
RSTS/E
Guide to Writing Command Procedures
Order No. AA-CF03A-TC

June1985
This manual presents concepts and techniques for developing command pro-
cedures using the RSTS/E DIGITAL Command Language (DCL) .

OPERATING SYSTEM AND VERSION : RSTS/E

	

V9.0
SOFTWARE VERSION :

	

RSTS/E

	

V9.0

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and shouldnot be construed as a commitment by Digital Equipment Corporation . DigitalEquipment Corporation assumes no responsibility for any errors that may appearin this document .
The software described in this document is furnished under a license and maybe used or copied only in accordance with the terms of such license .
No responsibility is assumed for the use or reliability of software on equipmentthat is not supplied by DIGITAL or its affiliated companies .

Copyright © 1985 by Digital Equipment Corporation . All rights reserved.

The postage-paid READER'S COMMENTS form on the last page of this docu-ment requests your critical evaluation to assist us in preparing future documenta-tion .

The following are trademarks of Digital Equipment Corporation :
d TM900mo FDMSO-1 ReGISRSTSDEC LA RSXDECmail MASSBUS RTDECmate PDP UNIBUSDECnet P/OS VAXDECtape Professional VMSDECUS Q-BUS VTDECwriter Rainbow Work Processor

CONTENTS

CHAPTER

2

CHAPTER

3

Level
Executing

Command Procedures in Batch Mode

Executing

Nested Command Procedures

. .
Executing

Command Procedures with the RUN

Command
Chaining

to Command Procedures from a

Executing

Command Procedures with CCLs

.

.

.

.
Program

.

.

.

.

.

.

.

.

.

.

.

.

1-5

.

1-7

.

1-8

.

1-8

.

1-8

.

1-9

Command

Procedures and System Management

.

1-9

Using

Symbols in Command Procedures

Symbols

in DCL

.

2-1

Symbol

Names

.

2-2

Symbol

Values

.

2-3

Symbol

Types

.

2-4

Symbol

Assignment

.

2-4

String

Assignment

.

2-5

Symbol

Tables

.

2-6

Symbol

Substitution

.

2-8

Command

Synonyms

.

2-8

Apostrophes

in Symbol Substitution

.

2-9

Automatic

Evaluation

. 2-10
Undefined

Symbols

. 2-11
Verifying

Symbol Substitution

. 2-11
Displaying

Symbols

. 2-12
Deleting

Symbols

. 2-14

Expressions

and Operators

Operands

in Expressions

.

3-1

Strings .

3-2

Integers .

3-3

DCL

Functions

.

3-3

Symbols .

3-4

Value

Type Conversion in Expressions

.

3-4

PREFACE

CHAPTER

1

Introduction

What

are Command Procedures?

. 1-1
Creating

Command Procedures

. 1-2
Formatting

Command Procedures

. 1-3
Executing

Command Procedures

. 1-4
Executing

Command Procedures

at

Login

. 1-4
Executing

Command Procedures

at

Interactive

CHAPTER

4

CHAPTER

5

iv

Converting

Strings to Integers

.

3-6

Converting

Integers to Strings

.

3-6

Operators

in Expressions

.

3-7

Arithmetic

Operations

.

3-9

Logical

Operations

.

3-9

Arithmetic

Comparisons

. 3-10
String

Comparisons

. 3-10
String

Concatenation

. 3-11

DCL

Functions in Command Procedures

Format

of DCL Functions

.

4-1

DCL

Functions

.

4-2

F$ACCESS .

4-5

F$ASCI

I

.

4-6

F$CHR .

4-7

F$CVTIME

4-9

F$EDIT 4-10
F$INSTR 4-12
F$INTEGER 4-14
F$JOB 4-15
F$LEFT 4-16
F$LENGTH 4-17
F$MESSAGE 4-18
F$MID . 4-19
F$NODE 4-20
F$PARSE 4-21
F$PRIVILEGE 4-30
FRIGHT 4-34
F$SEARCH 4-35
F$STRING 4-37
F$TERMINAL 4-38
F$TIME 4-39
F$TYPE . 4-40
F$USER 4-41
F$VERIFY 4-42

Interacting

with Command Files

Passing

Data

.

5-1

Passing

Parameters

.

5-2

Prompting

for Symbol Values

.

5-4

Returning

Data

.

5-7

Displaying

Data

.

5-8

Supplying

Data to a Program

.

5-8

Reading

Data in a Program

.

5-8

Supplying

Data to a Program from a Terminal

5-10
Signaling

the End of a Data List

. 5-12
Exiting

from a Program in a Command File

. . . 5-12
Detaching

Programs in a Command Procedure

. . 5-13

Passing

Symbol Values to a Program

.

5-14

CHAPTER

6	

File

Input and Output

Opening

Files

.

6-2

Reading

Files

.

6-5

Writing

Files

.

6-8

Closing

Files

.

6-11

CHAPTER

7	

Controlling

Execution Flow in Command Procedures

The

	

I

F	

Command

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

7-1
Command

Line Labels

.

7-3

The

GOTO Command

.

7-4

Nesting

Command Procedures

.

7-6

Exiting

from a Command Procedure

.

7-8

The

EXIT Command

.

7-8

The

STOP Command

.

7-10

CHAPTER

8	

Controlling

Error Conditions and CTRL/C Interrupts

Error

Condition Handling

.

8-1

$STATUS

and $SEVERITY Symbols

.

8-1

The

ON Command

.

8-4

Enabling

and Disabling Error checking

.

8-6

CTRL/C

Interrupt Handling

.

8-7

Setting

a CTRL/C Action Routine

.

8-8

Disabling

and Reenabling CTRL/C Interruptions

.

8-9

CHAPTER

9	

Controlling

Terminal Output

SET

[NO]ECHO Command

.

9-1

SET

[NO]VERIFY Command

.

9-3

Creating

a Log File of a Terminal Session

. . . .

9-3

OPEN/LOG_

FILE	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

9-4
CLOSE/LOG_

FILE	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

9-6
SET

LOG FILE

.

9-6

APPENDIX

A	

Sample

Command Procedures

APPENDIX

B	

RSTS/E

and VAX/VMS Command Processor Differences

APPENDIX

C	

RSTS/E

Error Messages

APPENDIX

D	

ASCII

Character Codes

INDEX

FIGURES

TABLES

1-1 Executing

a Command Procedure at Interactive Level 1-6

7-1 Command

Levels in Nested Command Procedures

. . .

7-7

3-1 Rules

for Determining Expression Types

.

3-5

3-2 Summary

of Operators in Expressions

.

3-8

4-1 Summary

of DCL Functions

.

4-3

4-2 Summary

of F$EDIT Functions

.

4-11

4-3 Status

Word Values

.

4-23

4-4 Flag

Word Values

.

4-25

4-5 Summary

of Privileges

.

4-30

8-1 Severity

Values

.

8-2

8-2 ON

Command Keywords and Actions

.

8-5

C-1 RSTS/E

Error Messages

.

C-1

D-1 ASCII

Character Codes

.

D-1

Objectives

This

guide presents concepts and techniques for developing command

procedures

using the DIGITAL Command Language (DCL) on RSTS/E

.
Various

examples, including complete command procedures, demonstrate

applications

of the concepts and techniques that this guide discusses

.

Audience

Preface

All

RSTS/E users can benefit from using command procedures

.

For

example,

you can place frequently used command sequences into a

command

procedure and thereby save keystrokes

;

you can also write

sophisticated

command sequences that pass parameters, test status

values,

process files, and perform similar program-like tasks

.

Although

you do not have to be a computer expert to use this guide,

you

will have an easier time if you are familiar with programming

concepts

such as loops, logical values, and so forth

.

Document

Structure

Each

chapter in this guide builds on material from earlier chapters

.
If

command procedures are new to you, study this guide chapter by

chapter

beginning with Chapter 1

.

If you already have some knowledge

of

command procedures, you may want to skim the Table of Contents and

Index

for the specific topics you need

.

This

manual contains nine chapters and four appendixes

:

Chapter

1	

Defines

command procedures and describes how to

develop

them

.

Chapter

2	

Describes

how to define and manipulate symbols

.

Chapter

3	

Describes

the use of expressions and operators

.

Chapter

4	

Shows

how to use the DCL functions to obtain

information

about the status of a process and to

manipulate

character strings

.

Chapter

5	

Describes

how to control input to and output from

command

procedures

.

Chapter

6	

Explains

how to manipulate files using command

procedures .

Chapter

7	

Describes

how to control the sequence in which

command

procedure lines are executed

.

Chapter

8	

Shows

how to set up error handling routines based

on

the severity of errors encountered during

command

procedure execution and how to handle

CTRL/C

interrupts that occur during command

procedure

execution

.

Chapter

9	

Describes

commands for displaying command

procedure

output

.

Appendix

A	

Contains

sample command procedures that illustrate

the

techniques described in Chapters 1 through 9

.

Appendix

B	

Lists

some of the major differences between the

RSTS/E

and VAX/VMS command processors

.

Appendix

C	

Lists

the numeric values associated with RSTS/E

error

messages

.

Appendix

D	

Lists

the ASCII character codes

.

Related

Documents

This

guide refers you to the following manuals for more detailed

information :

o

RSTS/E System User's Guide

o

RSTS/E System Manager's Guide

.

Conventions

This

manual uses the following symbols and conventions

:

[

]	

Square

brackets show the optional parts of a command in

format

statements

.

For example

:

DIRECTORY

[file-spec[,

. . .]]

The

square brackets in this example indicate that you

can

include a file specification ([file-spec]), or more

than

one ([

. . . .

]), if you choose

.

Square

brackets also indicate the choice you have in

using

a command

.

For example

:

/[NO]DELETE

This

means you can type either /DELETE or /NODELETE,

depending

on the form of the qualifier you select

.

Do

not confuse the square brackets in command formats

with

the square brackets in Project-Programmer numbers

(PPNs),

as in [52,20]

.

<CTRL/x>

RSTS/E

displays, or echoes, CTRL/U at your terminal, as

"U .

<RET>

	

The

key labeled RETURN on your terminal

.

You press the

RETURN

key to complete lines and commands that the

system

will process

.

color

	

In

examples, black characters are data produced by the

computer .

Red

characters indicate information that you type

.

The

control

key, which

you use in combination with

another

key

. For example,

enter CTRL/U by holding down

the

CTRL key

and pressing

the keyboard key labeled "U

."

This

chapter introduces command procedures and tells you how to

develop

them

.

What

are Command Procedures?

Chapter

1

Introduction

Command

procedures are files that contain DCL commands

.

To execute

these

commands, you run the procedure

.

Use command procedures to

execute

sequences of commands you use during interactive terminal

sessions

or to execute commands you submit for batch processing

.

As

you

become more experienced in creating and using command procedures,

you

will find many other applications for them

.

Command

procedures can range from simple to complex

.

A simple command

procedure

consists of one or more command lines for the DCL command

interpreter

to execute

.

For example, the following command procedure

deletes

all temporary (

.TMP)

files and then shows a directory listing

:

DIRECT .COM
$

! Delete TMP files and show directory

$

DELETE *

.TMP
$

DIRECTORY

A

more complex command procedure performs program-like functions

.

It

can :

o

Contain loops and error checking routines

o

Perform arithmetic calculations and input/output (I/0)

operations

o

manipulate character string data

0

Call or pass parameters to other command procedures

Introduction

For

example, the following command procedure edits all occurrences of

files

with a B2S file type in a user's account

:

B2S .COM
!

Edit all B2S files

SET

NODATA

NEXTFILE

= F$SEARCH("SY

:* .B2S")
LOOP :
IF

NEXTFILE EQS

.

