
RSTS/E
RT11 Utilities Manual

Order No. AA-M213A-TC

December 1981

This document describes RT11-based utilities that you use while
programming under the RSTS/E operating system .

OPERATING SYSTEM AND VERSION : RSTS/E

	

V7.1

SOFTWARE VERSION:

	

RSTS/E

	

V7.1

digital equipment corporation - maynard, massachusetts

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment Corpo-
ration. Digital Equipment Corporation assumes no responsibility for any
errors that may appear in this document.

The software described in this document is furnished under a license, and
may be used or copied only in accordance with the terms of such license .

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies .

Copyright © 1981 Digital Equipment Corporation

The postage-paid READER'S COMMENTS form on the last page of this
document requests your critical evaluation to assist us in preparing future
documentation .

The following are trademarks of Digital Equipment Corporation :

Commercial Engineering Publications typeset this manual using DIGITAL's
TMS-11 Text Management System .

DEC VT IAS
DECUS DECsystem-10 MASSBUS
DECnet DECSYSTEM 20 PDT
PDP DECwriter RSTS
UNIBUS DIBOL RSX
VAX EduSystem VMS

Contents

Preface

Chapter 1

Chapter 3

Chapter 2

Page
vii

Introduction : Using RT11 Utilities on RSTS/E

1.1 Program Development Cycle and the RT11 Utilities 1-1
1.1 .1 Program Development Cycle 1-1
1.1 .2 Definition of the RT11 Utility Programs 1-2
1.1 .3 Languages that Use the RT11 Utilities 1-3

1.2 Additional Documents . 1-3
1.3 Run-Time System Environment . 1-4

1.3 .1 Running the Utility Programs 1-4
1.3 .2 Running the Utilities in DCL 1-5

1.4 Command String Specifications . 1-5
1.5 Logicals : DK: and SY: . 1-7
1.6 Error Messages in the Appendix . 1-7

MACRO-11 Program Assembly

2 .1 Running the MACRO-11 Assembler 2-1
2 .1 .1 Running MACRO with the RUN Command or a

CCL Command . 2-2
2 .1 .2 Running MACRO in DCL 2-4

2.2 Temporary Work File . 2-6
2.3 File Specification Switches . 2-6

2.3.1 Listing Control Switches 2-7
2.3.2 Function Control Switches 2-9
2.3.3 Macro Library File Designation Switch 2-10
2.3.4 Cross-Reference (CREF) Table Generation Switch 2-11

2 .3 .4 .1 Obtaining a Cross-Reference Table 2-11
2 .3 .4 .2 Handling Cross-Reference Table Files 2-12

2.3.5 Assembly Pass Switch . 2-14
2.4 MACRO-11 Error Codes and Messages 2-14

2.4.1 Programming Level Errors 2-14
2.4.2 Input-Output Level Error Messages 2-17

Linker (LINK)

3.1 Overview of the Linker Process . 3-2
3.1 .1 What the Linker Does . 3-2
3.1 .2 How the Linker Structures the Load Module 3-3

3.1 .2 .1 Absolute Section 3-3
3.1.2 .2 Program Sections 3-3

3 .1 .3 Global Symbols: Communication Links Between Modules . . . 3-7

Chapter 4

3 .2 Running and Using the Linker . 3-8
3.2 .1 Running LINK . 3-8
3.2.2 LINK Command Line Specification 3-11
3.2.3 LINK Switches Briefly Noted 3-12

3.3 Input and Output . 3-13
3.3.1 Input Object Modules . 3-14
3.3.2 Input Library Modules 3-14
3.3.3 Output Load Module . 3-17
3.3.4 Output Load Map . 3-18

3 .4 Creating an Overlay Structure 3-20
3 .5 Switch Descriptions . 3-30

3.5 .1 Alphabetical Switch (/A) 3-30
3.5.2 Bottom Address Switch (/B:n) 3-30
3.5.3 Continue Switch (/C) or (/ /) 3-30
3 .5.4 Extend Program Section Switch (/ E:n) 3-31
3 .5.5 Default FORTRAN Library Switch (/F) 3-31
3 .5.6 Directory Buffer Size Switch (/G) 3-32
3 .5.7 Highest Address Switch (/H:n) 3-32
3.5.8 Include Switch (/I) . 3-33
3.5.9 Memory Size Switch (/ K:n) 3-33
3.5 .10 Modify Stack Address Switch (/M[:n]) 3-33
3.5 .11 Overlay Switch (/O:n) . 3-34
3.5 .12 Library List Size Switch (/P:n) 3-35
3.5 .13 Absolute Base Address Switch (/Q) 3-36
3.5.14 Symbol Table Switch (/S) 3-36
3 .5.15 Transfer Address Switch (/T[:n]) 3-37
3 .5.16 Round Up Switch (/ U:n) 3-38
3 .5.17 Map Width Switch (/W) 3-38
3 .5.18 Bitmap Inhibit Switch (/X) 3-38
3 .5.19 Boundary Switch (/Y :n) 3-38
3.5.20 Zero Switch (/Z:n) . 3-39

3.6 Linker Prompts . 3-39

Librarian (LIBR)

4 .1 The Librarian . 4-1
4 .2 Running and Using LIBR . 4-2
4.3 Switches and Functions for Object Libraries 4-3

4 .3.1 Include All Global and Absolute Global Symbols Switch (/A) . .4-3
4.3.2 Command Continuation Switches (/C and //)4-4
4.3.3 Creating a Library File . 4-5
4.3.4 Inserting Modules into a Library 4-5
4.3.5 Delete Switch (/D) . 4-6
4.3.6 Extract Switch (/E) . 4-7
4.3.7 Delete Global Switch (/G) 4-7
4.3.8 Include Module Names Switch (/N) 4-8
4.3.9 Include P-section Names Switch (/P) 4-9
4.3.10 Replace Switch (/R) .4-9
4.3.11 Update Switch (/U) . 4-9
4.3 .12 Wide Switch (/W) . 4-10

Glossary

Index

4 .3 .13 Creating Multiple Definition Libraries Switch (/X) 4-10
4 .3 .14 Listing the Directory of a Library File 4-11
4 .3 .15 Merging Library Files . 4-12
4 .3 .16 Combining Library Switch Functions 4-13

4.4 Switch Commands and Functions for MACRO Libraries 4-14
4.4.1 Command Continuation Switches (/C or //) 4-14
4.4.2 Macro Switch (/M[:n]) . 4-14

Chapter 5 Object Module Patch Utility (PAT)

5.1 Introduction to the PAT Utility . 5-1
5.2 Running and Using PAT . 5-1
5.3 How PAT Updates a Module. 5-4

5 .3.1 Input File . 5-4
5 .3.2 Correction File . 5-4

5.4 Updating Object Modules . 5-5
5.4.1 Overlaying Lines in a Module 5-5
5.4.2 Adding a Subroutine to a Module 5-6

5.5 Determining and Validating the Contents of a File 5-8

Appendix A Switch and Argument Summary

A.1 MACRO Switches . A-1
A.1 .1 Arguments for Listing Control Switches A-2
A.1 .2 Arguments for Function Control Switches A-2
A.1 .3 Arguments for the Cross-Reference Switch (/C) A-3

A.2 LINK Switches . A-4
A.3 LIBR Switches . A-5

Appendix B Error Message Summary

B.1 MACRO Error Messages . B-2
B.2 LINK Error Messages . B-4
B.3 LIBR Error Messages . B-10
B.4 PAT Error Messages . B-13

Figures

Tables

5-1
5-2

2-1

Updating a Module Using PAT
Processing Steps Required to Update a Module

Default File Specification Values

.

.

.

.

.
Using

.

.

.

.

.

.
PAT .

.

.

.

.

.

.

. .

. .

. .

.

.

.

.

.

.

. 5-2

. 5-3

. 2-4
2-2 File Specification Switches . 2-7
2-3 Arguments for / L and /N Switches 2-9
2-4 Arguments for / E and /D Switches 2-10
2-5 /C Switch Arguments . 2-12
2-6 MACRO-11 Error Codes . 2-15
3-1 P-sect Attributes . 3-4
3-2 Section Attributes . 3-6
3-3 P-sect Order . 3-6
3-4 Global Reference Resolution . 3-7
3-5 LINK/RT11 Command Switches 3-10
3-6 Linker Defaults . 3-11
3-7 Linker Switches . 3-12
3-8 Absolute Block Parameters Information 3-18
3-9 Line-by-Line Sample Load Map Description 3-19
3-10 Linker Prompting Sequence . 3-39
4-1 LIBR Object Switches . 4-4
4-2 LIBR Macro Switches . 4-14
A-1 File Specification Switches . A-1
A-2 Arguments for /L and /N Switches A-2
A-3 Arguments for / E and /D Switches A-3
A-4 /C Switch Arguments . A-3
A-5 Linker Switches . A-4
A-6 LIBR Object Switches . A-6

1-1 Developing an Executable Program 1-2
2-1 Sample Assembly Listing . 2-8
2-2 Cross-Reference Table . 2-13
3-1 Library Searches . 3-16
3-2 Sample Load Map . 3-19
3-3 Sample Overlay Structure for a FORTRAN Program 3-21
3-4 Overlay Scheme . 3-22
3-5 The Run-Time Overlay Handler 3-22
3-6 Sample Subroutine Calls and Return Paths 3-26
3-7 Memory Diagram Showing Sample Link with Overlay Regions 3-29

Preface

Audience Description

Users of this manual should be familiar with either the FORTRAN IV or
MACRO computer language and have a working knowledge of the RSTS /E
operating system .

Purpose of Document

Document Structure

In previous releases of RSTS / E, this document was called the RSTS lE
FORTRAN IV Utilities Manual. The title has been changed to reflect more
accurately the manual's content and its use in the RSTS / E programming
environment .

This manual describes the RT11-based utilities that MACRO and
FORTRAN IV programmers need to develop programs on RSTS/E, on an
RT11 system, or both .

Associated Documents

Refer to Chapter 1 for a description of the documents you need to develop
MACRO or FORTRAN IV programs on a RSTS/E system .

To better understand and use this manual, read the material in Chapter 1
before using the utilities in Chapters 2 through 5 and before referencing
the appendixes . The introductory chapter contains information you need to
understand more thoroughly the use of RT11 utilities on a RSTS / E system .

There are five chapters, a glossary, and two appendixes :

" Chapter 1 USING RT11 UTILITIES ON RSTS /E
Introduces the reader to the RT11 utilities as they are used on a RSTS/E
system .

" Chapter 2 MACRO-11 PROGRAM ASSEMBLY
Describes how to use the MACRO assembler to create an object module
that is input to the LINK utility .

" Chapter 3 LINKER (LINK)
Contains information the MACRO and FORTRAN IV programmmer
need to combine many object modules into an module the computer can
execute .

" Chapter 4 LIBRARIAN (LIBR)
Shows how to create, modify, maintain, and use library files containing
FORTRAN IV and MACRO modules.

" Chapter 5 OBJECT MODULE PATCH UTILITY (PAT)
Describes how to update code in a relocatable binary object module file .

" Appendix A SWITCH AND ARGUMENT SUMMARY
Contains a summary list of MACRO, LINK, and LIBR switches (and
arguments) . Use this appendix for reference .

" Appendix B ERROR MESSAGE SUMMARY
Lists the error messages you may encounter as you use the MACRO,
LINK, LIBR, and PAT utilities . (Appendix B does not, however, contain a
description of the MACRO programming-level error codes . You must
refer to Chapter 2 for that information .)

" Glossary
Defines the more commonly used terms in this manual .

Documentation Conventions
A description of the symbolic conventions used throughout this manual
follows . Familiarize yourself with these conventions before you continue
reading .

1 .

	

RT-11 (with the hyphen) refers to the RT-11 operating system . RT11
(without the hyphen) refers to the utilities based on the RT-11 utilities
that have been modified to run on RSTS/E - the utilities described in
this manual .

2 .

	

Examples consist of actual computer output wherever possible . Where
necessary, user input is in red to distinguish it from computer output .

3 .

	

This manual uses the symbol REr to represent a carriage return . Unless
the manual indicates otherwise, terminate all commands or command
strings with a carriage return.

4 .

	

You produce several characters in system commands by typing a combi-
nation of keys concurrently . For example, while holding down the
CTRL key, type O to produce the CTRL/O character . Key combinations
such as this one are documented as CTRL/O, CTRL/C, and so on .

5 . In discussions of command syntax, uppercase letters represent the
command name, which you must type . Lowercase letters represent a
variable, for which you must supply a value .

Square brackets ([]) enclose an item that is optional : you may include
the item in brackets, or you may omit it, as you choose .

The ellipsis symbol (. . .) represents repetition . You can repeat the item
that precedes the ellipsis .

* Teletype is a registered trademark of the Teletype Corporation .

Chapter 1
Introduction : Using RT11 Utilities on RSTS / E

The main text of this manual describes four RT-11 utilities that have been
modified for RSTS/E: MACRO, LINK, LIBR, and PAT. These utilities give
the MACRO or FORTRAN IV programmer tools to create executable
programs on a RSTS/E system . This introductory chapter contains back-
ground information you need before using the RT11 utilities in the RSTS/E
programming environment.

1 .1 Program Development Cycle and the RT11 Utilities

There are three major operating systems that run on the PDP-11 computer:
RT11, RSX, and RSTS/E . Each provides an environment in which you can
create and run programs. The RSTS/E operating system, in contrast to the
others, allows the development of programs compatible with either RT11 or
RSX execution-time structures, as well as programs for RSTS/E itself. In
the case of RSX, compatibility is at the source and command level ; for RT11
compatibility extends down to SAV. There are certain restrictions, such as
lack of the Extended Memory (XM) Monitor and Foreground /Background
(FB) Monitor for RSTS/E's RT11 environment, and lack of asynchronous
1/0 for both RT11 and RSX ; RSTS / E, in fact, emulates only the RT-11
Single-Job (SJ) Monitor . This manual describes the RT11 utilities you use to
create RT11-based programs that can run either on an RT11 system or on
your RSTS/E system . However, before beginning to program on RSTS/E,
you must understand the "program development cycle."

1 .1 .1 Program Development Cycle

There are a number of steps to take before your computer can execute
programs you write . These steps in the creation of your executable program
are collectively called the "program development cycle." You have three
paths you can take in developing programs on RSTS/E : RT11, RSX, and
RSTS/E . (That is, you can develop RT11 programs that run on RT11 or
RSTS/E systems and create RSX programs that run on RSX or RSTS/E,
resulting in programs that can run in any one of three environments.)

Create
Source

While the operating systems are different, they have similar program
cycles . A diagram (using the RT11 program names) can illustrate this
process :

Figure 1-1: Developing an Executable Program

Assemble
Source

(MACRO)

MACRO Library
Files
(LIBR)

Object Code

Patch Object
Code
(PAT)

The utilities in this manual perform some of the operations in this cycle.
The RSX environment on RSTS/E provides a parallel set of program devel-
opment tools . Refer to the RSTS lE Programming Utilities Manual for a
description of the utilities you use to create programs in the RSX RSTS/E
environment .

1 .1 .2 Definition of the RT11 Utility Programs

1-2

	

Introduction : Using RT11 Utilities on RSTS / E

The RT11 utility programs that RSTS/E provides for program development
are :

" Macro Assembly (MACRO)
The MACRO assembler accepts a MACRO source program as input to
create an object module . You then use the object module as input to the
LINK utility to make a file the system can execute .

" Linker (LINK)
LINK accepts object modules from an assembler (and/or a compiler) to
produce an executable file . LINK can also combine a number of object
programs with any necessary library and assembly language subroutines .
It is the output of the LINK operation that you specify with the system
RUN command . For example, if MYPRGM were the name of the output
from LINK, you could execute MYPRGM by typing RUN MYPRGM.

Librarian (LIBR)
LIBR lets you build and maintain object libraries of your frequently used
FORTRAN IV or MACRO routines . It also maintains macro libraries for
the MACRO-11 assembler . The librarian organizes the library files so
that the linker and MACRO-11 assembler can access them rapidly .

" Object Module Patch (PAT)
PAT helps you modify code in a relocatable binary object (.OBJ) module .
This means you can change previously assembled code without reassem-
bling it . You can also use PAT to update library files and to patch the
compiler and FORTRAN Object Time System (OTS) .

1 .1 .3 Languages that Use the RT11 Utilities

MACRO and FORTRAN IV are the two DIGITAL-supplied computer
languages that use the RT11 utilities described in this manual. MACRO
comes to you on the RSTS/E distribution kit ; FORTRAN IV is distributed
on its own kit, which means you must order it separately .

The RT11 utilities are compatible with programs written in either MACRO
or FORTRAN IV. For example, object file formats from the RT11 MACRO
assembler and the FORTRAN IV compiler are identical . This allows the
RT11 LINK utility to accept both types of object files and process them in
the same way . Furthermore, because the object file formats are identical,
you can use the patch utility PAT to modify the object code of both
languages. You must use the RSX utilities to process programs written in
other languages, such as BASIC-PLUS-2 .
Refer to the RSTS lE System User's Guide for a more complete discussion of
program development on RSTS /E .

1 .2 Additional Documents
To use this manual properly, you must have access to other documentation .
The list that follows contains the documents either FORTRAN IV or
MACRO programmers can use for developing FORTRAN IV or MACRO
programs on RSTS/E:

" PDP-11 MACRO Language Reference Manual
Describes how to use the MACRO-11 relocatable assembler to develop
PT-)P-11 assembly language programs. This manual presents detailed
descriptions of MACRO-11 features . These include source and command
string control of assembly and listing functions, directives for conditional
assembly and program sectioning, and user-defined and system macro
libraries .

" RSTS lE System Directives Manual
Contains general information on run-time systems and describes RSTS/E
monitor, RSX emulator, and RT11 emulator directives for the assembly-
language programmer.

" RSTS lE System User's Guide
Contains a description of nonprivileged system programs and a discussion
of the program development cycle on a RSTS / E system .

" PDP-I1 Programming Card
Summarizes, on a p,)cket-sized folding card, the PDP-11 machine instruc-
tions used by the various PDP-11 assembly language processors .

" RT-I1 /RSTS1E FORTRAN IV User's Guide
Provides the information needed to compile, link, execute, and debug a
FORTRAN program under RT-11 .

" PDP-11 FORTRAN Language Reference Manual
Describes the form of the basic elements of the FORTRAN language : the
FORTRAN statements . The document is a reference manual for the inex-
perienced as well as the experienced programmer . It is not a tutorial
manual .

Introduction : Using RT11 Utilities on RSTS/E

	

1-3

1 .3 Run-Time System Environment

The RSTS / E system places you under the control of the default keyboard
monitor after you log in to the system. BASIC-PLUS, BASIC-PLUS-2,
DCL, RT11, and RSX are keyboard monitors the system manager can select
during system generation . You know what keyboard monitor is the default
by the prompt the monitor prints at your terminal :

Re ad ,,,	BASIC-PLUS

RUN $utility

RUN [1,31<utility>

RSX

RT11

BASIC2 BASIC-PLUS-2

DIGITAL Command Language (DCL)

At this command level, you can run any of the RT11 utilities described in
this manual. Each of the keyboard monitors understands the RUN com-
mand and passes the command line on to the RT11 utility program for
processing . However, before using the utilities, you must learn the account
in which they reside . Generally, you find MACRO.SAV, LINKSAV,
LIBR.SAV, and PAT.SAV in the system library account [1,21 . That is the
account to which they are assigned on the RSTS/E distribution kit . Unless
your system manager has moved them, you should be able to call the utili-
ties from that account . Check with your system manager or simply try to
run the utilities from the library account .

1 .3 .1 Running the Utility Programs

To call the utilities, respond to the keyboard monitor prompt by typing a
command in the form :

The dollar sign ($) indicates that the program resides in the RSTS/E
system library account [1,21 . Utility represents the name of the program
you want to run. When it is ready for you to enter a command string, the
utility prints an asterisk (*) prompt . If you learn from the system manager
that the utilities have been moved, then include the new account number in
the file specification :

In this case, the system searches account [1,31 and runs the utility, which
prompts you for command input . (Your system manager may also have
moved the utilities to a device other than one in the public structure . In
that case, you will also need to include the device name along with the file
specification of the utility .)

1-4

	

Introduction : Using RT11 Utilities on RSTS / E

If you prefer to work under the RT11 run-time system, type :

RUN $SWITCH
Keyboard monitor to switch to? RT11 RE

RSTS/E changes your default keyboard monitor to RT11 if it was not the
default already . To indicate the switch into RT11 has been made, the RT11
keyboard monitor dot prompt (.) appears on your teminal, showing its read-
iness to accept input from the keyboard .

1 .3 .2 Running the Utilities in DCL

You may want to run the RT11 utilities under the control of the DIGITAL
Command Language (DCL) keyboard monitor . This command environment
is compatible with other DIGITAL computer systems, allowing users of
these systems to use RSTS /E without having to learn the RSTS / E
command environment . For those not familiar with DCL, the language
consists of words that suggest the operations performed . This makes using
the computer less difficult and thus creates a more productive working
environment .

To use DCL, you must run the RSTS/E SWITCH program (if DCL is not
already your keyboard monitor) . After you type "DCL" in response to the
single program prompt, SWITCH places your terminal under DCL's con-
trol . The dollar prompt ($) printed by the DCL keyboard monitor indicates
that you can begin to enter commands . DCL syntax is explained for each of
the utilities described in following chapters . If you need more information
about DCL, refer to the RSTS lE DCL System User's Guide.

1 .4 Command String Specifications

A utility program prompts you with an asterisk prompt (*) when it is ready
to accept a command string . (Pressing the RETURN key without entering a
command line causes the utility to print its name and version number.) The
first command string you enter has the general format :

output = input

The output and input side of your response have the following meaning:

output

	

Represents the output file specifications . You can in general
specify up to three file names, although some utilities allow
only one or two. If you do not include an output file specifica-
tion, the utility chooses a default .

input

	

Represents the input file specifications . You can choose not
to include an input file specification, but if you do, six is the
maximum .

Introduction : Using RT11 Utilities on RSTS/E

	

1-5

Use the following RSTS/E file specification format when responding to
command prompts issued by the utilities :

dev :[p,pn]filename .type / pr[otect]:nn[/ switch(es)]

dev :

	

Identifies the device on which the file is stored or is to be
written . You create a valid dev: field by combining a two-
character device code with an optional unit number . Each
dev : field must end with a colon (:) . If, for example, you have
a file on an RP06, on device unit number 1, the device field
would be DB1: . Refer to the RSTS /E System User's Guide for
a list of valid RSTS /E devices and their corresponding device
codes . The logical DK: is the default ; refer to Section 1.5 .

[p,pn] Represents the account that contains the file you want to
access. The number in square brackets ([]) consists of both a
project (p) and a programmer number (pn), with each being
assigned a decimal value from 0 to 254. Together they allow
you to differentiate one user's files from another . The default
[p,pn] is your own account . Examples of valid project-
programmer numbers are [1,210] and [200,63] .

filename

	

Can have as many as six characters . It has no default and
thus must be specified whenever you run a program.

file type

	

Can contain up to three characters . It describes the type of
data in a file . Some examples of file types that appear in this
manual are:

.DAT

	

FORTRAN IV data file

.FOR

	

FORTRAN IV source file

.LLD

	

Library listing file

.LST

	

Listing file (MACRO, FORTRAN IV, and LIBR out-
put)

.MAC

	

MACRO source file (MACRO input, LIBR input and
output)

.MAP

	

Map file (linker output)

.OBJ

	

Relocatable binary file (MACRO or FORTRAN IV
output, LINK input, LIBR input and output)

.SAV

	

Executable IV program file

.SML

	

System MACRO library

1-6

	

Introduction : Using RT11 Utilities on RSTS / E

.STB

	

Symbol table file in object format containing all
global symbols resolved during a link

.TMP

	

Temporary cross-reference file, for communication
from MACRO to CREF

The RSTSlE System User's Guide contains a more complete description of
the RSTS / E file specification .

1 .5 Logicals DK : and SY :

/PR:nn

	

Uses decimal values (such as 60) to restrict or permit access
to a file . The code or combination of codes determines the
degree of restriction . Protection codes have effect only when
given to output files . Refer to the RSTS lE System User's
Guide for more complete information on protection codes .

/switch

	

Changes the way a utility program works . You will find the
list of switches for a particular utility in the appropriate
chapter .

On an RT-11 system, programs and data files are often kept on separate
devices, especially on very small systems . In RT-11, SY: is the logical name
given the disk containing the system files . It is also the default boot device .
The logical DK: refers to the disk that contains user work files and repre-
sents the disk to which the utility programs default when no device name is
included in a file specification . The system also defaults to this device to
find an executable file when you use the RUN command.

On RSTS/E, these two logicals exist and generally have the same mean-
ings . (The exception is the RUN command, which searches the RSTS/E
public structure by default .) The logical SY: usually refers to the disk(s) in
the public structure that contain both the system files and user work files .

On RSTS /E, DK: is usually assigned to the public structure . Thus, DK : on
a RSTS /E system may be synonymous with SY :, even though the utilities
perform their input and output to and from DK: . This happens as long as
you have not used the RSTS/E ASSIGN command to point DK: to another
device . For example :

ASSIGN DB1 :Dh :

This command makes DB1: the disk that the RT11 utilities choose when
you do not include a device name in your file specifications (which default
to DK:) .

1 .6 Error Messages in the Appendix

Here are a few important facts you should know about the error messages
described in this manual :

1 .

	

To make accessing error messages easier, all messages are in Appendix
B. (Only Chapter 2 on the MACRO assembler contains any error infor-
mation; input and output error messages for MACRO, however, are in
Appendix B .)

2 .

	

You should read the introduction to Appendix B before using the RT11
utilities . It contains information that will help you interpret and
correct the error conditions generated by the RT11 utilities .

Introduction : Using RT11 Utilities on RSTS/E

	

1-7

Chapter 2

MACRO-11 Program Assembly

This chapter describes how to assemble MACRO-11 programs under
RSTS / E .

Output from the MACRO-11 assembler includes any or all of the following :

" A binary object file - the machine-readable logical equivalent of the
MACRO-11 assembly language source code

" A listing of the source input file

" A cross-reference file listing

" A table of contents listing

" A symbol table listing

To use the MACRO-11 assembler, you should understand how to:

1 . Start and stop the MACRO-11 assembler (including how to format
command strings to specify files MACRO-11 uses during assembly)

2 .

	

Assign temporary work files to nondefault devices, if necessary

3 .

	

Use file specification switches to override file control directives in the
source program

4.

	

Interpret error messages

The following sections describe these topics .

2.1 Running the MACRO-11 Assembler

This section describes how to run the MACRO-11 assembler :

" With the RUN command or a Concise Command Language (CCL)
command

" From the DIGITAL Command Language (DCL) keyboard monitor

MACRO-11 Program Assembly

	

2-1

Use the method that best suits your needs and the prevailing conditions
(default keyboard monitor for example) at your installation .

2.1 .1 Running MACRO with the RUN Command or a CCL
Command

To run the MACRO-11 assembler from the system library account [1,2],
type :

RUN $MACRORE

If your system manager has installed MACRO-11 as a Concise Command
Language (CCL) command (for example, MACRO), then you can also run
the assembler with :

MACRORE

In either case, MACRO-11 prints an asterisk prompt on your terminal . The
assembler is now ready to accept command string input in the form :

output-filespec(s) = input-filespec(s)

As an alternative, if MACRO is a CCL on your system, you can enter a
whole command line in the form :

MACRO output-filespec = input-filespec

The more detailed format for the command string is :

obj,list,cref /s:arg = sourcei, . . .,sourcen / s:arg

obj

	

The file specification of the binary object file that the assembly
process produces (the device for this file should not be KBn: or
LPn:) .

list

	

The file specification of the assembly and symbol listing that
the assembly process produces .

cref

	

The file specification of the CREF temporary cross-reference
file that the assembly process produces . The dev:cref specifica-
tion is necessary only if you must place the cref work file on a
disk other than the default (which is DK:, or WF: if defined) .

/s:arg

	

A set of file specification switches and arguments .

	

(Section
2 .3 describes these switches and associated arguments.)

sourcei

	

The file specifications for a MACRO-11 source file or MACRO
library file . These files contain the MACRO language pro-
grams to be assembled . You can specify as many as six source
files .

2-2

	

MACRO-11 Program Assembly

The complete format for a file specification is :

dev:[p,pn]fi1ename .type /PR[otect] :nn

The default device for the files used by MACRO is DK: . On RSTS/E, DK: is
usually synonymous with SY:, but you can assign DK: to another device
and explicitly specify a device in your command string to MACRO. If you
submit the listing file directly to a printing device, such as KBn: or LPn:,
you can abbreviate the file specification for a listing file to include only the
device code . In addition, RSTS / E allows you to use the default for the
project-programmer number or the protection code, as described in Section
1 .4 . The format for an input (source) file specification is the same except for
the protection code, which you can omit . MACRO ignores it on input files .

For example, the following command string calls for an assembly that uses
one source file (SRC .MAC) plus the system MACRO library to produce an
object file BINF.OBJ and a listing . The listing goes directly to the line
printer .

*DK :BINF .OBJtLP :=DK :SRC .MAC

All output file specifications are optional . MACRO does not produce an
output file unless the command string contains a specification for that file .
If you do not include an output file specification, you can omit the equal
sign (=) .

The system determines the file type of an output file specification by its
position in the command string . Use commas in place of files you wish to
omit . For example, to omit the object file, you must begin the command
string with a comma. You need not include a comma after the final output
file specification . The following command produces a listing, including
cross-reference tables, but not binary object files :

* tLP : /C=MAIN .MAC

The next command produces an object file but no listing file or
cross-reference listings ; input files are on DK: (which is usually the system
device, as described above) :

* DB 1 : [24O , 129] B I NF . OBJ " 40 ;>=SRC 1 . MAC #SRC2 . MAC

MACRO assumes certain default values when you do not specify devices
and file types in the command string. Table 2-1 lists these default values
for each file specification .

