate index affected .

While root caching saves one disk read per index accessed, you may be
able to employ the address space used for the extra buffers more
profitably to optimize RMS-11 overlays (see Chapter 8) .

7 .4 .3 Multiple Access Streams

RMS-11 allows each program to use multiple streams on an indexed file .

7 .4 .4 Sequentially Reading Write-Shared Files

If your task is trying to read sequentially by primary key an indexed
file that is write-shared, you can improve performance by specifying
write-access as well .

RECORD AND FILE PROCESSING OF INDEXED FILES

Example : Include in your BASIC-PLUS-2 OPEN statement the clauses
ACCESS MODIFY and ALLOW MODIFY .

When there is a possibility that your task will update a record
(established when it opened the file), RMS-11 locks the bucket when
your task gets a record and holds the bucket in the task's I/0 buffer .
If your task then gets records sequentially, RMS-11 finds them in
memory . When a record in a different bucket is specified, RMS-11
unlocks the previous bucket and repeats the procedure with the new
one .

However, if your task opens a file in a read-only and write-sharing
mode, RMS-11 does not retain the lock on the buckets read ; RMS-11
reaccesses the file for each subsequent GET operation, although it
does not start at the root and go down the index again .

7 .5 FILE AND DIRECTORY OPERATIONS

The following file and directory operations can be performed on
indexed files :

CLOSE
CREATE
DISPLAY
ERASE
EXTEND
OPEN
PARSE
RENAME
SEARCH

See your high-level language documentation for a description of the
support provided .

CHAPTER 8

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

Chapter 2 introduced four application design considerations . Two of
those design considerations, sharing and ease of design, were
discussed there . The others, speed and space, were the underlying
concepts for the file and task design discussions in Chapters 4
through 7 . They are also the prime considerations for the use of the
techniques discussed in this chapter .

You can optimize the speed of and the space used by your application
by :

•

	

Improving the structure of each task . This includes :

The method of combining your program with RMS-11 routines
(discussed in Section 8 .1)

Program development, including the sequence of operations
(discussed in Section 8 .2)

• Using all features of the environment in which the task runs .
Especially important is optimizing virtual-to-logical-block
mapping (discussed in Section 8 .3), but there are other
factors as well (discussed in Section 8 .4) .

8 .1 TASK BUILDING WITH RMS-11 ROUTINES

The software routines that perform the RMS-11 functions are distinct
from your programming language . These routines must be combined with
your program as follows :

1 . A compiler or the assembler converts your program to object
code . In the process, the RMS-11 routines that your program
uses are listed as unresolved global references .

2 . The task builder combines object modules into an executable
task . It resolves the RMS-11 global references with the
RMS-11 routines in either :

An object module library named RMSLIB .OLB

An RMS-11 resident library

You must decide whether RMS-11 is to be overlaid or
nonoverlaid when combined with your program to form a task .
This section should guide your choice .

3 . When the task builder is finished, your task is ready to run .

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

Figure 8-1 illustrates this sequence, from source program to object
code to executable task .

SOURCE
PROGRAM

COMPILER
or

ASSEMBLER

RMSRES.STB

RMSRES TSK

RMSRES.LIB

OBJECT
CODE

TASK
BUILDER

TASK

RMSLIB .OLB

Figure 8-1 : Source-to-Task Sequence

The RMS-11 routines that become part of your task can be overlaid or
nonoverlaid . Overlays are task segments that can run independently ;
therefore, they do not have to be available to the task at the same
time and can share address space . When a segment is needed, the
operating system makes it available, replacing (overlaying) a segment
no longer being used . By interchanging its parts, a task can run even
though it is too large to be executed as one piece .

Nonoverlaid RMS-11 : The task builder concatenates the RMS-11 routines
with your program, that is, without overlays, if you add the following
term to the command line :

,LB :RMSLIB/LB

The task builder extracts from RMSLIB .OLB only those routines required
by your program . These routines contribute from 8KB to 44KB to the
task size . Note that if other portions of your task are overlaid, you
can use nonoverlaid RMS-11 only if all references to RMS-11 take place
in the root segment of your task .

ZK-1198-82

2 . Memory-resident overlays

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

Overlaid RMS-11 : If the sum of your program, including the Run-Time
System, and RMS-11 code is greater than 64KB, there is not enough user
address space for your task to run without overlays .

NOTE

Although you can overlay segments of
your program, this section is devoted to
the best use of RMS-11 overlays .
Therefore, all references to "overlays"
mean "overlays in RMS-11 routines ."

Overlays can take one of two forms :

1 . Disk-resident overlays

The overlay segments are part of the task image, and they
remain on disk until they are needed . When a routine is
required, the operating system reads the overlay segment
containing that routine into the task's address space,
replacing a segment no longer needed . Section 8 .1 .1
discusses disk-resident overlays .

The overlay segments are part of a task image maintained
separately in memory . When a routine is needed, the
operating system maps the segment into the task's address
space with two of its active page registers (APRs) . Section
8 .1 .2 discusses memory-re isdent overlays .

Figure 8-2 illustrates nonoverlaid and overlaid (disk resident and
memory resident) task structure .

8 .1 .1 Disk-Resident Overlays

One disk-resident overlay can address others, which can address
others, and so on . This chain of calls defines the overlay structure
of a task . You describe this structure in a file with overlay
description language (ODL) statements (described in your task builder
manual) .

You must generate an ODL file for each overlaid task and supply it to
the task builder . However, you do not normally create ODL statements
for the RMS-11 portion of your task, but instead refer to the RMS-11
ODL files provided on your system . The RMS-11 installation process
provides overlay descriptions in two forms :

• A series of standard ODL files describing disk-resident RMS-11
overlay structures that require differing amounts of task
address space . The larger structures may run faster ; you
should use the best one for your application .

• A prototype ODL file you can modify, making overlay segments
larger if there Ts room in your address space, or eliminating
them if your program does not use those functions .

The installation process places these files on logical device LB : .

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

A. NONOVERLAID RMS-11

PROGRAM

BUFFERS

B. RMS-11 IN DISK-RESIDENT OVERLAYS

4

RMS-11

FROM
8K8
TO

44KB

C. RMS-11 IN MEMORY-RESIDENT OVERLAYS

BUFFERS

	

~~-- 10KB
(CAN BE LARGER WITH
FEWER OVERLAYS)

BUFFERS
UNSHARED RMS-11

Figure 8-2 : RMS-11 Tasks

ZK-1199-82

APR n+1

APR n
COMMON
SHARED

SHARED

OVERLAID
PROGRAM SEGMENT

OF
RMSRES

SEGMENTS

OF

RMSRES

F-
0

PROGRAM

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

Each high-level language has its method of generating the ODL file for
your program and referencing the RMS-11 ODL files . They normally
generate the following hierarchy of files :

•

	

program-name .CMD

You supply this indirect file to the task builder . The file
contains the appropriate command lines(s) for the task builder
and references a primary ODL file .

•

	

program-name .ODL

This primary ODL file determines the general structure of the
task and references secondary ODL files, including RMS-11 ODL
files, such as a standard file or your modification of the
prototype file .

See your high-level language documentation for more details .

If you are a MACRO-11 programmer, however, you must write your own ODL
file . Make sure the file contains the following terms, if you want to
use RMS-.11 disk-resident overlays :

• The factor names RMSROT and RMSALL in the ROOT statement .
RMSROT represents a set of concatenated modules that perform
functions common to multiple RMS-11 operations . You must
concatenate RMSROT with your program's root so that it is
memory-resident while the task runs .

•

	

An indirect reference to an RMS-11 ODL file, either a standard
file or your customized version of the prototype, in the form :

@file-name

This RMS-11 ODL file resolves the references to RMSROT and
RMSALL . For example :

.ROOT

	

USRROT-RMSROT-USRSEG,RMSALL
USRSEG :

	

FCTR

	

(USR1,USR2,USR3)
@LB :RMS11X

.END

8 .1 .1 .1 ODL Files - DIGITAL provides the following standard ODL
files . Do not change these files ; make a copy in your own directory
if you want to modify one for your own use .

RMS11S .ODL Structured to add about 6 .5KB to the task size, this file
provides only sequential and relative file organization
routines in 11 overlay segments .

RMS11S .ODL is designed to use minimal virtual address
space for the support provided . Because of this, file
operation performance and performance where GET, PUT,
and/or UPDATE operations on sequential files are
intermixed will be slower than when using other ODL
structures .

RMS11X .ODL Structured to add about 10KB to the task size, this file
provides sequential, relative, and indexed file
organization routines in 35 overlay segments .

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

RMS11X .ODL is designed to use minimal virtual address
space for the support provided . Because of this,
performance for record operations on indexed files will
usually be slower than when using the RMS12X or DAP11X ODL
structures .