"" THEN EXIT

EDIT/EDT

'NEXTFILE'

NEXTFILE

= F$SEARCH()

GOTO

LOOP

Creating

Command Procedures

To

create a command procedure, use a text editor such as EDT or the

DCL

CREATE command

.

The following example shows how to create a

simple

command procedure using EDT

:

$

EDIT/EDT

RUN .COM

<RET>

Input

file does not exist

[EOB]
*C

<RET>

$

!Run three programs <RET>

$

RUN PROG1 <RET>

$

RUN PROG2 <RET>

$

RUN PROG3 <RET>

<CTRL/Z>
*EXIT
RUN

	

COM

3 lines

The

next example shows how to create the same procedure using the DCL

CREATE

command

:

$

CREATE

RUN .COM

<RET>

$

!Run three programs <RET>

$

RUN PROG1 <RET>

$

RUN PROG2 <RET>

$

RUN PROG3 <RET>

<CTRL/Z>

Note

that the examples use the file type COM

.

When you execute a

command

procedure, DCL uses this file type as the default

.

Formatting

Command Procedures

Follow

these format conventions and restrictions when you create a

command

procedure

:

o

Begin each DCL command line with a dollar sign ($) character

in

the first space of the line -- Using this character

ensures

that DCL processes the command when you execute the

procedure

from another keyboard monitor such as BASIC-PLUS

.

o

Begin each line containing a DCL label with a $ character in

the

first space of the line -- Put labels on separate lines

to

help make loops and conditional coding easier to

understand .

o

Do NOT begin the following types of lines with the $

character :

-

Data lines

Command

lines to keyboard monitors other than DCL

DCL

continuation lines

o

Avoid abbreviating DCL keywords to less than 4 characters --

DCL

conventions ensure that all qualifiers and keywords are

unique

in the first 4 characters

.

o

Use comments -- Comments explain the procedure to anyone who

must

maintain it

;

DCL ignores them during execution

.

You

begin

comments with an exclamation point and place the

comment

to the right of the exclamation point

.

You can place

a

comment on a separate command line or at the end of a

command

line

.

If a comment exceeds one line, place an

exclamation

point at the start of each line

.

Introduction

o

Separate command sequences -- Insert lines containing only a

$

character before and after a logical sequence of commands

.
This

convention makes it easier to see the structure of the

command

procedure

.

Use

comments at the beginning of a procedure to describe the

procedure

and the parameters you pass to it or use them at

the

beginning of each block of commands to describe that

section

of the procedure

.

However, note that excessive use

of

comments can decrease performance

.

Introduction

Executing

Command Procedures

You

can execute command procedures in many different ways on RSTS/E

systems :

o

At login time, RSTS automatically executes the system-wide

LOGIN .COM

file and any private

LOGIN .COM

file

o

At interactive level, using the at sign (@) command, or from

any

other keyboard monitor using the $@ combination

o

In batch mode, using the SUBMIT command

o

From inside another command procedure (nesting)

o

With the RUN command from any keyboard monitor, provided the

command

file is executable and includes the DCL run-time

system

attribute

o

With the CHAIN statement from another program, provided the

command

file is executable and includes the DCL run-time

system

attribute

o

With a Concise Command Language (CCL) command from any

keyboard

monitor, provided the command file is executable and

includes

the DCL run-time system attribute

o

At system start-up time or after a system crash

Note

that you can execute a command file that is resident on disk

only .

However, DCL copies a command file from magnetic tape (DOS

format

only) to a temporary disk file before executing it

.

For

example :

$

@MT1

:MYFILE .COM

DCL

temporarily copies the command file from magnetic tape to a

temporary

disk file, and then executes it

.

The

following sections describe the methods for executing command

procedures .

Executing

Command Procedures at Login

When

you log in, RSTS/E executes the system-wide command file

LOGIN .COM,

which is located in directory [0,1] on the public

structure .

This file contains commands defined by the system manager

that

are executed for all users

.

In addition, the system-wide

LOGIN .COM

file normally contains a command that invokes a private

LOGIN .COM

file located in your account on the public structure

.

This

feature

lets you tailor the system for your everyday use

.

For

example, if you

log

in, place these

A

typical

LOGIN .COM

TYPE

$NEWS

.TXT
RUN

DB1

:[2,214]COOKIE .EXE
US-ERS :==

"SHOW USERS"

ASSIGN

DR3

:[2,214]

WORK

:
DIR-ECTORY :==

DIRECTORY/DATE

Note

that if a symbol has one or more abbreviations, DCL displays it

with

an embedded hyphen indicating the minimum abbreviation point

.

If

your system manager allows the use of private

LOGIN .COM

files, the

system

automatically executes these commands every time you log in

.

Executing

Command Procedures at Interactive Level

The

@ command executes a command procedure at interactive level

.

file-spec

Command

Parameters

[Pl

[P2 [

. . .

P8]]]

enter

the same sequence of commands every time you

commands

in a command procedure named

LOGIN .COM .
file

might contain the following

:

!Display

system messages

!Run

a program

!Abbreviate

a command

!Assign

a logical name

!Redefine

DIRECTORY command

The

file specification of the command file to

not

specify a file type, the system uses COM

.

Introduction

execute .

If you do

Optional

parameters (one to eight) to pass to the command

procedure .

Separate each parameter with one or more spaces or

tabs .

See Chapter 5 for a complete description of passing

parameters .

Format

@file-spec

[P1 [P2 [

. P8]]]

Prompts

Command

file

:

file-spec

Introduction

For example, to execute the command procedure FILST .COM in your

account on the system disk, enter this command :

$ @FILST

Figure 1-1 shows how the command procedure is executed at interactive

level .

+__-_______________________-+

Command interpreter finds

$ @FILST

	

--------lpp{ FILST .COM in your account 1

$

	

I

R

Ready
$@FILST

Ir-----------------------------Ithen executes the FILST .COMIIcommands sequentially . . .-----------------------------
I

Ir-----------------------------land returns control to

	

1

--------------------linteractive level after

	

1

IFILST .COM completes

Figure 1-1 : Executing a Command Procedure at Interactive Level

When you enter the @ command, the command interpreter executes the

file FILST .COM located in your account on the system disk . Each

command string in FILST .COM executes sequentially . After reaching the

end-of-file (EOF) for FILST .COM or after executing an EXIT or STOP

command, the command interpreter returns control to interactive level

and displays the $ prompt at your terminal . You can then resume

interactive work .

Note

You can also use the @ command from other keyboard

monitors . However, you must precede it with the $

character . For example :

When

you enter the @ command at the DCL prompt, the DCL command

interpreter

assumes that the the name of a file (with the file type

.COM)

follows it

.

If you enter the @ command without specifying a

file,

DCL prompts you for the file specification

.

If

a command procedure is not in your account on the system disk or

does

not have the file type COM, give the complete file

specification .

For example

:

$

@DB2

:RESET .FIL

This

command executes a command procedure located on DB2

: .

The

command

procedure file name is RESET

.FIL .

If

you execute command procedures frequently, you can define a symbol

name

that you can use in place of the entire command line

.

For

example :

$

RESET

:==

@DB2

:RESET .FIL

This

assignment statement defines the symbol name RESET to be

equivalent

to the string "@DB2

:RESET .FIL ."

You can then use this

symbol

as a command name during the current terminal session

.

If

you want to use a symbol every time you log in, include the symbol

definition

in your login command file

.

See Chapter 2 for more

information

about using symbols

.

Executing

Command Procedures in Batch Mode

To

execute a command procedure in batch mode, use the SUBMIT command

followed

by the file specification of the procedure

.

The file type

defaults

to COM

.

When you use this method, the batch processor

executes

the command procedure while you continue to work at your

terminal .

You should submit procedures that require lengthy

processing

time for batch processing

.

For

example, to execute the command procedure

COPY .COM

in batch mode,

enter

the command

:

$

SUBMIT COPY

Introduction

In

this example, the command interpreter finds the file

COPY .COM

in

your

account and submits it to the default batch queue for processing

.
After

the batch job is queued, your terminal is free for you to

continue

interactive work

.

See

the RSTS/E System User's Guide and RSTS/E System Manager's Guide

for

more information on batch processing

.

Introduction

Executing

Nested Command Procedures

Executing

one command procedure from inside another is called nesting

.
To

execute one command procedure from inside another, use the @

command

followed by the name of the nested procedure

.

This process is

similar

to using a CALL statement in a high-level language

.

When

the DCL command interpreter finds a nested command procedure, it

reads

input from the second procedure until it reaches the end of the

file

or until the procedure exits

.

Control then returns to the first

command

procedure at the line following the @ command

.

Note

that you can nest a maximum of 13 command procedures on RSTS/E

.
See

Chapter 7 for more information about nesting command procedures

.

Executing

Command Procedures with the RUN Command

You

can use the RUN command from any keyboard monitor to execute

command

procedures as you would a program on RSTS/E

.

A command file

that

you execute with the RUN command must follow these rules

:

o

The file must be on disk

o

You must set the execute bit (64) in the file's protection

code

o

The file must have DCL as its run-time system

Note

that you cannot pass any parameters to command files that you

execute

with RUN

.

See Chapter 5 for a complete discussion of

parameter

passing

.

Chaining

to Command Procedures from a Program

You

can also execute a command procedure using the CHAIN statement or

the

RUN directive

.

Command files you chain to must follow the same

rules

as command files you execute using the RUN command

.

To

pass parameters when you chain to a command procedure, you must

specify

a nonzero parameter word and load core common with one or more

parameter

values separated by spaces or tabs

.

See Chapter 5 for more

information

about passing parameters

.

Executing

Command Procedures with CCLs

Introduction

The

Concise Command Language (CCL) lets you execute command procedures

that

are defined as CCLs by your system manager

.

When

you execute a command procedure with a CCL command, you must

follow

the same rules as command files you chain to

;

that is, to pass

parameters

you must specify a nonzero parameter word and load core

common

with one or more parameter values separated by spaces or tabs

.
For

complete information about parameter passing, see Chapter 5

.

See

the RSTS/E System Managers Guide for more information about

defining

or using CCLs

.

Command

Procedures and System Management

The

RSTS/E system manager can create a system-wide

LOGIN .COM

file

containing

commands that are executed for all users

.

If you are a

system

manager, you also use command files in these ways

:

o

When you start timesharing, the system automatically loads

DCL

and executes the file [0,1]

SYSINI .COM .

SYSINI

.COM
performs

preliminary startup procedures and then executes

[0,1]START .COM,

passing it the parameter "START" in P1

.

o

When the system restarts after a system crash or power

failure,

it automatically loads DCL and executes the file

[0,1] SYSINI .COM .

SYSINI

.COM

then executes [0,1]START

.COM,
passing

it the parameter "CRASH" in P1

.

See

the RSTS/E System Manager's Guide for complete information about

using

command files in system management

.

This

chapter tells you how to define and use symbols in command

procedures .

It describes

:

o

The syntax of symbol names

o

How to define symbol values

o

How the command interpreter substitutes values for symbols

during

command processing

Symbols

in DCL

manipulate

them in much the same way as you manipulate variables in a

programming

language

.

This capability, combined with the ability to

control

execution flow in command procedures, makes the DCL command

language

very much like a programming language

.

The

following example shows how you can define a symbol to represent a

string :

$

FILE = "SOURCE

.CBL"

Chapter

2

Using

Symbols in Command Procedures

This

assignment statement gives the symbol name FILE the string value

"SOURCE .CBL" .

You can then refer to the file SOURCE

.CBL

symbolically

by

using the symbol name FILE

.