MACRO-11 Program Assembly

	

2-3

Table 2-1 :

	

Default File Specification Values

If you type RUN $MACRO and receive the asterisk prompt but do not enter
a command string, you can exit the MACRO-11 assembler by typing
CTRL/Z . This returns you to your keyboard monitor prompt . After you
enter a command string and press the RETURN key (thus beginning an
assembly), you can halt the assembly process at any time by typing
CTRL/C. Control returns to the MACRO-11 asterisk prompt . Enter
another command or type CTRL /Z to exit the MACRO-11 assembler and
return control to your keyboard monitor .

To restart the assembly process, type RUN $MACRO in response to the
keyboard monitor prompt.

2.1 .2 Running MACRO in DCL

You can use the RUN command to invoke the MACRO-11 assembler when
you are under the control of the DCL keyboard monitor . Just follow the
procedures described in the previous section . But you can also run MACRO
from DCL using DCL syntax rules and procedures . This section describes
how to use these rules and procedures to execute MACRO programs.

You must first run the RSTS/E SWITCH program to switch control to the
DCL keyboard monitor (unless it is already the default) :

RUN $SWITCH

The SWITCH program asks one question only and then places you in the
run-time system you select :

Keyboard Monitor? DCL

2-4

	

MACRO-11 Program Assembly

File
Default
Device

Default
File Name

Default
File Type

Object DK: None; must specify OBJ

Listing Same as for object file None; must specify LST

Cref DK: (CF : if assigned) CREF* TMP

First source DK: None ; must specify MAC

Additional source Same as for preceding None ; must specify MAC
source file

System MACRO DK: SYSMAC SML
Library

User MACRO DK: if first file, other- None ; must specify MAC
Library wise same as for

preceding source file

* The default file name is DK:CREF.TMP if (1) you do not include a file specification or
(2) you do not include a file name but do include the /C switch . Otherwise, you must
enter a file name .

After you type DCL and press the RETURN key, DCL immediately prints a
dollar ($) prompt on your terminal . The DCL keyboard monitor is now
ready to accept command input .

At the prompt, type a single line command in the form :

$ MAC[RO] / RT11 input-filespeci + . . . + n /OBJECT[= obj-filespec] / LIST = [list-filespec]

The command line accepts up to six input file specifications (i through n) .
DCL syntax requires you to use a plus (+) sign instead of a comma (,)
whenever you specify more than one input file . If you do not include an
object file, MACRO creates one by default and gives it the same name as
the first input file . The assembler also automatically creates a list file if
you omit that specification . The default file types are OBJ for the object
file and LST for the list file . Have MACRO create both files by typing a
command line as follows :

$ MACRO/RT11 MAIN .MAC

MACRO creates the object file MAIN .OBJ and the list file MAIN .LST and
places the files in your account on the system disk (SY:) .

If you do not want MACRO to create an object file, you must use the
/NOOBJ switch . Similarly, the /NOLIST switch tells MACRO not to
create a list file . For example:

MACRO/RT11 MAIN .MAC/NOLIST

MACRO creates the object file MAIN.OBJ but does not create a list file .

When you need to see if an old MACRO program assembles, and you do not
want to get an object or a list file (at least the first time you run the
program), attach both the / NOOBJ and /NOLIST switches :

MACRO /RT11 OLDPRG .MAC /NOOBJ /NOLIST

When you want to give the object or list file a name other than the one
MACRO assigns by default, enter the specific file name:

$ MACRO/RT11

	

MAIN . MAC/ OBJECT=MODULE / LIST=MODLST

This command line tells MACRO to create the object file MODULE.OBJ
and the list file MODLST.LST. If you do not include file types, the assem-
bler assigns them for you. Even though an input file may be on a disk other
than the system disk, DCL always places the object and list files on the
system disk in your account, unless you specify otherwise . To place an
object and a list file on DBO:, for example:

$ MACRO/RT11

	

DBO:MAIN . MAC/ OBJECT=DBO :MODULE/ LIST=DBO : MODLST

MACRO places both files in your account on DBO: .

MACRO-11 Program Assembly

	

2-5

If you include an object file but not a list file specification, DCL assigns the
list file the same name, device, and account as the object file . For example :

MACRO/RT11 MAIN . MAC/ OBJECT=MODULE

Your account on the system disk now contains the list file MODULE .LST
as well as the object file MODULE .OBJ. MACRO uses the default file
types LST and OBJ unless you enter your own.

When you attach the /LIBRARY switch to the particular input file specifi-
cation, MACRO can tell that an input file is a library . For example :

MACRO MAIN . MAC+SECOND .LIB/LIBRARY/OBJECT=MODULE

The /LIBRARY switch marks the input file SECOND.LIB as a library . You
must append the switch to the file you wish to mark. DCL allows you to
specify up to five library files in a single command string . If you need to
specify an object or list file, attach them as usual after the input file specifi-
cations and thus after any /LIBRARY switches you may have included .
Note that you must use the plus (+) sign to separate input file
specifications .

To abort the MACRO assembler and return to the DCL dollar prompt, type
CTRL/C .

2.2 Temporary Work File

Some assemblies need more symbol table space than available memory
contains . When this occurs, the system automatically creates a temporary
work file called WRK.TMP to provide extended symbol table space.

The default device for WRK.TMP is DK: . To make the system assign a
different device, enter the following command in response to the RT11
keyboard monitor prompt :

.ASSIGN dev: WF

Device (dev:) represents the physical name of a disk . MACRO creates
WRK.TMP on this device. The period before the ASSIGN command indi-
cates the command was typed in response to the RT11 keyboard monitor
prompt (.) . On RSTS/E, you switch into another run-time system, such as
RT11, by running the SWITCH program .

2.3 File Specification Switches

At assembly time, you may need to override certain MACRO directives
appearing in the source programs. You may also need to tell MACRO-11
how to handle certain files during assembly . You can satisfy these needs by
including special switches in the MACRO-11 command string in addition
to the file specifications . Table 2-2 lists the switches and describes their
effects .

2-6

	

MACRO-11 Program Assembly

Table 2-2:

	

File Specification Switches

The /M and /P switches affect only the particular source file specification
to which they are directly appended in the command string . Other switches
are unaffected by their placement in the command string . The /L switch,
for example, affects the listing file, regardless of where in the command
string you place it .

The following sections describe how to use the file specification switches .

2.3.1 Listing Control Switches

Use the /L:arg and /N:arg switches with the set of arguments in Table 2-3
to control the content and format of assembly listings . At assembly time,
you can override the arguments of LIST and NLIST directives in the
source program . If you use the /L:arg or /N:arg switch, the directives .LIST
and NLIST cannot control that particular switch in the source . For
example, specifying /N:CND disables the listing of unsatisfied conditionals
even if LIST CND is present in the source .

Figure 2-1 shows an assembly listing of a small program . This listing
labels each important feature with the mnemonic name that determines
its appearance on the listing ; the argument SEQ, for instance, controls the
appearance of the source line sequence numbers .

The system has default settings for the /L and /N switches when you do
not include arguments :

" The /L switch without an argument causes the system to ignore LIST
and NLIST directives that have no arguments .

" The /N switch without an argument causes the system to list only the
symbol table, the table of contents, and error messages .

MACRO-11 Program Assembly

	

2-7

Switch Usage

/L[:arg]* Listing control, overrides source program directives LIST and NLIST

/N[:arg]* Listing control, overrides source program directives LIST and NLIST

/E :arg** Object file function enabling, overrides source program directives ENABL
and DSABL

/D:arg** Object file function disabling, overrides source program directives ENABL
and DSABL

/M Indicates input file is a MACRO library file

/C[:arg] Requests or controls contents of cross-reference listing

/P:arg Specifies whether input source file is to be assembled in pass 1 or pass 2
only, rather than both passes

* Both /L and /N disable LIST and NLIST for the argument(s) specified ; however, /L
turns it on, and /N turns it off.

** Both /E and /D disable ENABL and DSABL for the argument(s) specified ; however,
/E turns it on, and /D turns it off.

.T'TYItd= **

VIRTUAL MEMORY USED : 8192 WORDS (32 PAGES)
DYNAMIC MEMORY AVAILABLE FOR 71 PAGES
+MAIN .LSTi'L :MEH7C :S :E :F' :R :M :C=MAIN .MAC E COPY OF COMMAND STRING THAT REQUESTED LISTING

MK-00431-00

FSRC.MAIN . MACRO V04 .00 26-JUL-61 '1 :29 : :1 PAGE 1

BIN COM

OQ
1 000012 lF'= 012 ;SYMBOL FOR LINE FEED
2 LOC MCAI_L . TTY IN+ EX :f 'i (p
3 BEX MACRO CALL. NAME ;DEFINE A USER MACRO
4 MD JSR PC r NAME"
5 ENUM

AU 6 000000 000000 000000 000000 GLOBAL SUHR1r SUHR2 ;TWO EXTERNAL SUBROUTINES
7 000000 CSECT F'RDG ;DEFINE A CSECT
8 000000 012702 000050' START : MOV HUFFER+R2 ;R2 = ADRS(BUFFER)

AU 9 000004 000000 000000 1$ TTYTN ;REAL; A CHAR INTO RO
10 000010 110022 MOVH ROr(R2)+ ;AND STORE IN BUFFER b
1.1 000012 120027 000012 CMF'H ROY LF ;WAS IT A LINE FEE[? (p

AU 12 000016 001377 RN E 13 ;NOf'E - KEEP READING
].3 000020 105022 CLRH (R2)+ ;ELSE FLAG END OF LINE WITH ZERO
14 000022 012703 000050' MOV HUFFER+fi ;~ ;R3 = ADRS(BUFFER) FOR SUHR1
15 000026 CALL SUHR1 ;INVOKE CALL MACROU 000026 004767 000000 JSR PC 7 SUBR 1.

MC16 000032 103762 HCS START ;GET A NEW LINE IF CARRY SET
17 000034 L-*4_CALL SUHR2 ;ELSE CALL. OTHER SUBRU 000034 004767000000 JSR F'C+SUHR :'
18 000040 010067 000002 MOV RO+ANSWEF: ;AND STORE IN ANSWER ~'
].9 000044 EXIT ;RETURN TO RT-11

000044 104350 MEB EMT 0350
20 000046 ANSWER : BLKW ;DEFINE ANSWER STORAGE
'?1 000050 BUFFER : HLKH 72 . ;INPUT LINE BUFFER22 000000' END STAF;T

.MAIN . MACRO V04 .00 26-JUL-31 21 :29 :21 PAGE 1-].
I-'YMBOL TABLE

ANSWER 0000468 002 LF == 000012 SUHR1 .CiL .OHA=
BUFFER 0000508 002 START 0000008 002 SUHR2

. ADS . 000000 000
000006 001

FROG 000160 002
ERRORS DETECTED : 5

The following example lists binary code throughout the assembly using the
132-column line printer format and suppresses the symbol table listing :

*I tLP : /L :MEB/N :S'iM=FILE

Table 2-3:

	

Arguments for / L and /N Switches

2.3.2 Function Control Switches

The /E:arg and /D:arg switches allow you to enable or disable functions at
assembly time and thus influence the form and content of the binary object
file . These functions override ENABL and DSABL directives in the source
program; if you specify the /E :arg or /D:arg switch, the ENABL arg or
.DSABL arg directive no longer affect the particular argument that may
occur in the source .

Table 2-4 summarizes the acceptable / E and / D function arguments, their
normal default status, and the functions they control .

MACRO-11 Program Assembly

	

2-9

Argument Default Listing Control

SEQ List Source line sequence number

LOC List Address location counter

BIN List Generated binary code (includes BEX)

BEX* List Binary extensions

SRC List Source code

COM List Comments

MD List Macro definitions, repeat range definitions

MC List Macro calls, repeat range expansion

ME No list Macro expansions (includes MEB)

MEB No list Macro expansion binary code

CND List Unsatisfied conditionals, .IF and ENDC statements

LD No list List control directives with no arguments

TOC List Table of Contents

TTM No list 132-column line printer format when not specified, terminal
mode (SO-column mode) when specified

SYM List Symbol table

* This option applies to the listing of assembled binary code . There is room on a listing
line to display three octal words (one if TTM is set) of assembled code . If you assemble a
source statement that assembles to more than three words, only the first three are
listed if NLIST BEX is in effect . If LIST BEX is in effect, MACRO uses additional
lines to list all assembled words .

Table 2-4:

	

Arguments for /E and / D Switches

Use either the function control or listing control switch and arguments at
assembly time to override corresponding listing or function control direc-
tives in the source program . For example, assume that the source program
contains the following sequence :

.NLIST MEB

(MACRO references)

.LIST MEB

In this example, you disable the listing of MEB (Macro Expansion Binary)
code for some portion of the code and subsequently resume MEB listing . If
you indicate /L:MEB in the assembly command string, however, the sys-
tem ignores both the NLIST MEB and the LIST MEB directives . This
enables MEB listing throughout the program .

The PDP-11 MACRO Language Reference Manual contains more informa-
tion on the arguments for both the listing control and function control
switches .

2.3.3 Macro Library File Designation Switch

The /M switch is meaningful only if you append it to a source file
specification . It designates the source file as a macro library .

If the command string does not include the standard system macro library
SYSMAC .SML, the system automatically includes it as the last source file
in the command string .

2- 10

	

MACRO-11 Program Assembly

Argument Default Mode Function

ABS Disable Produces output in paper tape absolute binary format
instead of a standard object file .

AMA Disable Assembles all relative addresses as absolute addresses .
Replaces all uses ofrelative addressing mode (mode 67)
by absolute addressing (mode 37) .

CDR Disable Ignores all source information beyond column 72 .

CRF Enable Allows cross-reference listing . Disabling this function
inhibits CREF output even if switch /C is active .

FPT Disable Truncates floating point values (instead of rounding) .

GBL Disable Treats undefined symbols as globals .

LC Disable Allows lowercase ASCII source input .

LSB Disable Allows local symbol block (not recommended in /E:arg
or /D:arg) .

PNC Enable Allows binary output .

REG Enable Automatically defines register mnemonics if enabled .
You should set or clear the REG argument at the
beginning of the source module.

When the assembler encounters an MCALL directive in the source code, it
searches macro libraries according to their order of appearance in the com-
mand string . When it locates a macro record whose name matches that
given in the MCALL, it assembles the macro as indicated by that defini-
tion . Thus, if two or more macro libraries contain definitions of the same
macro name, the macro library that appears leftmost in the command
string takes precedence .

For example:

* <output

	

file

	

specification> = AL I B . MAC / M t BL I B ,MAC / M t ;; I Z

Assume that each of the two macro libraries, ALIB and BLIB, contains a
macro called BIG, but with different definitions . Then, if source file XIZ
contains a macro call MCALL BIG, the system includes the definition
of BIG in the program as it appears in the macro library ALIB.

Moreover, if macro library ALIB contains a definition of a macro
called READ, that definition of READ overrides the standard READ
macro definition in SYSMAC.SML.

2.3.4 Cross-Reference (CREF) Table Generation Switch

A cross-reference (CREF) table lists all or a subset of the symbols in a
source program, identifying the statements that define and use symbols .

2.3.4 .1 Obtaining a Cross-Reference Table - To obtain a CREF table, you
must include the /C[:arg] switch in the command string . Usually you
include the /C[:arg] switch with the assembly listing file specification .
However, you can place it anywhere in the command string .

If the command string does not include a CREF file specification, the sys-
tem automatically generates a temporary file on the system device (DK :) .
(See Section 2.3 .4.2 .) To store the temporary CREF file on a device other
than DK:, you must include the dev:cref field in the command string or
assign CF: to another device .

A complete CREF listing contains the following six sections :

1 . A cross reference of program symbols ; that is, labels used in the
program and symbols defined by a direct assignment statement .

2 .

	

A cross reference of register symbols . These normally include the sym-
bols R0, R1, R2, R3, R4, R5, SP, and PC, unless the REG function has
been disabled through a DSABL REG directive or the /D:REG switch
(in which case registers are treated as normal symbols and show up in
the first symbol section) .

3 .

	

A cross reference of macros; that is, those symbols defined by MACRO
and MCALL directives .

4 .

	

A cross reference of permanent symbols ; that is, all operation mnemon-
ics and assembler directives .

MACRO-1 1 Program Assembly

	

2-11

5.

	

A cross reference of program sections . These symbols include the names
you specify as operands of the CSECT, ASECT, or PSECT directive .
Also included are the default program sections produced by the assem-
bler, the blank p-sect, and the absolute p-sect, ABS .

6 .

	

A cross reference of errors . MACRO detects certain types of program-
ming and syntax errors in your source code and flags them with a one-
letter error code . In the error section of a CREF table, MACRO groups
and lists the errors by type .

The one-letter error codes also appear in the assembly listings .

Section 2.4 describes the one-letter codes MACRO prints to identify
programmer level errors ; Appendix B lists the input-output level error
messages that may, for example, result from specifying an incorrect
command string or from problems with 1/0 devices .

You can include any or all of these six sections on the cross-reference list-
ing by specifying the appropriate arguments with the / C switch . Table 2-5
contains a description of these arguments .

Table 2-5:

	

/ C Switch Arguments

NOTE

Specifying / C with no arguments is equivalent to specifying
/C :S:M:E: . Except for that special case, you must explicitly
request each CREF section by including its arguments . The
/ C switch must be used to produce a cross-reference file even
if the command string includes a CREF file specification .

2.3.4.2 Handling Cross-Reference Table Files - When you request a cross-
reference listing with the / C switch, the system generates a temporary file,
DK:CREF.TMP .

If device DK: is write-locked or if it contains insufficient free space for the
temporary file, you can allocate another device for the file . To allocate
another device, specify a third output file in the command string ; that is,
include a dev:cref specification . (You must still include the /C switch to
control the form and content of the listing . The dev:cref specification is
ignored if the /C switch is not also present in the command string.)

2-12

	

MACRO-11 Program Assembly

Argument CREF Section

S User-defined symbols

R Register symbols

M MACRO symbolic names

P Permanent symbols, including instructions and directives

C Control and program sections

E Error code grouping

The system then uses the dev:cref file instead of DK:CREF.TMP and
deletes it automatically after producing the CREF listing .
The following command string causes the system to use DB2:TEMP.TMP
as the temporary CREF file :
*tLP :tDB2 :TEMP .TMP/C=SOURCE

Another way to assign an alternate device for the CREF.TMP file is to
enter the following command before typing RUN $MACRO:

.ASSIGN dev : CF
This method is preferred if you intend to do several assemblies, because it
relieves you from having to include the dev: cref specification in each com-
mand string . If you enter the ASSIGN dev : CF command (there should be a
space between dev: and CF) and later include a CREF file specification in a
command string, the specification in the command string is in effect for
that assembly only .

The system lists requested cross-reference tables following the MACRO
assembly listing . Each table begins on a new page . (Figure 2-2 combines
the tables to save space.)
Figure 2-2: Cross-Reference Table
.MAIN . MACRO Y04 .()0 2G-JUL-81 21 :29 :21 PAGE S-1
CROSS REFERENCE TABLE (CREF V04 .00)

.GLOBA 1-G

.TTYIN 1-9
ANSWER 1-18* 1-20
BUFFER 1-8 1-14 1-21
LF

	

1-1 1-11
START 1-8 1-16 1-22
SUBR1 1-G 1-15
SUBR2 1-G 1-17

.MAIN . MACRO Y04 .00 2G-JUL-81 21 :29 :21 PAGE R-1
CROSS REFERENCE TABLE (CREF Y04 .00)

PC 1-15* 1-17*
Roi 1-10 1-11 1-18
R2 1-8* 1-10* 1-13*
R3 1-14*

.MAIN . MACRO 1,1(14 .0o "G-JUL-81 21 :29 :21 PAGE M-1
CROSS REFERENCE TABLE (CREF Y04 .00)

.EXIT 1-~ 1-19

.TTYIN

	

1 -
CALL 1-3 1-15 1-17

.MAIN . MACRO Y04 .0o 2G-JUL-81 21 :29 :21 PAGE C-1
CROSS REFERENCE TABLE (CREF Y04 .00)

0_0
ABS . 0_0

PROG 1-7

.MAIN . MACRO Y04 .i)ti 2G-JUL-81 21 :29 :21 PAGE E-1
CROSS REFERENCE TABLE (CREF Y04 .00)

A

	

1-G 1-9 1-1
U

	

1-G 1-9 1-I 1-15 1-17

MACRO-11 Program Assembly

	

2-13

The system prints symbols and also symbol values, control sections, and
error codes, if applicable, beginning at the left margin of the page. Refer-
ences to each symbol are listed on the same line, left-to-right across the
page . The system lists references in the form p-1 ; where p is the page in
which the symbol, control section, or error code appears, and 1 is the line
number on the page .

A pound sign (#) next to a reference indicates a symbol definition . An
asterisk (*) next to a reference indicates a destructive reference-that is, an
operation that alters the contents of the addressed location or register .

2.3.5 Assembly Pass Switch

The /P:arg switch is meaningful only if you append it to a source input file
specification . You must specify either of two arguments with it : 1 or 2 .

The specification /P:1 calls for assembly of the file during pass 1 only .
Some files consist entirely of code that is completely assembled at the end
of pass 1 . Definition files (prefix files containing only symbol definitions)
are a good example. At the end of pass 1, all definitions have been pro-
cessed; they are retained for pass 2 and do not need to be scanned again.
(You should not put macro definitions for self-modifying macros in /P:1
files.) Note that listing, cref and object output take place in pass 2, so
specifying /P:1 on a file causes it to be omitted from listing and cref, and
should not be used on files that generate code . By specifying /P:1 for these
files, you can cause MACRO-11 to skip processing of these files through
pass 2. In some cases, this procedure can save considerable assembly time .

The specification /P:2 calls for assembly of the file during pass 2 only .
(Note: Situations where the /P:2 switch can be meaningfully employed are
unusual .)

2.4 MACRO-11 Error Codes and Messages

MACRO can detect errors on two levels : programming and input-output .
Section 2 .4.1 describes the single character codes that identify MACRO
programming level errors . A brief explanation of input-output errors
appears in Section 2.4.2 . For descriptions of these error messages, refer to
Appendix B .

2.4.1 Programming Level Errors

Programming level errors are mistakes in source code syntax or faulty
program logic . MACRO indicates an error on this level with a single error
code . These codes automatically appear on the assembly listings . Consider
the following :

1 .

	

MACRO prints programming level error codes on the left margin of the
assembly listing, preceding the source line sequence numbers, when
the / L:TTM switch or the LIST TTM directive has not been used .

2-14

	

MACRO-1 1 Program Assembly

2.

	

MACRO prints error codes on the assembly listing following a field of
six asterisk characters, when you request a listing in terminal,
80-column format (with /L:TTM or LIST TTM). The source statement
containing the error follows on the next line. For example:

****** A
26 00236 400002'

	

WORD RELI+REL2

3 . MACRO also prints programming error codes on the cross-reference
listing if you specify /C :E in the MACRO command string .

Table 2-6 shows the error codes that might appear on an assembly listing.
For more information on error code interpretation and debugging, see the
PDP-11 MACRO-11 Language Reference Manual.

Table 2-6: MACRO-11 Error Codes

(continued on next page)

MACRO-1 1 Program Assembly

	

2-15

Error Code Meaning

A Addressing or relocation error . This message can be generated by any of
the following :

1 . A branch instruction target that is too far above or below the current
statement . Branch targets must be within -128 to -127 (decimal)
words of the instruction . (A special case is the branch target for the
SOB instruction which must be within 64 decimal words, backward
only .)

2 . A statement that makes an illegal change to the current location
counter . For example, a statement that forces the current location
counter to cross a YSECT boundary generates this message .

3 . A statement that contains an invalid address expression . For exam-
ple, an absolute address expression that has a global symbol, relocat-
able value, or complex relocatable value generates this message . The
directives BLKB, BLKW, and REPT must have an absolute value
or an expression that reduces to an absolute value .

4 . Separate expressions in the statement that are not separated by
commas .

5 . A global definition error . If ENABL GBL is set, MACRO-11 scans
the symbol table at the end of the first pass and marks any undefined
symbols as global references . If one of these symbols is subsequently
defined in the second pass, a general addressing error occurs .

6 . A global assignment statement that contains a forward reference to
another symbol .

7 . An expression that defines the value of the current location counter
and contains a forward reference .

8 . An illegal argument for an assembler directive .

9 . An unmatched delimiter or illegal argument construction .

B Instruction or word data are being assembled at an odd address . The
assembler increments the location counter by 1 and continues .

Table 2-6: MACRO-11 Error Codes (Cont.)

2- 16

	

MACRO-11 Program Assembly

Error Code Meaning

D Reference was made to a multiply defined nonlocal label .

E The END assembler directive at the end of the source input is missing.
The assembler supplies a END statement and completes the current
assembly pass .

I MACRO-11 has detected one or more illegal characters . This often occurs
when a line feed does not follow a carriage return, which can easily
happen while using a source editor . A question mark (?) replaces each
illegal character on the assembly listing, and MACRO-11 continues after
ignoring the character.

L An input line is longer than 132 characters . In particular, this error
occurs when the expansion of a macro causes excessive substitution of
real arguments for dummy arguments .

M A nonlocal label is the same as an earlier label (multiple definition of a
label) . For example, two labels whose first six characters are identical
can generate this error . The error occurs on both definitions ofthe label .

N A number is not in the current program radix . MACRO-11 processes this
number as a decimal value .

O Op-code error . Directive is out of context . Exceeding the permitted
nesting level for conditional assemblies causes this error . Attempting to
expand a macro that remains unidentified after a MCALL search can
also generate this message .

P 1 . Phase error . The definition or value of a label differs from one assem-
bler pass to the next, or a local symbol occurs more than once in a
local symbol block .

2 . Program-defined error . Generated if a ERROR directive is assembled .

Q Questionable syntax . Missing arguments, too many arguments, or an
incomplete instruction scan generates this error message .

R Register-type error . An invalid use of or reference to a register has been
made, or an attempt has been made to redefine a standard register sym-
bol without first issuing the DSABL REG directive . For example, this
error can be caused by illegal register numbers (such as FOO = %10) or by
the use of a nonregister in a place where a register is required, such as
MOV 10(FOO),BAR .

T Truncation error . The expression is too large for the context . An expres-
sion generated more than 8 significant bits during the use of the BYTE
directive or trap (EMT, TRAP, and so forth) instruction or more than 6
bits on a SOB or MARK instruction or improper addressing mode - not
register or registered deferred - in a floating point instruction .

U Undefined symbol . An undefined symbol was encountered during the
evaluation of an expression ; the assembler assigns the undefined symbol
a constant zero value .

Z Incompatible instruction . This message is a warning that the instruction
does not behave the same for all PDP-11 hardware configurations .

2.4.2 Input-Output Level Error Messages

Input-Output (I/O) level error messages appear when you specify incorrect
command strings to MACRO or when problems arise with I/O devices .
Error messages of this type have the following format :

?MACRO-n-message

Refer to Appendix B for the description of input-output level error messages
that MACRO produces .

MACRO-11 Program Assembly

	

2-17

Chapter 3
Linker (LINK)

The linker (LINK) converts object modules to a format suitable for loading
and execution . This chapter describes how to perform the link operation .
The organization of this chapter is :

Section 3 .1

	

Overview of the Linking Process explains some of the terms
used exclusively in this chapter, the functions of the linker,
how the linker structures your program to prepare it for exe
cution, and the communication links between modules
within your program .

Section 3.2

	

Running and Using the Linker describes how to run the
linker from the keyboard monitors available to you on your
RSTS / E system and describes the syntax for input and out
put file specifications . This section also summarizes the
switches you use to adjust the output of the link operation .

Section 3.3

	

Input and Output lists and describes the files that are valid
for input to and output from the linker . This section also
explains how to use library files, and how the linker pro
cesses library files, which you create with the librarian util-
ity (see Chapter 4) .

Section 3 .4

	

Creating an Overlay Structure describes how to design and
implement overlay structures for your programs. This sec-
tion provides descriptions and illustrations of how overlaid
programs work and how they reside in memory .

Section 3.5

	

Switch Descriptions lists and describes the switches you can
use with the linker.

Section 3.6

	

Linker Prompts lists and explains the prompts the linker
prints at the terminal after you enter a command line .

Linker (LINK)

	

3-1

3.1 Overview of the Linker Process

3-2

	

Linker (LINK)

This chapter uses the following terms :

program section

	

A named, contiguous unit of code (instructions or data)
that is considered an entity and that can be relocated
separately without destroying the logic of the program.
Also known as p-sect .

object module

	

The primary output of an assembler or compiler, which
can be linked with other modules and loaded into mem-
ory as an executable program . The object module is
composed of the relocatable machine language code,
relocation information, and the corresponding global
symbol table defining the use of the symbols within the
program. Also known as a module .

load module

	

A program (in a format) ready for loading and
executing .

library file

	

A file, generated by the librarian, containing one or
more relocatable object modules that can be incorpo-
rated into other programs.

library module

	

A module from a library file .

root segment

	

The segment of an overlay structure that, when loaded,
remains resident in memory during the execution of a
program . Also known as the root .

overlay segment

	

A section of code treated as a unit that can overlay code
already in memory and be overlaid by other overlay
segments when called from the root segment or another
overlay segment. Also known as an overlay .

global symbol

	

A global value or global label.

low memory

	

Physical memory from 0 to 28K words.

3.1 .1 What the Linker Does

When the linker processes the loaded object modules, it :

" Relocates your program module and assigns absolute addresses

" Links the modules by correlating global symbols that are defined in one
module and referenced in another

*Creates the initial control block for the linked program that the RUN
command uses

" Creates an overlay structure, if specified, and includes the necessary run-
time overlay handler and tables

" Searches the library files you specify to locate unresolved global symbols

" Produces a load map, if specified, that shows the layout of the load
module

" Produces a symbol table definition file, if specified

The linker needs to make two passes over the input modules. During the
first pass it constructs the symbol table, which includes all program section
names and global symbols in the input modules . The linker then scans the
library files to resolve undefined global symbols. It includes from the librar-
ies only those modules that are required to resolve undefined global sym-
bols . During the second pass, the linker reads in object modules, performs
most of the functions listed above, and produces the load module .