RMS12X .ODL Structured to add about 12KB to the task size, this file
provides sequential, relative, and indexed file
organization routines in 13 overlay segments .

RMS12X .ODL is designed to offer a good compromise between
performance for record operations on indexed files and use
of task virtual address space .

DAP11X .ODL Structured to add about 14KB to the task size, this file
provides sequential, relative, indexed, and (on systems
with the required DECnet support) remote access facilities
in 16 overlay segments .

DAP11X .ODL is designed to use minimal virtual address
space for the support provided . For local access,
however, it uses the efficient structure contained in
RMS12X .ODL .

RMS12S .ODL Structured to add about 9KB to the task size, this file
provides only sequential and relative file organization
routines in 5 overlay segments .

RMS12S .ODL is designed to offer a good compromise between
performance and use of task virtual address space .

8 .1 .2 Memory-Resident Overlays

The RMS-11 resident libraries contain RMS-11 routines in re-entrant
executable code . Tasks that use RMS-11 can be built with global
references resolved in the resident library RMSRES, if this library is
present in your system .

While it is executing one of these tasks, the operating system uses
two of the task APRs to map references from the task to the resident
library . Therefore, any time the task requires an RMS-11 routine, the
operating system changes the APRs to point to the segments of the
resident library that contain the routines for the operation .

This mapping is called memory-resident overlaying . Because the
overlay segments are in memory, the operating system does not perform
an I/0 operation to provide the routines (as it does with
disk-resident overlays) .

8 .1 .2 .1 Task Building against the RMS-11 Resident Library - You build
tasks, directing the task builder to resolve global references with a
library, with one of the following sequences of commands :

TKB>command-string
TKB>/
ENTER OPTIONS :
TKB>LIBR=RMSRES :RO
TKB>//

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

or, to use RMSRES in a cooperating cluster of libraries that share the
same set of task APRs :

TKB>command-string
TKB>/
ENTER OPTIONS :
TKB>CLSTR=LIB1,LIB2,RMSRES/RO
TKB> //

NOTE

Not all libraries can be clustered with
RMSRES . See your high-level language or
other documentation for details .
Clustering RMSRES may decrease
performance for some applications .

See your task builder manual for a description of the command string .

You must also do one of the following :

•

	

Specify LB :RMSRLX .ODL as the RMS-11 secondary ODL file name in
your primary ODL file .

•

	

Merge the contents of RMSRLX .ODL into your own ODL file or
into your task builder command string .

If your system provides the required DECnet support and the RMS-11
library DAPRES, and you want to use the RMS-11 remote access
facilities, include the entry DAPRES in the task builder CLSTR option
(after the RMSRES entry), as described above, and use LB :DAPRLX .ODL
instead of RMSRLX .ODL .

If you are using resident libraries, a BPT trap will be generated and
RO will contain the value 175744 (the error code ER$LIB) . This can
happen if not all segments of the library are installed or if the
version numbers of one or more segments do not match the root sgement,
the RMSDAP code, or the task itself . See your system manager to
properly install the library .

8 .1 .2 .2 Using RMS-11 Operations from within Your Own Resident Library
- You can invoke RMS-11 operations from within a resident library if
you task build that library to include the module RORMSC from
RMSLIB .OLB and to exclude the following symbols using the task builder
GBLXCL option :

.SAVR1,$RMENT,$RMREM,$RMSEA,$RMERA,$RMOPE,
$RMPAR,$RMCRE,$RMREN,$RMDSP,$RMEXT,$RMCLO,
$RMCON,$RMDIS,$RMGET,$RMPUT,$RMUPD,$RMDEL,
$RMFIN,$RMTRU,$RMFRE,$RMREL,$RMFLU,$RMRWI,
$RMNXT,$RMSPA,$RMREA,$RMWRI,$RMWAI

Such a resident library may be clustered with the RMS-11 resident
libraries only if it contains absolutely no pure or impure data (such
as, RMS-11 structures and call parameter blocks, RMS-11 internal
structures and buffers, file specifications, key or record buffers,
and so on) that RMS-11 needs during its processing . If such a library
is a default member of the cluster and has a non-null root segment, it
must not contain an RMS-11 get-space routine in its root segment .

When you build tasks that use your library, you include RMS-11
resident library support as described in Section 8 .1 .2 .1 .

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

If instead you want to use RMS-11 disk overlays, you can do so as
described in Section 8 .1 .1, and must also include ORG$ statements in
the task's root segment appropriate to the needs of your library . To
use nonoverlaid RMS-11 routines, you must tailor and assemble your own
copy of the source module LB :RORMS1 .MAC, include it in the root of
your task, and build nonoverlaid RMS-11 as described in Section 8 .1 .

8 .1 .2 .3 Deciding Between Types of Overlays - You should normally use
the RMS-11 resident libraries whenever possible, for the following
reasons :

• Program execution speed will typically be faster than with
disk-resident overlaid RMS-11, and nearly as fast as with
nonoverlaid RMS-11 .

• Virtual address space required in your program will usually be
less than with nonoverlaid RMS-11, and may be less than with
disk-resident overlaid RMS-11, if you are able to cluster
RMS-11 with other libraries .

Your tasks will build significantly faster and take up
significantly less space on disk than with other RMS-11
configurations .

•

	

You will usually not need to rebuild your tasks when
enhancements or corrections to RMS-11 are issued .

• Because the RMS-11 resident libraries can be shared among
multiple programs, using them will often result in more
efficient use of the system's physical memory .

Reasons that you might not use RMS-11 resident libraries include :

• Your system manager has not included them in your system,
perhaps because very little system memory is available and
RMS-11 is seldom used .

•

	

The special virtual address requirements of your task do not
permit the use of RMS-11 resident libraries .

8 .2 PROGRAM DEVELOPMENT

You should consider performance while you are writing an application
program :

•

	

Your program's flow of operations can either cooperate with or
fight against the RMS-11 code structure .

•

	

Task-building consumes a significant portion of your machine
resources . Minimize that time when you can .

8 .2 .1 Flow of Operations Should Reflect RMS-11 Code Structure

The overlay process causes a significant portion of the I/0 performed
for a program with disk-resident overlays . Using RMSRES, your
operating system may be forced to perform I/0 paging operations to
access RMS-11 code segments if physical memory is in short supply .
You should structure the task to maximize the time each segment stays
in memory and thus minimize the number of I/0 operations . You do this
by placing similar RMS-11 operations together in your program .

	

This

8-8

process also makes you
program is performing :

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

aware of the nature of the operations your

•

	

File-related operations

File-related operations are generally required at the
beginning and end of processing . Therefore, they are fairly
easy to group .

Example : Open all files that the program uses and set up all
record access streams at the beginning of the program .

Example : Disconnect record access streams and close all the
files at one time, probably at the end of the program .

NOTE

Most high-level languages automatically perform
CONNECT and DISCONNECT operations during the execution
of file open and close statements .

•

	

Record operations

The primary overlay or paging burden of your task comes from
record operations . However, the nature of processing often
dictates the placement of record operations in your program .
Therefore, the type and sequence of these operations direct
your optimization of the ODL files (see Section 8 .1 .1) .

Example : If your task uses GET operations to read records
from a sequential file, and then uses PUT operations to write
records to an indexed file, you could reduce the number of
overlays required for those specific operations .

Example : If your task uses GET operations to read records
from an indexed file and UPDATE operations to modify the
records, you should optimize those operations .

Whenever possible, perform operations on only one type of file
organization at a time .

8 .2 .2 Task Builder Considerations

The task builder contructs a task and ensures that the task's
overlays, if any, work properly . To do this, the task builder must
know the task's overlay structure if you use disk-resident overlays :
you supply this information by means of an ODL file .

To reduce the time that the task builder needs to build your task, you
can reduce the number of overlays in the task (see Section 8 .1 .1) .
Each overlay adds time to task building because it requires that a
symbol table be built and then resolved .

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

NOTE

If you use memory-resident overlays
(resident library), you reduce task
builder overhead needed to process
overlay segments .

You can also reduce task building time by not requesting a map . If
you really need a map for debugging, specify a short one (the
default) .

8 .3 VIRTUAL-TO-LOGICAL-BLOCK MAPPING

When RMS-11 issues a data transfer request, it specifies a starting
virtual block number (VBN) and the size of the request in bytes to the
operating system . The system maps the VBN onto a logical block number
(LBN) that it must use to find the block on disk . To do this, the
system uses a set of retrieval pointers, called a window, to the file .
The operating system creates a window in its part memory by reading
the first set of pointers from disk when a task opens a file . These
pointers specify blocks on disk, and from the structure and content of
the pointers for a file, the system equates virtual blocks to logical
blocks .