For example

:

$

COBOL 'FILE'

A

symbol

is a

name that represents a number,

character, or

logical

value . You define

a symbol in an assignment

statement . You

use

symbols in command

procedures as constants or

variables, and

Using

Symbols in Command Procedures

The

apostrophes around the symbol name FILE tell the command

interpreter

that the enclosed word is a symbol name

.

The command

interpreter

substitutes the string value "SOURCE

.CBL"

for FILE before

executing

the COBOL command

.

Symbol

Names

A

symbol name is a string from 1 to 255 characters long that can

consist

of

:

o

Uppercase letters A-Z

o

Lowercase letters a-z

o

Numbers 0-9

o

Dollar signs ($)

o

Underscores ()

Note

that the command interpreter always converts lowercase letters in

symbol

names to uppercase

.

Also

note the following restrictions for symbol names

:

o

You cannot begin a symbol name with a numeric character, an

underscore,

or the characters F$ (reserved for DCL function

names) .

o

Symbols that begin with the $ character are reserved symbols

.
You

cannot create or assign new values to reserved symbols

.
You

can, however, use a $ character anywhere else within a

symbol

name

.

o

In a symbol name, the underscore (-) character is interpreted

in

the same way as any other character

.

This differs from

its

use with DCL qualifiers, where the underscore is

transparent .

For example, the symbol names MYFILE and

MY-FILE

are different symbols

.

o

You cannot begin a symbol name with a hyphen (-) character or

an

asterisk (*) character

.

When

you create symbol names, you can use the hyphen (-) character or

the

asterisk (*) character to specify an abbreviation point for the

symbol .

Specifying an abbreviation point lets you reference the

symbol

name by any one of its abbreviations in any DCL command that

allows

symbol names

.

This feature also lets you create command

synonyms

that act like DCL commands

.

For example, in DCL you can

specify

the PRINT command as PR, PRI, PRIN, or PRINT

.

Likewise, you

2-2

can

create the symbol

:

$

US-ERS = "SHOW USERS"

Note

that DCL displays an error message if you

:

Using

Symbols in Command Procedures

You

can then refer to the symbol USERS as US, USE, USER, or USERS (in

command

synonym substitution only)

.

o

Use more than one hyphen or asterisk in a symbol name

.

o

Create a symbol name with an abbreviation that matches any

existing

abbreviation of another symbol

.

For example

:

Symbol

Values

$

PR-INT = "PRINT/COPIES=2"

$

PR-OTECT = "SET PROTECTION=60"

In

this example, DCL displays an error message when you make

the

second assignment, because the abbreviations match

.

You

can assign values to symbols using any of the following methods

:

o

Assigning symbol names to expressions, constant values, DCL

functions,

or to other variable symbol names with assignment

statements .

o

Passing up to eight parameters to a command procedure when

you

invoke it, or to a batch job when you submit it to a

batch

queue

.

(Chapter 5 discusses parameter passing

.)

o

Using the INQUIRE command to prompt for a symbol's value

.
(Chapter

5 describes the INQUIRE command

.)

o

Using the READ command to read a record from a file and

assign

it as a string value to a specified symbol

.

(Chapter

6

describes the READ command

.)

Note

RSTS/E

restricts the space available for storing

symbols .

Whenever insufficient space (less than 100

bytes)

remains to define a symbol and its value, an

error

message appears

.

Therefore, you should delete

symbols

you no longer need and avoid excessively long

symbol

names

.

2- 3

Using

Symbols in Command Procedures

Symbol

Types

A

symbol type can be either string or integer, depending on the value

or

expression you assign

.

When you use an expression, DCL evaluates

it

to determine the value to assign to the symbol

.

If the expression

evaluates

to a string, DCL assigns a string value to the symbol

.

If

the

expression evaluates to an integer, DCL assigns an integer value

to

the symbol

.

DCL

determines the type of expression by the types of values you use

in

the expression and by the type of operations you use to manipulate

these

values

.

Chapter 3 describes the rules that DCL uses to

determine

an expression's type

.

The

following sections describe how you assign values to symbols

.

Symbol

Assignment

Use

an assignment statement to define a symbol and assign it a string

or

integer value

.

The format of an assignment statement is

:

symbol-name

=[=] expression

where :

symbol-name

	

is

a name from 1 to 255 characters long that contains

the

characters listed in the "Symbol Names" section at

the

beginning of this chapter

.

COUNT

= 0

assigns

the value you specify and places the symbol

name

and value in the local symbol table

.

assigns

the value you specify and places the symbol

name

and value in the global symbol table

.

expression

	

is

an integer or string expression

.

The expression's

value

is assigned to the symbol name

.

If

the symbol name does not exist when you enter the assignment

statement,

then DCL creates the symbol and assigns its value

.

If the

symbol

name already exists, then DCL assigns the new value, replacing

the

previous value

.

For example

:

This

assignment statement assigns the value 0 to the local symbol

COUNT .

Use

double equal signs (==) to assign a symbol to the global symbol

table .

For example

:

$

NEWCOUNT == 10

This

assignment statement assigns the value 10 to the global symbol

NEWCOUNT .

You

must enclose string literals in quotation marks (")

.

For example

:

$

TERM == "SET TERMINAL"

Using

Symbols in Command Procedures

This

assignment statement assigns the string value "SET TERMINAL" to

the

global symbol TERM

.

If DCL finds unmatched quotation marks in a

command

string that you assign to a symbol, it displays an error

message .

If

you specify an expression that contains other symbols, DCL uses the

value

of those symbols when evaluating the expression

.

For example

:

$

TOTAL = NEWCOUNT + 10

$

SHOW SYMBOL TOTAL

TOTAL

= 20

In

this example, you use an arithmetic assignment statement to assign

a

value to the symbol TOTAL

.

Note that DCL automatically substitutes

the

value 10 for the symbol NEWCOUNT before evaluating the expression

.
See

the section "Symbol Substitution" for further discussion

.

String

Assignment

To

assign a string to a symbol, you can use a special string

assignment

statement

.

The format of a string assignment statement is

:

symbol-name :=[=]

string

where :

symbol-name

	

is

a name from 1 to 255 characters long that contains

the

characters listed in the "Symbol Names" section at

the

beginning of this chapter

.

assigns

the string value you specify and places the

symbol

name and value in the local symbol table

.

Using

Symbols in Command Procedures

assigns

the string value you specify and places the

symbol

name and value in the global symbol table

.

string

	

specifies

the string value to assign to the symbol

.
The

string can be from 0 to 255 characters long

.

If

the symbol name does not exist when you enter the assignment

statement,

then DCL creates the symbol name and assigns its string

value .

If the symbol name already exists, then DCL assigns the new

string

value, replacing the previous value

.

When

you use the special string assignment statement, you do not have

to

enclose the string in quotation marks

.

For example

:

$

TEMP STRING

:==

error	

number

	

11

This

assignment statement assigns the string "ERROR NUMBER 11" to the

global

symbol TEMP-STRING

.

Note

that DCL performs the following actions when you use the special

string

assignment statement to assign a string not enclosed in

quotation

marks

:

o

Converts lowercase characters to uppercase

o

Removes leading and trailing spaces or tabs

o

Reduces multiple spaces or tabs between characters to a

single

space

When

you enclose the string in quotation marks, DCL does not perform

case

conversion and keeps all spaces and tabs

.

For example

:

$

TEMP STRING

:==

"error	

number

	

11"

This

assignment statement assigns the string "error	

number

	

11"

to

the

global symbol TEMP-STRING

.

Symbol

Tables

The

DCL command interpreter stores symbol names and their associated

values

in two types of symbol tables

:

o

A local symbol table, which contains symbols you can use at

the

current command level

o

A global symbol table, which contains symbols you can use at

all

command levels

DCL

has a separate local symbol table for each command level except

the

interactive level

.

A command level is the DCL environment from

which

you issue commands

.

When you nest a command procedure, you

increase

the command level by one

.

For

example, when you log in and type commands at your terminal, you

are

issuing commands from command level 0 (the interactive level)

.

If

you

execute a command procedure, the commands in the procedure are

executed

at command level 1

.

When the procedure terminates and the

DCL

prompt reappears on your screen, you are back at command level 0

.

To

create a local symbol, use a single equal sign (=) in the

assignment

statement

.

For example

:

$

TEMP = 1

When

a nested command procedure ends, DCL deletes the local symbol

table

current to that command level and makes current the next higher

level

local symbol table

.

Because each local symbol table is unique,

the

same symbol can exist in more than one local symbol table

.

This

feature

lets each command file use symbols that are separately

defined,

thus avoiding conflicts with the use of those symbols

elsewhere .

For example, you can define the local symbol FILE at

several

command levels, to have different values at each command

level .

When the symbol value is needed, DCL first searches the local

symbol

table at the current command level

:

if no symbol is found, it

then

searches the global symbol table

.

Note

that no local symbol table exists at the interactive command

level .

DCL places any symbol that you define at the interactive level

in

the global symbol table, whether you use a single or double equal

sign

(==) in the assignment statement

.

$

VAL	

==

	

4

5

The

following sections describe how DCL performs symbol substitution

.

Using

Symbols in Command Procedures

DCL

maintains

only one

global symbol table, which is recognized at

every

command

level including

the interactive level

.

To create a

global

symbol,

use a

double equal sign in the assignment statement

.
For

example

:

Using

Symbols in Command Procedures

Symbol

Substitution

DCL

performs symbol substitution by replacing symbol names in the

command

string with their current values

.

To use symbols in commands

and

command procedures, you must understand the following mechanics of

symbol

substitution

:

o

Command synonym substitution

o

Apostrophe substitution operators

o

Automatic evaluation

o

Undefined symbols

o

Verification of symbol substitution

Command

Synonyms

You

frequently use global symbols to define command synonyms

.
Normally,

you place command synonyms in your

LOGIN .COM

file to make

the

synonyms available each time you log in

.

For example

:

$

KB == "SET TERMINAL/DEVICE="

This

assignment defines KB as a new DCL command

.

You can now type

:

KB

VT125

DCL

executes the command as if you typed

:

$

SET TERMINAL/DEVICE= VT125

Note

that the DCL command interpreter processes a command string by

examining

the first command keyword to determine if it is a defined

symbol .

If it is a defined symbol, DCL automatically substitutes the

value

of the symbol for the symbol name before executing the command

string .

You

can also use command synonyms to redefine existing DCL commands,

which

lets you change a default qualifier or parameter

.

For example

:

$

PRINT == "PRINT/COPIES=2"

When

you later issue the PRINT command, DCL automatically prints two

copies

of the file you specify

.

You

can override automatic command substitution by placing an

underscore

() before the first character in the command keyword

.

2-8

Then,

even if the keyword is a defined symbol, no automatic

substitution

occurs

.

For example

:

$

-PRINT MY

.FIL

This

command prints one copy of the file MY

.FIL,

because the preceding

underscore

tells DCL not to perform automatic substitution

.

Note

that you can use symbol name abbreviations in command synonym

substitution

only

.

Apostrophes

in Symbol Substitution

If

you use a symbol name in place of a command parameter or qualifier,

you

must enclose it in apostrophes ('

. . .

')

.

	

When

DCL finds a symbol

name

enclosed in apostrophes, it replaces the symbol name with its

current

value

.

For example

:

$

TYPE 'FILENAME'

Using

Symbols in Command Procedures

In

this example, the string FILENAME is a symbol name used as a

parameter

for the TYPE command

.

The apostrophes surrounding the

string

tell DCL that FILENAME is a symbol name and not a literal

string .

If

you want to include a symbol name within a literal string, place

two

apostrophes before the symbol name and one apostrophe after it

.
For

example

:

TEXT

= "File "FILENAME' deleted"

If

the current value of the symbol FILENAME is MYFILE

.DAT,

then the

symbol

TEXT is given the string value

:

File

MYFILE

.DAT

deleted

Note

that when you use apostrophes to request symbol substitution, DCL

performs

iterative substitution from left to right in the command

string .