3.1 .2 How the Linker Structures the Load Module

When the linker processes the assembled or compiled object modules, it
creates a load module, in which it has assigned all absolute addresses, has
created an absolute section, and has allocated memory for the program
sections .

3.1 .2.1 Absolute Section - The absolute section is often called the ASECT
because the assembler directive .ASECT allows information to be stored
there . The absolute section appears in the load map with the name . ABS.
and is always the first section in the listing . The absolute section ends at
the assigned "base" address (by default octal 1000) and contains :

" A system communication area

" The user stack

The system communication area resides in locations 0-377 and contains
data the linker uses to pass program control parameters and a memory
usage bitmap. Section 3 .3 .3 provides a detailed description of each location
in the system communication area .

The stack is an area that a program can use for temporary storage and
subroutine linkage . General register 6, the stack pointer (SP), references
the stack .

3.1 .2.2 Program Sections - The program sections (p-sects) follow the abso-
lute section . The set of attributes associated with each p-sect controls the
allocation and placement of the section within the load module . The p-sect,
as the basic unit of memory for a program, has :

" A name by which it can be referenced

" A set of attributes that define its contents, mode of access, allocation, and
placement in memory

" A length that determines how much storage is reserved for the p-sect

Linker (LINK)

	

3-3

3-4

	

Linker (LINK)

You create p-sects by using a COMMON statement in FORTRAN or the
.PSECT (or CSECT) directive in MACRO . You can use the PSECT direc-
tive to attach attributes to the section . (The CSECT directive automati-
cally supplies a fixed set of attributes .) Note that the attributes that follow
the p-sect name in the load map are not part of the name; only the name
itself distinguishes one p-sect from another . You should make sure, then,
that p-sects of the same name that you want to link together also have the
same attribute list . If the linker encounters p-sects with the same name but
with different attributes, it prints a warning message and uses the
attributes from the first time it encountered the p-sect .

Program Section Attributes

The linker collects from the input modules any references to a p-sect and
combines them in a single area of the load module . The attributes, which
are listed in Table 3-1, control the way the linker collects and places this
unit of storage .

Table 3-1:

	

P-sect Attributes

* Ignored by the linker

Attribute Value Explanation

access-code* RW Read /Write - data can be read from, and written into, the
p-sect .

RO Read Only - data can be read from, but cannot be written into,
the p-sect .

type-code D Data - the p-sect contains data, concatenated by byte .
I Instruction - the p-sect contains either instructions, or data

and instructions, concatenated by word . (That is, each contribu-
tion to an I-type p-sect is rounded up to an even length .)

scope-code GBL Global - the p-sect name is recognized across segment bound-
aries . If all contributions to this p-sect are in a single segment,
the p-sect is allocated in that segment . Otherwise, it is allo-
cated in the root . In that case, all contributions are combined
into the root regardless of which segment they occurred in .

LCL Local - the p-sect name is recognized only within each individ-
ual segment . The linker allocates storage for the p-sect in each
segment from contributions within that segment only .

reloc-code REL Relocatable - the base address of the p-sect is relocated rela-
tive to the virtual base address of the program .

ABS Absolute - the base address of the p-sect is not relocated. It is
always 0 .

alloc-code CON Concatenate - all allocations to a given p-sect name are
concatenated . The total allocation is the sum of the individual
allocations .

OVR Overlay - all allocations to a given p-sect name overlay each
other. The total allocation is the length of the longest individ-
ual allocation .

The scope-code is meaningful only when you define an overlay structure for
the program. In an overlaid program, a global section is known throughout
the entire program . Object modules contribute to only one global section of
the same name. If two or more segments contribute to a global section, then
the linker allocates that global section to the root segment of the program.
In contrast to global sections, local sections are known only within a partic-
ular program segment . Because of this, several local sections of the same
name can appear in different segments . Thus, several object modules con-
tributing to a local section do so only within each segment . An example of a
global section is named COMMON in FORTRAN. An example of a local
section is the default blank section for each macro routine .

The alloc-code determines the starting address and length of memory allo-
cated by modules that reference a common p-sect . If the alloc-code indicates
that such a p-sect is to be overwritten, the linker stores the allocations from
each module starting at the same location in memory . It determines the
total size from the length of the longest contribution to the p-sect . Each
module's allocation of memory to a location overwrites that of a previous
module . If the alloc-code indicates that a p-sect is to be concatenated, the
linker places the allocations from the modules one after the other in the
load module; it determines the total allocation from the sum of the lengths
of the contributions .

Any data (D) p-sect that contains references to word labels must start on a
word boundary. This is done with the EVEN assembler directive at the end
of each module's concatenated p-sect . If this is not done, the program may
fail to link, printing the message:

?LINK-F-Word relocation error

It may also fail at execution time with ?Odd address trap or some other
similar message .

The allocation of memory for a p-sect always begins on a word boundary. If
the p-sect has the D (data) and CON (concatenate) attributes, all storage
contributed by subsequent modules is appended to the last byte of the
previous allocation . This occurs whether or not that byte is on a word
boundary. For a p-sect with the I (instruction) and CON attributes, how-
ever, all storage contributed by subsequent modules begins at the nearest
following word boundary.

In any p-sect with the ABS attribute, except for the ASECT, data is
ignored . Thus, in the following example, the first case is treated like the
second case :

Linker (LINK)

	

3-5

Case 1

.PSECT FOOtABS
A : : WORD 100

Case 2

.PSECT FOOtABS
A : : BLKW 1

3-6

	

Linker (LINK)

That is, the linker pretends the length is zero for allocation purposes . Such
p-sects are used as a way of defining absolute global symbol values.
(ABS p-sects primarily facilitate symbolic memory layouts.) For each ABS
p-sect, address assignment starts at zero . But if CON is used, the individual
contributions are assigned one after the other.

The CSECT directive of MACRO is converted internally by MACRO to an
equivalent .PSECT with fixed attributes . An unnamed CSECT (blank sec-
tion) is the same as a blank PSECT with the attributes RW, I, LCL, REL,
and CON. A named CSECT is equivalent to a named PSECT with the
attributes RW, I, GBL, REL, and OVR. Table 3-2 shows these sections and
their attributes .

Table 3-2:

	

Section Attributes

The names assigned to p-sects are not global symbols; you cannot reference
them as such . For example:

Mov

	

#PNAME tRO

This statement, where PNAME is the name of a section, is invalid and
generates the undefined global error message if no global symbol of
PNAME exists . A name can be the same for both a p-sect name and a global
symbol . The linker treats them separately .

Program Section Order

The linker determines the memory allocation of p-sects by the order of
occurrence of the p-sects in the input modules. Table 3-3 shows the order in
which p-sects appear for both overlaid and nonoverlaid files .

Table 3-3:

	

P-sect Order

Section
access-
code

type-
code

scope-
code

reloc-
code

alloc-
code

CSECT RW I LCL REL CON

CSECT name RW I GBL REL OVR

ASECT (. ABS.) RW I GBL ABS OVR

COMMON/name/ RW D GBL REL OVR

Nonoverlaid Overlaid

Absolute (. ABS.) Absolute (. ABS.)

Blank Overlay handler ($OHAND)

Named (NAME) Overlay table ($OTABL)
Blank
Named (NAME)

If there is more than one named section, the named sections appear in the
order that they occur in the input files .

If the size of the blank p-sect is 0, it does not appear in the load map.

3.1 .3 Global Symbols: Communication Links Between Modules

Global symbols provide the link, or communication, between object mod-
ules . You create global symbols with a double colon (: :), with a double equal
sign (= =), with a double equal sign and a single colon (= = :), or by speci-
fying the name of a defined symbol in a GLOBL directive . If you define the
global symbol in an object module (as a label using : : or by direct assign-
ment using = =), other object modules can reference it . If the global symbol
is not defined in the object module, it is an external symbol and is assumed
to be defined in some other object module . If you use a global symbol as a
label in a routine, it is often called an entry point - that is, it is an entry
point to that subroutine .

As the linker reads the object modules, it keeps track of all global symbol
definitions and references . It then modifies the instructions and data that
reference the global symbols . The linker always prints undefined globals on
the console terminal after pass 1. If you request a load map on the terminal,
undefined globals also appear at the end of the load map.
Table 3-4 shows how the linker resolves global references when it creates
the load module .

Table 3-4:

	

Global Reference Resolution

In processing the first module, IN1, the linker finds definitions for B1 and
B2 and references to A, L1, C1, and XXX. Because no definition currently
exists for these references, the linker defers the resolution of these global
symbols . In processing the next module, IN2, the linker finds a definition
for A that resolves the previous reference and a reference to B2 that can be
immediately resolved .

When all of the object modules have been processed, the linker has three
unresolved global references remaining : L1, C1, and XXX. A search of the
default system library resolves XXX. The global symbols L1 and C1 remain
unresolved and are, therefore, listed as undefined global symbols.

Linker (LINK)

	

3-7

Module
Name

Global
Definition

Global
Reference

IN1 131 A
132 L1

C1
XXX

IN2 A 132
131

IN3 131

The relocatable global symbol, B1, is defined twice and is listed on the
terminal as a global symbol with multiple definitions . The linker uses the
first definition of such a symbol . An absolute global symbol can be defined
more than once without being listed as having multiple definitions, as long
as each occurrence of the symbol has the same value.

3.2 Running and Using the Linker

This section describes how to start the linker, how to create a valid com-
mand line, and how to use the switches to help you generate the output you
need.

3.2.1 Running LINK

There are a number of ways to run the linker program. The method you use
depends on the keyboard monitor that interprets your commands. The only
exception to this rule is the RUN command; it starts the linker from any of
the keyboard monitors that come with your RSTS / E system. To run the
linker from the system device with the RUN command, respond to any of
the RSTS/E keyboard monitor prompts by typing :

RUN $LINK 0
at

If your system manager has installed the LINK program as a Concise Com-
mand Language (CCL) command (such as LIN-K) and your keyboard moni-
tor is not DCL, you can run LINK by typing :

3-8

	

Linker (LINK)

In either case, LINK prints an asterisk prompt when the linker is ready to
accept a command line . (If you press the RETURN key only, the linker
prints its current version number.) When using the LINK CCL command,
you have the added option of placing an entire command specification on
one line, as in the format :

LINK <output-filespec> = <input-filespec>

After you press the RETURN key, LINK processes the command line and
returns you to your keyboard monitor prompt . You must start the linker
again if you have other files to link . Section 3 .2 .2 describes the input and
output file specifications you use with the linker program .

As stated before, you can start the LINK program with the RUN command
from the DCL keyboard monitor . But there are two commands you can use
to run the linker when your keyboard monitor is DCL:

e With the CCL LINK

" Using the LINK/RT11 command

The first command actually consists of the "CCL" prefix and the name of a
valid CCL command, in this case LINK. This syntax allows you to use CCL
commands under DCL. The second command gives you the option to run
the linker in DCL if DCL is your keyboard monitor and you plan to do most
of your program development from this environment .
To use the CCL LINK command in DCL, you must type, while at the DCL
dollar prompt ($), the three-letter prefix "CCL", a space, and then the CCL
command that your system manager has assigned to the LINK program . If
the assigned CCL is LIN-K, for example, you would run the linker by
typing a command line in the form:

CCL LINK ae

The linker prints the asterisk prompt indicating that the program is ready
to accept command input. As with using a CCL command under the control
of a keyboard monitor other than DCL, you can place a complete command
file specification on one line :

$ CCL LINK <output-filespec> = <input-filespec>[/switch], . . .
The linker returns you to the DCL dollar prompt after executing the com-
mand. Section 3.2 .2 describes the formats to use for the input and output file
specifications .

The DCL LINK/RT11 command consists of the command name "LINK"
and the switch " /RT11" . You must include the /RT11 switch when you
need to use the RT11-based linker, unless your system manager has made
it the default . The syntax for the command line is :

$ LINK/RT11 <filespeci[, . . .,filespecn[/switch(es)]]>

As an alternative, you can type LINK/ RT11 in response to the DCL dollar
prompt, and then press the RETURN key. DCL prints a prompt to which
you enter file information in the following form:

$ LINK /RT11
Files :

	

<filespeci[, . . .,fi1especn[/switches)]]>

Whether you enter information on one line or in response to the FILES
prompt, the form in which you enter information is the same. (Essentially,
DCL treats the RETURN reponse like a space, after which it expects a
command line.) DCL syntax accepts up to six input files (i thru n) . If you do
not include a file type, DCL assumes the file type is OBJ . To suit the type
of link you need to perform, use the switches described in Table 3-5.
The following example illustrates how to link FILE1 and FILE2 using the
/ EX = file and / MAP switches :

LINK/RT11
Files :

	

FILE 1 tFILE2/EX=FILE/MAP

Linker (LINK)

	

3-9

Table 3-5: LINK/RT11 Command Switches

The linker creates an executable file FILE.SAV and the map file
FILEMAP and returns to the DCL dollar prompt. You can create the same
results with a LINK/RT11 command in the form :

LINK/RT11 FILE1tFILE2/EX=FILE/MAP

3- 10

	

Linker (LINK)

The linker again creates FILE .SAV and FILEMAP and returns to DCL
command level . Be sure, when you run the linker with a single command
line, that you include a space between the /RT11 switch and the beginning
of the file specification(s) . The switches in Table 3-5 can be located any-
where on the command line but are generally placed at the end . (Refer to
the RSTS lE DCL User's Guide for more information about the LINK
command .)

Type CTRL / C to stop the linker at any time, or use CTRL /Z to stop the
linker when it is waiting for input at its asterisk prompt (*) . In either case,
control returns to your keyboard monitor .

Switch Meaning

/EXECUTABLE Use the name of the first input file for the name of the
executable file . If you do not include this switch, DCL assumes
/EXECUTABLE as the default . The short form of this switch
is /EX .

/EXECUTABLE =file Use file for the name of the executable file . DCL selects SAV if
you do not include a file type . The short form of this switch
is /EX=file .

/NOEXECUTABLE Do not generate an executable file . You must specify /MAP
when using the /NOEXECUTABLE switch . The short form of
this switch is /NOEX.

/MAP Use the name of the executable file (implicit or explicit file dec-
laration) as the name of the map file . If you do not include a file
type, DCL uses MAP. The short form of this switch is /MA .

/MAP=file Use file as the name of the map. DCL selects MAP as the file
type when you do not include a file type in the file specification .
The short form of this switch is / MA = file .

/NOMAP Do not generate a map file . DCL does not create a map file
unless you explicitly include the /MAP switch . This means you
do not need to use /NOMAP if you do not want a map file;
/NOMAP is the default . You cannot use /NOMAP with
/NOEXECUTABLE . DCL accepts /NOMA as the short form
of /NOMAP.

3.2.2 LINK Command Line Specification

If you are under the control of a keyboard monitor other than DCL, the
format of the first command string you enter in response to the linker's
prompt is :
[bin-filespec],[map-filespecl,[sym-filespecl= obj-filespec[/switch . . .][. . . . obj-filespec[/switch . . .11

The definitions for these file specifications are :

bin-filespec

	

Represents the file specification assigned to the linker's
output load module file

map-filespec

	

Represents the file specification of the load map output
file

sym-filespec

	

Represents the file specification of the symbol definition
file

obi-filespec

	

Represents the file specifications for an object module, a
library file, or a symbol table file created in a previous
link

/switch

	

Represents one of the switches listed in Table 3-7

Chapter 1 describes the correct format for a RSTS /E file specification.

In each file specification above, the device should be a random-access
device, except that the output device for the load map file can be any
RSTS / E device . If you do not specify a device, the linker uses a default as
shown in Table 3-6 .

If you do not specify an output file, the linker assumes that you do not want
the associated output . For example, if you do not specify the load module
and load map (by using a comma in place of each file specification) or if you
leave out the output side up to and including the equal sign, the linker
prints only error messages, if any occur . Ordinarily, the linker generates at
least one load module .

Table 3-6 shows the default values for each specification .

Table 3-6:

	

Linker Defaults

Linker (LINK)

	

3-11

Device File Name File Type

Load Module DK: None SAV
Map Output DR or same None MAP

as load
module

Symbol DK: or same None STB
Definition as previous
Output output device

Object Module DK: or same None OBJ
as previous
object module

3- 12

	

Linker (LINK)

If you make a syntax error in a command string, the linker prints an error
message and returns you to the asterisk prompt. You can then retype the
new command string . Similarly, if you specify a nonexistent file, an error
occurs ; the linker prints an asterisk after which you must type the com-
mand string again .

3.2.3 LINK Switches Briefly Noted

The switches associated with the linker are described in Table 3-7. To
properly use the switches, you must precede the letter representing each
switch by the slash character (/) . Switches must appear on the line indi-
cated if you continue the input on more than one line, but you can position
them anywhere on the line . The column titled Command Line lists on
which line in the command string the switch can appear . Section 3.5 pro-
vides a more detailed explanation of each switch .

Table 3-7:

	

Linker Switches

(continued on next page)

Switch
Name

Command
Line Section Explanation

/A First 3.5 .1 Lists global symbols in program sections in alphabeti-
cal order in the load map .

/B:n First 3.5 .2 Changes the bottom address of a program to n (invalid
with /H) .

/C Any but 3 .5 .3 Continues input specification on another command
last line . (You can also use /C with /O ; however, do not

use /C with the / / switch .)

/E:n First 3 .5.4 Extends a particular program section in the root to a
specific value .

/F First 3.5.5 Instructs the linker to use the default FORTRAN
library $FORLIB.OBJ to resolve any undefined global
references . Do not specify this switch in the command
line when $FORLIB has been incorporated into
$SYSLIB .

/G First 3.5 .6 Adjusts the size of the linker's library directory buffer
to accommodate the largest multiple definition
library directory .

/H:n First 3.5 .7 Specifies the top (highest) address to be used by the
relocatable code in the load module . Invalid with /B,
/Y, or /Q .

/I First 3 .5.8 Allows you to specify additional external global sym-
bols to be satisfied (typically from the libraries) . In
general, this is used to explicitly request the inclusion
of additional library modules .

/K:n First 3.5.9 Inserts the value you specify (the valid range for n is
from 1 to 28) into word 56 of block 0 of the image file .
This switch informs the RT11 run-time system that
the program requires nK words of memory .

3.3 Input and Output

Table 3-7:

	

Linker Switches (font.)

Linker input and output is in the form of modules; the linker uses one or
more input modules to produce a single output (load) module . The linker
also accepts library modules and symbol table definition files as input and
can produce a load map and/or symbol table definition file . The sections
that follow describe all valid forms of linker input and output .

Linker (LINK)

	

3-13

Switch
Name

Command
Line Section Explanation

/M[:n] First 3.5.10 Causes the linker to prompt you for a global symbol
that represents the initial stack address (if n is omit-
ted) or that sets the initial stack address to the value
n (if n is specified) .

/O:n Any but 3 .5.11 Indicates that the program is an overlay structure ; n
first specifies the overlay region to which the module is

assigned .

/P:n First 3.5.12 Changes the default amount of space the linker uses
for the library routines list .

/Q First 3.5 .13 Lets you specify the base addresses of up to eight root
program sections . Invalid with /H.

/S First 3.5 .14 Makes the maximum amount of space in memory
available for the linker's symbol table . (Use this
switch only when a particular link stream causes a
symbol table overflow .)

/T[:n] First 3.5.15 Causes the linker to prompt you for a global symbol
that represents the transfer address (if n is omitted)
or that sets the transfer address to the value n (if n is
specified) .

/U:n First 3.5.16 Rounds up the root program section you specify so
that the size of the root segment is an integer multi-
ple of the value you supply (n must be a power of 2) .

/W First 3 .5.17 Directs the linker to produce a wide load map listing.

/X First 3 .5.18 Does not output the bitmap if the area normally used
by the bitmap (location 360-377) is used by code .

/Y:n First 3 .5.19 Starts a specific program section in the root on a par-
ticular address boundary . Invalid with /H .

/Z:n First 3.5.20 Sets unused locations in the load module to the value
n (if n is omitted, the linker uses zero as the default) .

/ / First and 3.5 .3 Allows you to specify command string input on addi-
last tional lines . Do not use this switch with /C .

3-14

	

Linker (LINK)

3.3.1 Input Object Modules

Object files, consisting of one or more object modules, are the input to the
linker. (Entering files that are not object modules may result in a fatal
error.) Object modules are created by language translators such as the
FORTRAN compiler and the MACRO-11 assembler . The module name
item declares the name of the object module (see Section 3.3.4) .

The first six Radix-50 characters of the TITLE assembler directive are
used as the name of the object module . These six characters must be
Radix-50 characters (the linker ignores any characters beyond the sixth
character) . The linker prints the first module name it encounters in the
input file stream (normally the main routine of the program) on the second
line of the map following TITLE: . The linker also uses the first identity
label (issued by the IDENT directive) for the load map. It ignores addi-
tional module names.

The linker reads each object module twice . During the first pass, it reads
each object module to construct a global symbol table and to assign absolute
values to the program section names and global symbols . The linker uses
the library files to resolve undefined globals . It places their associated
object modules in the root . On the second pass, the linker reads the object
modules, links and relocates the modules, and outputs the load module .

Symbol table definition files are special object files that can serve as input
to the linker anywhere other object files are allowed .

3.3.2 Input Library Modules

The linker can automatically search libraries . Libraries consist of library
files, which are specially formatted files produced by the librarian program
(described in Chapter 4). The files contain one or more object modules that
provide routines and functions to aid you in meeting specific programming
needs. (For example, FORTRAN has a set of modules containing all neces-
sary computational functions - SQRT, SIN, COS, and so on.) You can use
the librarian to create and update libraries . Then you can easily access
routines that you use repeatedly or routines that different programs use .
Selected modules from the appropriate library file are linked as needed
with your program to produce one load module . Libraries are described in
more detail in Chapter 4.

You specify libraries in a command string the same way you specify normal
modules; you can include them anywhere in the command string . If you are
creating an overlay structure, specify libraries before you specify the over-
lay structure . If a global symbol is undefined at the end of pass 1 and if a
module in a library contains that global definition, then the linker pulls
that module from the library and links it into the load image . Only the
modules needed to resolve references are pulled from the library; unrefer-
enced modules are not linked .

Modules in one library can call modules from another library ; however, the
libraries must appear in the command string in the order in which they are
called . For example, assume module X in library ALIB calls Y from the
BLIB library . To correctly resolve all globals, the order of ALIB and BLIB
should appear in the command line as :

*Z=B AALIB tBLIB

Module B is the root . It calls X from ALIB and brings X into the root.
Module X in turn calls Y, which is brought from BLIB into the root .

Library Module Processing

The linker selectively relocates and links object modules from specific user
libraries that were built by the librarian . Figure 3-1 illustrates this gen-
eral process . During pass 1, the linker processes the input files in the order
in which they appear in the input command line . If the linker encounters a
library file during pass 1, it takes note of the library in an internal save
status block, and then proceeds to the next file . The linker processes only
nonlibrary files during the initial phase of pass 1 . In the final phase of pass
1, the linker processes only library files . This is when it resolves the unde-
fined globals that were referenced by the nonlibrary files .

The linker processes library files in the order in which they appear in the
input command line . The default system library (DK:$SYSLIB .OBJ) is
always processed last (if any undefined globals remain) .

The search method the linker uses allows modules to appear in any order in
the library . You can specify any number of libraries in a link and they can
be positioned anywhere, with the exception of forward references between
libraries, and they must come before the overlay structure . The default
system library, DK:$SYSLIB.OBJ, is the last library file the linker
searches to resolve any remaining undefined globals .

Some languages, such as FORTRAN, have an Object Time System (OTS)
that the linker takes from a library and includes in the final module . The
most efficient way to accomplish this is to include these OTS routines (such
as NHD, OTSCOM, and V2NS for FORTRAN) in DK:$SYSLIB.OBJ.

Libraries are input to the linker the same way as other input files . For
example:

*TASKCI1 tLP :=MAINtMEASUR

This causes program MAIN.OBJ to be read from DK: as the first input file .
Any undefined symbols generated by program MAIN.OBJ should be satis-
fied by the library file MEASUR.OBJ specified in the second input file . The
linker tries to satisfy any remaining undefined globals from the default
library DK:$SYSLIB .OBJ . The load module, TASKOLSAV, is stored on
DK: and a load map is printed on the line printer .

Linker (LINK)

	

3-15

Exit Pass

3- 16

	

Linker (LINK)

Figure 3-1 :

	

Library Searches

MK-00432-00

Yes

Yes

Close Library

Multiple Definition Libraries

In addition to the libraries explained so far, the linker processes multiple
definition libraries . Its primary purpose is to provide special functions for
RSTS/E. These libraries differ from other libraries in that they can contain
more than one definition for a given global . You specify multiple definition
libraries in the command line the same way you specify normal libraries .
Modules that the linker obtains from multiple definition libraries always
appear in the root .

It is useful to know the differences between processing normal and multiple
definition libraries . When you include modules from a multiple definition
library, the linker has to store that library's directory in an internal buffer .
A library's directory is called an entry point table (EPT) . If a library EPT is
too large to fit into the internal buffer, the linker prints a message asking
you to use the / G switch . The / G switch changes the buffer's size to accom-
modate the largest EPT of all the multiple definition libraries you are
using. Use the / G switch only when the linker indicates it is required .

When a global symbol in a module of a multiple definition library matches
an undefined global, LINK removes from the undefined global list all other
globals defined in the same module . LINK does this before it processes the
library module . Thus, two modules with identical globals do not appear in
the linked module .

3.3 .3 Output Load Module

Root Segment

	

Overlay
Segments
(optional)

NOTE

The order of modules in multiple definition libraries is very
important and affects which modules LINK uses . The in-
creased EPT size (due to duplicate entries, in addition to
module name entries) also slows LINK down.

The primary output of the linker is a load module that you can run under
RSTS/E . The linker creates as a load module a memory image file (file type
of SAV) for use under the RT11 Emulator (RT1LRTS).

The load module for a memory image file is arranged as follows :

The first 256-word block of the root segment (main program) contains the
memory usage bitmap and the locations the linker uses to pass program
control parameters . The memory usage bitmap outlines the blocks of mem-
ory that the load module uses ; it is located in locations 360 through 377.

Table 3-8 lists the parameters that appear in the absolute block, the
addresses the parameters occupy, and the conditions under which they are
set .

Linker (LINK)

	

3-17

3- 18

	

Linker (LINK)

Table 3-8: Absolute Block Parameters Information

The linker stores default values in locations 40, 42, and 50, unless you use
switches to specify otherwise . The /T switch affects location 40, for exam-
ple, and /M affects location 42 . You can also use the ASECT directive to
change the defaults . The overlay bit is located in the job status word. LINK
automatically sets this bit if the program is overlaid . Otherwise, the linker
initially sets location 44 to 0 .

You can assign initial values to memory locations 0-476 (which include the
interrupt vectors and system communication area) by using an ASECT
assembler directive . The values appear in block 0 of the load module, but
there are restrictions on the use of ASECT directives in this region . You
should not modify locations 360-377 because the memory usage map is
passed in those locations, unless you use the / X switch .

You can use an ASECT directive to set any location that is not restricted,
but be careful if you change the system communication area . The program
itself must initialize restricted areas, such as locations 360-377 at run
time .

3 .3 .4 Output Load Map

The linker can produce a load map following the completion of the initial
pass . This map, shown in Figure 3-2, illustrates the layout of memory for
the load module .

The load map lists each program section that is included in the linking
process . The line for a section includes the name and low address of the
section and its size in bytes . The rest of the line lists the program section
attributes, as shown in Table 3-2 . The remaining columns contain the
global symbols found in the section and their values .

Address Information When Set

14,16 BPT trap vector

20,22 IOT trap vector

34,36 TRAP vector

40 Start address of program always

42 Initial setting of SP (stack pointer) always

44 Job Status Word (overlay bit set by always
LINK)

50 Highest memory address used by the always
program (high limit)

56 Program size in K with /K

64 Start address of overlay table with /0

360-377 Memory usage bitmap always, except
with /X

The map begins with the linker version number, followed by the date and
time the program was linked . The second line lists the file name of the
program, its title (which is determined by the first module name record in
the input file), and the first identification record found. The absolute sec-
tion is always shown first, followed by any nonrelocatable symbols. The
modules located in the root segment of the load module are listed next,
followed by those modules that were assigned to overlays in order by their
region number (see Section 3.4). Any undefined global symbols are then
listed . The map ends with the transfer address (start address) and high
limit of relocatable code in both octal bytes and decimal words.

Figure 3-2: Sample Load Map

1 RT-11 LINK V06 .01

	

Load Mar

	

Wed 26-Au~S-81 12 :01 :10
TEST SAV Title : TEST Indent :

3
4 Section Addr Size Global Value Global Value Global Value
J
6

	

. ARS . 000000 000000

	

(RWPIYGBLPABSFOVR)
7

	

001000 000200

	

(RWPIYLCLYRELPCON)
B

	

TEST '001200 000174

	

(RWFIFLCLYRELYCON)
9

	

START 001200 EXIT 001240
10
11 Transfer address = 001200P Hish lirtiit = 001372 = 381 .

	

words

Table 3-9 describes each line in the sample load map above.

Table 3-9: Line-by-Line Sample Load Map Description

Linker (LINK)

	

3-19

Line Contents

1 Load map header .

2 Program name, program title (.MAIN . default) and identity (default is blank) .
4 P-sect description header . Section indicates the p-sect name; Addr indicates the

p-sect start address ; Size indicates p-sect length in octal bytes ; Global and Value
list the p-sect globals and their associated octal values .

6 Absolute p-sect, . ABS . This line includes the absolute p-sect's start address
(always 0), length and attributes (for a complete description of these abbrevia-
tions, see Table 3-2) .