8 .3 .1 Retrieval Pointers on Disk

The file directory contains the retrieval pointers for a file .

	

The
representation depends on your operating system .

The user file directory includes file retrieval blocks . Each block
contains seven retrieval pointers . A pointer consists of the LBN of
the first block in a file cluster . Since clusters are groups of
logically contiguous blocks and the number of blocks in a cluster
(cluster size) is a file attribute, the file control processor can
calculate which logical blocks reside in a cluster .

However, if the file is contiguous, the file control processor
bypasses the file retrieval blocks and uses :

•

	

The LBN of the first block in the file

•

	

The requested VBN as an index into the file

8 .3 .2 Retrieval Pointers in Memory

The operating system keeps one window in memory for each file . if
that window does not contain the retrieval pointer that covers the
virtual block requested by RMS-11, the system must bring more pointers
into memory in a process called window turning .

Window turning normally requires an I/0 operation . Since the RSTS/E
operating system stores windows in linked blocks, the system may
request several I/0 operations before the correct window is found .

Example : An evaluation of one application revealed that window
turning during record operations accounted for nearly 30 percent of
the I/0 operations .

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

8 .3 .3 Optimizing Window Turning

When you reduce window turning, you improve performance .

There are two ways to optimize the I/0 operations associated with
window turning :

•

	

Directory caching involves your system configuration .

•

	

Contiguity involves the file's attributes .

Use Directory Caching : RSTS/E has a directory caching feature (also
called FIP buffering) that you can select when you generate your
system . This feature uses the extended buffer pool (XBUF) to save
(cache) directory blocks in memory . If the system needs a certain
directory block, to do a window turn, for instance, and that block is
already cached, the block is retrieved from the cache without a disk
I/0 operation . See the RSTS/E System Manager's Guide for more
explanation of this feature .

NOTE

In RSTS/E Version 8 .0, directory caching
is related to the data caching feature
(discussed in Section 8 .4) .

Maximize Contiguity : Use one of the following methods to increase the
number of contiguous blocks in the file :

•

	

Make all blocks in the file contiguous, so there is no window
turning .

Cost : When RMS-11 detects that there is not enough room in a
file to complete an operation, it automatically requests the
file control processor to extend the file by the default
extension quantity . However, if the file is contiguous,
RSTS/E returns a privilege violation . RMS-11 aborts the
current record operation, passing to the program the error
code ER$PRV . All PUT and UPDATE operations that require an
extension of the file will fail after that .

At this point, the system manager or a privileged user can
force the file to become noncontiguous . The file will then
assume all the window turning problems of noncontiguous files
described previously .

Therefore, you should avoid extending (or trying to extend)
contiguous files by :

Completely allocating the file when it is created

Converting the file into a larger one before its space is
exhausted (use the RMSIFL or RMSCNV utility)

• Increase the file cluster size : the fewer the clusters, the
fewer the retrieval pointers, and the less the operating
system must turn windows to cover a virtual block .

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

Cost : Each allocation for the file must contain a whole
number of clusters . As cluster size increases, so does the
chance that enough contiguous blocks cannot be found to
allocate or extend the file .

•

	

Divide an indexed file into areas, segregating the upper index
levels into physically compact and contiguous sets of blocks .

8 .4 OTHER OPTIMIZATIONS

You can improve the environment in which your RMS-11 task runs by :

•

	

Data caching

•

	

Allocating more resources to the task

•

	

Improving disk usage

8 .4 .1 Data Caching

Data caching, an option during system generation, uses the extended
buffer pool (XBUF) to save file blocks in memory . This facility
should provide :

•

	

Noticeable performance improvement for applications that
sequentially access sequential and relative files .

• Some performance improvement for applications that randomly
access indexed files . A critical factor is the relationship
between bucket sizes and cache cluster sizes .

See the RSTS/E System Manager's Guide for more details .

8 .4 .2 Allocating More Resources to the Task

You can improve the performance of a task by giving it more of the
system to use, more CPU time, more memory, and so on . You take those
resources away from other jobs, unless the system is not used to
capacity .

The techniques for allocating system resources vary by operating
system . Each of the following techniques affects system throughput by
changing the number of I/0 operations your task requires to complete
its work .

•

	

Swapping

•

	

Priorities

8 .4 .3 Disk Usage

You should consider the devices that store your data and task images
when you are optimizing the performance of an application . Efforts at
improving disk usage often result in significant increases in
performance .

TASK BUILDING AND COMMON OPTIMIZATION TECHNIQUES

•

	

Use the fastest disk drives available because the physical I/0
operation causes the most significant portion of I/0 time .

•

	

Minimize I/0 request overhead :

Reduce I/0 request queues, using

	

private

	

packs

	

if
necessary .

Use a disk that has exclusive use of its disk controller .
If other disks must share the controller, a disk driver
that supports "overlapped seeks" is desirable .

• If your system has multiple disk drives which are not heavily
used by other people, spread an application's files, including
disk-resident overlaid tasks, across the devices . Thus, while
a job runs, one disk device does not access more than one
file . You can also put data files on a disk device other than
the one containing a disk-resident overlaid task image .

If you are using the resident library, and not overlays, you
do not consider the task file, unless your code or your
language run-time facilities are overlaid .

APPENDIX A

FILE SPECIFICATION PARSING

A .1 STANDARD FILE SPECIFICATION SYNTAX

A full file specification consists of the following elements, in the
order listed :

device
directory
name
type

For compatibility with other systems, you can include a version
element at the end of the file specification, but such an element will
be ignored .

RMS-11 uses the RSTS/E File String Scan (.FSS) system directive to
process file specifications . The RSTS/E System User's Guide describes
the syntax and processing of file specificationn elements in detail .
In situations where wildcarding is permitted, you can use the asterisk
(*) and question mark (?) wildcard characters as noted, and can also
use the asterisk wildcard in the project and/or programmer subelements
of the directory specification .

NOTE

When you include any wildcard (* or ?)
in the name or type fields for an
operation on a magnetic tape device,
explicit or implicit SEARCH operations
will return all files on the tape (as if
* * had been specified) . The directory
field is always irrelevant for ANSI
magnetic tape, and will be ignored .

RMS-11 will process switches included in file specifications when the
switch does not conflict with RMS-11's use of the RSTS/E file system
or with information explicitly provided via the normal RMS-11
interface . These switches are :

• /FILESIZE -- If the Allocation Quantity (ALQ) specified is 0,
RMS-11 will use a value you provide in the /FILESIZE switch
during a CREATE operation .

• /CLUSTERSIZE -- If the Clustersize (RTV) specified is 0,
RMS-11 will use a value you provide in the /CLUSTERSIZE switch
during a CREATE operation .

• /POSITION -- If the Allocation Starting Point (LOC) is not
specified or is 0, RMS-11 will use a value you provide in the
/POSITION switch during a CREATE operation .

FILE SPECIFICATION PARSING

• /MODE -- RMS-11 will use values you provide in the /MODE
switch during OPEN and CREATE operations, with the following
exceptions :

For disk devices, RMS-11 will suppress MODE values of 1
(Update), 2 (Append), 4 (Guarded Update), 128 (Do Not
Supersede), and 8192 (Read-Only) . These values conflict
with RMS-11's use of the RSTS/E file system .

For relative and indexed files, RMS-11 will suppress a MODE
value of 4096 (Read-Regardless), because this value would
bypass interlocks upon which RMS-11 depends for predictable
operation . MODE 4096 is also suppressed for a
write-accessed sequential file, because this combination is
inconsistent .

For magnetic tape devices, RMS-11 will suppress a MODE
value of 16384 (DOS label handling), because RMS-11
processes only ANSI labeled magnetic tapes .

• /PROTECT -- If the Protection (PRO) is not specified or is
specified as 65535, RMS-11 will use a value you provide in the
/PROTECT switch during a CREATE operation . RMS-11 will also
use a value you provide in the /PROTECT switch during a RENAME
operation (the normal RMS-11 protection specification is not
input to RENAME) .

A .2 GENERATION OF A FULL FILE SPECIFICATION

When you specify the target file for an RMS-11 operation, RMS-11
generates a full file specification in the following manner :

1 . RMS-11 parses the default name string to determine which
elements are present . You need not provide a full file
specification in the default name string ; however, any
elements present must be syntactically correct and in the
proper order .

2 . RMS-11 parses the file name string to determine which
elements are present . You need not provide a full file
specification in the file name string ; however, any elements
present must be syntactically correct and in the proper
order .