This means that for each symbol name found in the command

line,

the string resulting from the substitution is scanned again from

the

beginning to determine whether the string contains any

apostrophes .

If

there are apostrophes, the command interpreter performs

substitution

and again examines the resulting string for apostrophes

.
For

example

:

$

FILE

.=

"'A"'

$

A

:=

FILE1

.MEM
$

TYPE 'FILE'

2-9

Using

Symbols in Command Procedures

DCL

processes this example as follows

:

1 .

DCL assigns the symbol name FILE to the string value 'A'

.
The

quotation marks prevent DCL from substituting a value for

'A'

(which you have not yet defined)

.

2 .

DCL assigns the string value FILE1

.MEM

to the symbol name A

.

3 .

DCL substitutes the current value of 'FILE', when it scans

the

TYPE command string, resulting in

:

TYPE

'A'

4 .

Because the current value contains apostrophes, DCL scans the

line

again and substitutes the value of 'A'

.

Finally, DCL

executes

the command string

:

TYPE

FILE1

.MEM

When

scanning a command string for apostrophe substitution, DCL

performs

a maximum of 100 iterations

.

If the command string still

contains

apostrophes after 100 iterations, DCL displays an error

message

and does not process the command

.

DCL

performs apostrophe substitution both before and after the command

substitution

occurs

.

For example

:

Automatic

Evaluation

In

this example, when DCL processes the command string EXEC 'QUAL,' it

first

performs apostrophe substitution on 'QUAL,' resulting in

EXEC

/DATE

.

Then command substitution occurs, resulting in

'COMMAND'

/DATE

.

Finally, DCL performs apostrophe substitution again,

resulting

in DIRECTORY [1,2] /DATE

.

When

DCL evaluates an expression, it assumes that a keyword beginning

with

an alphabetic character is a symbol name

.

In this case,

evaluation

is automatic and apostrophes are not needed

.

In fact, if

you

use apostrophes, the results may be quite different because

iterative

substitution occurs

.

$

EXEC

.=

"COMMAND"

$

COMMAND

:=

"DIRECTORY

[1,21"
$

QUAL

.=

"/DATE"

$

EXEC 'QUAL'

$

TOTAL = COUNT + 1

Using

Symbols in Command Procedures

For

example, when you use an arithmetic assignment statement, DCL

automatically

evaluates the expression on the right hand side of the

statement :

Note

that you do not need apostrophes to request substitution for the

symbol

COUNT because DCL automatically substitutes values for symbols

as

it executes arithmetic assignments

.

Similarly,

no apostrophes are necessary in the following IF command

:

$

IF A EQ

.

B THEN GOTO NEXT

In

this example, the IF command assumes that both A and B are symbol

names

and uses their current values to test their equality

.

Undefined

Symbols

If

a symbol is not defined when you use it in a command string, then

DCL

displays an error message and sets the reserved symbols $SEVERITY

and

$STATUS to the exit status ERROR

.

In addition, DCL does not

process

the command that contains the undefined symbol

.

See Chapter 8

for

more information about $SEVERITY and $STATUS

.

Verifying

Symbol Substitution

The

SET VERIFY and SET NOVERIFY commands control whether DCL displays

lines

in a command procedure as it executes them

.

Use the SET VERIFY

command

when you want to determine the cause of errors that occur

within

a command procedure

.

when verification is in effect, DCL

displays

each command line exactly as it appears in the command file,

before

any substitution

.

Format

SET

[NO]VERIFY

Command

Qualifiers	

Defaults

/[NO]DEBUG

	

/NODEBUG

Using Symbols in Command Procedures

Command Qualifiers
/[NO]DEBUG

Specifies whether DCL enables command debugging . You can use
this qualifier only with SET VERIFY . When enabled, DCL displays
each command line twice : once as it appears in the command file,
and again as it appears after apostrophe and command
substitution . The default is /NODEBUG .

SET NOVERIFY is the default setting . When you use this setting, DCL
does not display command lines read from a command file . However, DCL
always displays any error messages that occur .
When SET VERIFY is in effect, it is global to all command procedures
and remains in effect until you change it with SET NOVERIFY . Note
that you can also use the DCL function F$VERIFY to change the current
verification setting . See Chapter 4 for more information about
F$VERIFY .

Displaying Symbols
The SHOW SYMBOL command lets you display the value of a specified
symbol or of all symbols in a local symbol table, the global symbol
table, or both .

+---__------+
Format

I

	

ISHOW SYMBOL [symbol-name]
I

	

ICommand Qualifiers

	

Defaults
I

	

I/ALL

	

/ALL
/GLOBAL I/LOCAL I+---+

Command Parameters
symbol-name

The name of the symbol to display . DCL returns an error if the
symbol is not found . If you do not specify a symbol name, /ALL
is assumed . If you specify both a symbol name and the /ALL
qualifier, the symbol name takes precedence .

Command Qualifiers
/ALL

/LOCAL

Using Symbols in Command Procedures

Tells DCL to display all symbols in the specified symbol table .
It is the default .

/GLOBAL
Tells DCL to display only global symbols .

Tells DCL to display only local symbols .

Within a command file, you can use the /LOCAL or /GLOBAL qualifiers
with a symbol-name to restrict searching to either the local or global
symbol table . If you do not specify the /LOCAL or /GLOBAL qualifier,
DCL searches both tables . If DCL finds a symbol name in both tables,
it displays the local symbol definition before the global symbol
definition . Global symbols are always displayed with a double equal
sign (==), while local symbols are displayed with a single equal sign

when you are at the interactive command level, you can only display
global symbols because no local symbol table exists at this level .
DCL displays an error message if you use the /LOCAL qualifier at this
level .
If you want to display a symbol that has an abbreviation point, do not
specify the hyphen character along with the symbol name . For example :

$ SHOW SYMBOL USERS
US-ERS = "SHOW USERS"

Note that if a symbol has one or more abbreviations, DCL displays it
with an embedded hyphen indicating the minimum abbreviation point .
Other examples of the SHOW SYMBOL command follow :

$ SHOW SYMBOL/LOCAL
This command displays all symbols in the local symbol table .

$ SHOW SYMBOL COUNT
COUNT = 4

This command displays the local symbol COUNT . Because the value 4 is
not in quotation marks, the symbol has a numeric value .

2-13

Using Symbols in Command Procedures

$ SHOW SYMBOL PRINT

PRINT == "PRINT/NOFEED"

This command displays the global symbol PRINT . Because the value

"PRINT/NOFEED" is in quotation marks, the symbol has a string value .

Deleting Symbols

Use the DELETE/SYMBOL command to delete symbols . You can delete one

or all local symbols from the local symbol table for the current

command level or one or all global symbols from the global symbol

table .

I Format

	

I

DELETE/SYMBOL [symbol-name)

Command Qualifiers

	

Defaults

/ALL

/GLOBAL

/LOCAL I
+---+

Command Parameters

symbol-name

Command Qualifiers

/ALL

/GLOBAL

The name of the symbol to delete . DCL returns an error if the

symbol is not found . If you specify both a symbol name and the

/ALL qualifier, the symbol name takes precedence .

Tells DCL to delete all symbols in the specified symbol table .

Tells DCL to delete the global symbol you specify . By default,

DCL searches the global symbol table when you attempt to delete a

symbol at the interactive level .

Note

that DCL automatically deletes the symbols in a local symbol

table

whenever the command procedure at that level exits

.

In

addition,

DCL deletes symbols in the global symbol whenever you log

out .

Examples

of the DELETE/SYMBOL command follow

:

$

DELETE/SYMBOL/ALL/GLOBAL

This

command deletes all user-defined global symbols

.

$

DELETE/SYMBOL/LOCAL COUNT

This

command deletes the local symbol COUNT

.

Remember

that because RSTS/E restricts the space available for storing

local

and global symbols, you should always delete symbols that you no

longer

need

.

/LOCAL

Using Symbols in

Command Procedures

Tells

DCL to delete the local

symbol you specify .

By default,

DCL

searches the local symbol

table when you

attempt to delete a

symbol

at command levels other

than the interactive

level

.

$

C = 4 + F$INTEGER("6") - A

Operands

in Expressions

Chapter

3

Expressions

and operators

This

chapter describes the types of values and operators you can use

in

expressions

.

Chapter 2 described how you can equate a symbol to

either

a string or an integer expression

.

The value that DCL assigns

to

the symbol is the result of the expression

.

For example

:

This

command assigns a symbol (C) to an expression containing an

integer

(4), a DCL function (F$INTEGER("6")), and a symbol (A)

.

The

value

that DCL assigns to the symbol C is the result of the operations

in

the expression

.

In this example, the expression evaluates to an

integer

value

.

DCL

also lets you use expressions

:

o

As DCL function arguments (see Chapter 4)

o

With OPEN, CLOSE, READ, and WRITE commands (see Chapter 6)

o

With IF commands (see Chapter 7)

Expressions

can contain strings, integers, DCL functions, symbols, or

combinations

of these values

.

Expressions consist of operands and

operators .

Operands are the values on which to perform an operation

.
Operators

specify the operation for DCL to perform in evaluating the

expression .

Expressions

and Operators

Strings

A

string can contain any printable characters

.

When you use strings

in

expressions, you must enclose them in quotation marks

.

To include

quotation

marks in a string, type two consecutive sets of quotation

marks .

For example

:

$

PROMPT = "Type ""YES"" or ""NO"""

$

SHOW SYMBOL PROMPT

PROMPT

== "Type "YES" or "NO""

When

you make the symbol assignment, you must use two sets of

quotation

marks around the words YES and NO

.

Also, you must enclose

the

entire string in quotes because the string is used in an

expression .

Note that DCL preserves uppercase and lowercase, spaces,

and

tabs when you make the symbol assignment in this way

.

In

addition,

DCL places the symbol in the global symbol table because you

defined

it at the interactive command level

.

You

can continue a string over two lines by using a plus sign (+) for

string

concatenation, and a hyphen (-), for continuation

.

For

example :

$

MONTHLY = "MONTHLY REPORT --" +-

Continue :

" JUNE 1985"

$

SHOW SYMBOL MONTHLY

MONTHLY

== "MONTHLY REPORT -- JUNE 1985"

You

can also concatenate several symbols to create a long string

.

For

example :

$

FIRST = "If at first you don't succeed,"

$

SECOND = " try, try again

."

$

THIRD = FIRST + SECOND

$

SHOW SYMBOL THIRD

THIRD

== "If at first you don't succeed, try, try again

."

Note

that both operands must be strings for string concatenation to

occur .

If either operand to the plus sign (+) operator is an integer,

then

DCL performs addition, not concatenation

.

Integers

The

DCL command interpreter treats all numeric values as decimal

integers .

The following examples show how to use integers in

expressions :

$

COUNT = 4 + 1

$

DATA = COUNT + 1

$

SHOW SYMBOL COUNT

COUNT

== 5

$

SHOW SYMBOL DATA

DATA

== 6

In

this example, you define two symbols using integer expressions and

use

the SHOW SYMBOL command to display the value of the symbols

.

Note

that you do not use quotation marks with integers

.

DCL

Functions

DCL

functions let you obtain information about a requested item

.

You

invoke

a DCL function by typing its name, which always begins with the

characters

F$, and its argument list

:

F$function-name(argument[. . . .

])

You

must enclose the argument list in parentheses

.

Use DCL functions

in

expressions in the same way you use strings, integers, and symbols

.
The

following example uses the F$LENGTH function in an expression

.
(The

F$LENGTH function returns an integer that specifies the length of

a

string

.)