7 Unnamed p-sect . This p-sect appears in the load map after the absolute p-sect . For
overlaid programs, the unnamed (blank) p-sect appears in the load map after the
overlay table p-sect .

S-9 TEST p-sect . Line 9 lists TEST's two globals, START and EXIT, with their associ-
ated values .

11 Transfer address indicates the address in memory where the program starts .
High limit indicates the last address used by the program . The number of words
in the program appears last .

3.4 Creating an Overlay Structure

3-20

	

Linker (LINK)

The linker's ability to handle overlays gives you virtually unlimited mem-
ory space for an assembly language or FORTRAN program. A program
using overlays can be much larger than would normally fit in the available
memory space because portions of the program reside on a disk . To use this
capability, you must define an overlay structure for your program.

An overlay structure divides a program into segments . For each overlaid
program, there is one root segment and a number of overlay segments .
Each overlay segment is assigned to a particular area of available memory,
called an overlay region . More than one overlay segment can be assigned to
a given overlay region. Each region of memory, however, is occupied by one
(and only one) of its assigned segments at a time . The other segments
assigned to that region are stored on disk . They are brought into memory
when called, replacing (overlaying) the segment previously stored in that
region . The root segment, on the other hand, contains those parts of the
program that must always be memory-resident . Therefore, the root is never
overlaid by another segment.

Figure 3-3 diagrams an overlay structure for a FORTRAN program . The
main program is placed in the root segment and is never overlaid . The
various MACRO subroutines and FORTRAN subprograms are placed in
overlay segments . Each overlay segment is assigned to an overlay region
and stored on disk until called into memory . For example, region 2 is
shared by the MACRO subroutine A currently in memory and the MACRO
subroutine B in segment 4 . When a call is made to subroutine B, segment 4
is brought into region 2 of memory, overlaying or replacing segment 3 .

The overlay file shown in Figure 3-3 is created by the linker when you
specify an overlay structure . The overlay file contains the root segment and
each overlay segment, including those overlay segments currently in
memory .

The linker calculates the size of any region to be the size of the largest
segment assigned to that region . Thus, to reduce the size of a program (that
is, the amount of memory it needs), you should first concentrate on reduc-
ing the size of the largest segment in each region . The linker delineates the
overlay regions you specify and prefaces your program with the run-time
overlay handler code shown in Figure 3-5 . The linker also sets up links
between the overlay handler and program references to routines that reside
in overlays . When, at run time, a reference is made to a section of your
program that is not currently in memory, these links cause an overlay to be
read into memory . The overlay segment containing the referenced code
becomes resident .

Figure 3-3: Sample Overlay Structure for a FORTRAN Program

high

MK-00433-00

Region 2
segment 4
MACRO

subroutine B
Region 2
segment 3

Linker (LINK)

	

3-21

REGION 3

SEGMENT 6
FORTRAN subprogram

REGION 2

SEGMENT 3
MACRO subroutine A

REGION 1

SEGMENT 2
FORTRAN subprogram

ROOT

FORTRAN main program

3-22

	

Linker (LINK)

You specify an overlay structure to the linker by using the / O switch (see
Figure 3-4) .

High

MK-00434-00
Low

Figure 3-5: The Run-Time Overlay Handler

,T'ITL.E OHANDL .006 OVERLAY HANDLER
.IDENT /V01 .00 /

s RT-11 OVERLAY HANDLER
i

COPYRIGHT (C) 1979
s DIGITAL EQUIPMENT CORPORATIONY MAYNARDY MASS . 01'754
s

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A
i SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION
i OF THE ABOVE COPYRIGHT NOTICE . THIS SOFTWARE+ OR ANY OTHER
i COPIES THEREOFv MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABL.E
i TO ANY OTHER PERSON EXCE=PT FOR USE ON SUCH SYSTEM AND TO ONE WHO
i AGREES TO THESE LICENSE TERMS . TITLE TO AND OWNERSHIP OF :' THI' :
9 SOFTWARE SHALL AT ALL TIMES REMAIN IN DEC .
s
i THE INFORMATION IN THIS SOFTWARE: IS SUBJECT TO CHANGE WITHOUT
i NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY ii :EG :FTAL
i EQUIPMENT CORPORATION .
s
i DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF IT' :
9 SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED B'(DEC .
s
s MAS

Region 2

Region 1

Root

EDIT LOG SINCE V01 .00
'r ADD NEW GLOBAL NAMES TO ALLOW RELOCATION OF HANDLE"R CODE

	

+MAS01

(continued on next page)

wzzzmi
G

E F

C D

B

A

Figure 3-4: Overlay Scheme

Command line :

A=A/ / =Root
5>C10:1 =Segment 1

1
= Region 1

D/0 .1 =Segment 2

E / 0 :2 =Segment 3

1
= Region 2F .G / 0 : 2 =Segment 4

Figure 3-5: The Run-Time Overlay Handler (Cont.)
.SBTTL THE RUN--TIRE OVERLAY HANDLER

'Y THE FOLLOWING CODE: IS INCLUDED IN THE USER'S PROGRAM BY THE
LINKER WHENEVER OVERLAYS ARE REQUESTED BY THE USER .
THE RUN-TIME OVERLAY HANDLER IS CALLED BY A DUMMY

'r SUBROUTINE OF THE FOLLOWING FORM :
P

'Y

	

JSR

	

R5Y$O'JRH ./ .,y

	

iCALL TO COMMON CODE
WORD

	

<;OVERLAY YTJ .+

	

;# (.1F DESIRED SEGMENT
i

	

WORD

	

ENTRY ADDR>

	

;ACTUAL CORE ADDR (VIRTUAL ADDR)

; ONE DUMMY ROUTINE OF THE ABOVE FORM IS STORED IN THE RESIDENT PORTION
; OF THE USER'S PROGRAM FOR EACH ENTRY POINT TO AN OVERLAY SEGMENT .
; ALL REFERENCES TO THE ENTRY POINT ARE MODIFIED BY THE LINKER T'0 INSTEAD
; BE REFERENCES TO THE APPROPRIATE DUMMY ROUTINE . EACH OVERLAY SEGMENT
; IS CALLED INTO CORE AS A UNIT AND MUST BE CONTIGUOUS IN CORE . A N
; OVERLAY SEGMENT MAY HAVE ANY NUMBER OF ENTRY POINTSP TO THE LIMITS
; OF CORE MEMORY . ONLY ONE SEGMENT AT A TIME MAY OCCUPY AN OVERLAY REGION .

.SBTTL DEFINITIONSP AND MISC .

; UNDEFINED GLOBALS IN THE OVERLAY HANDLER MUST BE NAMED '$OVDF1' TO
; '$OVDFn" SUCH THAT A RANGE CHECK MAY BE DONE- BY LINK TO DETERMINE I1=
; THE UNDEFINED GLOBAL NAME IS FROM THE OVERLAY HANDLER . A CHECK IS
; DONE ON THE .RAD50 CHARACTERS '$OV'Y AND THEN A RANGE CHECK IS DONE ON
; THE .RAD50 CHARATERS "DF1' TO 'DFn' . THESE:: GLOBAL SYMBOLS DO NOT APPEAR
; ON LINK MAPSY

	

BEENTHEIR VALUE IS NOT KNOWN UNT .LL.L. AFTER THE MAP HAS BEEN
; PRINTED . CURRENTLY $OVDF1 TO $OVDF5 ARE IN USE .
;
;
; GLOBAL SYMBOLS O$READY AND O$DONE ARE USEFULL. WHEN DEBUGGING
; OVERLAID PROGRAMS .
9

0$READ : : WILL APPEAR IN THE LINK MAPP AND LOCATES THE READ STATEMENT
IN THE OVERLAY HANDLER .

;
0$DONE : : WILL APPEAR IN THE LINK MAPY AND LOCATES THE FIRST INSTRUCTION
AFTER A READ IS COMPLEATED IN THE OVERLAY HANDLER .

.MCALL .REAIIWP . .Vl . .
. .Vi . .

.SBTTL OVERLAY HANDLER CODE

.PSECT $OHANDYGBL

.ENABL GBL .

.ENABL. LSB

; $OVRH IS THE ENTRY POINT TO THE OVERLAY HANDLER

$OVRH : : MOV

	

ROY-(SP)

	

;MUST SAVE SINCE: READ ETC USE IT'
MOV

	

RlP-(SF')

	

;10 OVERLAY ENTRY POINT
MOV R2Y-(SP)

(continued on next page)

Linker (LINK)

	

3-23

Q
P THE READ USES INFORMATION AS FOLLOWS :
; CHANNEL NUMBER, cons ADDRESSY LENGTH TO READ, RELATIVE BLOCK ON DISK .
; THESE ARE PICKED UP IN REVERSE ORDER OF THAT SPECIFIED IN THE CALL .
;-

O*nsAo : :,ns«DW 17rR2y@R1r(R1)+ ;READ FROM OVERLAY FILE
o*oows : :aco 5*
4* ;

5$*.

7* ;

	

MOV

	

115oz,2

	

;RESTORE SWITCH zwoTn (nov mn5,nz)
MOV

	

(pc)+ .mI

	

;START ADDR FOR CLEAR OPERATION
$ODF1 : :

	

WORD *ovoF1

	

;HIGH ADDn OF ROOT SEGMENT

	

;MAS01
a* ;

	

CLx

	

(Rl)+

	

;CLEAR ALL OVERLAY REGIONS
cmp R1,$oDFu ;DONE?
BLO

	

a*

	

;LO -~ NOY REPEAT
BR

	

u*

	

;AND RETURN To CALL IN PROGRESS

*ooF2 : : WORD

	

*OvoFu

	

;HIGH ADDRESS OF /0 OVERLAYS

	

;MAS01

,oooaL Laa

.suTTL $OVTAB OVERLAY TABLE

~ OVERLAY SEGMENT TABLE FOLLOWS :
; *ovTAa ;

	

WORD

	

-::!CORE Aoon} .<nELATzvs aLK> .<woRD COUNT>

	

/0 OVERLAYS
~
; THREE WORDS PER ENTRYP ONE ENTRY PER OVERLAY SEGMENT .
~
; ALSOt THERE IS ONE WORD PREFIXED TO EACH OVERLAY REGION
; THAT IDENTIFIES THE SEGMENT CURRENTLY RESIDENT IN THAT REGION .
; THIS WORD IS AN INDEX INTO THE TABLE .

,psEcT *oTAnL,D,GBL,ovn

*ovTAo ; ;

,swo

3-24

	

Linker (LINK)

There is no special formula for creating an overlay structure. You do not
need a special code or function call . Some general guidelines must be fol-
lowed, however. For example, a FORTRAN main program must always be

Figure 3-5: The Run-Time Overlay Handler (Cont.)
u* :
; MOV @R5yR1 ;PICK UP OVERLAY NUMBER

BR 7$;FIRST CALL. ONLY
ADD #$OvTAa-a,nz ;cALC TABLE ADDR
MOV (nl)+,nu ;GET FIRST «Ro . OF OVERLAY SEG . ENTRY

a* : Cmp (R5)+P@R2 ;IS OVERLAY ALREADY RESIDENT?
oEQ 4$;YESP BRANCH TO 11'

MOV (ap)+,R2 ;RESTORE USERS REGS
MOV (SP)+,n1
MOV (SP)+,R0
MOV @R5PR5 ;GET ENTRY ADDRESS
RTS R5 ;ENTER OVERLAY ROUTINE AND RESTORE USER'S R5

EMT 376 ;SYSTEM ERROR 10 (OVERLAY 1/0)
.BYTE o,373

placed in the root segment. This is true also for a global program section
(such as a named COMMON block) that is referenced by more than one
overlay segment.

The assignment of region numbers to overlay segments is crucial .
Segments that overlay each other (have the same region number) must be
logically independent ; that is, the components of one segment cannot
reference the components of another segment assigned to the same region .
Segments that need to be memory resident simultaneously must be
assigned to different regions .

When you make calls to routines or subprograms that are in overlay seg-
ments, the entire return path must be in memory . This means that from an
overlay segment you cannot call a routine that is in a different segment of
the same region . If this is done, the called routine overlays the segment
making the call and destroys the return path .

Figure 3-6 illustrates a sample set of subroutine calls and return paths . In
the example, solid lines represent legal subroutine calls and dotted lines
represent invalid calls .

Suppose the following subroutine calls were made:

1 .

	

The root calls segment 8

2.

	

Segment 8 calls segment 4

3.

	

Segment 4 calls segment 3

Segment 3 can now call any of the following, in any order :

itself

	

segment 8

segment 4

	

the root

These segments and the root, of course, are all currently in memory .

Segment 3 cannot call any of the following segments because this would
destroy its return path :

segments 2 and 1
segment 5
segments 6 and 7

Look at what might happen if one of these invalid calls is made . Suppose
segment 4 calls segment 3 and segment 3 in turn calls segment 5. Segment
5 is not resident in region 2, so an overlay read-in occurs : segment 5 is read
into memory, thus destroying the memory-resident copy of segment 4. The
subroutine in segment 5 executes and returns control to segment 3 . Seg-
ment 3 finishes its task and tries to return control to segment 4. Segment 4,
however, has been replaced in memory by segment 5 . Segment 4 cannot
regain control and the program loops indefinitely, or traps, or random
results occur .

Linker (LINK)

	

3-25

region 3

region 2

region 1

root

3-26

	

Linker (LINK)

Figure 3-6:

	

Sample Subroutine Calls and Return Paths

The guidelines already mentioned and some additional rules for creating
overlay structures are summarized as follows :

1 . $SYSLIB must be present to create an overlay structure because it
contains the overlay handler.

2.

	

Overlay segments assigned to the same region must be logically inde-
pendent; that is, the components of one segment cannot reference the
components of another segment assigned to the same region.

3. The root segment contains the transfer address, stack space, impure
variables, data, and variables needed by many different segments . The
FORTRAN main program unit must be placed in the root segment.

4. The absolute section (. ABS .) never takes part in overlaying in any
way. It is part of the root and is always resident .

5 . A global program section (such as a named COMMON block or a
YSECT with the GBL attribute) that is referenced in more than one
segment is placed in the root segment by the linker . This permits com-
mon access across the different segments .

6.

	

Object modules that are automatically acquired from a library file are
placed automatically in an overlay segment, as long as that library
module is referenced only by that segment . If a library module is refer
enced by more than one segment, LINK places that library module in
the root . You can, however, extract modules from a library file using
the librarian utility program as explained in Chapter 4. Extracted
object modules can be placed in overlay segments .

Do not specify a library file on the same command line as an overlay
segment . You must specify all library modules before specifying any
overlay modules . LINK places in the root any modules from a multiple
definition library and any modules included with the /I switch .

7 .

	

All COMMON blocks that are initialized with DATA statements must
be similarly initialized in the segment in which they are placed .

8 .

	

When you make calls to overlay segments, the entire return path to the
calling routine must be in memory . This means you should take the
following points into account :

a . You can make calls with expected return (as from a FORTRAN
main program to a FORTRAN or MACRO subroutine) from an over-
lay segment to entries in the same segment, the root segment, or to
any other segment, as long as the called segment does not overlay in
memory part of your return path to the main program .

b . You can make jumps with no expected return (as in a MACRO pro-
gram) from an overlay segment to any entry in the program, with
one exception : you cannot make such a jump to a segment if the
called segment will overlay an active routine in that region (that is,
a routine whose execution has begun, but not finished, and that will
be returned to) .

c .

	

Calls you make to entries in the same region as the calling routine
must be entirely within the same segment, not within another seg-
ment in the same region .

9 .

	

You must make calls or jumps to overlay segments directly to global
symbols defined in an instruction p-sect (entry points) . For example, if
ENTER is a global symbol in an overlay segment, the first ofthe follow-
ing two commands is valid, but the second is not :

JMP ENTER

	

;VALID
JMP ENTER+G

	

;INVALID

10. You can use globals defined in an instruction p-sect (entry points) of an
overlay segment only for transfer of control and not for referencing data
within an overlay segment. The assembler and linker cannot detect a
violation of this rule so they issue no error . However, such a violation
can cause the program to use incorrect data . If you reference these
global symbols outside of their defining segment, the linker resolves
them by using dummy subroutines of four words each in the overlay
handler . Such a reference is indicated on the load map by an at sign
character W) following the symbol .

Linker (LINK)

	

3-27

3-28

	

Linker (LINK)

11 . The linker directly resolves symbols that you define in a data p-sect . It
is your responsibility to load the data into memory before referencing a
global symbol defined in a data section .

12 . In the linker command string, specify overlay regions in ascending
order .

13 . Overlay regions are read-only . The overlay handler does not save the
segment it is overlaying . Any tables, variables, or instructions that are
modified within a given overlay segment are reinitialized to their origi
nal values in the SAV file if that segment has been overlaid by another
segment. You should place any variables or tables whose values must
be maintained across overlays in the root segment.

14 . Your program cannot use channel 17 (octal) because overlays are read
on that channel.

15 . Note that the condition codes set by your program are not preserved
across overlay segment boundaries .

16 . MACRO and FORTRAN directly resolve all global symbols that are
defined in a module. If LINK moves the p-sect where they are defined
from an overlay segment to the root, LINK will not generate an overlay
table entry for those symbols .

This set of rules applies only to communications among the various mod-
ules that make up a program . Internally, each module must only observe
standard programming rules for the PDP-11 (as described in the PDP-11
Processor Handbook and in the FORTRAN and MACRO-11 language
reference manuals) .

The linker provides overlay services by including a small resident overlay
handler in the same file with your program to be used at program run time .
(Refer to Figure 3-5.) The linker inserts this overlay handler plus some
tables into your program beginning at the bottom address . The linker then
moves your program up in memory to make room for the overlay handler
and tables, if necessary . The handler is stored in $SYSLIB . This scheme is
diagrammed in Figure 3-7.

Figure 3-7: Memory Diagram Showing Sample Link with Overlay
Regions

177776

160000

1000

MK-00436-00

Linker (LINK)

	

3-29

RT11 Run-time System

Free Memory

OVERLAY REGION 2

optional functions initialization code

--------------------- -----------------------

SEGMENT IDENTIFICATION WORD

OVERLAY REGION 1

execute edit file I/O error message DATE/TIME
overlay overlay overlay overlay conversion

overlay
- --- -- ---- - --- -- ------- -- -

SEGMENT IDENTIFICATION WORD

ROOT SEGMENT OF PROGRAM

optional functions, initialization code, user area

OVERLAY HANDLER AND TABLES
(included by the linker)

SYSTEM AREA

3 .5 Switch Descriptions

3-30

	

Linker (LINK)

Full descriptions of the switches summarized in Table 3-7 follow in alpha-
betical order .

3.5.1 Alphabetical Switch (/A)

The /A switch lists global symbols within program sections in alphabetical
order on the load map.

3.5.2 Bottom Address Switch (/B:n)

The /B:n switch supplies the lowest address to be used by the relocatable
code in the load module . The argument n is an unsigned octal number that
defines the bottom address of the program being linked . If you do not sup-
ply a value for n, the linker prints :

?LINK-F- /B No value

Retype the command line, supplying an even octal value .

When you do not specify /B, the linker positions the load module so that
the lowest address is location 1000 (octal) . If the ASECT size is greater
than 1000, the size of ASECT is used .

If you supply more than one /B switch during the creation of a load module,
the linker uses the first / B switch specification . The / B switch is illegal
when you are linking to a high address UH) .

The bottom value must be an unsigned, even, octal number . If the value is
odd, the linker prints the message:

?LINK -F-/B

	

odd-value

Reenter the command string specifying an unsigned, even, octal number as
the argument to the / B switch .

3.5.3 Continue Switch (/C) or (/ /)

The continue switch (/C) lets you type additional lines of command string
input . Use the /C switch at the end of the current line and repeat it on
subsequent command lines as often as necessary to specify all the input
modules in your program. Do not enter a /C switch on the last line of input .

The following command indicates that input is to be continued on the next
line :

*OUTPUT tLP :=INPUT /C
*

An alternate way to enter additional lines of input is to use the / / switch on
the first line . The linker continues to accept lines of input until it
encounters another / / switch, which can be either on a line with input file
specifications, or on a line by itself. The advantage of using the / / switch
instead of the / C switch is that you do not have to type the / / switch on
each continuation line . This example shows how the linker itself is linked :

*LINK ,LINK=LINKO/W/ /
*LINK1 /0 :1
*LINK2/0 :1
*LINKS /0 :1
*LINK4/0 :1
*LINKS/0 :1
*LINKG /0 : 1
*LINK7/0 :1
*LINKEM/0 :1 / /

You cannot use the /C switch and the / / switch together in a link command
sequence . That is, if you use / / on the first line, you must use / / to termi-
nate input on the last line . If you use /C on the first line, use /C on all lines
but the last .

3.5.4 Extend Program Section Switch (/ E :n)

The /E :n switch allows you to extend a program section in the root to a
specific value. Type the /E :n switch at the end of the first command line .
After you have typed all input command lines, the linker prompts with :

Extend section?

Enter the name of the program section to be extended, and then press the
RETURN key. The resultant program section size (in bytes) is equal to or
greater than the value you specify, depending on the space the object code
requires . The value you specify must be an even value . Note that you can
extend only one section .

The following example extends section CODE to 100 (octal) bytes :

*X tKB :=LKO01 /E :100
Extend section? CODE

3 .5 .5 Default FORTRAN Library Switch (/F)

By indicating the /F switch in the command line, you can link the
FORTRAN library ($FORLIB.OBJ on device DK:) with the other object
modules you specify . You do not need to specify FORLIB explicitly . For
example:

*FILE tLP :=AB /F

Linker (LINK)

	

3-31

3-32

	

Linker (LINK)

The object module AB.OBJ from DK: and the required routines from the
FORTRAN library DK:$FORLIB.OBJ are linked together to form a load
module called FILE.SAV.

The linker automatically searches the DK:$SYSLIB .OBJ default system
library . The library normally includes the modules that compose FORLIB.
You should not have to use /F .

3.5.6 Directory Buffer Size Switch (/G)

When you are using modules for your program that are from a multiple
definition library, LINK has to store that library's directory in an internal
buffer . Occasionally, this buffer area is too small to contain an entire direc-
tory, in which case LINK is unable to process those modules. The / G switch
causes LINK to adjust the size of its directory buffer to accommodate the
largest directory size of the multiple definition libraries you are using .
Because the / G switch slows the linking process, you should use it only
when it is necessary . In particular, use it only after an attempt to link your
program failed because the buffer was too small. LINK prints the following
message when a failure of this type occurs :

?LINK-F-Directory buffer too small

3.5.7 Highest Address Switch (/H:n)

The /H:n switch allows you to specify the top (highest) address to be used
by the relocatable code in the load module. The argument n represents an
unsigned, even, octal number. If you do not specify n, the linker prints :

?LINK-F- /H no value

Retype the command, supplying an even octal number to be used as the
value.

If you specify an odd value, the linker responds with :

?LINK-F- /H odd value

Retype the command, supplying an even octal number.

If the value is not large enough to accommodate the relocatable code, the
linker prints :

?LINK-F- /H value too low

Relink the program with a larger value.

You cannot use the / H switch with the / Y or /B switch .

Be careful when you use the /H switch . Most FORTRAN
programs use the free memory above the relocatable code as
a dynamic working area for 1/0 buffers, device handlers,
symbol tables, and so forth . The size of this area differs
according to the memory configuration . Programs linked to a
specific high address might fail to run for users with a lower
maximum memory size because there is less free memory .

3.5.8 Include Switch (/I)

The /I switch lets you take global symbols from any library and include
them in the linking process even when they are not needed to resolve
globals . This provides a method for forcing modules that are not called by
other modules to be loaded from the library . All modules that you specify
with /I go into the root . When you specify the /I switch, the linker prints :

Library search?

Reply with the list of global symbols to be included in the load module ;
press the RETURN key to enter each symbol in the list . Pressing only the
RETURN key terminates the list of symbols .

The following example includes the global $SHORT in the load module :

*SCCA=RK1 :SCCA/I
Library search? $SHORT
Library search?

3.5.9 Memory Size Switch (/ K:n)

The /K:n switch lets you insert a value into word 56 of block 0 of the image
file . The argument n represents the number of 1K blocks of memory
required by the program; n is an integer in the range 1-28 . Note that the
value for n is interpreted as an octal number unless you place a period (.)
after it . For example, when LINK sees a switch such as /K:28 ., it interprets
the value 28 . as a decimal number.

3.5.10 Modify Stack Address Switch (/ M[:n])

Stack symbol?

NOTE

The stack address, location 42, is the address that contains the initial value
for the stack pointer . The /M switch lets you specify the stack address . The
argument n (if present) is an even, unsigned, octal number that defines the
stack address . After all input lines have been typed, the linker prints the
following message if you have not specified a value for n:

Linker (LINK)

	

3-33

3-34

	

Linker (LINK)

In this case, specify the global symbol whose value is the stack address, and
press the RETURN key. You must not specify a number. If you specify a
nonexistent symbol, the linker prints an error message and sets the stack
address to the system default (1000) or to the bottom address if you used
/B . If the program's absolute section extends beyond location 1000, the
default stack space starts after the largest ASECT allocation of memory .

Direct assignment (with ASECT) of the stack address within the program
takes precedence over assignment with the /M switch . The statements to
do this in a MACRO program are as follows :

.ASECT
=42
.WORD INITSP ;INITIAL STACK SYMBOL VALUE
.PSECT

	

;RETURN TO PREVIOUS SECTION

The following example modifies the stack address :

* OUTPUT= INPUT / M
StacK symbol? BEG

3.5.11 Overlay Switch (/O:n)

The /O switch segments the load module so that the entire program is not
memory-resident at one time . This lets you execute programs that are
larger than the available memory . The argument n is an unsigned octal
number (up to six digits) specifying the overlay region to which the module
is assigned . The /O switch must follow (on the same line) the specification
of the object modules to which it applies, and you can specify only one
overlay region on a command line . Overlay regions cannot be specified on
the first command line ; that is reserved for the root segment. You must use
/ C or / / for continuation .

You specify co-resident overlay routines (a group of subroutines that occupy
the overlay region and segment at the same time) as follows :

* OBJA #OBJB tOBJC / 0 : 1 / C
* OBJD tOBJE / 0 : 1 / C

All modules that the linker encounters until the next /O switch are
co-resident overlay routines ; that is, they all go into the same segment . If
you specify, at a later time, the / O switch with the same value you used
previously (same overlay region), then the linker opens up the correspond-
ing overlay area for a new group of subroutines . This group occupies the
same locations in memory as the first group, but it is never needed at the
same time as the previous group . The following commands to the linker
make R and S occupy the same memory as T (but at different times):

*MAIN tLP.=ROOT /C
" RtS/0 :1/C
*T/0 :1

The following example establishes two overlay regions:

* OUTPUT #LP :=INPUT / /
* OBJA / 0 : 1
* OBJB / 0 : 1
* OBJC / 0 : 2
* OBJD / 0 : 2

You must specify overlays in ascending order by region number. For
example:

*A=A/C
*B/0 :1 /C
*C/0 :1 /C
*D/0 :1 /C
*G/0 :2

The following overlay specification is invalid because the overlay regions
are not given in ascending numerical order . LINK prints an error message
in each case, and ignores the overlay switch immediately preceding the
message :

* x=LIBRO / /
*LIBRI /0 :1
*LIBR2/0 :0
?LINK-W-/0 or

	

/V option error + re-enter line
*

In this example, LINK ignores the overlay line immediately preceding the
error message and should be reentered with an overlay region number
greater than or equal to one.

3.5.12 Library List Size Switch (/ P:n)

The /P:n switch lets you change the amount of space allocated for the
library routine list . Normally, the default value allows enough space for
your needs. It reserves space for approximately 170 unique library
routines, which is the equivalent of specifying /P:170 . (decimal) or /P:252
(octal) .

The following error message indicates that you need to allocate more space
for the library routine list :

?LINK-F-Library list overflow, increase size with /P

You must relink the program that makes use of the library routines, and
use the /P:n switch . Make sure you specify a value for n that is greater
than 170 .

You can use the /P:n switch to correct for symbol table overflow . Specify a
value for n that is less than 170 . This reduces the space used by the library
routine list and increases the space allocated for the symbol table . If the
value you choose is too small, LINK prints the message:

?LINK-F-Library list overflow# increase size with /P

Linker (LINK)

	

3-35

3-36

	

Linker (LINK)

In the following command, the amount of space for the library routine list
is increased to 300 (decimal) :

*SCCA=DMI :SCCA/P:300 .

3.5.13 Absolute Base Address Switch (/Q)

The / Q switch lets you specify the absolute base addresses of up to eight
p-sects in your program . This switch is particularly handy if you are pre-
paring your program sections for placement in ROM storage . When you use
this switch in the first command line, the linker prompts you for the p-sect
names and load addresses . The p-sect name must be six characters or less,
and the load address must be an even octal number. Press the RETURN
key to terminate each line . If you press only the RETURN key in response
to any of the prompts, LINK stops issuing a prompt.

If you use / E, / Y, or / U with / Q, LINK processes those switches before it
processes /Q.

When you use the /Q switch, observe the following restrictions :

" Enter only even addresses . If you enter an odd address, no address, or
invalid characters, LINK prints an error message and then prompts you
again for the p-sect and load address .

" Do not use / Q with /H. These switches are mutually exclusive .

" LINK moves your p-sects up to the specified address ; moving down might
destroy code . If your address requires code to be moved down, LINK
prints an error message, ignores the p-sect for which you have specified a
load address, and continues .

The following example specifies the load addresses for three p-sects :

*FILE tTT :=FILE tFILE1 /Q
Load Section :Address? PSECT1 :1000
Load Sect ior, :Address?PSECT3 :4000
Load Section :Address? PSECT2 :2500
Load Section :Address^

3.5 .14 Symbol Table Switch (/S)

The /S switch instructs the linker to allow the largest possible memory
area for its symbol table at the expense of input and output buffer space.
Because this makes the linking process slower, you should use the /S
switch only if an attempt to link a program failed because of symbol table
overflow . When you use / S, you cannot specify a symbol table file and a
map in the command string .