3 . If the file name string does not provide a full file
specification, the default name string contributes missing
elements ; if any elements are absent in the result of this
merge, RMS-11 provides default values for them as follows :

Device -- defaulted to the device to which the specified
logical channel is currently assigned ; if the specified
logical channel is not assigned to any device, defaulted
to SY :

- Directory -- defaulted to the current directory if any
name or type specification is present ; otherwise left
null

Name -- you must provide a name if a type specification is
present

Type -- defaulted to null

FILE SPECIFICATION PARSING

4 . If you have asked RMS-11 to use information from the NAM
block, RMS-11 uses this information to override elements in
the full file specification obtained above . This mechanism
is described in Chapter 3 of the RSTS/E RMS-11 Macro
Programmer's Guide .

APPENDIX B

REMOTE FILE AND RECORD ACCESS VIA DECNET

If suitable DECnet facilities exist on your system and on the target
system, RMS-11 will allow file and record access to files residing on
other network nodes . Note, however, that these nodes must include an
RMS-11-based file access listener (FAL) ; see Section B .2 .

For most purposes, remote access is indistinguishable from local
access,, although performance may not be equivalent . The following
general limitations apply :

•

	

RMS-11 generally does not support remote functions (for
example, to a VAX-11 node) that are not supported locally .

• Certain RMS-11 functions (wildcard support ; the PARSE,
SEARCH, and RENAME operations ; and transmission of device,
directory, and file identifiers) are not supported by the data
access protocol (DAP), and thus cannot be executed remotely .

• Certain FALs do not support the full set of RMS-11 functions
expressible via DAP, and thus further limit remote access .
For example, the current RSTS/E RMS-11 FAL does not support
record access to indexed files .

• High-level languages may not allow expression of the file
specification required to establish contact with a remote
node .

To operate upon a remote file, you must include the RMS-11 remote
access code when you build your task, and your program must include a
node specification for the remote file . To include the remote access
code, you must link your program with the RMSDAP modules either by
using the disk-resident overlaid version (see Section 8 .1 .1) or by
referencing the DAPRES resident library (see Section 8 .1 .2) .

B .1 REMOTE NODE SPECIFICATION

You must include a remote note specification at the beginning of the
file name string or the default name string you provide to an OPEN,
CREATE, or ERASE operation . In addition, your file name string and
default name string must conform to the DIGITAL Command Language (DCL)
file specification syntax rules, and the file specification that
results from merging the file name string and default name string must
conform to the file specification conventions of the target node as
well .

REMOTE FILE AND RECORD ACCESS VIA DECNET

In general, a full remote file specification consists of the following
elements, in the order (and with the delimiters) given :

node : :device :(directory]name .type ;version

Elements beyond the node element must conform to the conventions of
the target node, as well as to DCL syntax . If the file name string
does not provide all six elements, RMS-11 obtains missing elements
from the default name string . Elements that are still missing after
this merge are defaulted according to the conventions of the target
system .

An alternative remote file specification format is :

node : :"quotedstring"

where quotedstring is any file specification that conforms to target
system conventions . For example, this provides a means of passing
certain RSTS/E logical names ($, %, and so on) that do not conform to
DCL conventions .

If the quoted string itself contains any quotation mark (")
characters, you must insert an additional quotation mark character
before each ; these additional quotation mark characters will be
stripped from the string when the string is passed to the target
system . Any elements not present in the quoted string will be
defaulted according to target system conventions .

RMS-11 treats specifications of this format as complete, indivisible
specifications . If one occurs in the file name string, no elements
from the default name string will be used ; if one occurs in the
default name string, it will be ignored unless the file name string is
empty .

The node element takes the form :

node"user password" : :

where node is the destination node name and "user password" is an
optional access control string containing login information (user
identifier and password, separated by a space character) that meets
target system login conventions .

If the login information is provided, the device and directory
defaults and access privileges of the remote account are acquired .
Otherwise, the device and directory defaults and access privileges of
the default DECnet account on the target system are acquired .

B .2 REMOTE ACCESS ENVIRONMENTS

RMS-11-based FALs are currently available on VAX/VMS, RSTS/E, and
RSX-11M/M-PLUS systems .

The version of DAP that you use must be at least Version 5 .6 or
greater . This means that you must have at least DECnet/E Version 2 .0,
DECnet for RSX-11M Version 3 .1, DECnet for RSX-11M-PLUS Version 1 .1,
or DECnet/VAX Version 2 .0 .

B .3 REMOTE ACCESS POOL CONSIDERATIONS

Remote block access, unlike local block access, requires an internal
I/0 buffer for record operations, as well as for the initial OPEN or
CREATE operation . This buffer is reserved to the file while the file
is open, and must be 548 bytes in size .

Similarly, for sequential files with a specified maximum record size
(or actual largest record) greater than 476 bytes, an internal I/0
buffer 36 bytes larger than this maximum is required while the file is
open . For record-accessed relative and indexed files, an internal I/0
buffer equal to the bucket size is required while the file is open .
Other pool requirements are equal to or less than those for local
access .

REMOTE FILE AND RECORD ACCESS VIA DECNET

sequential, 1-7 to 1-8
to indexed files, 5-17

Access control, 1-9
Access declarations, 2-6

indexed files, 7-1 to 7-2
read-only, 2-6
read/write, 2-6
relative files, 4-6 to 4-7
sequential files, 3-6

Access modes
block, 1-20, 3-6
FIND operation

indexed files, 7-3
relative files, 4-8
sequential files, 3-7

GET operation
indexed files, 7-5
relative files, 4-10
sequential files, 3-9

PUT operation
indexed files, 7-6
relative files, 4-12
sequential files, 3-11

random
by key, 1-12
by RFA, 1-12
by VBN, 1-20

record, 1-12
See also Random access
See also Sequential access
sequential

blocks, 1-20
records, 1-12

Access sharing
See Shared access

Access streams, 1-15
multiple, 2-17

and shared access,
2-9 to 2-10

indexed files, 7-9
relative files, 4-16
sequential files, 3-15

Active page registers
See APRs

Address
record, 1-9
See also RFA

Allocation, 1-19

INDEX

See Indexes
Alternate keys, 1-7, 1-11
Applications, 1-13

optimization, 2-11
See also Designing applications

APRs, 8-3
and memory-resident libraries,

8-6
Areas, 6-10

contiguity, 6-13
definition, 5-2
multiarea indexed files, 6-12
single-area indexed files,

6-11
Attributes, 1-2, 1-18

block spanning, 1-18
bucket size, 1-18
contiguity, 1-19
file allocation, 1-19
file organization, 1-18
file specification, 1-18
keys, 1-19
medium, 1-18
MRN, 1-18
placement control, 1-19
protection, 1-18
record format, 1-18
record size, 1-18
record-output handling, 1-19

Backing up files, 1-10, 1-12
Binary keys

2-byte unsigned, 6-5
4-byte unsigned, 6-5

Block access, 1-20, 3-6
remote, B-3
see also Shared access

Block spanning, 1-18, 3-1
variable length records, 2-16

Blocks, 1-16
See also Control blocks
spanning, 1-16, 3-1

Bucket fill size
populating indexed files, 6-29

Bucket format
indexed files, 5-2

Bucket locking
and shared access, 2-8

/CLUSTERSIZE, A-1
/MODE, A-2
/POSITION, A-1
/PROTECT, A-2

indexed files, 6-23
DEQ, 6-26
initial, 6-23

relative files, 4-3
DEQ, 4-4

Access, 1-7
block, 1-20,
random, 1-7,

to indexed

3-6
1-9
files, 5-7, 5-10

initial, 4-3
sequential files, 3-4
cluster size, 3-4
DEQ, 3-4

See also Access modes
See also Shared access

initial, 3-4
Alternate indexes

primary index, 6-16
indexed files, 6-15
prologue, 5-2

relative files, 4-3
Bucket splitting, 5-11

RRV, 5-12
Buckets

continuation, 5-5
high-key value, 5-5 to 5-6
I/0 units, 1-16
index, 5-6
relative files, 4-1
size, 1-18

Buffers
cache, 4-15
I/0, 1-14

size, 2-5
multiple, 2-17, 3-14, 4-15
user, 1-14

Building tasks, 1-13
See also Task builder

Cache, 4-15
data caching, 8-12
directory caching, 8-11
indexed files, 7-9

Cells
relative files, 4-1
sequential files, 3-2

Changeable keys, 6-10
CLOSE operation, 1-18
Cluster size

default
sequential files, 3-5

sequential files, 3-4
Clustered libraries, 8-7 to 8-8
Clusters, 6-14, 8-10

and contiguity, 8-12
and data caching, 8-12
and indexed file prologue, 5-2
and relative file prologue,

4-1
Compatibility, A-1
Compilers

See High-level languages
Compressing deleted records,

5-10, 5-17, 6-7, 6-9
CONNECT operation, 1-15

indexed files, 7-2
relative files, 4-8
sequential files, 3-7

Context, 1-9, 1-15
CONNECT operation, 3-7, 4-8,

7-2
current record, 1-9, 1-15
DELETE operation, 4-8, 7-3
DISCONNECT operation, 3-7, 4-8
FIND operation, 3-8, 4-9, 7-4