DCL assigns the returned value to the symbol LEN

.

For

example :

$

LEN = F$LENGTH ("Roses are red and violets are blue

.")

$

SHOW SYMBOL LEN

LEN

== 35

Expressions

and Operators

Note

that you do not enclose DCL functions in quotation marks

.

In

addition,

you must specify the arguments for DCL functions as

expressions .

Therefore, if an argument contains a string, you must

enclose

the string in quotation marks

.

If an argument contains an

integer,

a symbol, or another DCL function, do not enclose these

values

in quotation marks

.

In the previous example, the F$LENGTH

function

is not enclosed in quotation marks

;

however, the argument (a

string)

is

.

Expressions

and Operators

The

value and data type returned by a DCL function depend on the

function .

See Chapter 4 for complete descriptions of each DCL

function .

Symbols

When

you use a symbol in an expression, DCL automatically substitutes

the

symbol's value

.

For example

:

$

COUNT = 3

$

NEWCOUNT = COUNT + 1

$

SHOW SYMBOL NEWCOUNT

NEWCOUNT

== 4

See

Chapter 2 for more information about symbol substitution

.

The

following sections describe the conversion of value types in

expressions ;

that is, how strings are converted to integers, and how

integers

are converted to strings

.

Value

Type Conversion in Expressions

Expressions

can contain both integer and string values as operands,

which

are the values on which to perform an operation

.

DCL

automatically

converts such expressions to either a string or integer

type,

depending on the types of values used in the expression and on

the

types of operations used to manipulate those values

.

You

can use the F$TYPE function to determine an expression's type

.
You

can also perform value conversion explicitly using the F$INTEGER

and

F$STRING DCL functions

.

See Chapter 4 for more information on

these

functions

.

Table

3-1 lists the rules that DCL uses to determine an expression's

type .

Table 3-1 : Rules for Determining Expression Types
+_---+---------------_---------+

I

	

Expression

	

Type I+--+-------------------------+
I

	

IInteger value

	

Integer
String value

	

String
I

	

I

	

IInteger DCL function

	

Integer
I

	

I

	

II String DCL function

	

String
I

	

I

	

IInteger symbol

	

Integer
IString symbol

	

string
I

	

I

	

Ior NOT . Any value

	

Integer
I

	

I

	

I
Any value AND . or OR . Any value

	

Integer
I

	

l

	

IAny value

	

or / Any value

	

I Integer
I

	

I

	

IString + String

	

String
(

	

IAny value (string comparison) Any value (Integer
I

	

IAny value (integer comparison) Any value I Integer

Expressions and Operators

+-----------__-----------------------------+-------------------------+

Note that DCL automatically converts the expression to either a string
or integer type before performing further operations .

Expressions

and Operators

Converting

Strings to Integers

DCL

converts numeric strings, which consist of the numbers 0 through

9,

optionally preceded by one or more plus (+) or minus (-)

characters,

to their signed 32-bit values

.

DCL

converts alphabetic strings according to these rules

:

o

Strings that begin with the letter T, t, or Y, y, are

Converting

Integers to Strings

DCL

converts integers to strings by generating a string consisting of

the

decimal numbers of the integer

.

If the integer is negative, then

the

minus

that

DCL

Integer

sign

(-)

suppresses

---3M-

character

precedes the numeric characters

.

Note

leading

zeros

.

For example

:

String

1000 ----10- 111000"

-47 ---)I- "-47"

0 -- - 11011

007 ---.10- 117"

converted

to

the

value 1 (true)

.

o

All

other

strings are converted to the value 0 (false)

.

For

example

:

String ---~ Integer

114789" ---~ 4789

If-lit ---~ -1

"yes" ---IN- 1

(true)

"FILE" ---10-- 0

(false)

Operators

in Expressions

Use

the operators shown in Table 3-2 to form an expression and define

the

order of evaluation priority

.

Logical and comparison operators

must

be preceded by a period (

.)

with no intervening blanks

.

You must

terminate

an operator with a period

.

You can type any number of

blanks

or tabs between operators and operands

.

For example, the

following

expressions are equivalent

:

X .EQS .Y
X

EQS

.

Y

Expressions

and Operators

When

you specify more than one operation in an expression, DCL

performs

the operations in the order of priority listed in Table 3-2,

where

1 is the highest priority (performed first) and 6 is the lowest

(performed

last)

.

(For example, multiplication is performed before

addition .)

You can use parentheses to override the order in which

operators

are evaluated, because expressions within parentheses are

evaluated

first

.

Table

3-2 lists the valid operators in expressions

.

Operators of the

same

priority are performed from left to right, as they appear in the

command .

Expressions and Operators

Table 3-2 : Summary of Operators in Expressions
+____________+___-------+-___________+-----______--------------______+

I Type I Operator I Priority I Operation I+____________+-__-------+_-__________+------_____--- .-----------_____+

Arithmetic
I

	

Operators

+____________+----------+-__________-+-----____-----------------_____+
I

	

I

	

I
String

	

+

	

I

	

3

	

String concatenation
I Operator+----__-__---+---_______+____--------+_______----____-________------_+
I

	

I

	

I

	

I
Logical

	

NOT .

	

1

	

Logical Complement
Operators

	

AND .

	

5

	

Logical AND
" OR .

	

6

	

Logical OR+___--------_+________--+-----------_+_-__---___-___-----------______+
I

	

I

	

I
I Arithmetic

	

EQ .

	

4

	

Arithmetic equal to
Comparison

	

GE .

	

4

	

Arithmetic greater than or
operators

	

equal to
GT .

	

4

	

Arithmetic greater than
" LE .

	

4

	

Arithmetic less than or equal
to

LT .

	

4

	

Arithmetic less than
" NE .

	

4

	

Arithmetic not equal to+___-------__+_______---+-----------_+___-----____----------------___+
I

	

I
String

	

EQS .

	

4

	

String equal to
Comparison

	

GES .

	

4

	

String greater than or equal
Operators

	

to I
I

	

GTS .

	

4

	

String greater than
LES .

	

4

	

String less than or equal to
" LTS .

	

4

	

String less than
NES .

	

4

	

String not equal to
+____________+_-__---_--+--__-_______+_----______---------------__---+

+ 1 Arithmetic unary plus
- 1 Arithmetic unary minus
* 2 Arithmetic product
/ 2 Arithmetic division
+ 3 Arithmetic sum
- 3 Arithmetic difference

Arithmetic

Operations

Use

arithmetic operations to perform calculations on integer

expressions .

The result of an arithmetic operation is an integer

.
Operands

in arithmetic operations are integer expressions

.

If you

specify

a string value as an operand, DCL converts it to an integer

value

before performing the operation

.

Note

that DCL uses the plus sign"(+) character for both the arithmetic

sum

operator and the string concatenation operator

.

DCL performs

addition

whenever one or both of the operands is an integer

.

However,

if

both operands are strings, then DCL performs string concatenation

.

Examples

of arithmetic operations follow

:

Logical

Operations

Use

logical operators to perform logical functions on integer values

The

result of a logical operation is an integer

.

Operands

for logical operations are integer expressions

.

If you

specify

a string value as an operand, DCL converts it to an integer

value

before performing the operation

.

Examples

of logical operations follow

:

Expressions

and operators

Expression Value of

Symbol

A

=

5 + 10

/ 2

A

=

10

B

=

5 * 3

- 4 *

6 / 2 B

=

3

C

=

5 * (6

- 4)

- 8 / (2-1) C

=

2

Expression Value

of Symbol

A

= 3 OR

.

5

A

= 7

B

= 3 AND

.

5

B

= 1

C

=

.NOT .3 C

= -4

D

= 3 + 4 AND

.

2 + 4

D

= 6

Expressions

and Operators

Arithmetic

Comparisons

Use

arithmetic comparison operators to compare integer values

.

If the

result

of an arithmetic comparison is true, the expression has the

value

1

.

If the result of the comparison is false, the expression has

the

value 0

.

If

you specify a string value as an operand, DCL converts it to an

integer

before performing the comparison

.

If a string begins with an

uppercase

or lowercase T or Y, DCL converts it to the integer 1

.

If

the

string begins with any other letter, DCL converts it to the

integer

0

.

Examples

of arithmetic comparisons follow

:

String

Comparisons

Use

string comparison operators to compare strings

.

DCL compares

character

strings based on the binary values of the characters in the

string .

If the result of the string comparison is true, the

expression

has the value 1

.

If the result of the comparison is false,

the

expression has the value 0

.

If

you specify an integer value as an operand in a string comparison,

DCL

converts the integer to a string before performing the comparison

.
In

addition, if one string is longer than the other, DCL pads the

shorter

string with null characters to match the length of the longer

string

before making the comparison

.

Expression Value

of Expression

1

LE

. 2 1

(true)

1

GT

. 2 0

(false)

1

+ 3

EQ .

2 + 5

0

(false)

"TRUE" EQ .

1

1

(true)

"FALSE" EQ .

0

1

(true)

"123" EQ .

123

1

(true)

Examples

of string comparisons follow

:

Expression

	

Value

of Expression

"ABCD"

LTS

.

"EFG"	

1

(true)

"YES"

GTS

.

"MESS"	

0

(false)

"FALSE"

EQS

.

0	

0

(false)

String

Concatenation

$

A = "MYFILE" + "

.MEM"

$

SHOW SYMBOL A

A

== "MYFILE

.MEM"

Expressions

and Operators

Use

a plus sign character (+) between strings to link or concatenate

strings .

The result of this operation is a string value

.

When you

specify

an integer value as an argument to the plus sign (+) operator,

DCL

performs addition, not concatenation

.

The following example

concatenates

two strings to form a single string

:

Chapter

4

DCL

Functions in Command Procedures

This

chapter describes how to use DCL functions to manipulate strings

or

integers, or return information about a file, a job, or the system

.
You

can use DCL functions in the same places you use symbols,

expressions,

or literal values

.

In command procedures, you can use

DCL

functions to perform operations such as

:

o

Translate logical names

o

Manipulate strings

o

Determine the current processing mode of the procedure

Format

of DCL Functions

The

general format of a DCL function is

:

F$function-name([arg])

where :

F$

	

indicates

a DCL function

.

function-name

is the function to be evaluated

.

You can truncate

function

names to any unique abbreviation

.

(

)	

enclose

function arguments

.

Functions that have no

arguments

do not need parentheses

.

arg

	

specify

arguments for the function, if any

.

Function

arguments can consist of symbols, integer expressions, string

expressions,

or other DCL functions

.

DCL

Functions in Command Procedures

DCL

performs automatic symbol substitution on all function arguments

.
Therefore,

when you use a symbol name as a DCL function argument, do

not

enclose the symbol name within apostrophes

.

Note

that in some cases, one

optional .

If an argument is

argument

list

.

You can also

are

excluding from the list

.
three

arguments defined, all

the

first argument, as follows

:

F$PARSE(ARG1)

In

this example, you do not specify the second

You

could also use commas to indicate that you

second

and third arguments

:

F$PARSE(ARG1 �

)

If

you want to specify the first

third,

you can use either

:

F$PARSE(ARG1,ARG2)
or
F$PARSE(ARG1,ARG2,)

If

you want to specify the first and third arguments, but omit the

second,

you must use commas to separate the arguments

.

For example

:

F$PARSE(ARG1 �

ARG3)

DCL

Functions

or

more of a function's arguments are

optional,

you can exclude it from the

use

commas to indicate which argument you

For

example, the F$PARSE function has

of

which are optional

.

You can specify

and

third arguments

.
are

excluding the

and

second arguments, but omit the

Note

that, in some cases, specifying an argument as a null string or

as

the integer zero is not the same as excluding the argument from an

argument

list

.