3.5.15 Transfer Address Switch (/T[:n])

The transfer address is the address at which a program starts when you
begin execution with the RUN command. It prints on the last line of the
load map. The /T switch lets you specify the start address of the load
module . The argument n is an unsigned octal number that defines the
transfer address . If you do not specify n, LINK prints the following
message :

Transfer symbol?

Specify the global symbol whose value is the transfer address of the load
module . Terminate your response by pressing the RETURN key. You
cannot specify a number in response to this message. If you specify a nonex-
istent symbol, LINK prints an error message and sets the transfer address
to 1 so that the program is not executable . If the transfer address you
specify is odd, the program does not start after loading. (A RUN command
produces the message : ?Bad start address .)

Direct assignment (with ASECT) of the transfer address within the pro-
gram takes precedence over assignment with the /T switch . The transfer
address assigned with a /T switch has precedence over that assigned with
an END assembly directive . To assign the transfer address within a
MACRO program, use statements similar to these :

START 1 :

START2 :

The following example links the files LIBRO.OBJ and ODT.OBJ and starts
execution at DDT's transfer address, O.ODT:

* LBRODT #LBRODT=L I BRO tODT / T / W / /
* LIBR1 /0 :1
* LIBR2/0:1
LIBR3 /0 : 1

* LIBR4/0:1
* LIBR5 /0 :1
* LIBRG/0:1
* LBREM / 0 : 1 / /
Transfer symbol? 0 .ODT

Linker (LINK)

	

3-37

.ASECT

.=40

.WORD STARTI ;SYMBOL VALUE FOR TRANSFER ADDRESS
. PSECT ;RETURN TO PREVIOUS SECTION

or

;SECONDARY STARTING ADDRESS

.END START2

3.5.16 Round Up Switch (/U:n)

Round section?

3-38

	

Linker (LINK)

The /U:n switch rounds up the section you specify in the root so that the
size of the root segment is a whole number multiple of the value . The
argument n must be a power of 2. When you specify the /U:n switch, the
linker prompts :

Reply with the name of the program section to be rounded, and then press
the RETURN key. The program section must be in the root segment. Note
that you can round only one program section . The following example
rounds up section CHAR:

*LK007tKB :=LK007/U :200
Round section? CHAR

If the program section you specify cannot be found, LINK prints the follow-
ing message and then continues the linking process with no rounding :

?LINK-W-Round section not found

3.5.17 Map Width Switch (/W)

The /W switch directs the linker to produce a wide load map listing . If you
do not specify the /W switch, the listing is wide enough for three Global
Value columns (normal for paper with 80 columns) . If you use /W, the
listing is six columns wide, which is suitable for a 132-column page .

3.5.18 Bitmap Inhibit Switch (/X)

The /X switch instructs the linker not to generate the bitmap if code is
located between 360 and 377 inclusive . You use this switch to link the
RSTS/E monitor. The bitmap is stored in locations 360 and 377 in block 0
of the load module, and the linker normally stores the program memory
usage bits in these eight words. Each bit represents one 256-word block of
memory . This information is required by the RUN command when loading
the program; therefore, be careful when you use this switch .

3.5.19 Boundary Switch (/Y:n)

The /Y:n switch starts a specific program section in the root on a particular
address boundary. Do not use this switch with /H. The linker generates a
whole number multiple of n, the argument you specify for the starting
address of the program section . The argument must be a power of 2 . The

linker extends the size of the previous program section to accommodate the
new starting address . When you have entered all input lines, the linker
prompts :

Boundary section?

3.6 LINKER Prompts

Respond with the name of the program section whose starting address you
are modifying . Press the RETURN key to terminate your response . Note
that you can specify only one program section for this switch . If the pro-
gram section you specify cannot be found, the linker prints the following
message and then continues :

?LINK-W-Boundary section not found

3.5.20 Zero Switch (/Z:n)

The /Z:n switch fills unused locations in the load module and places a
specific value in these locations . The argument n represents that value .
You can use this switch to eliminate random results that occur when the
program references uninitialized memory by mistake. The linker automati-
cally zeros unused locations . Use the /Z:n switch only when you want to
store a value other than zero in unused locations . The /Z switch without an
argument is equivalent to /Z:O . Thus, when n is equal to zero, you need to
specify only /Z .

Some of the linker operations prompt for more information, such as the
names of specific global symbols or sections . The linker issues the prompt
after you have entered all the input specifications, but before the actual
linking begins . Table 3-10 shows the sequence in which the prompts occur .

Table 3-10: Linker Prompting Sequence

Linker (LINK)

	

3-39

Prompt Switch

Transfer symbol? /T

Stack symbol? /M

Extend section? /E :n
Boundary section? /Y:n

Round section? /U:n

Load section:address? /Q

Library search? /I

3-40

	

Linker (LINK)

The library search and the load section prompts can accept more than one
symbol and are terminated by pressing the RETURN key in response to the
prompt.

The following example shows how the linker prompts for information when
you combine switches :

*LK001=LK001/T/M/E :100/Y :400/U :20/I/Q
Transfer symbol? O,ODT
Stack symbol? ST3
Extend section? CHAR
Boundary section? CODE
Round section? STKSP
Load section :address? MAIN :100000
Load section :address?
Library search? $SHORT
Library search?
*

Chapter 4
Librarian (LIBR)

4.1 The Librarian

The librarian utility program (LIBR) lets you create, update, modify, list,
and maintain object library files . It also allows you to create macro library
files for use with the V03 and later versions of the MACRO-11 assembler .

A library file is a direct access file (a file that has a directory) that contains
one or more modules of the same module type . The librarian organizes the
library files so that the linker and MACRO-11 assembler can access them
rapidly . Each library contains a library header, library directory (or global
symbol table, or macro name table) and one or more object modules or
macro definitions . The object modules in a library file can be routines that
are :

" Repeatedly used in a program

" Used by more than one program

" Related and simply gathered together for convenience

Your needs determine the contents of the library file . An example of a
typical object library file is the default system library SYSLIB.OBJ that
the linker uses . An example of a macro library file is SYSMAC .SML, which
MACRO uses to process MCALL (macro call) directives .
You access object modules in a library file from another program by mak-
ing calls or references to their global symbols. You then link the object
modules with the program that uses them, producing a single load module
(see Chapter 3).

The following sections describe how to :

" Run the librarian (Section 4.2)

" Use the librarian to create and maintain object libraries (Section 4.3)
" Create macro libraries (Section 4.4)

4.2 Running and Using LIBR

RUN $LIBR RE

4-2

	

Librarian (LIBR)

To run the librarian, type the following command in response to your key-
board monitor prompt :

If your system manager has added a Concise Command Language (CCL)
command, such as LIBR, type :

You can also use the LIBR command to run the librarian whenever DCL is
your keyboard monitor . In any case, when LIBR is ready to accept a com-
mand line, it prints an asterisk prompt (*) on your terminal . You then can
enter a command string or type CTRL / Z to exit the program . Once you type
a command line and press the RETURN key to begin execution, you must
type CTRL / C to stop the librarian and return control to your keyboard
monitor . Typing a CTRL /Z during the execution of a command has no
effect . Use CTRL / Z only to exit LIBR at the asterisk prompt .

Specify the LIBR command string in the following general format :

library-filespec,list-filespec =input-filespec[/ switch(es)], . . .

The definition of each file specification follows :

library-filespec

	

Represents the library file specification to be created or
updated.

list-filespec

	

Represents a listing file for the library's contents .

input-filespec

	

Represents the input object modules (you can specify
up to six input files) ; it can also represent a library file
to be updated .

switch

	

Represents a switch from Table 4-1 .

You specify devices and file names in the standard RSTS/E command
string syntax (see Chapter 1), with default file types for object libraries
assigned as follows :

Object File Default File Type

List file LST

Library output file OBJ

Input file (library or module) .OBJ

If you do not specify a device, DK: is assumed, which is normally equivalent
to SY: (the public structure), unless you use the ASSIGN command to
change it .

Each input file consists of one or more object modules and is stored on a
given device under a specific file name and file type . Once you insert an
object module into a library file, LIBR no longer references the module by
the name of the file of which it was a part ; instead you reference it by its
individual module name . (But when referencing from other modules in
LINK, for example, the global symbols in the modules are important, not
the module name used in operations like LIBR deletes .) Use the assembler
to assign this module name with either a TITLE statement in the assembly
source program (the default name is MAIN . in the absence of a TITLE
statement) or the subprogram name for FORTRAN routines . Thus, for
example, the input file FORT.OBJ can exist on DM2: and can contain an
object module called ABC . Once you insert the module into a library file,
reference only ABC (not FORT.OBJ) .

The input files normally do not contain main programs but rather sub-
programs, functions, and subroutines . The library file must never contain a
FORTRAN "BLOCK DATA" subprogram because there is no global symbol
to cause the linker to load it automatically .

4.3 Switches and Functions for Object Libraries

You maintain object library files by using switches . The functions you can
perform include object module deletion, insertion and replacement, library
file creation, and listing of an object library file's contents .

Table 4-1 summarizes the switches used with LIBR for object libraries . The
following sections, which are arranged alphabetically by switch, describe
the switches in greater detail .

There is no switch to indicate module insertion . If you do not specify a
switch, the librarian automatically inserts modules into the library file .

4.3.1 Include All Global and Absolute Global Symbols Switch (/A)

Normally, the librarian includes in the directory only global entry points
(labels) and not absolute global symbols. Use the /A switch when you want
all the global symbols to appear in the library file's directory . When you
use /A, the librarian includes in the directory all absolute global symbols,
including those that have a value of 0 .

The following example places all the global symbols from module MOD1
and MOD2 in the library directory for ALIB.OBJ:

*AL I B= MOD 1 #MOD2 / A

Librarian (LIBR)

	

4-3

4-4

	

Librarian (LIBR)

Table 4-1: LIBR Object Switches

4.3.2 Command Continuation Switches (/C and / /)

You must use a continuation switch whenever there is not enough room to
enter a command string on one line . The maximum number of input files
that you can enter on one line is six ; you can use the /C or / / switch to
enter more . Type the / C switch at the end of the current line, and repeat it
at the end of subsequent command lines as often as necessary, so long as
memory is available; if you exceed memory, LINK prints an error message.
Each continuation line after the first command line can contain only input
file specifications (and no other switches) . Do not specify a /C switch on the
last line of input . If you use the / / switch, type it at the end of the first
input line and again at the end of the last input line .

The following example creates a library file on DK: under the file name
ALIB.OBJ. It also creates a listing of the library file's contents as
LIBLST.LST (also on DK:) . The file names of the input files (all from DM1 :)
are MAIN.OBJ, TEST.OBJ, FXN.OBJ, and TRACK.OBJ .

*ALIB tLIBLST=DM1 :MAIN tTEST tFXN /C
*DMI :TRACK

Switch
Command

Line Section Meaning

/A First 4.3 .1 Puts all globals in the directory, including all abso-
lute global symbols .

/C Any but 4.3.2 Allows you to type the input specification on more
last than one line .

/D First 4.3.5 Deletes modules (from a library file) that you specify .

/E First 4.3 .6 Extracts a module from a library and stores it in an
.OBJ file .

/G First 4.3 .7 Deletes global symbols (from the library directory)
that you specify . (The module containing the global
being deleted is not itself deleted from the library .)

/N First 4.3.8 Includes the module names in the directory .

/P First 4.3.9 Includes the program section names (p-sect names) in
the directory .

/R First 4.3.10 Replaces modules in a library file . This switch must
follow the file specification to which it applies .

/U First 4.3 .11 Inserts and replaces (updates) modules in a library
file . This switch must follow the file specification to
which it applies .

/W First 4.3.12 Indicates wide format for the listing file.

/X First 4.3.13 Allows multiple definitions of global entry points to
appear in the library entry point table .

/ / First and 4.3.2 Allows you to type the input specification on more
last than one line .

The next example creates a library file on DK: under the name BLIB.OBJ.
It does not produce a listing . Input files are MAIN.OBJ from the system
device, TEST.OBJ from DM1:, FXN .OBJ from DMO:, and TRACKOBJ
from DB 1 : .

*GLIB=MAIN/ /
*DMI :TEST
*DMO :FXN
*DB 1 : TRACK / /

Another way of writing this command line is :

*BLIB=MAIN #DM1 :TEST tDMO :FXN / /
*DBI :TRACK

4.3.3 Creating a Library File

To create a library file, specify a file name on the output side of a command
line . The following example creates a new library (on DK:) called
NEWLIB.OBJ. The modules that make up this library file are in the files
FIRST.OBJ and SECOND.OBJ, both on the system device .

*NEWLIB=FIRST#SEC0ND

Assume you then enter this command line :

*NEWLIBtLIST=THIRDtF0URTH

The existing library file NEWLIB .OBJ is lost when the new library file is
created . A listing of the library file's contents is created under the file name
LIST.LST. The object modules in the files THIRD.OBJ and FOURTH.OBJ
are inserted into the library file NEWLIB .OBJ.

4.3.4 Inserting Modules into a Library

Whenever you specify an input file without specifying an associated switch,
the librarian inserts the input file's modules into the library file you name
on the output side of the command string . You can specify any number of
input files . If you include section names (by using /P) in the global symbol
table and if you attempt to insert a file that contains a global symbol or
PSECT (or CSECT) having the same name as a global symbol or PSECT
already existing in the library file, the librarian prints a warning message
(see Section 4.3.13 for multiple definition library creation) . The librarian
does, however, update the library file, ignore the global symbol or section
name in error, and then prompt you with an asterisk for another command
line .

Although you can insert object modules even if the module name (as
assigned by the TITLE statement or SUBROUTINE name statement in
FORTRAN) conflicts with that of a module already in the library, this

Librarian (LIBR)

	

4-5

4-6

	

Librarian (LIBR)

practice is not recommended because of possible confusion when you need to
update these modules . (Sections 4 .3 .10 and 4 .3 .11 describe replacing and
updating .)

The following command line inserts the modules included in the files
FA.OBJ, FB .OBJ, and FC.OBJ on DB1 : into a library file named
DXYNEW.OBJ on the system device. The resulting library also includes
the contents of library DXY.OBJ.

*DXYNEW=DXYtDB1 :FAtFBtFC

NOTE

You must indicate the library file to which the operation is
directed on both the input and output sides of the command
line when making changes to an existing library ; in effect,
the librarian creates a "new" output library file each time it
performs one of these operations . You must specify the
library file first in the input field .

The next command line inserts the modules contained in files THIRD.OBJ
and FOURTH.OBJ into the library NEWLIB.OBJ .

*NEWLIBtLIST=NEWLIBtTHIRDtFOURTH

Note that the resulting library (1) contains the original library plus some
new modules and (2) replaces the original library because the same name
was used in this example for the input and output library .

4.3.5 Delete Switch(/ D)

The /D switch deletes modules and all their associated global symbols from
the library .

When you use the /D switch, the librarian prompts:

Module name?

Respond with the name of the module to be deleted, and then press the
RETURN key. Continue until you have entered all modules to be deleted .
Press RETURN immediately after the Module name? message to terminate
input and to begin execution of the command line .

The following example deletes the modules SGN and TAN (on DM3:) from
the library file TRAP.OBJ:

*DM3 :TRAP=DB3 :TRAP/D
Module name? SGN
Module name? TAN
Module name?

The next example deletes the module FIRST from the library LIBFIL.OBJ .
All modules in the file ABC .OBJ replace old modules of the same name in
the library . The example also inserts the modules in the file DEF.OBJ into
the library :

*LIBFIL=LIBFIL /D tABC /R #DEF
Module name? FIRST
Module name?

In the following example, the librarian deletes two modules of the same
name from the library file LIBFIL.OBJ :

*LIBFIL=LIBFIL/D
Module name? X
Module name? X
Module name?

4.3.6 Extract Switch (/E)

The /E switch allows you to extract an object module from a library file and
place it in an OBJ file .

When you specify the /E switch, the librarian prints :

Global?

Respond with the name of a global symbol defined in the module you want
to extract . If you specify a global name, the librarian extracts the entire
module of which that global is a part . LIBR stops printing the Global?
prompt if you press the RETURN key.

The following example extracts the ATAN routine from the FORTRAN
library $SYSLIB .OBJ and stores it on DM1 : in a file called ATAN.OBJ:

*DM I :ATAN=$SYSLIB/E
Global? ATAN
Global?

The next example extracts the $PRINT routine from $SYSLIB .OBJ and
stores it on DM1: as PRINT.OBJ:

*DM I : PR INT=$SYSLIB/E
Global? $PRINT
Global?

You cannot use the / E switch in the same command line as another switch .

4.3.7 Delete Global Switch (/G)

The /G switch lets you delete a specific global symbol from a library file's
directory . When you use the / G switch, the librarian prints :

Global?

Librarian (LIBR)

	

4-7

4-8

	

Librarian (LIBR)

Respond with the name of the global symbol you want to delete, and then
press the RETURN key; continue until you have entered all globals to be
deleted . Press the RETURN key immediately after the Global? prompt to
end input and begin execution of the command line .

For example, the following command causes LIBR to delete the global sym-
bols NAMEA and NAMEB from the directory found in the library file
ROLL.OBJ on the system device :

* ROLL=ROLL / G
Global? NAMEA
Global? NAMED
Global?

The librarian deletes globals from the directory only (and not from the
library itself) . The module containing the global symbol being deleted is not
itself deleted . Whenever you update a library file, all globals that you pre-
viously deleted are restored, unless you use the / G switch again to delete
them. This feature lets you recover if you delete the wrong global .

4.3.8 Include Module Names Switch (/N)

When you use the /N switch on the first line of the command, the librarian
includes module names in the directory . The linker loads modules from
libraries based on the fact that those modules define needed global symbols
that were undefined in the linker's previous input files, not on the basis of
module names . Normally, then, it is a waste of space and a performance
compromise to include module names in the directory .

If you do not include module names in the directory, the MODULE column
of the directory listing is blank, unless the module requires a continuation
line to print all its globals . A plus sign (+) in the MODULE column indi-
cates continued lines . The /N switch is most useful when you create a
temporary library in order to obtain a directory listing .
If the library does not have module names in its directory, you must create
a new library to include the module names. The following example illus-
trates how to do this . The library directory is listed on the terminal, and
because the library output is to the null device (NL:), no output library file
is actually generated . The current library OLDLIB remains unchanged .

*NL : tKB :=OLDLIB/N
RT-11 LIBRARIAN V04,0i) TUE 10-NOV-81 2 0 :36 :41
NL : TEMP .OBJ

	

TUE

	

10-NOV-81

	

20 :36 :40

MODULE GLOBALS GLOBALS GLOBALS

IRAD50 IRAD50 RAD50
JMUL

	

JMUL
LEN

	

LEN
SUBSTR SUBSTR
JADD

	

JADD
JCMP

	

JCMP

4.3.9 Include P-section Names Switch (/P)

The librarian does not include program section names in the directory un-
less you use the /P switch on the first line of the command . The linker does
not use section names to load routines from libraries . In fact, including the
names can decrease linker performance . Including program section names
also causes a conflict in the library directory and subsequent searches,
because the librarian treats section names and global symbols identically .

This switch is provided for compatibility with RT-11 V2C. DIGITAL
recommends that you avoid using it with RSTS/E.

4.3.10 Replace Switch (/R)

Use the /R switch to replace modules in a library file . The /R switch
replaces existing modules in the library file you specify as output with the
modules of the same names contained in the file(s) you specify as input. In
the command string, enter the input library file before the files used in the
replacement operation .

If an old module does not exist under the same name as an input module or
if you specify the /R switch on a library file, the librarian prints an error
message followed by the module name and ignores the replace command.
The / R switch must follow each input file name containing modules for
replacement . (An error results if any of the modules in the replacement file
is absent from the library ; other modules are still replaced . Thus, you may
want to use the /U switch, which is less restricting .)

The following command line indicates that the modules in the file INB .OBJ
are to replace existing modules of the same names in the library file
TFIL .OBJ. The object modules in the files INA.OBJ and INC .OBJ (all files
are stored on DK:) are to be added to TFIL.

*TFIL=TFILtINAtINB/R+INC

The same operation occurs in the next command as in the preceding exam-
ple, except that this updated library file is assigned the new name XFIL.

*XFIL=TFILPINA#INB/RtINC

4 .3 .11 Update Switch (/U)

The /U switch lets you update a library file by combining the insert and
replace functions. If the object modules that compose an input file in the
command line already exist in the library file, the librarian replaces the old
modules in the library file with the new modules in the input file . If the
object modules do not already exist in the library file, the librarian inserts
those modules into the library . (Note that some of the error messages that

Librarian (LIBR)

	

4-9

4-10

	

Librarian (LIBR)

might occur with separate insert and replace functions are not printed
when you use the update function .) The /U switch must follow each input
file that contains modules to be updated . Specify the input library file
before the input files in the command line .

If the input file contains some modules that already exist in the library and
some that do not, /U picks up all modules. The / R switch picks up only
those that already exist, reporting "Illegal replacement of xxx" for those
that do not . In contrast, insert (no switch) picks up only modules that do not
yet exist in the library, causing "Illegal insert of xxx" for those that do.
Thus, by choice of switches, you can perform the operation you want.

The following command line instructs the librarian to update the library
file BALIB .OBJ on the system device . First the modules in FOLT.OBJ and
BART.OBJ replace old modules of the same names in the library file, or if
none already exist under the same names, the modules are inserted . The
modules from the file TAL.OBJ are then inserted ; the librarian prints an
error message if the name of the module in TAL.OBJ already exists .

*BALIB=BAL I B tFOLT / U tTAL #BART / U

In the next example, there are two object modules of the same name, X, in
both Z and XLIB; these are first deleted from XLIB so that both the mod-
ules called X in file Z are correctly placed in the library . Globals SEC1 and
SEC2 are also deleted from the directory but automatically return the next
time the library XLIB .OBJ is updated.

*XLIB=XLIB /D #Z /U /G
Module name? X
Module name? X
Module name?
Global? SEC1
Global? SEC2
Global?

4.3 .12 Wide Switch (/W)

The /W switch gives you a wider listing if you request a listing file . The
wider listing has six Global columns instead of three, as in the normal
listing. This is useful if you list the directory on a line printer or a terminal
that has 132 columns .

4.3.13 Creating Multiple Definition Libraries Switch (/X)

The / X switch lets you create libraries that can have more than one defini-
tion for a global entry point . These libraries are called multiple definition
libraries . They are processed differently from libraries that contain only
one definition for each global entry point name that appears in the library's
directory . For more information on processing multiple definition libraries,
see Section 3 .3 .2 .

In multiple definition libraries, two library modules may contain the same
global symbol name, and both definitions will appear in the entry point
table (EPT) . At least one entry point name should be unique in each mod-
ule so that you can easily identify it .

When you use the / X switch, the librarian does not issue the following
message when it encounters a duplicate global symbol name. The global
name appears in the directory for each module that defines it .

?LIBR-W-Illegal insert of AAAAAA

In addition, the /X switch causes the librarian to turn on the /N switch
(see Section 4.3.8) .

The following example creates the multiple definition library MLTLIB
from modules MOD1, MOD2, and MOD3 and lists the library on the
terminal :

*MLTLIB tKB :=MOD1 ,MOD2 #MOD3 / :<

4.3.14 Listing the Directory of a Library File

You can request a listing of the contents of a library file (the global symbol
table) by indicating both the library file and a list file in the command line .
Because a library file is not being created or updated, you do not need to
indicate the file name on the output side of the command line ; however, you
must use a comma to designate a null output library file .

The command syntax can be either of the following:

*,KB : = library-filespec
*,list-filespec = library-filespec

The definition of these file specifications is :

library-filespec

	

Represents the file specification for the existing library
file

KB:

	

Indicates that the listing is to be sent directly to a
terminal

list-filespec

	

Represents the file specification for the list file of the
library file's contents

Librarian (LIBR)

	

4-1 1

RT-11 LIBRARIAN
DK :MLTLIB .OBJ

1104 .00 THU
THU

12-NOV-81 09 :U5 :31
12-NOV-81 05 :45 :31

MODULE GLOBALS GLOBALS GLOBALS

MOD1 OMA$R SWP$ ATP$
MOD2 ATP$ OMA$R MER$CR

LBM
MOD3 ATP$ OMA$R MER$CR

ENTZ

The following command stores a listing of all modules in the library file
LIBFIL.OBJ (on the system device) in the file LIST .LST (on DM2:) :

*#DM2 :LIST=LIBFIL

The next command sends to a terminal a listing of all modules in the
library file FLIB .OBJ, which is stored on the system device :

*tKB :=FLIB

4- 12

	

Librarian (LIBR)

Here is a sample section of a large directory listing :

The first line of the listing file shows the version of the librarian that was
used and the current date and time . The second line prints the library file
name and the date and time the library was created. Each line in the rest of
the listing shows only the globals that appear in a particular module . If a
module contains more global symbol names than can print on one line, a
new line will be started with a plus sign (+) in column 1 to indicate
continuation .

If you request a listing of a library file that was created with the /X or /N
switch, the listing includes module names under the MODULE heading .

4.3.15 Merging Library Files

You can merge two or more library files under one file name by specifying
in a single command line all the library files to be merged. The librarian
does not delete the individual library files following the merge unless the
output file name is identical to one of the input file names.

The command syntax is :

library-filespec = input-filespec, . . .

These file specifications have the following definitions :

library-filespec

	

Represents the library file that will contain all the
merged files . (If a library file already exists under this
name, you must also specify it in the input side of the
command line sa that it is included in the merge.)

input-filespec

	

Represents a library file to be merged .

* " KB :=SYSLIB
RT- 1 1 LIBRARIAN
DK :SYSLIB .OBJ

V04 .00 FRI 20-NOV-81 21 :01 :0)1
FRI 20-NOY-81 20 :59 :47

MODULE GLOBALS GLOBALS GLOBALS

DCO$ ECO$ FCO$
+ GCO$ RCI$

DIC$IS DIC$MS DIC$PS
+ DIC$SS $DIYC $DYC

ADDIS ADD$MS ADD$PS
+ ADD$SS SUD$IS SUD$MS
+ SUD$PS SUD$SS $ADD

The following command combines library files MAIN.OBJ, TRIG.OBJ,
STP.OBJ, and BAC.OBJ (all files are on DK:) under the existing library
file name MAIN .OBJ, replacing the old contents of MAIN.OBJ:

*MAIN=MAIN tTRIG tSTP #BAC

The next command creates a library file named FORT.OBJ and merges
existing library files A.OBJ, B .OBJ, and C.OBJ under the file name
FORT.OBJ:

*FORT=A #B PC

NOTE

Library files should only be combined using the previous pro-
cedure ; in particular, do not use the PIP program for this
purpose . The resulting output is unacceptable to both LINK
and LIBR.

4.3.16 Combining Library Switch Functions

You can request two or more library functions in the same command line,
with the exception of the / E and /M switches, which cannot be specified on
the same command line with any other switch . The librarian performs func-
tions (and issues appropriate prompts) in the following order :

1 .

	

/C or

	

/ /

2 . /D

3 . /G

4. /U

5 . /R

6. Insertions

7 . Listing

For example:

*FILE #LP :=FILE /D #MODX #MODY /R
Module name? XYZ
Module name? A
Module name?

The librarian performs the functions in this example in the following order :

1 .

	

Deletes modules XYZ and A from the library file FILE.OBJ

2.

	

Replaces any duplicate of the modules in the file MODY.OBJ

3.

	

Inserts the modules in the file MODX.OBJ

4.

	

Lists the directory of FILE .OBJ on the line printer

Librarian (LIBR)

	

4-13

4.4 Switch Commands and Functions for MACRO Libraries

4-14

	

Librarian (LIBR)

The librarian lets you create macro libraries . A macro library works with
the V03 and later MACRO-11 assembler .

The MACRO directive produces the entries in the library directory (macro
names) . LIBR does not maintain a directory listing file for macro libraries ;
to list the macros in the library, print the ASCII input file .

The default input and output file type for macro library files is MAC (using
the /M switch) .

If you give the library file the same name as one of the input files, the
librarian prints the error message:

^LIBR-F-Output and input filenames the same

This prevents the deletion of an input file when the library is created .

The librarian removes all comments from your source input file except for
those within a macro (that is, between a MACRO and ENDM pair of
directives) . Comments take up space during the assembly and in the library .
If saving space and shortening assembly time are important to you, remove
them from the macros wherever possible before creating a macro library .
(This may make the macro expansions less clear, however.)

Table 4-2 summarizes the switches you can use with macro libraries . The
switches are explained in detail in the following two sections .

Table 4-2: LIBR Macro Switches

4.4.1 Command Continuation Switches (/C or / /)

These switches for macro libraries are the same as for object libraries . See
Section 4.3.2 .

4.4.2 Macro Switch (/ M[:n])

The /M[:n] switch creates a macro library file from an ASCII input file that
contains MACRO directives . The optional argument n determines the
amount of space to allocate for the macro name directory by representing

Switch
Command

Line Section Meaning

/C Any but 4.4.1 Command continuation ; allows you to type the input
last specification on more than one line .

/M[:n] First 4.4 .2 Macro ; creates a macro library from the ASCII input
file containing MACRO directives .

/ / First and 4.4 .1 Command continuation; allows you to type the input
last specification on more than one line .

the number of macros you want the directory to hold . Remember that n is
interpreted as an octal number; you must follow n by a decimal point (n.) to
indicate a decimal number. Each 64 macros occupies one block of library
directory space . The default value for n is 128, enough space for 128
macros, which use 2 blocks for the macro name table .

The command syntax is :

library-filespec = input-filespec /M[:nl

Definitions for these file specifications follow :

library-filespec

	

Represents the macro library to be created

input-filespec

	

Represents the ASCII input file that contains MACRO
definitions

/M[:n]

	

Is the macro switch

The continuation switches (/C or

	

are the only switches you can use with
the macro switch .