REWIND operation, 3-12, 4-13,
7-6

TRUNCATE operation, 3-12
UPDATE operation, 3-13, 4-13,

7-6
Contiguity, 1-19, 8-10 to 8-11

indexed files, 6-13
relative files, 4-5
sequential files, 3-5

Continuation buckets, 5-5
Control blocks, 1-14, 2-2
Converting files, 1-10, 1-12
CREATE operation, 1-17 to 1-18

and shared access, 2-6
remote access, B-1, B-3

Creating files, 1-10, 1-12
Current record

See Context
Cylinder

See Placement control

DAP (data access protocol)
See DECnet

DAPRES
remote access code, B-1
remote access support, 8-7

Data access protocol (DAP)
See DECnet

Data caching, 8-12
Data storage
and file organization, 2-5

Data types
keys, 6-3

2-byte unsigned binary, 6-5
2-byte-signed integer, 6-4
4-byte signed integer, 6-4
4-byte unsigned binary, 6-5
and segmenting, 6-7
packed decimal, 6-6
string, 6-3

DCL, B-1
DECnet, 8-6 to 8-7, B-1
and CREATE operations, B-1,

B-3
and ERASE operations, B-1
and file organization, B-3
and OPEN operations, B-1, B-3
and PARSE operations, B-1
and RENAME operations, B-1
and SEARCH operations, B-1
block access, B-3
DAPRES resident library, B-1
disk-resident overlaid code,

B-1
FALs
on different systems, B-2

file specification, B-1
defaults, B-2

INDEX

FIND
GET

operation,
operation,

2-8
2-8

FLUSH operation, 3-9, 4-10,
7-5

Bucket size GET operation, 3-10, 4-11, 7-5
calculation

alternate indexes, 6-20
next
PUT

record, 1-9, 1-15
operation, 3-11, 4-12, 7-6

node, B-2
quoted string, B-2

I/0 buffers, B-3
indexed files, B-3
relative files, B-3
sequential files, B-3

limitations on functions, B-1
Default extension quantity

See DEQ
Defaults, 2-2

compilers, 2-2
DEQ, 4-4
file specification, A-2, B-2
operating system, 2-2

cluster size, 3-5

ease of design, 2-10
shared access, 2-5
space, 2-4, 8-1
speed, 2-3, 8-1

when to design, 2-2
Designing files, 1-10, 1-12

indexed, 6-1
relative, 4-2
See also Indexed file

organization
See also Relative file

organization
See also Sequential file

organization
sequential, 3-3

Device cluster number, 6-14
Devices

and record formats, 2-15
default, A-2
disk, 1-12
file specification, A-1

INDEX

magnetic tape, 1-12
See also Medium

DIGITAL Command Language
See DCL

Directory
default, A-2
file specification, A-1

Directory caching, 8-11
Directory operations, 1-17

See also Operations
DISCONNECT operation, 1-15

indexed files, 7-3
relative files, 4-8
sequential files, 3-7

Disk

FIND operation, 3-8
GET operation, 3-10

ER$LIB
and resident libraries, 8-7

ER$MRN
FIND operation, 4-9
GET operation, 4-11

ER$NEF
PUT operation, 3-11

ER$PRV
and contiguity, 8-11

ER$RAC
PUT operation, 3-10

ER$REX
PUT operation, 4-12

ER$RFA
FIND operation, 3-8, 7-3
GET operation, 3-10, 7-5

ER$RFM
UPDATE operation, 3-13

ER$RLK

RMS-11, 2-2
Deferred write, 2-17, 6-28

and mass insertion, 6-30

See Medium
Disk-resident overlays, 1-13,

8-3, 8-8
indexed files, 7-8
relative files, 4-15
sequential files, 3-14

DELETE operation, 1-15
and key position, 6-7
and shared access, 2-6
compressing records, 5-10,

5-17, 6-7, 6-9

remote access code, B-1
DISPLAY operation, 1-18
Displaying files, 1-10, 1-12
Duplicate keys, 6-8

End-of-block indicators
sequential files, 3-2

End-of-file
deferred write, 7-8
duplicate keys, 6-9
indexed files, 5-16, 7-3,
optimizing, 6-7
relative files, 4-8

Depth

7-9

sequential files, 3-2
ER$CUR
DELETE operation, 4-8
TRUNCATE operation, 3-12
UPDATE operation, 3-12, 4-13,

7-6
indexed files, 5-4

DEQ
default

indexed files, 6-27
relative files, 4-4

indexed files, 6-26
relative files, 4-4
sequential files, 3-4

Designing applications, 2-1
considerations, 2-3

ER$DEL
FIND operation, 4-9, 7-3
GET operation, 4-11, 7-5

ER$EOF
FIND operation, 3-8, 4-9, 7-3
GET operation, 3-10, 4-11, 7-5
PUT operation, 3-11

ER$IOP
UPDATE operation, 3-12

ER$ KEY

and shared access, 2-10
ER$RNF

FIND operation, 4-9, 7-3
GET operation, 4-11, 7-5

ER$RSZ
UPDATE operation, 3-13

ERASE operation, 1-18
remote access, B-1

EXTEND operation, 1-18
and shared access, 2-6

Extended buffer pool

indexed, 1-5, 1-11
relative, 1-4, 1-11
See also Indexed file

organization
See also Relative file

organization

INDEX

See also Sequential file
organization

selection, 2-11
sequential, 1-3, 1-11

File sharing
See Shared access

File specification,
1-18 to 1-19, A-1
default name string, A-2
defaults, A-2

device, A-2
directory, A-2
node, B-2
type, A-2

device, A-1
directory, A-1
file name string, A-2
NAM block, A-3
name, A-1
node, B-2
quoted string, B-2
remote, B-1
switches, A-1

/CLUSTERSIZE, A-1
/MODE, A-2
/POSITION, A-1
/PROTECT, A-2

type, A-1
version, A-1

creating, 1-10, 1-12
designing, 1-10, 1-12
displaying, 1-10, 1-12
loading, 1-10, 1-12
maintaining, 1-10, 1-12
processing, 1-16
restoring, 1-10, 1-12
See also Indexed file

organization
See also Relative file

organization
See also Sequential file

organization
FIND operation, 1-15

and bucket locking, 2-8
and shared access, 2-6, 2-10
and stream records, 2-16
deferred write, 7-8
indexed files, 7-3

key access, 7-3
random by key, 5-13
RFA access, 7-3
sequential access, 5-17, 7-3

key access, 1-16

Error codes, 3-7, 4-7, 7-2
ER$CUR, 3-12, 4-8, 4-13, 7-6
ER$DEL, 4-9, 4-11, 7-3, 7-5
ER$EOF, 3-8, 3-10 to 3-11,

4-9, 4-11, 7-3, 7-5
ER$IOP, 3-12
ER$KEY, 3-8, 3-10
ER$LIB, 8-7
ER$MRN, 4-9, 4-11
ER$NEF, 3-11
ER$PRV, 8-11
ER$RAC, 3-10
ER$REX, 4-12
ER$RFA, 3-8, 3-10, 7-3, 7-5
ER$RFM, 3-13
ER$RLK, 2-10
ER$RNF, 4-9, 4-11, 7-3, 7-5
ER$RSZ, 3-13

See
File

See
File

See
File

FAL
allocation
Allocation
control blocks
FCBs

control processor, 1-16
retrieval pointers, 8-10

File name
file specification, A-1

File
See

File

operations, 1-17
also Operations

organizations, 1-11, 1-18
and
and
and
and
and

/MODE switch, A-2
data storage, 2-5
file design, 2-11
optimizations, 8-9
record formats, 1-19, 2-15

and standard ODL files, 8-5

See XBUF wildcards, A-1

FALs, B-1
RSTS/E, B-1 to B-2
RSX-11M/M-PLUS, B-2

File structure
See structure

File type, A-1
default, A-2

VAX/VMS, B-2
FCS-11

sequential file compatibility,
3-2

File version, A-i

1-12

Files, 1-2
attributes, 1-2
backing up, 1-10,

File access listener converting, 1-10, 1-12

key access, 3-7
RFA access, 3-7
sequential access, 3-7

Fixed-length record format,
1-11, 2-15

FLUSH operation, 1-15
indexed files, 7-5
relative files, 4-10
sequential files, 3-9