Table

4-1 summarizes the DCL functions

.

The rest of this chapter

describes

DCL functions in greater detail and gives examples of their

use .

Table 4-1 : Summary of DCL Functions

DCL Functions in Command Procedures

+_------__-___-+----______---_____-____---------________------_______+
I Function Description I
+---__-----___-+---------------________----------_____---------______+

I

	

!

	

I
! F$ACCESS

	

! Returns the current job's access mode
+_______----___+_------__--------__-_________________------------____+

I

	

I

	

!
! F$ASCII

	

Converts the first character in a string to its
! ASCII value

+__-----------_+____---________-_____-----__----------_________-----_+
I

	

!

	

I
F$CHR

	

Converts an integer to its ASCII value
+--------____--+-__________---____-------------------_________------_+

I

	

I

	

I
! F$CVTIME

	

I Converts a date/time string to a string suitable
I

	

I for comparisons
+---------__--_+_-_________________-___------------______________---_+

I

	

I

	

I
I F$EDIT

	

! Edits a string

	

I
+_____--__--___+_-------------------_________________-----------_____+

I

	

!

	

I
I F$INSTR

	

I Returns the location of a substring

	

I
+-------____-__+_____------_________---___-__________------------___-+

I

	

I

	

I
F$INTEGER

	

Converts a string to an integer
+__---___----__+___-------____-______-________________-_____---______+

I

	

I
I F$JOB

	

II Returns the current job number

	

I
+---------__---+------______--__-__-__------------___________-__-----+

I

	

!

	

I
F$LEFT

	

Extracts a substring from a string, beginning at
position 1, and ending at the position you specify

+_____--__--___+---------------------_____-----___-__---------_______+
I

	

I
F$LENGTH

	

Returns the length of a string
+-______----___+-------__------------_________-----__---------_______+

I

	

I

	

I
F$MESSAGE

	

Returns the message text associated with a RSTS/E
error number

+_____------___+---___-___---------___-------------___-----_______---+
I

	

I

	

I
F$MID

	

! Extracts a substring from a string beginning at the
position you specify

+------_____--- .- ___-____----_____------------__-----______-__----___+
I

	

i

	

I
F$NODE

	

Returns the current node name
+-___-____----_+____--------____------____________--------__---______+

DCL Functions in Command Procedures

Table 4-l : Summary of DCL Functions (font .)
+______________+__-______+

I Function

	

Description+______________+_-___ ._____+
I

	

I

	

IF$PARSE

	

Returns a complete RSTS/E file specification or a
specified field within the file specification-.______________+___+

I

	

I

	

II F$PRIVILEGE I Returns the status of a job's privileges+-_____________+___+
I

	

I

	

IFRIGHT

	

Extracts a substring from a string, beginning at
the position you specify, and ending at the
rightmost position of the string

--
I

	

I

	

IF$SEARCH

	

Searches a disk directory for a file and returns
the complete RSTS/E file specification of the next
occurrence of the file

--
I

	

I
I F$STRING

	

I Converts an integer to a string

	

I
--

I

	

I

	

II F$TERMINAL

	

I Returns the KB number for the current RSTS/E job
--

I

	

I

	

II F$TIME

	

I Returns the current time and date+______________+________--___+
I

	

I

	

IF$TYPE

	

I Returns a string indicating the type of a symbol or
I expression

+______-_______+___+
I

	

I

	

IFUSER

	

Returns the project-programmer number for the
current RSTS/E job

--
I

	

I
I F$VERIFY

	

I Enables or disables the verification setting
--
The following sections describe the DCL functions in alphabetical
order .

F$ACCESS

The

F$ACCESS function returns a string that shows the current job's

execution

mode

.

The

format of the F$ACCESS function is

:

F$ACCESSO

The

F$ACCESS function returns one of the following keyword strings

:

Keyword

	

Meaning

BATCH

	

The

job is running on a pseudo keyboard, under the

control

of a batch processor

.

DIALUP

	

The

job is running over a dial-up line

.

LOCAL

	

The

job is running at a local terminal

.

NETWORK

	

The

job was created over the network, and is running

on

a pseudo keyboard under control of the job on the

remote

system

.

SERVER

	

The

job is running detached under the control of a

network

controller

.

Use

the F$ACCESS function in command procedures that must act

differently

depending on the current job's access mode

.

The

following example uses the F$ACCESS function

:

$

!Exit unless in BATCH mode

$

IF F$ACCESS NES

.

"BATCH" THEN EXIT

DCL

Functions in Command Procedures

F$ACCESS

In

this example, the IF command compares the character string returned

by

F$ACCESS with the character string BATCH

.

If the strings are

equal,

processing continues

.

When the strings are not equal, the

procedure

exits

.

DCL

Functions in Command Procedures

F$ASCII

F$ASCII

The

F$ASCII function converts the first character in a string to its

ASCII

value

.

This function is similar to the BASIC-PLUS ASCII

function .

The

format of the F$ASCII function is

:

F$ASCII(string)

where

string is a string expression

.

The

F$ASCII function always returns an integer in the range 0 to 255

.
If

you pass a null string as an argument to this function, it returns

the

value 0

.

If you pass an integer as an argument to this function,

DCL

converts the integer to a string and returns the first character

of

the string

.

The

following example uses the F$ASCII function

:

$

INQUIRE ANSWER "Type Y to continue"

$

CHAR = F$ASCII(ANSWER)

$

!Check for 'Y' or 'y' as the first character

$

IF (CHAR EQ

.

89) OR

.

(CHAR EQ

.

121) THEN GOTO CONTINUE

$

EXIT

$

CONTINUE

:

This

command procedure uses an INQUIRE command to request user input,

which

is assigned to the symbol ANSWER

.

The next assignment statement

uses

the F$ASCII function to convert the first character of the input

string

to its ASCII value and assigns that value to the symbol CHAR

.
The

IF command then tests the first character of the string and

branches

to the label CONTINUE if the first character is Y or y

.

If

the

string begins with any other character, the procedure exits

.

F$CHR

The

F$CHR function converts an integer to its ASCII value

.

This

function

is similar to the BASIC-PLUS CHR$ function

.

See Appendix D

for

a table of the ASCII character codes and their decimal and octal

values .

The

format of the F$CHR function is

:

F$CHR(integer)

where

integer is an integer value that corresponds to the character to

be

returned

.

Use

this function to assign the ASCII value of a nonprinting character

to

a symbol

.

DCL treats all arguments as eight-bit unsigned integers

in

the range 0 to 255

.

If you specify an integer outside this range,

the

low byte is returned as the ASCII character

.

For example,

F$CHR(257)

is equivalent to F$CHR(1), and F$CHR(-1) is equivalent to

F$CHR(255) .

The

following example uses the F$CHR function

:

!Define

the standard report heading

FORM_

FEED = F$CHR(12)

HEADING

= "INTEROFFICE MEMORANDUM"

NEW_

LINE = F$CHR(13)	

+

F$CHR(10)

INDENT

= F$CHR(9)

$

!Write out the report heading

$

WRITE/NODELIMITER 1 FORM FEED , HEADING , NEW-LINE , INDENT

This

example

:

DCL

Functions in Command Procedures

F$CHR

o

Assigns the ASCII character 12 to the symbol FORM-FEED

indicating

a form feed

.

o

Assigns the string "INTEROFFICE MEMORANDUM" to the symbol

HEADING .

o

Assigns the ASCII characters 13 and 10 to the symbol NEW-LINE

indicating

a carriage return and line feed

.

DCL

Functions in Command Procedures

F$CHR

o

Assigns the ASCII character 9 to the symbol INDENT indicating

a

horizontal tab

.

o

Uses the WRITE command along with the symbols to format a

report

heading

.

Note

that because you specified /NODELIMITER, the next write

to

channel 1 will be indented to the first tab stop

.

F$CVTIME

DCL

Functions in Command Procedures

F$CVTIME

The

F$CVTIME function converts a standard DCL date/time string or the

date/time

string returned by the F$TIME function to a date/time string

of

the form

:

yy .mm .dd

hh

:mm

You

can use the resultant string to compare two dates

.

The

format of the F$CVTIME function is

:

F$CVTIME([date/time])

where :

date/time

	

is

the date and time to be converted

.

If you do not

supply

a date and time, then the current date/time is

returned .

DCL displays an error message if you

specify

an illegal date/time argument

.

The

date/time string can be any valid DCL date/time string, including

relative

dates/times

.

This function also accepts a string consisting

of

a date field, one or more spaces or tabs, and a time field, which

lets

you convert a string returned by the F$TIME function

.

The

function always returns a date/time string that is 14 characters

long,

with a single space between the date and time fields

.

In

addition,

the time field is always returned in 24-hour format,

beginning

at position 10 in the string

.

The

following example converts a system date/time string to a

comparison

string

:

$

TIME = F$TIME

$

SHOW SYMBOL TIME

TIME

= "O1-May-85 03

:37

PM"

$

TIME = F$CVTIME(TIME)

$

SHOW SYMBOL TIME

TIME

= "85

.05 .01

15

:37"

$

TIME = F$CVTIME("+6DAYS")

$

SHOW SYMBOL TIME

TIME

= "85

.05 .07

15

:37"

In

this example, the F$TIME function assigns the current date/time

string

to the symbol TIME

.

Then the F$CVTIME function converts the

date/time

string to a string that you can use for comparisons

.

The

example

also shows that you can specify relative dates/times with this

function .

4-9

DCL

Functions in Command Procedures

F$EDIT

F$EDIT

The

F$EDIT function edits a string

.

This function is similar to the

BASIC-PLUS

CVT$$ function

.

The

format of the F$EDIT function is

:

F$EDIT(string,integer)

where :

string

	

is

the string to edit

.

integer

	

is

a bit-coded value that specifies the editing

function

(or functions) to perform

.

You

can use F$EDIT to edit two strings before performing a comparison

of

those strings

.

For example, you can convert strings to uppercase,

strip

off leading or trailing spaces and tabs, and so forth

.

After

you

execute this function, DCL returns an edited string

.

Note that

you

can supply an integer argument, which is the sum of individual

function

values

.

For example, the value 48 performs both edit

functions

16 and 32

.

The

following example uses the F$EDIT function

:

$

INQUIRE COMMAND "Command"

$

!Strip spaces/tabs and convert to uppercase

$

COMMAND = F$EDIT(COMMAND,2+32)

In

this example, the INQUIRE command prompts the user for a string to

edit .

After the user enters the string, the F$EDIT function removes

any

spaces or tabs and converts the string to uppercase characters

.

Table

4-

2

lists the values for the F$EDIT function

.

Table 4-2 : Summary of F$EDIT Functions
- -
Value

	

Editing Function
--
I

	

I

	

I12

	

I Discards all spaces and tabs

	

I
--

I

	

I

	

I4

	

Discards any of the following characters :
o Null (ASCII code 0)
o Line feed (ASCII code 10)
o Form feed (ASCII code 12)
o Carriage return (ASCII code 13)
o Escape (ASCII code 27)
o Delete (ASCII code 127)

--
I

	

I18

	

I Discards leading spaces and tabs

	

I
--

I

	

I

	

I116

	

I Converts multiple spaces and tabs to a single space

	

I
--

I

	

I

	

I32

	

Converts lowercase characters to uppercase
--

I

	

I64

	

Converts left and right square brackets ([]) to left and
right parentheses (())

--
I

	

I1128

	

1 Discards trailing spaces and tabs

	

I
- -

I

	

I

	

I256 Disables editing of characters within quotation marks
--

DCL Functions in Command Procedures
F$EDIT

DCL

Functions in Command Procedures

F$INSTR

F$INSTR

The

F$INSTR function locates a substring within a string and returns

the

position of the substring as an integer

.