The following example creates the macro library SYSMAC.SML from the
ASCII input file SYSMAC.MAC. Both files are on the system device .

*SYSMAC .SML=SYSMAC/M

Librarian (LIBR)

	

4-15

Chapter 5

Object Module Patch Utility (PAT)

This chapter describes how to use the Object Module Patch Utility (PAT) .

5.1 Introduction to the PAT Utility
The PAT utility program allows you to update code in a relocatable binary
object module (.OBJ). Unlike other programs such as ODT, PAT does not
act like an editor, which usually allows you to inspect a module's octal
contents . Instead, the program performs a merge of (1) the original input
file and (2) a correction file containing the corrections and additions to the
original file . The original input file consists of one or more concatenated
object modules, only one of which can be corrected with a single execution
of the PAT utility . The correction file consists of object code that, when
linked by the linker, either replaces or appends to the original object
module . Output from PAT is the updated input file . You then may need to
use the linker to create an executable program, run the librarian to update
the library, or do nothing if the corrected module typically exists as an
object module .

Prior to using PAT, you must have created the correction file with a text
editor and compiled or assembled it to create the correction file object
module . Figure 5-2 illustrates the entire procedure, which results in an
updated executable file . Note that it is always good practice to create a
backup version of the file you want to patch before using PAT to make
changes .

5.2 Running and Using PAT
To run PAT, type the following command in response to your keyboard
monitor prompt :

RUN $PAT

If your system manager has installed PAT as a Concise Command
Language command (for example, PAT), run the PAT program by typing :

PAT

The PAT command also works (if the CCL PAT is installed) when your
default (or job) keyboard monitor is DCL. In any case, the PAT program
prints an asterisk prompt (*) on your terminal indicating its readiness to
accept command input . Chapter 1 describes the RSTS /E file specification
format you use to construct command lines for the PAT utility program .

You specify a PAT command string in the form:

[output-filespec]= input-filespec[/ C[m]l,correct-filespec[/C[:n]]

Parameters in the PAT command string have the following definitions :

output-filespec

	

Is the file specification for the output file . If you do not
specify an output file, PAT does not generate one.

input-filespec

	

Is the file specification for the input file . This file can
contain one or more concatenated object modules.

correct-filespec

	

Is the file specification for the correction file . This file
contains the updates being made to a single module in
the input file .

/C

	

Specifies the checksum switch for the associated file .
This causes PAT to generate an octal value for the
sum of all the binary data composing the module in
that file .

number

	

Specifies an octal value. PAT compares the checksum
value it computes for a module with the octal value
you specify .

The use of the checksum option is optional . If you in-
clude it in a file specification, you can specify / C alone
without an argument (number) .

Type CTRL / C to stop PAT at any time or CTRL /Z in response to the
asterisk prompt to return control to your keyboard monitor.

Figure 5-1 shows how you use PAT to update a file (FILE1) consisting of
three object modules (MOD1, MOD2, and MOD3) by appending a correction
file to MOD2. After running PAT, you use the linker to relink the updated
module with the rest of the file and to produce a corrected executable
program .

Figure 5-1 : Updating a Module Using PAT

FILE1

MOD1

MOD2

MOD3

UPDATE2

5-2

	

Object Module Patch Utility (PAT)

PAT

FILE1

MOD1

MOD2

UPDATE2

MOD3

MK-00437-00

Figure 5-2: Processing Steps Required to Update a Module Using
PAT

E

CORECTNAC

	

CORECT.OBJ

1 .

	

Create a correction file
using the text editor .

2 .

	

Execute the assembler (or
compiler) to create an
object module version of
the correction file .

3 . Execute PAT, using as
input the correction file and
the module to be updated .

4 .

	

a) If the corrected object
module is part of
something that typically
exists as a program,
execute the linker to
resolve new addresses
and create an
executable program .

b) If the corrected module
is an element in a library
(for example, SYSLIB),
run the librarian and
create or update the
library to contain the
new (corrected) object
module .

c) If the corrected module
is something that
typically exists as an
object module, you need
do nothing . Whenever
you link this module, the
corrections will be
included .

CORECTMAC

MYFILE.OBJ

MYFILE.SAV

MK-00438-00

Object Module Patch Utility (PAT)

	

5-3

There are several steps you must follow when using PAT to update a file :

1 .

	

Use a text editor to create the correction file .

2 .

	

Assemble the correction file to produce an object correction module .

3 . Submit the input file and the correction file in object module form to
PAT for processing.

4 . Link the updated object module, along with the object modules that
make up the rest of the program, to create an executable program.

Figure 5-2 shows the processing steps involved in generating an updated
executable file using PAT.

5.3 How PAT Updates a Module

PAT updates a base input module by using additions and corrections you
supply in a correction file . This section describes the PAT input and correc-
tion files and gives information on how to create the correction file .

5.3.1 Input File

The input file is the file to be updated ; it is the base for the output file and
must be in object module format. When PAT executes, the module in the
correction file is applied to this file .

5.3.2 Correction File

The correction file must be in object module format, and it is usually cre-
ated from a MACRO-11 source file in the following format :

.TITLE inputname

[.IDENT updatenum]

[section name]

inputline

inputline

Definitions of these parameters follow :

inputname

	

Is the name of the module to be corrected by the PAT
update . That is, inputname must be the same name as
the name on the input file TITLE directive for a mod-
ule in the input file that is to be corrected .

5-4

	

Object Module Patch Utility (PAT)

updatenum

	

Is any value acceptable to the MACRO-11 assembler .
Generally, this value reflects the update version of the
file being processed by PAT, as shown in the examples
to follow .

section name

	

Is the ASECT, CSECT, or PSECT included in the
correction file .

inputline

	

Are lines of input for PAT's use in correcting and updat-
ing the input file .

During execution, PAT adds any new global symbols that are defined in the
correction file to the module's symbol table . Duplicate global symbols in the
correction file supersede their counterparts in the input file, provided that
both definitions are relocatable or both are absolute .

A duplicate PSECT or CSECT supersedes the previous PSECT or CSECT,
provided that both have the same relocatability attribute (ABS or REL) -
the relocatability attribute of a CSECT is REL . If PAT encounters duplicate
PSECT names, it sets the length for the PSECT to the length of the longer
PSECT and appends a new PSECT to the module . (Duplicate PSECT means
a PSECT name in the correction file that matches the name of some PSECT
in the original input module .)

If you specify a transfer address, it supersedes that of the module you are
patching .

5.4 Updating Object Modules

The following examples show the source code for an input file and a correc-
tion file to be processed by PAT and the linker . The examples show as
output a single source file that, if assembled and linked, would produce a
binary module equivalent to the file generated by PAT and LINK. Two
techniques are described: one is for overlaying lines in a module, and the
other is for appending a subroutine to a module.

5.4.1 Overlaying Lines in a Module

In the following example, PAT first appends the correction file to the input
file . The linker is then executed to replace code within the input file .

The input file for this example is :

ABC : .

.TITLE ABC

. I DENT

	

/01/
.ENABL GBL

mov AtC
JSR PCtXYZ
RTS PC
.END

Object Module Patch Utility (PAT)

	

5-5

To add the instruction ADD A,B after the JSR instruction, the following
patch source file is included :

.TITLE ABC

.IDENT /01 .01/

.ENABL GBL

ADD

	

A #B
RTS PC
.END

Note that both the original and the patch files use the "blank" PSECT by
default (because no PSECT or CSECT directive is present) . The patch
source is assembled using MACRO-11 and the resulting object file becomes
the input to PAT along with the original object file . The following source
code represents the result of PAT processing :

ABC : .

ADD

	

A tB
RTS PC

After the linker processes these files, the load image appears, as this source
code representation shows :

.TITLE ABC

.IDENT /01 .01/

.ENABL GBL

MOY

	

A #C
JSR

	

PC txyz
ADD AtB
RTS PC
.END

The linker uses the . = . + 12 in the program counter field to determine
where to begin overlaying instructions in the program and, finally, over-
lays the RTS instruction with the patch code :

5.4.2 Adding a Subroutine to a Module

In many cases, a patch requires that more than a few lines be added to
patch the file . A convenient technique for adding new code involves append-
ing it to the end of the module in the form of a subroutine . This way, you
can insert a JSR instruction to the subroutine at an appropriate location .
The JSR directs the program to branch to the new code, execute that code,
and then return to in-line processing .

5-6

	

Object Module Patch Utility (PAT)

.TITLE ABC

.IDENT /01 .01/

.ENABL GBL
ABC : .

MOV AtC
JSR PC t :{Y<
RTS PC

=ABC
=,+12

ADD AtB
RTS PC
.END

The source code for the input file for the example is :

ABC : .

Suppose you wish to add the instructions :

MOV

	

D #RO
ASL Rig

between

MOY

	

A #B

and

JSR PCfXYz

The correction file to accomplish this is :

PATCH :

PAT appends the correction file to the input file, and the linker then
processes the file, generating the following output file :

ABC : .

PATCH :

Object Module Patch Utility (PAT)

	

5-7

.TITLE ABC

.IDENT /01 .01/

.ENABL GBL
JSR PCtPATCH
NOP
.PSECT PATCH

MOY A ,B
MOY D tRO
ASL RO
RTS PC
.END

.TITLE ABC

.IDENT /01 /

.ENABL GBL

MOY A #B
JSR PC t\YZ
MOY C ,RO
RTS PC
.END

.TITLE ABC

.IDENT /01 .01/

.ENABL GBL

JSR PCtPATCH
NOP
JSR PC tXYZ
MOY C #RO
RTS PC
.PSECT PATCH

MOY A tB
mot) D tRO
ASL RO
RTS PC
.END

In this example, the JSR PC,PATCH and NOP instructions overlay the
three-word MOV A,B instruction . (The NOP is included because this is a
case where a two-word instruction replaces a three-word instruction . NOP
is required to maintain alignment.) The linker allocates additional storage
for PSECT PATCH, writes the specified code into this program section, and
binds the JSR instruction to the first address in this section . Note that the
MOV A,B instruction, replaced by the JSR PC,PATCH, is the first instruc-
tion the PATCH subroutine executes .

5.5 Determining and Validating the Contents of a File
Use the checksum switch (/C) to determine or validate the contents of a
module . The checksum switch directs PAT to compute the sum of all binary
data composing a file . If you specify the command in the form /C:n, PAT
computes the checksum and compares that checksum to the value you
specify as n .

To determine the checksum of a file, enter the PAT command line with the
/C switch applied to the file whose checksum you want to determine . For
example, PAT responds to the command = INFILE / C,INFILE .PAT with
the message :

?PAT-W-Input module checksum is nnnnnn

PAT generates a similar message when you request the checksum for the
correction file .

To validate the changes made to a file, enter the checksum switch in the
form /C:n . PAT compares the value it computes for the checksum with the
value you specify as n. If the two values do not match, PAT enters the
changes but displays one of the following two messages reporting the
checksum error :

1 .

	

?PAT-W-Input file checksum error

2.

	

?PAT-W-Correction file checksum error

Checksum processing always results in a nonzero value .

5-8

	

Object Module Patch Utility (PAT)

Appendix A

Switch and Argument Summary

A.1 MACRO Switches

At assembly time you may need to override certain MACRO directives
appearing in the source programs . You may also need to direct MACRO-11
on the handling of certain files during assembly . You can satisfy these
needs by including special switches in the MACRO-11 command string in
addition to the file specifications . A table of the switches and a description
of each follows .

Table A-1:

	

File Specification Switches

Refer to the text in Section 2 . 3 for a complete description of these switches .

Option Usage

/L[:arg]* Listing control, overrides source program directives LIST and NLIST

/N[:arg]* Listing control, overrides source program directives LIST and NLIST

/E:arg** Object file function enabling, overrides source program directives ENABL
and DSABL

/D:arg** Object file function disabling, overrides source program directives ENABL
and .DSABL

/M Indicates input file is a MACRO library file

/C[:arg] Requests or controls the contents of cross-reference listing

/P:arg Specifies whether input source file is to be assembled in pass 1 or pass 2
only, rather than in both passes

* Both /L and /N disable LIST and NLIST for the argument(s) specified ; however, /L
turns it on, and / N turns it off.

** Both /E and /D disable ENABL and .DSABL for the argument(s) specified ; however,
/E turns it on, and /D turns it off.

A.1 .1 Arguments for Listing Control Switches

Two switches, /L :arg and /N:arg, affect listing control . By specifying these
switches with a set of selected arguments, you can control the content and
format of assembly listings . You can override the arguments of UST and
.NLIST directives in the MACRO source program . Table A-2 lists the argu-
ments you use with the / L and / N switches .

Table A-2: Arguments for /L and /N Switches

Read more about the listing control switches in Section 2.3 .1 .

A.1 .2 Arguments for Function Control Switches

Two switches, /E:arg and /D:arg, allow you to enable or disable functions
at assembly time, and thus influence the form and content of the binary
object file . These functions can override XNABL and DSABL directives in
the source program . The following table summarizes the acceptable /E and
/ D function arguments, their normal default status, and the functions they
control .

A-2

	

Switch and Argument Summary

Argument Default Listing Control

SEQ List Source line sequence number

LOC List Address location counter

BIN List Generated binary code (includes BEX)

BEX* List Binary extensions

SRC List Source code
COM List Comments
MD List Macro definitions, repeat range definitions
MC List Macro calls, repeat range expansion
ME No list Macro expansions (includes MEB)
MEB No list Macro expansion binary code
CND List Unsatisfied conditionals, .IF and ENDC statements
LD No list List control directives with no arguments
TOC List Table of Contents

TTM No list 132-column line printer format when not specified, terminal
mode (80-column mode) when specified

SYM List Symbol table

* This option applies to the listing of assembled binary code . There is room on a listing
line to display three octal words (one if TTM is set) of assembled code . Ifyou assemble a
source statement that assembles to more than three words, only the first three are
listed if NLIST BEX is in effect. If .LIST BEX is in effect, MACRO uses additional lines
to list all assembled words .

Table A-3:

	

Arguments for / E and / D Switches

See Section 2.3 .2 for more information about these arguments.

A.1 .3 Arguments for the Cross-Reference Switch (/C)

A complete cross reference contains six sections : (1) program symbols, (2)
register symbols (if the REG switch has been disabled), (3) MACRO
symbols, (4) permanent symbols, (5) program sections, or (6) errors . You
can include any or all of these six sections on the cross-reference listing by
specifying the appropriate arguments with the /C :arg switch . Table A-4
summarizes these arguments .

Table A-4:

	

/C Switch Arguments

Switch and Argument Summary

	

A-3

Argument Default Mode Function

ABS Disable Produces output in paper tape absolute binary format
instead of a standard object file .

AMA Disable Assembles all relative addresses as absolute addresses .
Replaces all uses of relative addressing mode (mode 67)
by absolute addressing (mode 37) .

CDR Disable Ignores all source information beyond column 72 .

CRF Enable Allows cross-reference listing . Disabling this function
inhibits CREF output even if switch /C is active .

FPT Disable Truncates floating point values (instead of rounding) .

GBL Disable Treats undefined symbols as globals .

LC Disable Allows lowercase ASCII source input .

LSB Disable Allows local symbol block (not recommended in /E :arg or
/D :arg) .

PNC Enable Allows binary output .

REG Enable Automatically defines register mnemonics if enabled .
You should set or clear the REG argument at the begin-
ning of the source module .

Argument CREF Section

S User-defined symbols

R Register symbols

M MACRO symbolic names

P Permanent symbols including instructions and directives

C Control and program sections

E Error code grouping

A.2 LINK Switches

NOTE

Specifying / C with no arguments is equivalent to specifying
/C:S:M :E : . Except for that special case, you must explicitly
request each CREF section by including its arguments. The
/ C switch must be used to produce a cross-reference file even
if the command string includes a CREF file specification .

Refer to Section 2 .3 .4 for more information about obtaining a complete
CREF listing .

The table of switches that follows is associated with the linker . You must
precede the letter representing each switch by the slash character.
Switches must appear on the line indicated if you continue the input on
more than one line, but you can position them anywhere on the line . The
column titled Command Line lists on which line in the command string the
switch can appear .

Table A-5: Linker Switches

A-4

	

Switch and Argument Summary

(continued on next page)

Switch
Name

Command
Line Section Explanation

/A First 3 .5 .1 Lists global symbols in program sections in alphabeti-
cal order in the load map.

/B:n First 3 .5.2 Changes the bottom address of a program to n (invalid
with /H) .

/C Any but 3 .5.3 Continues input specification on another command
last line . (You can also use /C with /O ; however, do not

use /C with the / / switch .)

/E:n First 3.5.4 Extends a particular program section in the root to a
specific value .

/F First 3.5 .5 Instructs the linker to use the default FORTRAN
library, $FORLIB.OBJ, to resolve any undefined
global references . Do not specify this switch in the
command line when $FORLIB has been incorporated
into $SYSLIB .

/G First 3.5 .6 Adjusts the size of the linker's library directory buffer
to accommodate the largest multiple definition
library directory .

/H:n First 3 .5 .7 Specifies the top (highest) address to be used by the
relocatable code in the load module . Invalid with /B,
/Y, or /Q .

/I First 3 .5.8 Allows you to specify additional external global sym-
bols to be satisfied (typically from the libraries) . In
general, this is used to explicitly request the inclusion
of additional library modules .

A.3 LIBR Switches

Table A-5:

	

Linker Switches (font.)

You maintain object library files by using switch commands . Functions you
can perform include object module deletion, insertion and replacement,
library file creation, and listing of an object library file's contents . The
following table summarizes the switches available for you to use with
LIBR .

Switch and Argument Summary

	

A-5

Switch
Name

Command
Line Section Explanation

/K:n First 3.5.9 Inserts the value you specify (the valid range for n is
from 1 to 28) into word 56 of block 0 of the image file .
This switch informs the RT11 run-time system that
the program requires nK words of memory .

/M[:n] First 3.5.10 Causes the linker to prompt you for a global symbol
that represents the stack address (if n is omitted) or
that sets the initial stack address to the value n (if n
is specified) .

/O:n Any but 3.5.11 Indicates that the program is an overlay structure ; n
first specifies the overlay region to which the module is

assigned .

/P:n First 3.5.12 Changes the default amount of space the linker uses
for a library routines list .

/Q First 3.5.13 Lets you specify the base addresses of up to eight root
program sections . Invalid with /H .

/S First 3 .5.14 Makes the maximum amount of space in memory
available for the linker's symbol table . (Use this
switch only when a particular link stream causes a
symbol table overflow.)

/T[:n] First 3 .5.15 Causes the linker to prompt you for a global symbol
that represents the transfer address (if n is omitted)
or that sets the transfer address to the value n (if n is
specified) .

/U:n First 3.5.16 Rounds up the root program section you specify so
that the size of the root segment is an integer multi-
ple of the value you supply (n must be a power of 2) .

/W First 3.5.17 Directs the linker to produce a wide load map listing.

/X First 3.5.18 Does not output the bitmap if the area normally used
by the bitmap (location 360-377) is used by code .

/Y:n First 3.5.19 Starts a specific program section in the root on a par-
ticular address boundary . Invalid with /H .

/Z :n First 3.5.20 Sets unused locations in the load module to the value
n (ifn is omitted, the linker uses zero as the default) .

/ / First and 3.5.3 Allows you to specify command string input on addi-
last tional lines . Do not use this switch with /C .

Table A-6: LIBR Object Switches

A-6

	

Switch and Argument Summary

Switch
Command

Line Section Meaning

/A First 4.3 .1 Puts all globals in the directory, including all abso-
lute global symbols .

/C Any 4.3 .2 Allows you to type the input specification on more
but last than one line .

/D First 4.3.5 Deletes modules (from a library file) that you specify .

/E First 4.3.6 Extract modules from a library and stores it in an
.OBJ file .

/G First 4.3.7 Deletes global symbols (from the library directory)
that you specify . (The module containing the global
being deleted is not itself deleted from the library .)

/N First 4.3 .8 Includes the module names in the directory .

/P First 4.3 .9 Includes the program section names (p-sect names) in
the directory .

/R First 4.3.10 Replaces modules in a library file . This switch must
follow the file specification to which it applies .

/U First 4.3.11 Inserts and replaces (updates) modules in a library
file . This switch must follow the file specification to
which it applies .

/W First 4.3.12 Indicates wide format for the listing file .

/X First 4.3.13 Allows multiple definitions of global entry points to
appear in the library entry point table .

/ / First and 4.3.2 Allows you to type the input specification on more
last than one line .

Appendix B
Error Message Summary

The utilities print error messages in the format : ?UTILITY-n-message .
The first character of each error message is a question mark (?) followed by
the name of the utility in uppercase letters . The single-character code n
indicates whether the error was a fatal (F) or a warning (W) message:

FATAL

	

messages cause the current command or statement to be
ignored ; you can usually correct the error by entering an-
other command.

WARNING

	

messages indicate an error condition that may affect execu-
tion at a later time . A message of this type may require some
attention .

A message includes : (1) a description of the conditions that may have
caused the error and (2) methods to recover. The error messages are listed
in alphabetical order .

Before trying to interpret and then correct the error conditions generated
by the utilities in this manual, you should be aware of the following
comments :

COMMENT #1

There may be times when error messages returned by the utilities do not
help you identify the condition causing the error . This results from having
a large set of RSTS/E error messages map into a smaller set provided by
RT11 . RSTS/E chooses the most logical RT11 error when the emulator
encounters an error condition, but the RT11 error message that is chosen
may not retain the "flavor" provided by the original . For example, many
RSTS /E error conditions are mapped into the RT-11 "device full" error .
The intent is to convey "cannot write output file ." But the actual cause of
the error may have nothing to do with "device full," which is a relatively
rare occurrence on RSTS/E . When situations like this occur and you are

using RT11 as your primary run-time system, type CTRL /C to return to
the dot prompt (.) generated by RT11. Typing ERR at that point and press-
ing the RETURN key causes the system to print the original RSTS/E error
message . An example of this follows :

.RUN $MACRO
*SY :=KB :
?MACRO-F-Device full
*

.ERR RE

?Illegal file riame

The resulting error message should, as in this case, more accurately reflect
the condition that caused the error .

COMMENT #2

There are a number of errors in LINK, LIBR, and PAT that indicate "bad
input." You may be able to correct the error condition if you follow these
procedures :

1 .

	

Verify that you are using the correct file(s) .

2 .

	

Assemble or compile the file(s) again .

3 .

	

Retry the operation .

4 .

	

Submit an SPR if the problem persists . The error might be an compiler
or assembler bug or a LINK /LIBR/PAT bug . Be sure when you submit
an SPR to include a copy of the dialogue used and machine-readable
copies of both the source and the object files .

COMMENT #3

A few of the error messages refer to the word "option" which in this context
has the same meaning as the term "switch" used in RSTS/E documenta-
tion . Switch refers to the combination of a slash character (/) and a word
which cause the MACRO, LINK, LIBR, or PAT utility to act in a prescribed
way. The word "switch" has been used here to comply with other RSTS / E
documentation .

B.1 MACRO Error Messages

A list of MACRO assembler error messages follows :

?MACRO-F-Bad option
The specified switch was not recognized by the program . Check for a typing
error in the command line . Use only a valid listing control or functional
control (or CREF) switch .

?MACRO-F-Device full DEV:
The output device does not have enough room for an output file specified in
the command string . Increase storage space or specify another device . Refer
to COMMENT #1 at the beginning of this appendix .

B-2

	

Error Message Summary

?MACRO-F-File not found DEV:FILENAME.TYPE
The input file in the command line does not exist on the specified device .
Correct any file specification errors in the command line and retype .
?MACRO-F-Illegal command
The command line contains a syntax error or specifies more than six input
files . Correct the command line and retype .

?MACRO-F-Illegal device DEV:
The device specified in the command line does not exist on the system .
Specify a different device name.

?MACRO-F-Insufficient memory
There were too many symbols, macro, or nested repeat blocks in the
program being assembled . Increase memory space. Try to reduce the
complexity of nested macro calls .

?MACRO-F-I/O error on DEV:FILENAME.TYPE
A hardware error occurred during a read from or write to the specified file .
?MACRO-F-I/O error on work file
MACRO failed to read, write, or open its work file, WRK.TMP. Free up
some space on the public structure or specify a different device for the work
file .

?MACRO-F-Invalid macro library
The library file has been corrupted, or it was not produced by the librarian
LIBR. Use LIBR to generate a new copy of the library .

?MACRO-F-Output device full on DEV:FILENAME.TYPE
There was no room to continue writing the output file . Increase storage
area . Refer to COMMENT #1 at the beginning of this appendix .
?MACRO-F-Read error on MACRO library
MACRO detected a bad record in the MACRO library . This error can occur
when the library is bad. Rebuild the MACRO library .

?MACRO-F-Storage limit exceeded (64K)
MACRO's Virtual Symbol Table can store symbols and macros up to 64K
words in any combination . The program contains more than 64K total of
these elements . Check for a condition that leads to excessive size, such as a
macro expansion that recursively calls itself without a terminating
condition . If necessary, reduce the requirements of the source program by
segmenting it into separate modules, and assemble each of them
separately .

?MACRO-W-I/O error on CREF file : CREF aborted
Either there is not enough space to perform the operation, or an 1/0 error
occurred while the CREF work file was being written. CREF processing is
terminated but the assembly will continue . Increase storage space, specify
a different device for the CREF file, or correct the cause of the I/O error .

Error Message Summary

	

B-3

B.2 LINK Error Messages

A list of LINK error messages follows :

?LINK-F-Address space exceeded
The high limit of all program sections exceeded 32K words when all sec-
tions were concatenated . Reduce the size of the program by using overlays
or by reducing the size of the largest segment within each overlay region .

?LINK-F-ASECT too big
An absolute section overlaps into an occupied area of memory or an overlay
region . Locate a segment of available memory large enough to contain the
absolute section, and substitute the appropriate starting address .

?LINK-F-/B No value
No argument was specified to the /B switch . Reenter the command string,
specifying an unsigned, even, octal number as the argument to the /B
switch.

?LINK-F-/B Odd value
The argument to the / B switch was not an even number. Reenter the com-
mand string, specifying an even number as the argument. This error indi-
cates that the object module was bad (or perhaps not a legal object module).

?LINK-F-Bad complex relocation in DEV:FILENAME.TYPE
During pass 2 of the linker, a complex relocation string in the input file was
found to be invalid . Check for a typing error in the command line ; verify
that the correct file names were specified as input. Refer to COMMENT #2
at the beginning of this appendix .

?LINK-F-Bad GSD in DEV:FILENAME .TYPE
There was an error in the global symbol directory (GSD) . The file is proba-
bly not an legal object module . Verify that the correct file names were
specified as input; check for a typing error in the command line . Refer to
COMMENT #2 at the beginning of this appendix .

?LINK-F-Bad RLD in DEV:FILENAME.TYPE
An invalid relocation directory (RLD) command exists in the input file . The
file is probably not a legal input module . Check for a typing error in the
command line ; verify that correct file names were specified as input. Refer
to COMMENT #2 at the beginning of this appendix . (In addition to the
remarks in COMMENT #2, check the source code to make sure that all
modules contributing to a data p-sect are word-aligned .)

?LINK-F-Bad RLD symbol in DEV:FILENAME.TYPE
An error occurred in the language processor because a global symbol named
in a relocatable record was not defined in the global symbol definition
record. The object file is bad. Refer to COMMENT #2 at the beginning of
this appendix .

B-4

	

Error Message Summary

?LINK-F-/H Value too low
The value specified as the high address for linking was too small to accom-
modate the code . Obtain map output without using the / H switch to deter-
mine the space required, and then retry the operation .

?LINK-F-Illegal character
The character specified was not used in the proper context. Examine the
command string for errors in syntax, making sure that the characters for
symbols are legal Radix-50 characters . Correct and retype .
?LINK-F-Illegal device
The device indicated was not available . Verify that the device name is valid
for the system in use .
?LINK-F-Illegal error
An internal error occurred while the linker was recovering from a previous
system or user error . Refer to COMMENT #2 at the beginning of this
appendix .

?LINK-F-Illegal record type in DEV:FILENAME.TYPE
A formatted binary record had a type not in the range 1-10 (octal) . Refer to
COMMENT #2 at the beginning of this appendix .

?LINK-F-Insufficient memory
There was not enough memory to accommodate the symbol table, or other
buffers used by LINK. Try linking without the /G, /P, or /S switch (if
used), reduce the number of globals used, or use fewer libraries .

?LINK-F-Library EPT too big, increase buffer with /G
The /G switch was not specified in RT11 and a /X library with too large an
Entry Point Table was encountered . Relink, and issue /G switch on first
input line .
?LINK-F-Library list overflow, increase size with /P
The linker's library routing list was exceeded . Relink the program that
uses the library routines . The /P:n switch default is 170 (decimal) . Increase
the size of the list by specifying a size greater than the default .
?LINK-F-/M Odd value
An odd value was specified for the stack address . Check for a typing error
in the command line . Reenter the command, specifying an even value to the
/M switch .

?LINK-F-Map device full DEV:FILENAME.TYPE
There was no room in the directory for the file name, or there was no room
on the output device for the map file . Increase storage space or use another
device . Refer to COMMENT #1 at the beginning of this appendix .

?LINK-F-Old library format in DEV:FILENAME .TYPE
The format of the library file is outdated (previous to Version 2C) . Rebuild
the library file using the current librarian .

Error Message Summary

	

B-5

?LINK-F-Protected file already exists DEV:FILENAME.TYPE
An attempt was made to open a file using a name already associated with
an existing protected file . Use a different name to open a new file, rename
the file with PIP, change the protection code, or use another file .

?LINK-F-Read error in DEV:FILENAME.TYPE
A hardware error occurred while the indicated input file was being read .
Check for read-locked or off-line devices .

?LINK-F-SAV device full DEV:FILENAME.TYPE
There was no room in the directory for the file name, or there was no room
on the output device for the SAV image . Increase storage space. Refer to
COMMENT #1 at the beginning of this appendix .