Formats
See Record formats

Four-byte signed integer keys,
6-4

Four-byte unsigned binary keys,
6-5

FREE operation, 1-15
and shared access, 2-10

INDEX

3-15, 4-16, 7-10
file operations, 8-9
initial allocation, 3-4, 4-4,

6-26
key characteristics, 6-8
keys, 6-7
locate mode, 3-14, 4-14
MRN, 4-6
placement control, 6-15
populating files, 6-27
restrictions, 1-13, 1-15, 2-1

I/0
and performance, 2-3
and record operations, 5-17
paging operations, 8-9
window turning, 8-10

GET operation, 1-15
I/0 buffers, 1-14
application design, 2-5

and
and
and

bucket
ODLs,
shared

locking, 2-8

2-10

remote access, B-3
indexed files, B-3
relative files, B-3

8-5
access, 2-6,

and stream records, sequential files, B-3
I/0 techniques, 2-172-16 to 2-17

deferred write, 7-8
indexed files, 7-5, 7-9

deferred write, 2-17
indexed files, 7-8

key access, 7-5

5-17, 7-5

deferred write, 7-8
multiple access streams, 7-9
multiple buffers, 7-9
sequential reads, 7-9

random by key, 5-13
RFA access, 7-5
sequential access,

key access, 1-16
locate mode, 3-14

mass insertion, 2-18
MBC, 2-17

indexed files, 7-8
relative files, 4-14

multiple access streams, 2-17
multiple buffers, 2-17
relative files, 4-14move mode

indexed files, 7-7
relative files, 4-13
sequential files, 3-14

deferred write, 4-15
multiple access streams,

4-16
relative files, 4-10

4-10

multiple buffers, 4-15
sequential files, 3-14
deferred write, 3-14
MBC, 3-15

key access, 4-10
RFA access, 4-10
sequential access,

relative files, 4-8 and shared access,
bucket fill size,
bucket size, 4-3,
cluster size, 3-5

2-7
6-29
6-22

key access,
RFA access,
sequential

4-8
4-8

access, 4-8
RFA access, 1-16 defaults, 2-2
sequential access, 1-16 DEQ, 4-4, 6-27
sequential files, 3-7 file and directory operations,

RFA access, 1-16
sequential access,
sequential files,

multiple access streams,
3-15

multiple buffers, 3-14
1-16

3-9
key access,
RFA access,
sequential

3-9
3-9

access, 3-9

I/0 units, 1-14
blocks, 1-16
buckets, 1-16

Incremental reorganization, 5-13
High-key

High-level
buckets,

value
5-5 to
languages

5-6
Index buckets, 5-6
Index records, 5-6
Indexed file organization, 1-5
access declarations,access streams, 1-15

and
and

file design, 1-19
ODL files, 8-5

7-1 to 7-2
allocation, 6-23

and remote access, B-1 DEQ, 6-26

INDEX

initial, calculation, 6-23
alternate keys, 1-11
and remote access, B-3
areas, 5-2, 6-10
multiarea files, 6-12
single-area files, 6-11

bucket fill size, 6-29
bucket format, 5-2
bucket size, 6-15

calculation, alternate indexes,
6-20

calculation, primary index,
6-16

prologue, 5-2
bucket splitting, 5-11
clusters

prologue, 5-2
compressing deleted records,

5-10, 5-17, 6-7, 6-9
CONNECT operation, 7-2
contiguity, 6-13
data records, 5-2
deferred write, 6-28, 7-8
DELETE operation, 5-16, 6-7,

7-3, 7-8 to 7-9
duplicate keys, 6-9

depth, 5-4
design, 5-1, 6-1
allocation, 6-23
areas, 6-10
bucket size, 6-15
keys, 6-2
placement control, 6-13
populating files, 6-27
record format, 6-1
record size, 6-1

directory operations, 7-10
DISCONNECT operation, 7-3
file operations, 7-10
FIND operation, 7-3, 7-8

keys, 1-5, 6-2
changeable, 6-10
characteristics, 6-8
data types, 6-3
duplicates, 6-8
null, 6-10
number of, 6-2
position, 6-7
size, 6-6

level 0
alternate indexes, 5-6
primary indexes, 5-5

locate mode, 7-7
mass insertion, 6-28, 6-30
move mode, 7-7
multiple access streams, 7-9
multiple buffers, 7-9
placement control, 6-13
populating files, 6-27

primary key order, 6-27
random insertions, 6-28

primary keys, 1-11
prologue, 5-2
PUT operation, 6-7, 7-6 to 7-9

duplicate keys, 6-9
mass insertion, 7-9
random by key, 5-10

random access, 5-7, 6-12
record operations, 7-2

random access, 5-10
sequential access, 5-17

record transfer modes, 7-7
locate mode, 7-7
move mode, 7-7

REWIND operation, 7-6
root, 1-7, 5-4
search times, 5-8
See also Indexes
sequential reads, 7-9
shared access, 7-1

block access, 7-2
record access, 7-1

sharing declarations,
7-1 to 7-2

stream operations, 7-2
structure

conceptual, 5-4
physical, 5-2

UPDATE operation, 5-14,

6-16
level 0, 5-5

root, 5-4
Initial allocation

indexed files, 6-23
relative files, 4-3
sequential files, 3-4

Integer keys
2-byte signed, 6-4

random by key, 5-13 7-6 to 7-9
changeable keys, 6-10
duplicate keys, 6-9

Indexes, 5-2

sequential access, 5-17
FLUSH operation, 7-5
GET operation, 7-5, 7-7 to 7-9

random by key, 5-13
sequential access, 5-17

I/0 techniques, 7-8

alternate
bucket size calculation,

6-20
incremental reorganization, level 0, 5-6

SIDRs, 5-65-13
index
index
index

buckets, 5-6
levels, 5-4,
records, 5-2,

5-6
5-6

depth, 5-4
levels, 5-4, 5-6
data, 5-4

primary
bucket size calculation,

indexes
data level, 5-4

4-byte signed, 6-4

Key access
to indexed files, 5-7, 5-10
to relative files, 4-1
to sequential files, 3-2

Keys, 1-5, 1-19, 6-2
alternate, 1-7, 1-11
characteristics, 6-8

changeable, 6-10
duplicates, 6-8
null, 6-10

data types, 6-3
2-byte signed integer, 6-4
2-byte unsigned binary, 6-5
4-byte signed integer, 6-4
4-byte unsigned binary, 6-5
packed decimal, 6-6
string, 6-3

number of, 6-2
position, 6-7
primary, 1-7, 1-11
segmented, 6-7
size, 6-6

LBN, 8-10
See also Placement control

Levels
indexed files, 5-4
data, 5-4
level 0, alternate indexes,

5-6
level 0, primary indexes,

1-10, 1-12
displaying files, 1-10, 1-12
loading files, 1-10, 1-12
restoring files, 1-10, 1-12

Mass insertion, 2-18, 6-28,

INDEX

7-8 to 7-9
populating indexed files, 6-30

Match criteria
random access, 5-13

Maximum record number
See MRN

MBC, 2-17
sequential files, 3-15

Medium
and I/0 time, 2-3
and record formats and

file organizations, 1-19
and variable-length format,

2-15
disk, 1-18

and /MODE switch, A-2
retrieval pointers, 8-10
usage, 8-12

file specification, A-1
magtape, 1-18

and /MODE switch, A-2
placement control, 6-13
sequential files, 3-3

Memory-resident overlays, 1-13
8-3, 8-6

Modes
See Access modes
See Record transfer modes

Move mode
indexed files, 7-7
relative files, 4-13
sequential files, 3-14

MRN, 1-18
relative files, 4-4 to 4-5

Multiblock count
See MBC

Multiple access streams
and shared access, 2-9 to 2-10
I/0 techniques, 2-17
indexed files, 7-9
relative files, 4-16
sequential files, 3-15

Multiple buffers, 2-17
indexed files, 7-9
relative files, 4-15
sequential files, 3-14

NAM block
file specification, A-3

Name
file, A-1

Next record
See Context

No sharing
sharing declaration, 2-7

Node
remote file specification, B-2

Nonoverlaid routines, 1-13,
8-2, 8-8

Null keys, 6-10

Object code
assembling, 1-13, 8-1

5-5
Libraries

clustered, 8-7 to 8-8
object module, 8-1
resident, 8-1, 8-7

RMSRES, 8-6, 8-8
Loading files, 1-10, 1-12
Locate mode

indexed files, 7-7
relative files, 4-13
sequential files, 3-14

Logical block number
See LBN

MACRO-11, 1-13
and ODL files, 8-5
key segments, 6-7
placement control, 6-15
populating files, 6-28

Magtape
See Medium

Maintaining files, 1-10, 1-12
backing up files, 1-10, 1-12
converting files, 1-10, 1-12
designing and creating files,