This function is similar

to

the BASIC-PLUS INSTR function

.

The

format of the F$INSTR function is

:

F$INSTR(position,string,substring)

where :

position

	

is

an integer, expression, or symbol that indicates

the

position in the string at which to begin searching

for

the substring

.

If the position is negative or 0,

then

the string is searched starting at position 1

.
If

the position argument is greater than the length of

the

string, the function returns the value 0

.

string

	

is

the string to search

.

substring

	

is

the substring to locate

.

If the substring argument

is

null, and the position argument is not greater than

the

length of the string, the function returns the

specified

start position

.

If the substring is not

located,

the function returns the value 0

.

You

can specify the string and substring as either a string

expression,

or as a symbol equated to a string expression

.

The

following example uses the F$INSTR function to count the number of

spaces

in a string

:

$

SPACES = 0

$

POS = 0

$

INQUIRE STRING "String"

$

LOOP

:
$

POS = F$INSTR(POS + 1,STRING," ")

$

IF POS EQ

.

0 THEN GOTO END

$

SPACES = SPACES + 1

$

GOTO LOOP

$

END

:
$

WRITE 0 "Number of spaces = ",SPACES

This

example uses an INQUIRE command to prompt for a string value

.
The

first time DCL executes the loop, POS is equal to 1, and STRING is

equal

to 0

.

After DCL locates a space, it assigns a new value to POS,

which

is the integer position of the space within the string

.

In

4-12

DCL

Functions in Command Procedures

F$INSTR

addition,

each time DCL locates a space, it increments SPACE by 1

.
Finally,

after DCL locates all spaces, the procedure branches to the

label

END, and the WRITE command displays a message indicating the

number

of spaces in the string

.

DCL

Functions in Command Procedures

F$INTEGER

F$INTEGER

The

F$INTEGER function converts a string expression to an integer

.

The

format of the F$INTEGER function is

:

F$INTEGER(string)

where

string is a string expression or symbol

.

Use

the F$INTEGER function to set a symbol to an integer value and

then

use the symbol in an operation that requires an integer value

.
For

example

:

$

A = '12311

$

B = F$INTEGER("-9" + A)

$

SHOW SYMBOL B

B

= -923

In

this example, the F$INTEGER function returns the integer equivalent

of

the expression ("-9" + A), which evaluates to the character string

"-923" .

Because the expression contains two character strings, use

the

plus sign (+) character for concatenation

.

The F$INTEGER function

ignores

leading and trailing blank spaces

.

Note that the symbol A was

assigned

the numeric character string "23"

.

F$JOB

The

F$JOB function returns the current job number as an integer

.

The

format of the F$JOB function is

:

F$JOB()

Use

the F$JOB function in command procedures that use their own job

number

as input to a task, or that need to extract job information

from

a file, such as a SYSTAT listing

.

For example

:

$

JOB_NO = F$JOB

$

WRITE 0 "This is job number "JOB-NO'

."

Note

DCL

Functions in Command Procedures

F$JOB

This

command procedure assigns the current job number to the symbol

JOB-NO

and then displays the job number on your terminal

.

Be

careful using the F$JOB function in command

procedures

that contain programs that are meant to

detach

during the procedure's execution

.

RSTS/E

creates

a new job (containing the same command

procedure)

when the program detaches

.

Therefore, the

F$JOB

function will return the new job number

.

DCL

Functions in Command Procedures

F$LEFT

F$LEFT

The

F$LEFT function extracts a substring from a string, starting at

position

1 and ending at the position you specify

.

This function is

similar

to the BASIC-PLUS LEFT function

.

The

format of the F$LEFT function is

:

F$LEFT(string,position)

where :

string

	

is

the string from which to extract the substring

.

position

	

is

an integer that specifies the ending position of

the

substring to extract

.

If the position argument is

negative

or 0, the function returns a null string

.

If

the

position argument is greater than the length of

the

string, the function returns the entire string

.

The

F$LEFT function returns a string that consists of all characters

from

the first or leftmost position in the string through the position

you

specify

.

For example

:

$

CHARS = F$LEFT("ABCDEFGHI",6)

$

SHOW SYMBOL CHARS

CHARS

= "ABCDEF"

In

this example, the F$LEFT function returns the string starting at

position

1 and ending at position 6

.

DCL then assigns the resultant

substring,

"ABCDEF", to the symbol CHARS

.

F$LENGTH

The

F$LENGTH function returns the length of the string that you

specify .

This function is similar to the BASIC-PLUS LEN function

.

The

format of the F$LENGTH function is

:

F$LENGTH(string)

where

string is a string expression or a symbol that equates to a

string

expression

.

The

following example uses the F$LENGTH function

:

MSG_

NO= 5

MESSAGE

= F$MESSAGE(MSG_NO)

MSG

_LEN = F$LENGTH(MESSAGE)

IF

MSG LEN EQ

.

0 THEN GOTO NULMSG

$

NULMSG

:

In

this example, the F$LENGTH function determines if message text was

returned

by the F$MESSAGE function

.

If no message was returned, then

the

procedure branches to the NULMSG label

.

DCL

Functions in Command Procedures

F$LENGTH

DCL

Functions in Command Procedures

F$MESSAGE

F$MESSAGE

The

F$MESSAGE function returns message text corresponding to a RSTS/E

error

number

.

The

format of the F$MESSAGE function is

:

F$MESSAGE(error

number)

where

error number is an integer expression resulting in a value from

0

to 255

.

DCL returns a null string if you specify a number that is

not

within this range

.

Use

F$MESSAGE in command procedures that display either error message

text

or the system installation name (error number 0)

.

For example

:

$

!Get the error message

$

ERROR TEXT = F$MESSAGE(2)

After

you make this assignment, the symbol ERROR-TEXT has the string

value :

?Illegal

file name

Although

each error message in the system error message file has a

numeric

value, many numeric values do not have corresponding error

messages .

See Appendix C for a complete list of the numeric values

associated

with RSTS/E error messages

.

F$MID

DCL

Functions in Command Procedures

F$MID

The

F$MID function extracts a substring from a string, starting at the

position

you specify

.

This function is similar to the BASIC-PLUS MID

function .

The

format of the F$MID function is

:

F$MID(string,position,length)

where :

string

	

is

the string from which to extract the substring

.

position

	

is

an integer that specifies the starting position of

the

substring

.

If the position argument is negative

or

0, the starting position is 1

.

If the position

argument

is greater than the length of the string, the

function

returns a null string

.

length

	

is

an integer that specifies the length of the

substring

to extract

.

If the length argument is

negative

or 0, the function returns a null string

.

The

following example uses the F$MID function

:

$

DEF = F$MID("ABCDEFGHI",4,3)

$

SHOW SYMBOL DEF

DEF

= "DEF"

In

this example, the F$MID function returns a string starting at

position

4

.

The resultant substring, "DEF", is 3 characters long

.

DCL

Functions in Command Procedures

F$NODE

F$NODE

The

F$NODE function returns the node name of the system on which the

job

is running

.

$

NODE_NAME = F$NODE

$

IF F$LENGTH(NODE_NAME) GT

.

0 THEN -

WRITE

0 "Your node is ''NODE NAME"'

In

this example, if the job is running on an active DECnet/E node, DCL

assigns

the node name to the symbol NODE NAME

.

The F$LENGTH function

compares

the length of the string to 0 to determine if a node name was

returned .

If so, the WRITE command displays the node name at your

terminal .

The

format of the F$NODE function is

:

F$NODE()

If

DECnet/E is installed and enabled on the system,

DCL

returns the

node

name followed by two colons (

: :) .

If DECnet/E

is

not installed,

or

is not enabled, then DCL returns a null string

. For

example

:

F$PARSE

The

F$PARSE function returns one of three values

:

o

A full RSTS/E file specification for the file you specify

o

A specified field within the file specification, when you

include

a field keyword

o

A 32-bit number containing information about the file

specification

This

function is similar to the BASIC-PLUS File Name String Scan

system

function call

.

See the RSTS/E Programming manual for a

description .

The

format of the F$PARSE function is

:

F$PARSE([file-spec][,default-spec][,field])

where :

DCL

Functions in Command Procedures

F$PARSE

file-spec

	

is

a string expression that specifies the name of the

file

to be returned

.

If any part of the file-spec is

invalid,

DCL returns an error

.

However, if you

include

the FLAGS keyword, DCL returns the value -1

.
If

you omit the file-spec or supply a null string, DCL

uses

the entire default-spec

.

default-spec

is a second file specification that defines defaults

for

any missing fields in the file-spec string

.

If

you

omit a field in the file-spec string, DCL returns

the

corresponding field in the default-spec string

.
If

you omit a field in both the file-spec and the

default-spec

strings, the corresponding field in the

returned

string is null

.

If both strings are null,

DCL

returns a null string

.

DCL returns an error if

any

part of the default-spec is invalid

.

field

	

is

an optional keyword string that returns a specific

portion

of the file-spec

.

If you do not specify this

argument,

F$PARSE returns a complete filespec, based

on

the other two arguments

.

The valid field keywords

are :

o

DEVICE -- Returns the device name

.

The device

name

can be either a physical or logical device

name .

When you specify a physical device name,

DCL

returns the device name preceded by an

underscore

(_)

.

When you specify a logical device

name,

DCL returns the associated physical device

4- 2 1

DCL

Functions in Command Procedures

F$PARSE

name

preceded by an underscore

.

However, if the

logical

name is not found, DCL returns the logical

name

with no leading underscore

.

DCL returns all

device

names followed by a single colon (

:) .

Note

that

if you specify a file-spec without a device,

DCL

returns a null string

.

o

PPN -- Returns the project-programmer number

(PPN),

in the form [proj,prog]

.

You can specify

the

asterisk (*) wildcard character in either

field

of the PPN

.

If you specify a file-spec

without

a PPN, DCL returns a null string

.

o

NAME -- Returns the file name

.

If the file name

field

consists of six or more question marks

(??????)

or an asterisk (*), DCL returns an

asterisk

(*)

.

If you specify a file-spec without

a

file name, DCL returns a null string

.

o

TYPE -- Returns the file type, preceded by a

period

(

.) .

If the file type field consists of

three

or more question marks (

.???)

or an asterisk

(.*),

DCL returns an asterisk preceded by a period

(.*) .

If you specify a file-spec without a file

type,

DCL returns a null string

.

o

STATUS -- Returns the device status word value as

a

32-bit integer, which contains information about

the

device returned by the F$PARSE function

.

If

you

specify a file-spec without a device, DCL

returns

the value 0

.

You can test each bit to

determine

status

.

The status word corresponds to

the

BASIC-PLUS STATUS variable

.

Table

4-3 shows the information, the tests, and

the

meaning of each bit

.

o

FLAGS -- Returns the flag word value as a 32-bit

integer,

which contains information about the file

specification

returned by the F$PARSE function

.
You

can test each bit to determine information

about

elements found in the file specification

.
Note

that if you specify a null file-spec, DCL

returns

the value 0, which indicates that no file

specification

was found

.

In addition, if you

supply

an invalid file-spec and include this

keyword,

DCL returns the value -1

.

Thus, anytime

you

request FLAGS, you must first check to see if

the

value returned is -1

.

If it is, then the

file-spec

is invalid, and the other bits are

meaningless .

Use FLAGS when you want to check for

4- 2 2

Table 4-3 : Status Word Values

DCL Functions in Command Procedures
F$PARSE

an invalid file-spec without having DCL display an
error message . The flag word corresponds to "flag
word 2" in the BASIC-PLUS file name string scan
system function call .
Table 4-4 shows the information, the tests, and
the meaning of each bit .