?LINK-F-SAV read error
A hardware error occurred while LINK was reading the output SAV file .
Check for read-locked or off-line devices .

?LINK-F-SAV write error
A hardware error occurred while LINK was writing the SAV image file .
The device may be full or you protected the file against yourself (that is,
*FOO<63>=BAR) . Check for write-locked or off-line devices, use another
device, free up space, or fix the command line .

?LINK-F-Size overflow of section AAAAAA
The program section in question increased program size to more than 32K
words. Reduce the size of the program, either in this section or elsewhere in
the program .

?LINK-F-STB device full DEV:FILENAME .TYPE
There was no room in the directory for the file name, or there was no room
on the output device for the symbol table (STB) file . Increase storage space
or use another device . Refer to COMMENT #1 at the beginning of this
appendix .

?LINK-F-STB not allowed with /S and a map
An attempt was made to produce STB and MAP in the same linking opera-
tion, which is prohibited with the /S switch . Produce STB and MAP files in
separate linking operations .

?LINK-F-STB write error
A hardware error occurred while LINK was writing the symbol table (STB)
file . The device may be full, or you protected the file against yourself (that
is, *FOO<63>=BAR) . Check for write-locked or off-line devices .

?LINK-F-Storing text beyond high limit
An input object module may have caused the linker to store information in
the image file beyond the high limit of the program ; there is an error
condition in the object module . Reassemble or recompile the program .
Submit an SPR if the condition persists .

B-6

	

Error Message Summary

The amount of space allocated for the output file was insufficient, or there
was not enough room on the output device for the output file . Specify a
larger output file size, or increase storage space .

?LINK-F-Symbol table overflow

Too many global symbols were used in the program. Retry the link, using
the / S switch . If the error still occurs, reduce the size of the library list
using the /S and /P:n switches, with a value less than the default (170) . If
the error continues, the link cannot take place in the available memory .
Reduce the number of globals used .

?LINK-F-/T Odd value

An odd value was specified for the transfer address . Check for a typing
error in the command line . Reenter the command, specifying an even value
to the / T switch .

?LINK-F-Too many program segments

More than 1023 program segments were specified . Restructure overlays to
reduce the number.

?LINK-F- / U or / Y value not a power of 2

The value specified with the / U or the /Y switch is not a power of 2 .
Reenter the command with a value that is a power of 2 .

?LINK-F-Word relocation error in FILENAME

During concatenation of data p-sects, a word reference was moved to an odd
byte . Place the EVEN assembler directive at the end of data p-sects to
make sure that all word references in data p-sects are on a word boundary
when relocated by LINK .

?LINK-W-Additive reference of NNNNNN a segment # MMMMMM

A call or a jump to an overlay segment was not made directly to an entry
point in the segment. NNNNNN represents the entry point ; MMMMMM
represents the segment number. Make sure that calls or jumps to overlay
segments are made directly to entry points in the segment. See Section 3.4
for more information about using overlays .

?LINK-W-Bad option : / a

The linker did not recognize the / a switch (/a represents the unrecognized
switch) specified in the command line, or an illegal combination of switches
was used . If the bad switch occurred in the first command line, the entire
command line is ignored and LINK prompts for a new command; enter
another command . If the bad switch occurred on a subsequent command
line, the switch is ignored and processing continues . In a continued com-
mand line, make sure that the only switches used are /0, IV, /C, and / / .
See Section 3.2.3 for a list of valid switches . Reexamine the command line
and check for a typing error .

Error Message Summary

	

B-7

?LINK-W-Boundary section not found
The program section name specified as a boundary section with the / Y
switch was not found in the modules that were linked ; or the program
section does not exist in the root segment. The linker continues after the
warning, without performing the /Y operation . Check the responses to the
Boundary section? prompt, and use the correct section name the next time
you link .
?LINK-W-Byte relocation error at NNNNNN
The linker attempted to relocate and link byte quantities but failed because
the high byte of the relocated value (or the linked value) was not all zeros.
NNNNNN represents the address at which the error occurred.

The relocated value is truncated to eight bits and the linker continues
processing . Correct the source program so that no overflow occurs in relo-
cated byte quantities . Reassemble and relink .

?LINK-W-Complex relocation divide by 0 in DEV:FILENAME .TYPE
An attempt was made to divide by zero in a complex relocation string in the
file indicated . A result of zero is returned and linking continues . Check
uses of division in complex relocation string expressions to keep the result
of the division from equaling zero .

?LINK-W-Conflicting section attributes AAAAAA
The program section symbol was defined with different attributes . The
attributes of the first definition are used and the linking process continues .
Check the source program, and use the desired section attributes for that
program section .

?LINK-W-Default system library not found SYSLIB .OBJ
The linker did not find $SYSLIB.OBJ on the public structure when unde-
fined globals existed or when overlays were being used . Obtain a copy of
$SYSLIB.OBJ from backup and relink the program, or correct the source
files by removing the undefined globals listed on the terminal . SYSLIB in
the system library account [1,2] contains the overlay handlers, which are
required when overlays are specified .

?LINK-W-Extend section not found
The extend section name given with the /E switch was not found in the
modules that were linked ; or the extend section did not exist in the root
segment. The linker continues after the warning, without performing the
extend operation . Check the response to the Extend section? prompt, and
use the correct section name the next time you link .

?LINK-W-File not found DEV:FILENAME.TYPE
The input file indicated was not found . Check for a typing error in the
command line . Verify that the file name exists as entered in the command
line, and retry the operation .

?LINK-W-Load address odd
An odd load address was specified with the /Q switch . Reenter the line with
an even address .

B-8

	

Error Message Summary

?LINK-W-Load address too low AAAAAA
The load address specified for the p-sect was too low. The p-sect was ignored
to avoid overlaying code in a previous section .

Link continues execution without loading the p-sect at the specified
address . Relink and specify a higher load address for the p-sect .

?LINK-W-Load section not found AAAAAA

The load section specified was not found in the root or did not exist in the
root segment.

LINK continues execution, ignoring the placement request for the p-sect in
question . Reorder the modules to place the p-sect containing the load sec-
tion in the root or specify the correct name, and then relink.
?LINK-W-Map write error

A hardware error occurred while the map output file was being written .
The map output is terminated and the linking process continues .
?LINK-W-Multiple definition of symbol

The symbol indicated was defined more than once . Extra definitions are
ignored. Make sure each symbol is defined only once .

?LINK-W-No load address

No address was specified with the /Q switch . Reenter the command line,
and specify a load address .

?LINK-W-/ O or /V option error, re-enter line

An error was made in the use of the /O switch . There are two probable
errors : (1) no value was given with the /O switch, or (2) a value was given
but it is incorrect . Check the context and reenter the line .

?LINK-W-Round section not found AAAAAA
The symbol representing the program section specified with the /U switch
was not found in the symbol table . Linking continues with no round-up
action . Check the source to make sure the p-sect exists in the root .
?LINK-W-Stack address undefined or in overlay
The stack address specified by the /M switch was either undefined or in an
overlay . The stack address is set to the default 1000 . Check for a typing
error in the command line . Verify that the stack address or global symbol is
not defined in an overlay segment.

?LINK-W-Transfer address undefined or in overlay
The transfer address was not defined or was in an overlay . Check for a
typing error in the command line . Respond to the /T switch with either a
colon followed by an unsigned six-digit octal number or with a carriage
return followed by the global symbol whose value is the transfer address of
the load module .

Error Message Summary

	

B-9

?LINK-W-Undefined globals :
The globals listed were undefined (possibly because $SYSLIB was not pres-
ent and $SYSLIB modules were referenced or overlays were used) . Check
for a typing error in the command line . The undefined globals are listed on
the terminal and also in the link map when requested . Correct the source
program . Verify that all necessary object modules are indicated in the
command line or are present in the libraries specified or in $SYSLIB .

B.3 LIBR Error Messages

A list of LIBR error messages follows :

?LIBR-F-Bad GSD in DEV:FILENAME.TYPE
There was an error in the global symbol directory (GSD) . The file is proba-
bly not a legal object module . Refer to COMMENT #2 at the beginning of
this appendix .

?LIBR-F-Bad library for listing or extract
The input file specified for extraction or to produce a directory listing was
not a valid object library file . It may be necessary to rebuild the input file .
Refer to COMMENT #2 at the beginning of this appendix .

?LIBR-F-Bad option : / a
The librarian did not recognize the given switch ; / a represents the unrecog-
nized switch . The librarian restarts and prompts with an asterisk . Check
for a typing error in the command line . Verify that the switch is legal for
the librarian, and retry the operation .

?LIBR-F-EOF during extract
The end of the input file was reached before the end of the module being
extracted . The object module format is probably incorrect . Rebuild the
library file . If the error condition persists, reassemble the object module(s)
belonging to that file . Also, refer to COMMENT #2 at the beginning of this
appendix .

?LIBR-F-File not found DEV:FILENAME .TYPE
One of the input files indicated in the command line was not found . LIBR
prints an asterisk ; the command may be reentered . Check for a typing error
in the command line . Verify that the file name exists as entered in the
command line, and retry the operation .

?LIBR-F-Illegal device
The device indicated was not available . Verify that the device is valid for
the system in use .

?LIBR-F-Illegal error
An internal error occurred while the librarian was recovering from a previ-
ous system or user error . Refer to COMMENT #2 at the beginning of this
appendix .

B- 10

	

Error Message Summary

?LIBR-F-Illegal input file DEV:FILENAME .TYPE
A file other than a form library file or a form descriptor file was given as
input when a form (/F) library was being created. Make sure that you
entered the input file name correctly and that the file is a valid one.
?LIBR-F-Illegal option combination
Switches have been specified that request conflicting functions to be
performed . For example, if /E is specified, no other switch may be used . If
/M is specified, only continuation switches (/C and / /) may follow . Exam-
ine the logic of the command line and correct it if necessary . Check for
typing errors, and retry the operation .

?LIBR-F-Illegal record type in DEV:FILENAME.TYPE
A formatted binary record had a type not in the range 1-10 (octal) . Verify
that the correct file names were specified as input; check for a typing error
in the command line . Refer to COMMENT #2 at the beginning of this
appendix .

?LIBR-F-Insufficient memory
Available memory was used up. The current command is aborted . Increase
memory space .

?LIBR-F-Macro name table full, use /M:n
The number of macros to be placed in the macro name table was greater
than the number allowed . Increase the size of the macro name table by
supplying a value (n) to the switch /M :n . The default is 128 names.

?LIBR-F-No value allowed : /a
The specified switch / a does not take a value; / a represents the switch that
you used . The librarian restarts and prompts with an asterisk . Check for
typing errors ; verify that the correct switch has been specified in the com-
mand line, and retry the operation.

?LIBR-F-Output and input filenames the same
The same file name was specified for both input and output files when the
command string to build the macro library was specified . Use different file
names for the input and output files specified to build a macro library . The
default input and output file type is MAC .

?LIBR-F-Output device full DEV:FILENAME .TYPE
The device was full ; LIBR was unable to create or update the indicated
library file . Increase storage space, or use another device . Refer to
COMMENT #1 at the beginning of this appendix .

?LIBR-F-Read error in DEV:FILENAME.TYPE
An unrecoverable error occurred during the processing of an input file .
LIBR prints an asterisk and waits for another command to be entered . A
hardware problem may have caused this error .

Error Message Summary

	

B-11

?LIBR-F-/R or /U given on library file DEV:FILENAME.TYPE
A /R or /U switch incorrectly followed the specified library file in the
command string. Use the /R or /U switch only after input file names
containing modules for replacement or updating . Correct and reenter the
command string .

?LIBR-F-/U given on library file DEV:FILENAME .TYPE
This message occurs if the / U illegally modified a forms library file . Use
the /U switch only after input file names containing modules for
replacement or updating .

?LIBR-F-Write error
The LIBR program detected an unrecoverable error while processing an
output file . This may indicate that there was not enough space left on a
device to create a file . Increase storage space .

?LIBR-W-Duplicate form name of FORMNM
Two forms of the same name were specified as input and a /U switch was
not given on the second form . The first form encountered was put in the
output file . All duplicates are ignored . Use the / U switch to update a form
of the same name as a previously specified file .

?LIBR-W-Duplicate module name of AAAAAA
A new module was inserted in a library, but its name is the same as a
module that is already in the library . The librarian does not reenter the
name in the directory . The old module is not updated or replaced . For the
librarian program, insertion is the default operation and no command
switch is needed; the switch for update is /U, and the switch for replace-
ment is /R.

?LIBR-W-Illegal character
The symbol name entered contained an illegal character . Retype the com-
mand line, using Radix-50 characters only, and retry the operation .

?LIBR-W-Illegal delete of AAAAAA
An attempt was made to delete from the library's directory a module or an
entry point that does not exist; AAAAAA represents the module or entry
point name. The entry point name or module name is ignored, and process-
ing continues . Check for a typing error in the command line .

?LIBR-W-Illegal extract of AAAAAA
An extraction of the identified global symbol was attempted, but the
symbol was not found in the library . Check the command string and the
contents of the library file for the correct library file and global symbol
specifications .

?LIBR-W-Illegal insert of AAAAAA
An attempt was made to insert into a library a module that contains the
same entry point as an existing module ; AAAAAA represents the entry
point name. The entry point is ignored, but the module is still inserted into
the library . No user action is necessary .

B- 12

	

Error Message Summary

?LIBR-W-Illegal replacement of AAAAAA
An attempt was made to replace in the library file a module that does not
already exist ; AAAAAA represents the module name. The module is
ignored and the library is built without it . Review the module names in the
library file . Make sure the correct module was specified .

?LIBR-W-Null library
An attempt was made to build a library file containing no directory entries .
Verify that the correct file names were specified as input; check for a typing
error in the command line . Verify that the input to the library has at least
one directory entry .

?LIBR-W-Only continuation allowed
An attempt was made to enter a command string beyond the end of the
current line without the use of a continuation character . Enter a /C switch
or / / at the end of the current line .

B.4 PAT Error Messages
A list of PAT error messages follows :

?PAT-F-Command line error
There is a syntax error in the PAT command line . Check for typing errors,
and reenter the command line .

?PAT-F-Correction file has bad GSD
There was an error in the global symbol directory (GSD). The file is proba-
bly not a legal object module . Refer to COMMENT #2 at the beginning of
this appendix .

?PAT-F-Correction file has bad RLD
A global symbol named in a relocatable record was not defined in the global
symbol definition record . This error condition indicates a bad object file .
Refer to COMMENT #2 at the beginning of this appendix.

?PAT-F-Correction file has illegal record
The correction file does not appear to be a proper object file . The standard
language processors should produce the required format . Verify that the
correction file has the proper format, and retype the command line . Refer to
COMMENT #2 at the beginning of this appendix .

?PAT-F-Correction file missing
The command line does not have a correction file specification . PAT
requires both an input file and a correction input file in every command .
Enter a complete command .

?PAT-F-Correction file missing RLD record
The file is missing an RLD 7 command before the first TXT record. This is
the p-sect definition command. PAT cannot process the file . This could
simply mean a bad input file . Reassemble the correction file . Refer to
COMMENT #2 at the beginning of this appendix .

Error Message Summary

	

B-13

?PAT-F-Correction file read error
PAT detected an error while reading the correction file . Input hardware can
cause this error . Retry the command . Check for off-line devices .

?PAT-F-Illegal error
PAT has detected an internal software error condition . Refer to
COMMENT #2 at the beginning of this appendix .

?PAT-F-Incompatible reference to global AAAAAA
The correction file contains a global symbol with improper attributes .
Modify the attributes of the global symbol. Choose definition or reference,
and choose relocatable or absolute . Reassemble the correction file, and
retype the command line .

?PAT-F-Incompatible reference to section AAAAAA
The correction file contains a section name with improper attributes .
Modify the section attributes or section type . Make sure the attributes
match . Reassemble the correction file, and retype the command line .

?PAT-F-Input file has bad GSD
There was an error in the global symbol directory (GSD) . The file is proba-
bly not a legal object module . Verify that the input file name is correct ;
check for a typing error in the command line . Refer to COMMENT #2 at
the beginning of this appendix .

?PAT-F-Input file has bad RLD
An error occurred in the language processor because a global symbol named
in a relocatable record was not defined in the global symbol definition
record. Refer to COMMENT #2 at the beginning of this appendix .

?PAT-F-Input file has illegal record
The format of the input file is not compatible with the object file format
PAT requires . The standard language processors should produce the
required format . Verify that the input file has the proper format, and
retype the command line . Refer to COMMENT #2 at the beginning of this
appendix .

?PAT-F-Input file missing
The command line does not have an explicit input file specification . PAT
requires both an input file and a correction file in every command . Enter a
complete command .

?PAT-F-Input file read error
PAT detected an error while reading the input file . Hardware errors on
input can cause this error . Correct the problem, and retry the command .

?PAT-F-Insufficient memory
PAT ran out of memory . Allow the job to use more memory, or apply the
patch in sections .

B-14

	

Error Message Summary

?PAT-F-Only /C allowed
The input module or correction file specification contain an illegal switch .
Enter a command line with the appropriate switches .

?PAT-F-Output file full
There was not enough free space on the output volume for the corrected
object file . Increase storage space, or use another device . Refer to
COMMENT #1 at the beginning of this appendix .

?PAT-F-Output write error
PAT encountered an error while writing the output file . This error occurs
when the output device is write-locked or when there is a hardware error .
Correct the problem and retry .

?PAT-F-Unable to locate module AAAAAA
The correction file has a module name that does not exist in the input file ;
AAAAAA represents the name of the nonexistent module . Update the
input file to include the missing module, or correct an improper module
name in the correction file . Retype the command line .

?PAT-W-Additional input files ignored
The command line specified more than two input files . PAT processed the
first as the input module to be corrected and the second as the correction
file . PAT ignores all other files . Only one correction file was processed .
Merge the corrections into one file and reissue the command .

?PAT-W-Additional output files ignored
The command line has more than one output file specification . PAT cannot
create more than one file for each command line and ignores all other
output files specified, except the first . Enter a correct command. PAT's
output file must be in the "outl" position for the general command line
format :

outl,out2,out3 = input,correct

The command was in fact executed and thus further action may not be
needed.

?PAT-W-Correction file checksum error
PAT found a checksum value that was different from the value for the / C
correction file switch . Mistyping the /C switch value or specifying an
invalid version of the correction file causes this error . Check for typing
errors, and check both the checksum value and the correction file name
used . Enter a correct command line .

?PAT-W-Correction file checksum is NNNNNN
PAT responds to the / C switch on the correction file with this message;
NNNNNN is the octal value of the sum of all binary data composing the

Error Message Summary

	

B-15

file . This message is for your information . The number printed is the check-
sum you would use with the /C:n switch if you plan to apply this patch
again.

?PAT-W-Input file checksum error
PAT found a checksum value that was different from the value for the /C
input file switch . Mistyping the /C switch value or specifying an invalid
version of the input file causes this warning . Check for typing errors, and
check both the checksum value and the input file name used . Enter a
correct command line .

?PAT-W-Input module checksum is NNNNNN
PAT responds to the / C switch on the input module with this message . The
octal value NNNNNN is the sum of all binary data in the file . This
message is for your information . The number printed is the checksum you
would use with the / C:n switch if you apply this patch again.

B- 16

	

Error Message Summary

Glossary

Absolute Address

Absolute Section

Address

Argument

Assembler

The binary number that is assigned as the address of a physical memory storage
location .

The portion of a program in which the programmer has specified physical memory
locations of data items.

A label, name, or number that designates a location in memory where information
is stored .

A variable or constant value supplied with a command that controls its action,
specifically its location, direction, or range .

A program that translates symbolic source code into machine instructions by
replacing symbolic operation codes with binary operation codes, and symbolic
addresses with absolute or relocatable addresses .

Assembly Language
A symbolic programming language that normally can be translated directly into
machine language instructions and is, therefore, specific to a given computing
system .

Assembly Listing
A listing, produced by an assembler, that shows the symbolic code written by a
programmer next to a representation of the actual machine instructions
generated.

Glossary-1

CCL (Concise Command Language)

Command

Command Language

Command String

Compiler

Directives

Glossary-2

A shorthand way to run a RSTS / E system program, a DIGITAL-supplied program
such as MACRO, or a user program. The CCL syntax allows you to run a program
(MACRO, LINK, LIBR, PAT, for example) without the RUN command and unlike
the RUN command allows you to place the entire command string on one line .
After the program finishes executing, control returns to your keyboard monitor.

A word, mnemonic, or character that, by virtue of its syntax in a line of input,
causes a computer system to perform a predefined operation .

The vocabulary used by a program or set of programs that directs the computer
system to perform predefined operations .

A program that translates a high-level source language into a language suitable
for a particular machine .

Cross-Reference Listing

Device Name

A line of input to a computer system that generally includes a command, one or
more file specifications, and optional switches . Command string may be used
interchangeably with the term command line .

A printed listing that identifies all references in a program to each specific symbol
in a program and the statements where they are defined or used .

DCL (DIGITAL Command Language)
A set of commands available on many different DIGITAL systems . These perform
basic tasks like copying files, printing files, and running programs. On RSTS /E,
the DCL command environment is managed by the DCL run-time system, which
has a keyboard monitor like RT11.

A unique name that identifies each device unit on a system . It usually consists of a
two-character device mnemonic followed by an optional device unit number and a
colon .

Mnemonics in an assembly language source program that are recognized by the
assembler as commands to control a specific assembly process (as opposed to
instructions) .

DK: (Public Structure)
See Public Structure and System Disk .

Emulator
Code that allows software written for a specific operating system to be run on a
different type of computer system or on a different operating system .

FORTRAN (FORmula TRANslation)

Global

Instruction

A problem-oriented language designed to permit programmers to express mathe-
matical operations in a form resembling conventional notation . It is used in a
variety of applications, including process control, information retrieval, and
commercial and scientific data processing .

A value defined in one program module and used in others . Globals are often
referred to as entry points in the module in which they are defined and as exter-
nals in the other modules that use them.

Global Symbol
A global value br global label .

A coded command that tells the computer what to do and where to find the values
with which it is to work . A symbolic instruction is a mnemonic chosen to represent
the operation being performed . Symbolic instructions must, however, be changed
into machine instructions (by the assembler) before they can be executed by the
computer.

Job Keyboard Monitor
The keyboard monitor that manages a job . Your job keyboard monitor is the same
as the default keyboard monitor unless you change it . This you can do with the
SWITCH program . After you change your job keyboard monitor, you remain under
its control until you log out or use SWITCH again to change your keyboard
monitor .

Keyboard Monitor
The part of a run-time system with which you communicate . When you work in
the DCL environment, for example, you type commands that the DCL keyboard
monitor receives and then interprets . Each RSTS/E keyboard monitor has an
identifying "prompt" that it displays to indicate when it expects command input.
Common keyboard monitor prompts on RSTS/E are : dollar sign ($) for DCL,
"Ready" for BASIC-PLUS, angle bracket (>) for RSX, and dot (.) for RT11.

Glossary-3

Library

Library Module

Linker

Load Module

Machine Language
The actual language used by the computer when performing operations .

Main Program

Monitor

A file containing one or more macro definitions or one or more object modules that
are routines that can be incorporated into other programs.

A module from a library .

A program that combines many object modules into an executable module . It satis-
fies global references and combines program sections .

A program in a format ready for loading and executing .

The module of a program that contains the instructions at which program
execution begins . Normally, the main program exercises primary control over the
operations performed and calls subroutines or subprograms to perform specific
functions .

The master control program that observes, supervises, controls, or verifies the
operation of a computer system. The collection of routines that controls the opera-
tion of user and system programs, schedules operations, allocates resources, and
performs 1/0 .

Object Module
The primary output of an assembler or compiler, which can be linked with other
modules and loaded into memory as an executable program. The object module is
composed of the machine language code, relocation information, and the global
symbol table specifying entry points and external symbols used within the pro-
gram. It is also known as a module .

Object Time System (OTS)
The collection of modules that is called by compiled code in order to perform
various utility or supervisory operations (for example, FORTRAN Object Time
System) .

OP-Code (Operation Code)

Glossary-4

The part of a machine language instruction that identifies the operation the CPU
is to perform.

Operand

Program

The data that an instruction operates upon. An operand is usually identified by an
address part of an instruction .

Operating System
The collection of programs, including a monitor or executive and system programs,
that organizes a central processor and peripheral devices into a working unit for
the development and execution of application programs.

Overlay Segment
A section of code treated as a unit that can overlay code already in memory and be
overlaid by other overlay segments when called from the root segment or another
resident overlay segment . It is also known as an overlay .

A set of machine instructions or symbolic statements combined to perform some
task .

Program Development
The process of writing, entering, translating, and debugging source programs.

Program Section
A named, contiguous unit of code (instructions or data) that is considered an entity
and that can be relocated as a unit without destroying the logic of the program.

Public Structure

Relocate

The set of all disks that are public . When you do not include a device name in your
file specification, the system by default accesses one of the disks on the public
structure . Each of logicals SY: and DK : represents the name for all disks in the
public structure . Thus, if you do not have any public disks other than the system
disk, then SYO: and SY: are equivalent. If you have more than the system disk in
the public structure, then SY: or DK: refers to the aggregate of all public disks .
(See System Disk.)

To move a routine from one portion of storage to another and to adjust the neces-
sary address references so that the routine, in its new location, can be executed .

Root Segment

Source Code

The segment of an overlay structure that, when loaded, remains resident in mem-
ory during the execution of a program . It is also known as the root .

Text, usually in the form of an ASCII format file, that represents a program. Such
a file can be processed by a compiler or assembler .

Glossary-5

Source Language

Subprogram

System Disk

Glossary-6

The language in which a source program is written . It is a system of symbols and
syntax that is used to describe a procedure that a computer can execute .

A program or a sequence of instructions that can be called to perform the same
task (though perhaps on different data) at different points in a program, or even in
different programs.

The disk that is required by the RSTS/E monitor to get the system started and
thereafter to allow the system to run properly under timesharing . The system-
wide logical SYO: is assigned to the system disk . (See Public Structure .)

Utility Program
Any general-purpose program included in an operating system to perform common
functions. On RSTS/E, a utility program is called a CUSP (Commonly Used
System Program) .

Index

Page numbers marked in bold indicate the main entry for an indexed item . A page number
followed by the letter "f " means the entry is in a figure and a "t" means the entry is in a table .
Page references that begin with "Gl" mark Glossary entries.