RSTS/E, B-2

sequential files, 3-7
CREATE, 1-17 to 1-18

and shared access, 2-6
remote access, B-1, B-3

DELETE, 1-15
and key position, 6-7
and shared access, 2-6
deferred write, 7-8
duplicate keys, 6-9
indexed files, 5-16, 7-3
relative files, 4-8

directory, 1-17
indexed files, 7-10
relative files, 4-16
sequential files, 3-15

DISCONNECT, 1-15
indexed files, 7-3
relative files, 4-8
sequential files, 3-7

DISPLAY, 1-18
ERASE, 1-18

remote access, B-1
EXTEND, 1-18

and shared access, 2-6
file, 1-17

indexed files, 7-10
optimizations, 8-9
relative files, 4-16
sequential files, 3-15

FIND, 1-15

INDEX

7-5

OPEN, 1-17
remote access, B-l, B-3

optimizations, 8-8
PARSE, 1-17

deferred write, 7-8
duplicate keys, 6-9
indexed files, 5-10, 5-17,

7-6, 7-9
initial allocation, 4-4
key access, 1-16
locate mode, 3-14
mass insertion, 7-9
move mode, 3-14, 4-13, 7-7
relative files, 4-12
sequential access, 1-16
sequential files, 3-10

record, 1-10, 1-15
and I/0 costs, 5-17
and indexed files, 5-10,

5-17
indexed files, 7-2
optimizations, 8-9
relative files, 4-7
sequential files, 3-7

compiling, 1-13, 8-1
Object module libraries, 8-1
ODL, 8-3
ODL files

DAPRLX, 8-7

and
and
and

bucket
shared
stream

locking,
access,
records,

2-8
2-6, 2-10
2-16

deferred write, 7-8
indexed files, 5-13, 5-17,

prototype, 8-3
RMSRLX, 8-7
standard, 8-3, 8-5

DAP11X, 8-6
RMS11S, 8-5
RMS11X, 8-5
RMS12X, 8-6

7-3
key access, 1-16
relative files, 4-8

1-16
RFA access,
sequential
sequential

1-16
access,
files, 3-7

FLUSH, 1-15
OPEN operation, 1-17

remote access, B-1, B-3
Operating systems, 1-12

allocating system resources,

indexed files, 7-5
relative files, 4-10
sequential files, 3-9

FREE, 1-15
8-12 and shared access, 2-10

block locking, 3-6 GET, 1-15
locking, 2-8compatibility, 3-4

defaults, 2-2
and
and

bucket
ODLs, 8-5

cluster size, 3-5 and shared access, 2-6, 2-10
FALs, B-2
protection codes

and stream records,
2-16 to 2-17

and shared access, 2-5
remote access

deferred write, 7-8
indexed files, 5-13, 5-17,

remote access, B-1
PUT, 1-15

and key position, 6-7
and ODLs, 8-5
and shared access, 2-6
and stream records, 2-17

RSX-11M/M-PLUS, B-2
VAX/VMS, B-1 to B-2

Operations
CLOSE, 1-18

key access, 1-16
locate mode, 3-14, 4-14, 7-8
move mode, 3-14, 4-13,
relative files, 4-10

7-7

CONNECT, 1-15 RFA access, 1-16
indexed files, 7-2 sequential access, 1-16
relative files, 4-8 sequential files, 3-9

RENAME, 1-17
remote access, B-1

REWIND, 1-15
indexed files, 7-6
relative files, 4-13
sequential files, 3-12

SEARCH, 1-17
remote access, B-1

stream, 1-15
indexed files, 7-2
relative files, 4-7
sequential files, 3-7

TRUNCATE, 1-15
and shared access, 2-6
sequential files, 3-12

UPDATE, 1-15
and ODLs, 8-5
and record size, 2-16
and shared access, 2-6, 2-10
and stream records, 2-17
changeable keys, 6-10
deferred write, 7-8
duplicate keys, 6-9
indexed files, 5-14, 7-6
move mode, 3-14,

and shared access, 2-6
Optimizations
allocating system resources,

8-12
application design, 2-11
data caching, 8-12
DELETE operation, 6-7
disk usage, 8-12
operations, 8-8
overlays, 8-1
program development, 8-8
PUT operation, 6-7
task building, 8-9
virtual-to-logical block mapping,

8-10
window turning, 8-11

Organizations
See File organizations

Overlay description language
See ODL

Overlays, 8-2
and disk usage, 8-13
disk-resident, 1-13, 8-3, 8-8
memory-resident, 1-13, 8-3,

8-6

Packed decimal keys, 6-6
Paging, 8-9
PARSE operation, 1-17
PARSE operations
remote access, B-1

Performance
See Speed

Placement control, 1-16, 1-19

INDEX

calculating starting LBN, 6-14
cylinder, 6-13 to 6-14

Populating indexed files, 6-27
primary key order, 6-27
random insertions, 6-28
bucket fill size, 6-29
mass insertion, 6-30

Primary indexes
See Indexes

Primary keys, 1-7, 1-11
Processing blocks, 1-20
Processing files, 1-16

indexed files, 7-10
relative files, 4-16
sequential files, 3-15

Processing records, 1-10, 1-15
indexed files, 7-2
relative files, 4-7
sequential files, 3-7

Program development
optimizing, 8-8

relative files, 4-1
Protection, 1-18
Prototype ODL files, 8-3
PUT operation, 1-15

deferred write, 7-8
duplicate keys, 6-9
indexed files, 7-6, 7-9
key access, 5-10, 7-6
mass insertion, 7-9
sequential access, 5-17, 7-6

initial allocation, 4-4
key access, 1-16
locate mode, 3-14
move mode

indexed files, 7-7
relative files, 4-13
sequential files, 3-14

optimizing, 6-7
relative files, 4-12
key access, 4-12
sequential access, 4-12

sequential access, 1-16
sequential files, 3-10
key access, 3-11
sequential access, 3-11

Quoted string
remote file specification, B-2

Random access, 1-7, 1-9

and key position, 6-7
and ODLs, 8-5
and shared access, 2-6
and stream records, 2-17

4-13 to 4-14, 7-7 to 7-8 Prologue, 1-19
relative files, 4-13 indexed files, 5-2
sequential files, 3-12

WRITE
bucket size, 5-2
clusters, 5-2

device cluster number, 6-14
indexed files, 6-13
sector, 6-14
track, 6-13 to 6-14

2-15
fixed length, 1-11, 2-15
indexed files, 6-1
relative files, 4-2
sequential files, 3-3
stream, 1-11, 2-16
undefined, 1-11, 2-17
variable length, 1-11, 2-15

and medium, 2-15
VFC, 1-11, 2-16

Record operations, 1-15
See also Operations

Record reference vector
See RRV

Record size, 1-18
indexed files, 6-1
relative files, 4-2
sequential files, 3-2
UPDATE operation, 2-16

Record transfer modes
indexed files, 7-7
relative files, 4-13
sequential files, 3-13

Record-output handling, 1-19
Records, 1-1
data, 5-2
index, 5-2, 5-6
processing, 1-15
See also Record formats

Relative file organization,
1-4, 1-11
access declarations,

4-6 to 4-7
allocation

DEQ, 4-4
initial, 4-3

INDEX

and remote access, B-3
buckets, 4-1
cells, 4-1
CONNECT operation, 4-8
contiguity, 4-5
deferred write, 4-15
DELETE operation, 4-8
design, 4-1

GET operation, 4-10,
4-13 to 4-14

I/0 techniques, 4-14
MRN, 4-4
multiple access streams, 4-16
multiple buffers, 4-15
prologue, 4-1
PUT operation, 4-12 to 4-13
random access

by key, 4-1
by RFA, 4-1

record operations, 4-7
record size, 4-2
record transfer modes, 4-13
move mode, 4-13

REWIND operation, 4-13
sequential access, 4-1
shared access, 4-6
block access, 4-7
record access, 4-6

sharing declarations,
4-6 to 4-7

stream operations, 4-7
structure, 4-1

conceptual, 4-1
UPDATE operation, 4-13 to 4-14

Relative record number
See RRN

RENAME operation, 1-17
RENAME operations

remote access, B-1
Resident libraries, 8-1, 8-7

RMSRES, 8-6, 8-8
Restoring files, 1-10, 1-12
Retrieval pointers, 8-10

in memory, 8-10
on disk, 8-10

REWIND operation, 1-15
indexed files, 7-6
relative files, 4-13
sequential files, 3-12