A
/A switch Arguments (cont.)
alphabetizes global symbols, 3-30 MD for MACRO, 2-9t
LIBR, 4-3, 4-4t ME for MACRO, 2-9t
LINK, 3-12t MEB for MACRO, 2-9t

ABS argument, for MACRO /E and /D, 2-1Ot more information on, 2-10
ABS attribute value, p-sect (LINK), 3-4t, 3-5, P for MACRO /C, 2-12t

3-6 R for MACRO /C, 2-12t
.ABS. absolute p-sect, 2-12 S for MACRO /C, 2-12t
Absolute SEQ for MACRO, 2-9t

address (definition), GI-1 SRC for MACRO, 2-9t
block parameters information, 3-18t SYM for MACRO, 2-9t
global symbol, 3-6, 3-8 TOC for MACRO, 2-9t
p-sect (.ABS.), 2-12 TTM for MACRO, 2-9t

Absolute section ASECT. See Absolute section
definition, GI-1 .ASECT directive, 3-18
LINK, 3-3 LINK absolute section, 3-3
part of root, 3-26 in MACRO CREF, 2-12

Access-code attribute Assembler, GI-1 . See also MACRO
p-sect, 3-4t Assembler, definition, GI-1
section, 3-6t Assembly

Address, definition, GI-1 language (definition), GI-1
Allocation-code attribute listing (definition), GI-1

p-sect, 3-4t listing (sample), 2-8f
section, 3-6t pass switch (/P), 2-14
use of, 3-5 ASSIGN command

AMA argument, for MACRO /E and / D, 2-1 Ot assign CF:, 2-11
Arguments temporary work file, 2-6 use, 1-7
BEX for MACRO, 2-9t use with CREFTMP, 2-13
BIN for MACRO, 2-9t Attribute
C for MACRO /C, 2-12t ABS value p-sect (LINK), 3-5, 3-6
CND for MACRO, 2-9t access-code (p-sect), 3-4t
COM for MACRO, 2-9t allocation-code (p-sect), 3-4t
definition, GI-1 CON value p-sect (LINK), 3-5, 3-6
E for MACRO /C, 2-12t D value p-sect (LINK), 3-5
LD for MACRO, 2-9t I value p-sect (LINK), 3-5
LOC for MACRO, 2-9t relocation-code (p-sect), 3-4t
M for MACRO /C, 2-12t scope-code (p-sect), 3-4t
for MACRO /C, 2-12t, A-3t section (list), 3-6t
for MACRO /E and /D, 2-1Ot, A-3t type-code (p-sect), 3-4t
for MACRO /L, 2-9t, A-2t Attribute value
for MACRO /N, 2-9t, A-2t ABS p-sect (LINK), 3-4t
for MACRO /P, 2-14 CON p-sect (LINK), 3-4t
MC for MACRO, 2-9t D p-sect (LINK), 3-4t

Attribute value (cont.)
GBL p-sect (LINK), 3-4t
I p-sect (LINK), 3-4t
LCL p-sect (LINK), 3-4t
OVR p-sect (LINK), 3-4t
REL p-sect (LINK), 3-4t
RO p-sect (LINK), 3-4t
RW p-sect (LINK), 3-4t

B
/B switch
LINK, 3-12t, 3-30
not with /H, 3-32

BEX argument, MACRO /L and /N, 2-9t
BIN argument, MACRO /L and IN, 2-9t
Blank p-sect, 2-12
Boundary
address (/Y), 3-38
.EVEN for word, 3-5

Buffer, increase size of (LINK), 3-32

C
C arguments, for MACRO /C, 2-12t
/ C switch
LIBR, 4-4, 4-4t
LINK, 3-12t, 3-30, 3-34
MACRO, 2-7t
macro (LIBR), 4-14
MACRO arguments for, 2-12t, A-3t
MACRO cross-reference table, 2-11
not with / / LINK, 3-31
PAT (checksum), 5-2, 5-8
placement of (MACRO), 2-11

CCL
CCL LINK command, 3-8, 3-9
definition, GI-2
run LIBR with, 4-2
run LINK with, 3-8
run MACRO with, 2-2
run PAT with, 5-1

CDR argument, for MACRO /E and /D, 2-10t
CF: logical, assign, 2-11
Checksum switch, PAT, 5-8
CND argument, MACRO /L and /N, 2-9t
COM argument, MACRO /L and /N, 2-9t
Command

definition, GI-2
language (definition), GI-2

Command string
definition, GI-2
LIBR, 4-2, 4-4
LINK, 3-11
MACRO, 2-2
PAT, 5-2

Index-2

Command string specification, 1-5, 1-6
error in, 3-12
LIBR, 4-2
libraries in, 3-14, 3-15
LINK, 3-8, 3-11
MACRO, 2-2, 2-3
PAT, 5-2

COMMON statement, create p-sect, 3-4
Compiler, definition, G1-2
CON attribute value

p-sect (LINK), 3-4t, 3-5, 3-6
Concise Command Language. See CCL
Continue switch

in LIBR, 4-4, 4-5
in LINK, 3-30

Correction file, PAT, 5-4, 5-5
CREF. See Cross-reference table
CRF argument, for MACRO /E and /D, 2-10t
Cross-reference listing, definition, GI-2
Cross-reference table

/C switch, 2-11
contents, 2-11, 2-12
file location, 2-11
handling files, 2-12
obtaining MACRO, 2-11
sample listing, 2-13f

.CSECT directive, 3-6
create p-sect, 3-4
in MACRO CREF, 2-12

CTRL/C
in LIBR, 4-2
in LINK, 3-10
in MACRO, 2-4, 2-6
in PAT, 5-2

CTRL / Z
in LIBR, 4-2
in LINK, 3-10
in MACRO, 2-4
in PAT, 5-2

D
D attribute value, p-sect (LINK), 3-4t, 3-5
/ D switch
LIBR, 4-4t, 4-6, 4-7
MACRO, 2-7t
MACRO arguments for, 2-10t, A-3t

.DAT file type, 1-6
DCL
CCL LINK command in, 3-9
definition, GI-2
documentation, 1-5
examples of MACRO in, 2-5
keyboard monitor, 1-5
/LIBRARY in MACRO, 2-6

DCL (cont.)
LINK/RT11, 3-9
LINK/RT11 /EXECUTABLE switch, 3-10t
LINK/RT11 /MAP switch, 3-9, 3-10t
LINK/RT11 /NOEXECUTABLE switch,
3-10t
LINK/RT11 /NOMAP switch, 3-10t
LINK/RT11 command, 3-9,3-10
LINK/RT11 switches, 3-10t
/LIST in MACRO, 2-5
MACRO command format, 2-5
/NOLIST in MACRO, 2-5
/NOOBJECT in MACRO, 2-5
/OBJECT in MACRO, 2-5
prompt, 1-4
run LIBR in, 4-2
run LINK in, 3-8
run MACRO in, 2-1
run PAT in, 5-2
run RT11 utilities in, 1-5
switch to, 2-4

Default keyboard monitor, how to switch, 1-5
Device name, definition, GI-2
DIGITAL Command Language . See DCL
Directive
.ASECT, 2-12, 3-3, 3-18
.CSECT, 2-12, 3-6
definition, Gl-2
.DSABL /E and /D, 2-9
.ENABL /E and /D, 2-9
.END causing error, 2-16t
.ERROR (P MACRO error), 2-16t
.GLOBL (global symbols), 3-7
.LIST, 2-7
.MACRO, 2-11, 4-14
.MCALL, 2-11, 2-16t
.NLIST, 2-7
.PSECT, 2-12
.PSECT with fixed attributes, 3-6
.TITLE (name of object module), 3-14
use of EVEN, 3-5

DK: logical
ASSIGN command, 1-7
default device, 2-3
definition, 1-7, GI-3
LIBR default, 4-3
LINK default, 3-llt
MACRO default, 2-4

E
E arguments, for MACRO /C, 2-12t
/E switch
LIBR, 4-4t, 4-7
LINK, 3-12t, 3-31

/E switch (cont.)
LINK prompt, 3-39t
MACRO, 2-7t
MACRO arguments for, 2-10t, A-3t

Emulator
definition, G1-3
RSTS/E RT11, 3-17

.ENABL directive, for /E and /D, 2-9

.END directive, causing error, 2-16t
Entry point. See Global symbols
Entry point table, multiple definition table,

3-17
EPT. See Entrypoint table
Error codes, MACRO, 2-14, 2-15t, 2-16t
.ERROR directive, program-defined error

(MACRO), 2-16t
Error messages
Bad input, B-2
LIBR, B-10 to B-13
LINK, B-4 to B-10
location in manual, 1-7
MACRO, B-2 to B-3
PAT, B-13 to B-16
RT11 and RSTS/ E, B-2
RT11 vs RSTS/E, B-1
types of utility, B-1

.EVEN directive, use of, 3-5
/EXECUTABLE switch, DCL LINK/RT11,

3-9, 3-10t
Exit
LIBR, 4-2
LINK, 3-10
MACRO, 2-4
PAT, 5-2

Extended Memory (XM) Monitor, 1-1

F
/F switch, LINK, 3-12t, 3-31
File

definition of library, 3-2
LINK symbol definition (STB), 3-11
memory image, 3-17
p-sect order of nonoverlaid, 3-6
p-sect order of overlaid, 3-6
RSTS/E specification for, 1-6
symbol table definition (STB), 3-13, 3-14
types (list), 1-6

File specification
MACRO, 2-3
MACRO default values, 2-4t
MACRO switches, 2-6, 2-7t, A-1t
RSTS /E format, 1-6

.FOR file type, 1-6
Foreground /Background (FB) Monitor, 1-1

FORTRAN
definition, GI-3
library, 3-12t
link library with /F, 3-31, 3-32
Object Time System (OTS), 1-2
overlay structure for, 3-21f
use of RT11 utilities, 1-3

FPT argument, for MACRO /E and /D, 2-10t

G
/G switch
LIBR, 4-4t, 4-7, 4-8
library EPT, 3-17
LINK, 3-12t, 3-32

GBL argument, for MACRO /E and /D, 2-10t
GBL attribute value, p-sect (LINK), 3-4t
Global

definition, 3-7t, GI-3
label, 3-2
reference, 3-7t
section, 3-5
value, 3-2

Global symbols, 3-7
/A switch (LIBR), 4-3
absolute, 3-8
creation of, 3-7
define absolute, 3-6
definition, 3-2, 3-7, GI-3
delete (LIBR /G), 4-7, 4-8
entry point, 3-7
/I switch, 3-33
list with /A, 3-12t, 3-30
multiple definitions, 3-8
name of p-sect, 3-6
resolution of, 3-7
table, 4-11
undefined, 3-7, 3-14

.GLOBL directive, create global symbols, 3-7

/ H switch
caution using, 3-33
LINK, 3-12t, 3-32
not with /B, 3-32
not with /Y, 3-32

H

I
I attribute value, p-sect (LINK), 3-4t, 3-5
/I switch
LINK, 3-12t, 3-27, 3-33
LINK prompt, 3-39t

Instruction, definition, GI-3

J
Job keyboard monitor, definition, GI-3
Job status word, 3-18, 3-18t

K
/K switch, LINK, 3-12t, 3-33
Keyboard monitor

default, 1-4
definition, GI-3
run LIBR in DCL, 4-2
run LINK from, 3-8
run LINK in DCL, 3-8
run MACRO in DCL, 2-4
run PAT in DCL, 5-2
switch to default, 1-5

L
/L switch
MACRO, 2-7, 2-7t
MACRO arguments for, 2-9t, A-2t

Label
global, 3-2

LC argument, for MACRO /E and /D, 2-10t
LCL attribute value, p-sect (LINK), 3-4t
LD argument, MACRO /L and /N, 2-9t
LIBR

/ A switch, 4-3, 4-4t
bad input error, B-2
/ C switch, 4-4, 4-4t
/C switch (macro), 4-14
combining switches, 4-13
command string, 4-2
create macro libraries, 4-14
/D switch, 4-4t, 4-6, 4-7
/E switch, 4-4t, 4-7
error messages, B-10 to B-13
/G switch, 4-4t, 4-7, 4-8
library file listing, 4-11
location of, 1-4
/M switch (macro), 4-14, 4-15
macro switches, 4-14t
merging library files, 4-12, 4-13
module insertion, 4-3, 4-5
/ N switch, 4-4t, 4-8
/ P switch, 4-4t, 4-9
/R switch, 4-4t, 4-9
run with RUN command, 4-2
stop, 4-2
switches for, 4-4t, A-6t
/U switch, 4-4t, 4-9, 4-10
use of, 1-2, 4-1
use of switches, 4-3

LIBR (cont.)
/W switch, 4-4t, 4-10
/ X switch, 4-4t, 4-10, 4-11
/ / switch, 4-4, 4-4t
/ / switch (macro), 4-14

Library
contents of, 4-1
create macro, 4-14t
definition, GI-4
entry point table (EPT), 3-17
FORTRAN ($FORLIB.OBJ), 3-12t
multiple definition (LINK), 3-17
normal and multiple definition, 3-17
order of multiple definition, 3-17
routine list (LINK), 3-35
system macro, 2-4t

/LIBRARY, in MACRO DCL, 2-6
Library file

create, 4-5
definition, 3-2, 4-1
insert module in, 4-5
listing of content, 4-11, 4-12
macro, 4-1, 4-14
merging of, 4-12, 4-13
note of caution, 4-6, 4-13

Library module, 3-27
definition, GI-4
LINK, 3-14
link, 3-16f
processing of, 3-15

LINK
/A switch, 3-12t, 3-30
/B switch, 3-12t, 3-30
bad input error, B-2
/C switch, 3-12t, 3-30
CCL LINK command in DCL, 3-9
command string format, 3-8, 3-11
continue switch, 3-30
create load map, 3-13
create object module, 3-14
create overlay structure, 3-2
CTRL/C, 3-10
DCL /EXECUTABLE switch for, 3-10t
DCL /MAP switch for, 3-10t
DCL /NOMAP switch for, 3-10t
DCL LINK/RT11 command, 3-10
/E switch, 3-12t, 3-31
error messages, B-4 to B-10
/F switch, 3-12t
file specification defaults, 3-11t
/G switch, 3-12t, 3-32
global section, 3-5
/H switch, 3-12t

LINK (cont.)
/I switch, 3-12t, 3-33
input, 3-13
/K switch, 3-12t, 3-33
library module, 3-14
link library modules, 3-16f
LINK/RT11 command in DCL, 3-8, 3-9
LINK/RT11 switches, 3-10t
list of switches, 3-12t, 3-13t, A-4t, A-5t
load map, 3-18
load module, 3-3, 3-11, 3-13, 3-17
local section, 3-5
location of, 1-4
/M switch, 3-13t, 3-18, 3-33, 3-34
memory diagram (overlay regions), 3-29f
/O switch, 3-13t, 3-34, 3-35
object module, 3-11, 3-14
output, 3-13
/P switch, 3-13t, 3-35, 3-36
process library files, 3-15
process multiple definition library, 3-17
/Q restrictions, 3-36
/Q switch, 3-13t, 3-36
run from DCL, 3-8
run with RUN command, 3-8
/ S switch, 3-13t, 3-36
search method, 3-15
stop, 3-10
summary, 3-1
switch prompts, 3-39t, 3-40
symbol table definition (STB) files, 3-13
/T switch, 3-13t, 3-18, 3-37
/U switch, 3-13t, 3-38
use of, 1-2, 3-1, 3-2, 3-3
use of III switch, 3-32
use of OTS, 3-15
version number of, 3-8

/ / switch, 3-13t, 3-31
Link, RSTS / E monitor, 3-38
Linker, definition, GI-4
/LIST, in MACRO DCL, 2-5
.LIST directive, 2-9t
with /L MACRO switch, 2-10

List file
/LIST in MACRO DCL, 2-5
/NOLIST in MACRO DCL, 2-5

Listing
control switches (MACRO), 2-7
CREF MACRO, 2-11

/W switch, 3-13t, 3-38
/ X switch, 3-13t, 3-38
/Y switch, 3-13t, 3-38, 3-39
/Z switch, 3-13t, 3-39

Listing (cont.)
cross-reference table, 2-13f
sample assembly, 2-8

.LLD file type, 1-6
Load map

description of, 3-19t
file specification defaults, 3-llt
LINK creates, 3-13
output, 3-18
sample, 3-19

Load module
definition, 3-2, GI-4
file specification defaults, 3-llt
/H switch, 3-32
LINK, 3-3, 3-11, 3-13, 3-17
memory image file, 3-17
memory layout, 3-18
start address (/T), 3-37
use of /B, 3-30
use of /0, 3-34
use of /Z, 3-39

LOC argument, MACRO /L and IN, 2--9t
Local section
example, 3-5
LINK, 3-5

Low memory, definition, 3-2
LSB argument, for MACRO /E and /D, 2-10t
.LST file type, 1-6

M
M arguments, for MACRO /C, 2-12t
/M switch
LINK, 3-13t, 3-18, 3-33, 3-34
LINK prompt, 3-39t
MACRO, 2-7t
macro (LIBR), 4-14, 4-15
MACRO library file, 2-10

.MAC file type, 1-6
Machine language, definition, GI-4
MACRO

abort in DCL, 2-6
arguments for /E and /D, 2-10t, A-3t
command string specification, 2-2
CREF listing content, 2-11, 2-12
cross-reference table switch /C, 2-11
CTRL/C, 2-4
CTRL/Z, 2-4
/D switch, 2-9
DCL command string format, 2-5
DCL examples, 2-5
default file specification values, 2-4t
/E switch, 2-9
error codes, 2-14, 2-15t, 2-16t
error messages, B-2 to B-3

MACRO (cont.)
file specification switches, 2-6, 2-7t, A-1t
/L arguments, 2-9t, A-2t
/L switch, 2-7
/LIBRARY in DCL, 2-6
/LIST in DCL, 2-5
listing control switches, 2-7
location of, 1-4
/ N arguments, 2-9t, A-2t
/ N switch, 2-7
/NOLIST in DCL, 2-5
/NOOBJECT in DCL, 2-5
/OBJECT in DCL, 2-5
output from assembler, 2-1
RUN command, 2-4
run in DCL, 2-4
run with CCL, 2-2
run with RUN command, 2-2
stop, 2-4, 2-6
system library, 2-4t
temporary work file, 2-6
use of, 1-2
use of RT11 utilities, 1-3
ways to run, 2-1

.MACRO directive
cross reference of macros, 2-11
LIBR, 4-14

Macro Expansion Binary code, 2-10. See also
MEB

Macro library
/M switch, 2-10
$SYSMAC.SML, 2-10,2-11

Main program, definition, GI-4
Map

description of sample, 3-19t
file specification defaults for load, 3-llt
sample load, 3-19

.MAP file type, 1-6
/MAP switch, DCL LINK /RT11, 3-9, 3-10t
MC argument, MACRO /L and /N, 2-9t
.MCALL directive, 2-11, 2-16t
cross reference of macros, 2-11

MD argument, MACRO /L and IN, 2-9t
ME argument, MACRO / L and IN, 2-9t
MEB argument, MACRO /L and /N, 2-9t
MEB code, disable listing of, 2-10
Memory
image file, 3-17
low (definition), 3-2
usage map, 3-18, 3-18t

Module, 3-2. See also Object module
create object, 3-7, 3-14
file specification defaults for load, 3-llt

Module (cont.)
file specification defaults for object, 3-11t
LINK library, 3-14
LINK load, 3-11, 3-13, 3-17
LINK object, 3-11, 3-14
load (definition), 3-2
load (LINK), 3-3
memory layout for, 3-18
name of object, 3-14
object (definition), 3-2

Monitor, 2-4
definition, GI-4
Extended Memory (XM), 1-1
Foreground /Background (FB), 1-1
keyboard, 1-4
link RSTS /E UX),X), 3-38
run LINK from keyboard, 3-8
switch to DCL keyboard, 2-4
switch to default keyboard, 1-5

Multiple definition library
LINK, 3-17, 3-27, 3-32
/X (LIBR), 4-10, 4-11

N
/N switch
LIBR, 4-4t, 4-8
MACRO, 2-7, 2-7t
MACRO arguments for, 2-9t, A-2t

.NLIST directive, 2-9t
with /L MACRO switch, 2-10

/NOEXECUTABLE switch, DCL
LINK/RT11, 3-10t

/NOLIST, in MACRO DCL, 2-5
/NOMAP switch, DCL LINK/RT11, 3-10t
Nonoverlaid files, p-sect order, 3-6t
/NOOBJECT, in MACRO DCL, 2-5

O
/O switch
LINK, 3-13t, 3-34, 3-35
for overlay structure, 3-22

.OBJ file type, 1-6
/OBJECT, in MACRO DCL, 2-5
Object file
MACRO, 2-1, 2-3
/NOOBJECT in MACRO DCL, 2-5
/OBJECT in MACRO DCL, 2-5, 2-6

Object module
definition, 3-2, GI-4
file specification defaults, 3-11t
global symbol link, 3-7
how created, 3-14
LIBR, 4-1, 4-3, 4-5, 4-6

Object module (cont.)
LINK, 3-11, 3-14
name of, in .TITLE, 3-14
in overlay segment, 3-27
PAT, 5-1
update code in, 5-1
updating (PAT), 5-5

Object Time System (OTS)
definition, Gl-4
FORTRAN, 1-2
LINK use of, 3-15

Op-code, definition, GI-4
Operand, definition, GI-5
Operating system, definition, GI-5
OTS. See Object Time System
Overlaid files, p-sect order, 3-6t
Overlay. See Overlay segment
Overlay file, 3-20
Overlay handler, 3-20, 3-28

location, 3-28
p-sect order, 3-6t
run-time, 3-2, 3-22f, 3-23f, 3-24f

Overlay region, memory diagram, 3-29f
Overlay scheme, example of, 3-22f
Overlay segment, 3-20, 3-27

definition, 3-2, GI-5
return path, 3-25
return path guidelines, 3-27

Overlay structure, 3-5
description of, 3-20
for FORTRAN, 3-20
guidelines, 3-24, 3-25
LINK creates, 3-2
/O switch (LINK), 3-22
rules for creating, 3-26, 3-27, 3-28
sample FORTRAN, 3-21f

Overlay table
p-sect order, 3-6t
run-time, 3-2

OVR attribute value, p-sect (LINK), 3-4t

P
P arguments, for MACRO /C, 2-12t
P-sect, 3-2 . See also Program section
ABS attribute value, 3-6
access-code attribute, 3-4t
allocation-code attribute, 3-4t
attributes, 3-4t
CON attribute value, 3-5, 3-6
creation of, 3-4
D attribute value, 3-5
global symbols, 3-6
I attribute value, 3-5

P-sect (cont.)
order for nonoverlaid files, 3-6t
order for overlaid files, 3-6t
order of, 3-6t
relocation-code attribute, 3-4t
scope-code attribute, 3-4t
structure of, 3-3
type-code attribute, 3-4t
use of allocation-code attribute, 3-5

/ P switch, 2-14
arguments for, 2-14
avoid with RSTS/E (LIBR), 4-9
LIBR, 4-4t, 4-9
LINK, 3-13t, 3-35, 3-36
MACRO, 2-7t

PAT
adding subroutine to module, 5-6, 5-7, 5-8
bad input error, B-2
/ C switch, 5-2, 5-8
command string, 5-2
correction file, 5-4, 5-5
error messages, B-13 to B-16
input file, 5-4
input to, 5-1
location of, 1-4
output from, 5-1
overlaying lines in module, 5-5, 5-6
run in DCL, 5-2
run with CCL, 5-1
run with RUN command, 5-1
stop, 5-2
updating a file, 5-4
updating a module, 5-2f, 5-3f, 5-4, 5-5
use of, 1-2

PNC argument, for MACRO /E and /D, 2-10t
Program

definition, GI-5
developing an executable, 1-2f

Program development, 1-1
definition, GI-5
documents for, 1-3
executable program, 1-2f
RSTS /E, 1-1
RSX, 1-1
RT11, 1-1

Program section, 3-6. See also P-sect
attributes, 3-3, 3-4
definition, 3-2, GI-5
LINK allocates, 3-3
order, 3-6t

Project-programmer number [PPN]
in file specification, 1-6

/PROTECTION, 2-3
definition, 1-7
in file specification, 1-6

Index-8

Protection code
definition, 1-7
/PROTECTION, 1-6

.PSECT directive
create P-sect, 3-4
with fixed attributes, 3-6
in MACRO CREF, 2-12

Public structure, definition, 1-7, GI-5

/Q switch
LINK, 3-13t, 3-36
LINK prompt, 3-39t
restrictions, 3-36

R
R arguments, for MACRO /C, 2-12t
/ R switch
comparison to /U (LIBR), 4-10
LIBR, 4-4t, 4-9

REG argument, for MACRO /E and /D, 2-10t
Region numbers, assignment of, 3-25
REL attribute value, p-sect (LINK), 3-4t
Relocate, definition, GI-5
Relocation-code attribute

p-sect, 3-4t
section, 3-6t

Return paths, 3-25, 3-26f
guidelines, 3-27

RO attribute value, p-sect (LINK), 3-4t
Root . See Root segment
Root segment, 3-20

definition, 3-2, Gl-5
in overlay structure, 3-26

RSTS/E
command string specification, 1-5
file specification format, 1-6

RSX, program development, 1-2
RT11
emulator (RSTS/E), 3-17
get version number, 1-5
prompt for utilities, 1-5
restrictions, 1-1
run-time system error messages, B-2

/RT11 switch
for LINK DCL command, 3-8
for MACRO DCL command, 2-5

RT11 utilities
documents used with, 1-3
languages that use, 1-3
list of, 1-2
logical DK:, 1-7
logical SY:, 1-7
prompt for, 1-5

RT11 utilities (cont.)
run, 1-4
run from DCL, 1-5
SWITCH program, 1-5
version number, 1-5

RUN command
LIBR, 4-2
LINK, 3-8
MACRO, 2-1, 2-2, 2-4
PAT, 5-1

Run-time overlay handler, LINK, 3-2
Run-time system
BASIC-PLUS-2,1-4
BASIC-PLUS prompt, 1-4
DCL, 1-4
environment, 1-4
RSX prompt, 1-4
RT11 prompt, 1-4
switch to (SWITCH), 1-5

RW attribute value, p-sect (LINK), 3-4t

S
S arguments, for MACRO /C, 2-12t
/S switch, LINK, 3-13t, 3-36
.SAV file type, 1-6
Scope-code attribute

p-sect, 3-4t
section, 3-6t

Section attributes, 3-6t
Segment

overlay (definition), 3-2
root (definition), 3-2

SEQ argument, MACRO /L and /N, 2-9t
.SML file type, 1-6
Source code, definition, GI-5
Source language, definition, GI-6
SRC argument, MACRO / L and IN, 2-9t
Stack

address (/M switch), 3-33, 3-34
pointer (/M switch), 3-33

.STB file type, 1-6
Subprogram, definition, GI-6
Switch
/A (LIBR), 4-3, 4-4t
/A (LINK), 3-12t, 3-30
arguments for MACRO /C, 2-12t
arguments for MACRO /E and /D,

2-10t, A-3t
arguments for MACRO /P, 2-14
assembly pass (MACRO), 2-14
/B (LINK), 3-12t, 3-30
/C (LIBR), 4-4, 4-4t
/C (LINK), 3-12t, 3-30
/C (MACRO), 2-7t

Switch (cont.)
/C (PAT), 5-2, 5-8
/C macro (LIBR), 4-14
/C MACRO cross-reference table, 2-11
checksum switch (PAT), 5-8
combining LIBR, 4-13
/D (LIBR), 4-4t, 4-6
/D (MACRO), 2-7t
DCL LINK/RT11 /EXECUTABLE, 3-9,

3-10t
DCL LINK/RT11 /MAP, 3-9, 3-10t
DCL LINK/RT11 /NOEXECUTABLE,

3-10t
DCL LINK/RT11 /NOMAP, 3-10t
definition, 3-12
/E (LIBR), 4-4t, 4-7
/E (LINK), 3-12t, 3-31
/E (MACRO), 2-7t
/F (LINK), 3-12t
in file specification, 1-7
function control, 2-10
/G (LIBR), 4-4t, 4-7, 4-8
/G (LINK), 3-12t, 3-32
/H (LINK), 3-12t, 3-32
/I (LINK), 3-12t, 3-27, 3-33
/K (LINK), 3-12t, 3-33
/L (MACRO), 2-7t
LINK continue, 3-30
list (DCL LINK/RT11), 3-10t
list (LIBR), 4-4t, A-6t
list (LINK), 3-12t, 3-13t, A-4t, A-5t
list (MACRO), 2-6
listing control, 2-7, 2-10
/M (LINK), 3-13t, 3-18, 3-33, 3-34
/M (MACRO), 2-7t
/M macro (LIBR), 4-14, 4-15
/M MACRO library, 2-10
module insertion (LIBR), 4-3
/N (LIBR), 4-4t, 4-8
/N (MACRO), 2-7t
/O (LINK), 3-13t, 3-34, 3-35
/P (LIBR), 4-4t, 4-9
/P (LINK), 3-13t, 3-35, 3-36
/P (MACRO), 2-7t
/Q (LINK), 3-13t, 3-36
/R (LIBR), 4-4t, 4-9
restrictions for /Q, 3-36
/S (LINK), 3-13t, 3-36
/T (LINK), 3-13t, 3-18, 3-37
/U (LIBR), 4-4t, 4-9, 4-10
/U (LINK), 3-13t, 3-38
/W (LIBR), 4-4t, 4-10
/W (LINK), 3-13t, 3-38
/X (LIBR), 4-4t, 4-10, 4-11
/X (LINK), 3-13t, 3-38

Index-9

Switch (cont.)

	

V
/Y (LINK), 3-13t, 3-38, 3-39

	

Version number, RT11, 1-5
/Z (LINK), 3-13t, 3-39
/ / (LIBR), 4-4, 4-4t
/ / (LINK), 3-13t, 3-31

	

/Wswitch
/ /macro (LIBR), 4-14

	

LIBR, 4-4t, 4-10
SWITCH program

	

LINK, 3-13t, 3-38
choose run-time system, 1-5

	

Word boundary, EVEN directive, 3-5
DCL, 2-4

	

Work file, temporary in MACRO, 2-6
get into RT11, 2-6

SY: logical, 2-3
definition, 1-7

SYM argument, MACRO / L and IN, 2-9t

	

/X switch
Symbol, global, 3-2, 3-6

	

LIBR, 4-4t, 4-10, 4-11
Symbol table definition (STB) file

	

LINK, 3-13t, 3,38
definition, 3-14
file specification defaults, 3-11t

	

Y
LINK, 3-11, 3-13

	

/Y switch
$SYSMAC.SML, system macro library, 2-4t,

	

LINK, 3-13t, 338, 3-39
2-10,2-11

	

LINK prompt, 3-39t
System communication area

	

not with /H, 3-32, 3-38
in absolute section, 3-3
location, 3-3

System disk, definition, GI-6

	

/Z switch, LINK, 3-13t, 339
System library account [1,2], 1-4
System library, default ($SYSLIB.OBJ), 3-15
System macro library, 2-4t
System wide logical
DK:, 1-7
SY:, 1-7

T
/T switch
LINK, 3-13t, 3-18, 3-37
LINK prompt, 3-39t

.TITLE directive, name of object module, 3-14

.TMP file type, 1-6
TOC argument, MACRO /L and /N, 2-9t
TTM argument, MACRO /L and IN, 2-9t
Type-code attribute

p-sect, 3-4t
section, 3-6t

U
/U switch
compared to /R (LIBR), 4-10
LIBR, 4-4t, 4-9, 4-10
LINK, 3-13t, 338
LINK prompt, 3-39t

User stack
in absolute section, 3-3
definition of, 3-3

Utility program, definition, GI-6

Index-10

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico

	

In New Hampshire, Alaska or
call 800-258-1710

	

Hawaii call 603-884-6660

DIRECT MAIL ORDERS (U.S . and Puerto Rico)

Purchase orders should be mailed directly to :

DIGITAL EQUIPMENT CORPORATION
P.O. Box CS2008

Nashua, New Hampshire 03061

In Canada
call 800-267-6146

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD .
940 Belfast Road

Ottawa, Ontario, Canada K1 G 4C2
Attn : A&SG Business Manager

INTERNATIONAL

When placing orders outside the U .S.A ., please send orders to:

DIGITAL EQUIPMENT CORPORATION
A&SG Business Manager
c/ o Digital's Local Subsidiary

or Approved Distributor

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment Corporation,
Northboro, Massachusetts 01532

Reader's Comments

Note: This form is for document comments only . Digital will use comments submitted on this form at
the company's discretion . If you require a written reply and are eligible to receive one under
Software Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for
improvement .

Did you find errors in this manual? If so, specify the error and the page number .

Please indicate the type of user/reader that you most nearly represent .

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer
Other (please specify)

RSTS/E
RT11 Utilities Manual

AA-M213A-TC

Name Date

Organization

Street

City State
Zip Code

or
Country

- - - - ---Do Not Tear - Fold Here and Tape - - - - - - - - - - - - -

da 9

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO .33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN : Commercial Engineering Publications MK1-2/ H3
DIGITAL EQUIPMENT CORPORATION
CONTINENTAL BOULEVARD
MERRIMACK N.H . 03054

- - Do Not Tear - Fold Here and Tape - -

	

--- - - - - - - - - -

No Postage
Necessary

if Mailed in the
United States

I
I
I -~
I

I
I
I

I
I
d

a

0
ca