RFA, 1-12
relative files, 4-1
sequential files, 3-2

RFA access
to relative files, 4-1

by key, 1-12
FIND, 1-16
GET, 1-16
PUT, 1-16

by RFA, 1-12
FIND, 1-16
GET, 1-16

by VBN, 1-20

access declaration, 2-6
sharing declaration, 2-7

Record
See

access, 1-12
also Shared access

Record
See

Record
See

Record

access modes
Access modes
file address

RFA
formats, 1-11, 1-18

and file organizations, 1-19,

match criteria, 5-13
to indexed files, 5-7, 5-10,

6-12

allocation, 4-3
bucket size, 4-3
MRN, 4-5

to relative files, 4-1
to sequential files, 3-2

Read-only
access declaration, 2-6

record format, 4-2
directory operations, 4-16
DISCONNECT operation, 4-8
file operations, 4-16

sharing declaration, 2-7 FIND operation, 4-8
Read/write FLUSH operation, 4-10

to sequential files, 3-2
RMS-11 defaults, 2-2
RMS-11 File Back-Up Utility

See RMSBCK
RMS-11 File Conversion Utility

See RMSCNV
RMS-11 File Design Utility

See RMSDES
RMS-11 File Display Utility

See RMSDSP
RMS-11 File Restoration Utility

See RMSRST
RMS-11 Indexed File Load Utility

See RMSIFL
RMS-11 resident library

See RMSRES
RMSBCK, 1-12
RMSCNV, 1-12

contiguity, 8-11
populating files, 6-27 to 6-28

RMSDES, 1-12, 1-18
bucket fill size, 6-29
bucket size, 6-22

relative files, 4-3
cluster size, 3-5
DEQ, 4-4, 6-27
initial allocation, 3-4, 4-4,

6-26
key segments, 6-7
MRN, 4-6
placement control, 6-15

RMSDSP, 1-12
RMSIFL, 1-12
contiguity, 8-11
populating files, 6-27 to 6-28

RMSRES
and I/0 paging operations, 8-9
and overlays, 8-6
clustered, 8-7
overlays, 8-8
task building, 8-6

RMSRST, 1-12
Root, 1-7

indexed files, 5-4
RRN

relative files, 4-1
sequential files, 3-2

RRV, 5-12, 5-17
RSTS/E

remote access, B-2
RSX-11M/M-PLUS

remote access, B-2

SEARCH operation, 1-17
SEARCH operations

remote access, B-1
Search times

indexed files, 5-8
Seconday index data records

See SIDR
Sector

See Placement control
Segmented keys, 6-7

INDEX

Sequential access, 1-7 to 1-8

Sequential file organization,
1-3, 1-11
access declarations, 3-6
allocation

cluster size, 3-4
DEQ, 3-4
initial, 3-4

and remote access, B-3
cells, 3-2
CONNECT operation, 3-7
deferred write, 3-14
design, 3-1

allocation, 3-4
contiguity, 3-5
medium, 3-3
record format, 3-3

directory operations, 3-15
DISCONNECT operation, 3-7
end-of-block indicators, 3-2
end-of-file, 3-2
FCS-11 compatibility, 3-2
file operations, 3-15
FIND operation, 3-7
FLUSH operation, 3-9
GET operation, 3-9, 3-14
I/0 techniques, 3-14
MBC, 3-15
multiple access streams, 3-15
multiple buffers, 3-14
PUT operation, 3-10, 3-14
random access

by key, 3-2
by RFA, 3-2

record operations, 3-7
record size, 3-2
record transfer modes, 3-13
locate mode, 3-14, 4-13
move mode, 3-14

REWIND operation, 3-12
sequential access, 3-2
shared access, 3-6
block access, 3-6
record access, 3-6
record structured files, 3-6
with undefined records, 3-6

sharing declarations, 3-6
stream operations, 3-7
structure, 3-1
conceptual, 3-2
physical, 3-1

TRUNCATE operation, 3-12
UPDATE operation, 3-12, 3-14

Shared access, 1-17
access declarations, 2-6

FIND,
GET, 1-16
PUT, 1-16

1-16

to blocks, 1-20
to indexed files, 5-17
to records, 1-12
to relative files, 4-1
to sequential files, 3-2

INDEX

read-only, 2-6
read/write, 2-6

and high-level languages, 2-7
application design consideration,

2-5
bucket locking, 2-8
deferred write

to relative files, 4-15
multiple access streams,

2-9 to 2-10
programming considerations,

2-10
sharing declarations,

no sharing, 2-7
read-only, 2-7
read/write, 2-7

system protection codes,
to indexed files, 7-1

block access, 7-2
record access, 7-1

to relative files, 4
block access, 4-7
record access, 4-6

to sequential files,
record structured, 3-6
with undefined records,

Sharing
See Shared access

Sharing declarations, 2-7
indexed files, 7-1 to 7-2
no sharing, 2-7
read-only, 2-7
read/write, 2-7
relative files, 4-6 to
sequential files, 3-6

SIDR, 5-6, 7-9
changeable keys, 6-10
duplicate keys, 6-8 to

Space
application design

2-4, 8-1
data storage, 2-5
I/0 buffer size, 2-5
task size, 2-5

Spanning blocks, 1-16, 1-18, 3-1
variable length records, 2-16

Speed
application design consideration,

2-3, 8-1
Standard ODL files, 8-3,

and file organization,

Stream operations, 1-15
See also Operations

Stream record format,
terminators, 2-16

Streams
See Access

String keys,
segmented,

streams
6-3
6-7

6

3-6

3-6

4-7

2-7

6-9

8-5
8-5

1-11,

2-5

2-16

Structure
indexed files
conceptual, 5-4
physical, 5-2

relative files, 4-1
conceptual, 4-1

sequential files, 3-1
conceptual, 3-2
physical, 3-1

Switches, A-1
/CLUSTERSIZE, A-1
/MODE, A-2
/POSITION, A-1
/PROTECT, A-2

Task
executable,
size, 2-5
structure, 1-13

Task builder, 1-13
and optimizations,
and overlay structure, 8-9
and remote access code, B-1
and , RMS-11 routines, 8-1
and RMSRES, 8-6

Terminators
stream records, 2-16

Track
See Placement control

TRUNCATE operation, 1-15
and shared access, 2-6
sequential files, 3-12

Two-byte signed integer keys,
6-4

Two-byte

consideration,

changeable keys, 6-10
deferred write, 7-8
duplicate keys, 6-9
indexed files, 5-14, 7-6, 7-9

relative files, 4-13
sequential files, 3-12

User buffers, 1-14
Utilities, 1-12, 2-11

RMSBCK, 1-12
RMSCNV, 1-12
contiguity, 8-11
populating files, 6-27

8-1

unsigned

8-9

binary keys,
6-5

Type
file, A-1
default, A-2

Undefined record format, 1-11,
2-17

UPDATE
and
and
and

operation, 1-15

2-10

ODLs, 8-5
record size, 2-16
shared access, 2-6,

and stream records, 2-17

DAP11X, 8-6 move mode, 3-14
RMS11S, 8-5 indexed files, 7-7 to 7-8
RMS11X, 8-5 relative files, 4-13 to 4-14
RMS12X, 8-6 sequential files, 3-14

RMSDES, 1-12, 1-18
bucket fill size, 6-29
bucket size, 4-3, 6-22
cluster size, 3-5
DEQ, 4-4, 6-27
initial allocation, 3-4,

4-4, 6-26
key segments, 6-7
MRN, 4-6
placement control, 6-15

RMSDSP, 1-12
RMSIFL, 1-12

contiguity, 8-11
populating files,

6-27 to 6-28
RMSRST, 1-12
RSMCNV

populating files, 6-28

Variable with fixed control
See VFC

Variable-length record format,
1-11, 2-15
and medium, 2-15

VAX/VMS
remote access, B-1 to B-2

VBN, 8-10
access, 1-20
areas, 6-10

Version
file, A-1

VFC record format, 1-11, 2-16
Virtual block number

See VBN
Virtual-to-logical block mapping

optimizations, 8-10

Wildcards
file specification, A-1

Windows, 8-10
turning, 8-10
contiguity, 8-11
directory caching, 8-11
optimizations, 8-11

WRITE operation
and shared access, 2-6

XBUF
data caching, 8-12
directory caching, 8-11

INDEX

READER'S COMMENTS

NOTE: This form is for document comments only . DIGITAL will use comments submitted on this form at the
company's discretion . If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form .

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement .

Did you find errors in this manual? If so, specify the error and the page number .

Please indicate the type of user/reader that you most nearly represent .

•

	

Assembly language programmer
El Higher-level language programmer
•

	

Occasional programmer (experienced)
•

	

User with little programming experience
•

	

Student programmer
El Other (please specify)

Name	 Date

Organization

Street

City	 State Zip Code
or fn~, .,t

RSTS/E RMS-11
User's Guide

AA-P51OA-TC

d

Do Not Tear - Fold Here and Tape

a9Doan

Do Not Tear - Fold Here

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS .

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03061

No Postage
Necessary

if Mailed in the
United States

I

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146