+-------+---------------------------+--------------------------------+
I Bit Test Meaning I+-------+---------------------------+--------------------------------+

I The first eight bits of the
word contain the handler
index . The following values
apply for various devices :

0 Disk
2 Terminal
4 DECtape
6 Line Printer
8 Paper Tape Reader

10 Paper Tape Punch
12 Card Reader
14 Magnetic Tape
16 PK : device (pseudo

keyboard)
18 DX : device (flexible

diskette)
20 RJ : device (2780

remote job entry)
22 NL : null device
24 DMC11/DMR11/DDCMP

Interface
26 Auto-Dialer
28 X-Y Plotter
30 Reserved
32 KMC11
34 IBM Interconnect
38 DMP11/DMV11

I
The device is open for
non-file-structured processing
or is a non-file-structured

I device .
I The job does not have read
I access to the device .

0-7 I (STATUS AND . 255)

8
I

(STATUS AND . 256) .NE .0

9 (STATUS AND . 512) .NE .0

DCL Functions in Command Procedures
F$PARSE

Table 4-3 : Status Word Values (font .)
+-------+---------------------------+--------------------------------+

I Bit I

	

Test

	

I

	

Meaning

	

I
+-------+_--------------------------+--------------------------------+

blocked device, such as disk
and non-file-structured
DECtape .

116-31 I

	

I Reserved ; returned as 0 .

	

I+-------+---------------------------+--------------------------------+

I
110

I
I (STATUS AND . I1024) .NE .0 I The job does not have write

access to the device .
11 (STATUS AND . 2048) .NE .0 The device maintains its own

horizontal position . Such
I devices are keyboards and line
printers .

12 (STATUS AND . 4096) .NE .0 The device accepts modifiers .
Such devices use the record
number as a modifier word
rather than the physical

I position of the device .
Keyboards, line printers, and

I card readers are such devices .

13 I (STATUS AND . 8192) .NE .0 I Device is a character device .

14 (STATUS AND . 16384) .NE .0 Device is an interactive
I device (keyboard) .

15 (STATUS AND . 32768) .NE .0 I Device is a random-access

Table 4-4 shows the information, the tests, and the meaning of each
bit .
Table 4-4 : Flag Word Values
+-------+---------------------------+--------------------------------+

I Bit Test Meaning I+-------+---------------------------+--------------------------------+

DCL Functions in Command Procedures
F$PARSE

File name was found in the
string .
No file name was found (and
bits 1 and 2 of this word are
also 0) .

I File name was an asterisk (*)
I character .
I File name was not an
I character .
File name contained at least
one question mark (?)

I character .
I File name did not contain any

? characters .
I
A period (.) was found .
No period was found, implying
that no file type was
specified (and bits 4, 5, and
6 of this word are also 0) .
A file type was found (that
is, the field after the period
was not null) .
No file type was found . (The
field after the period was
null -- and bits 5 and 6 of
this word are also 0 .)

I File type was an * character .
I File type was not an
character .

0 (FLAGS AND . 1) .NE .0

(FLAGS AND . 1) .EQ .0

1 I (FLAGS AND . 2) .NE .0

(FLAGS AND . 2) .EQ .0

2 (FLAGS AND . 4) .NE .0

(FLAGS AND . 4) .EQ .0

3 (FLAGS AND . 8) .NE .0
(FLAGS AND . 8) .EQ .0

4 (FLAGS AND . 16) .NE .0

(FLAGS AND . 16) .EQ .0

5 1 (FLAGS AND . 32) .NE .0
I (FLAGS AND . 32) .EQ .0

DCL Functions in Command Procedures
F$PARSE

Table 4-4 : Flag Word Values (font .)
--

I Bit

	

Test

	

I

	

Meaning

I

	

I

	

I

	

I

6

	

(FLAGS AND . 64) .NE .0

	

File type contained at least
one ? character .

I

	

I

	

I

	

I
(FLAGS AND . 64) .EQ .0

	

File type did not contain any
I ? characters .

I

	

I

	

I
7

	

! (FLAGS AND . 128) .NE .0

	

I A project-programmer number
(PPN) was found .

I

	

~

	

I(FLAGS AND . 128) .EQ .0

	

No PPN was found (and bits 8
and 9 of this word are also
0) .

I

	

I

	

I

	

I
8

	

(FLAGS AND . 256) .NE .0

	

I Project number was an
character ; that is, the PPN
was of the form [*,PROG] .

(FLAGS AND . 256) .EQ .0

	

I Project number was not an
I character .

9

	

(FLAGS AND . 512) .NE .0

	

Programmer number was an
character ; that is, the PPN
was of the form [PROJ,*] .

(FLAGS AND . 512) .EQ .0

	

I Programmer number was not an
I character .

10

	

I (FLAGS AND . 1024) .NE .0

	

I A protection code was found .

(FLAGS AND . 1024) .EQ .0

	

No protection code was found .
I

	

I
11

	

(FLAGS AND . 2048) .NE .0

	

The protection code currently
set as default by the current

I job was used .
I

(FLAGS AND . 2048) .EQ .0

	

The assignable protection code
I was not used .

12

	

(FLAGS AND . 4096) .NE .0

	

A colon (:), but not
necessarily a device name, was
found in the string .

Table 4-4 : Flag Word Values (Cont.)

DCL Functions in Command Procedures
F$PARSE

--
Bit

	

Test

	

Meaning

	

I+_______+_____-_____________________+________________________________+
I

	

I

	

I

	

I(FLAGS AND . 4096) .EQ .0

	

No colon was found (no device
!

	

was specified) ; bits 13, 14,
and 15 of this word are also

I

	

10 .

	

I
13

	

I (FLAGS AND . 8192) .NE .0

	

I A device name was found .
(FLAGS AND . 8192) .EQ .0

	

No device name was found ; bits
14 and 15 of this word are

I also 0 .
14

	

(FLAGS AND . 16384) .NE .0

	

Device name specified was a
logical device name .

j (FLAGS AND . 16384) .EQ .0

	

Device name specified was an
actual device name ; bit 15 of

I this word is also 0 .
15

	

(FLAGS AND . 32768) .NE .0

	

The logical device name
specified was invalid for one
of the following reasons :

o The device name did not
contain an underscore but

j

	

could not be translated
to a physical device
name .

I

	

I(FLAGS AND . 32768) .EQ .0 I The device name specified, if
any, was either an actual
device name or a logical
device name to which a
physical device has been
assigned .

o The device name contained
an underscore but did not
correspond to any
physical device on the
system .

DCL Functions in Command Procedures
F$PARSE

Table 4-4 : Flag Word Values (Cont .)
+_------+---------------------------+--------------------------------+

I Bit Test Meaning I+-------+--__-----------------------+--------------------------------+
I

	

I

	

I

	

I16-31 I,

	

I Reserved ; returned as 0,
except when the file-spec is
invalid, in which case all
bits (0-31) are set and the
value returned is -1 .+-----__+--------------------------_+-------------------____--___----+

The following example uses the F$PARSE function to determine if a
device is a disk :

$!Define default list file
$ DEFAULT = " SY : .LST"
$!Prompt for output file-spec
$ INQUIRE OUTFIL "Output to"

!Build complete file-spec
OUTFIL = F$PARSE(OUTFIL,DEFAULT)
!Save device status
DEV_STS = F$PARSE(OUTFIL,,"STATUS")

$!Ensure device is a disk
$ IF (DEV STS AND . 255) NE . 0 THEN GOTO NOTDSK

$ NOTDSK :
This example :

o Assigns the default-spec value "_SY : .LST" to the symbol
DEFAULT .

o Uses the INQUIRE command to prompt for the file-spec to be
parsed and assign the result to the symbol OUTFIL .

o Uses the F$PARSE function to return a complete RSTS/E file
specification after parsing both OUTFIL and DEFAULT . DCL
assigns the new file-spec to the symbol OUTFIL, overriding
the previous assignment .

DCL

Functions in Command Procedures

F$PARSE

o

Uses the F$PARSE function to assign the device status (as a

32-bit

integer) to the symbol DEV-STS

.

o

Uses the IF command to test the device status to determine if

the

device is a disk

.

DCL Functions in Command Procedures
F$PRIVILEGE

F$PRIVILEGE
The F$PRIVILEGE function returns one of two values :

where :

o The integer value 1 (true) if your job's current privileges
match those specified in the list of privilege keywords

o The integer value 0 (false) if the job's privileges do not
match

The format of the F$PRIVILEGE function is :
F$PRIVILEGE("[NO]privilege[. . . .]")

[NO]privilege is a privilege keyword optionally preceded by "NO" .
If you specify several privilege keywords, you must
separate them with commas (,) and you must enclose the
entire list within quotation marks (") . When you
specify [NO]privilege, the function returns the value
1 (true) only if the current job does not have the
specified privilege .

Table 4-5 lists the valid privilege keywords and describes the
function of each .
Table 4-5 : Summary of Privileges
+-----____--+---____-------___---------___-______--------____---___-_+

I Privilege I

	

Description
+---- .-____-+---_____-----______-___---___- .--__-___------___-_____-_+

I

	

I

	

I
I DATES

	

Change system clock and file dates .+________---+_-------______----__----__---____-------_____-__--------+
I

	

I

	

II DEVICE

	

Access restricted devices .+_-____-----+_------___-------------__----___----_________--____-____+
I

	

I

	

I
EXQTA

	

Exceed disk quota or memory maximum . (Not usually
given to users ; used by privileged programs .)

+----___----+-___-------_____---__---____-_______-----_____-_____----+
I

	

I

	

I
GACNT

	

Perform accounting operations on accounts in the
user's group .+-__-------_+_-------______---____--------____--------------___-----_+

I
GREAD

	

Read or execute any file in the user's group,
regardless of protection code .

+___--- .----+___--_________----__ .-____---____-------___----___ ._-___+

Table 4-5 : Summary of Privileges (Cont .)

+-----------+--+
I Privilege I Description I
+-----------+--+

I I
GWRITE

	

Write or create/rename any file in the user's group,
regardless of protection code .

+-----------+--+
I

	

I

	

I
HWCFG

	

Set hardware configuration parameters ; for example,
set terminal characteristics .

	

I
+-----------+--+

I

	

I

	

I
HWCTL

	

Control devices ; for example, disable a device or hang
j up a dial-up line .

+-----------+--+
I

	

I

	

I
INSTAL

	

Install run-time systems, swap files, and resident

	

I
libraries .

+-----------+--+
I

	

I

	

I
JOBCTL

	

I Manipulate other jobs ; for example, detach or kill a
I job .

+-----------+--+
I

I MOUNT

	

I Mount or dismount disks other than /NOSHARE .

	

I
+-----------+--+
I

	

I

	

I
PBSCTL

	

Control print/batch services ; for example, turn
servers on or off, change printer forms .

+-----------+--+
I

	

I

	

I
RDMEM

	

PEEK at memory . (Not usually given to users ; used by
privileged programs .)

+-----------+--+
I

	

I

	

I
I RDNFS

	

I Read disks non-file-structured .

	

I
+-----------+--+

I
SEND

	

Broadcast to terminals and send messages to restricted
receivers .

+-----------+--+

DCL Functions in Command Procedures
F$PRIVILEGE

I

	

I
I SETPAS

	

I Change your own password .

	

I
+-----------+--+

I

	

I
11 SHUTUP

	

Shut down the system .
+-----------+--+

DCL Functions in Command Procedures
F$PRIVILEGE

Table 4-5 : Summary of Privileges (Cont .)
+-----------+--+

I Privilege I Description I+-----------+--+
I

	

I

	

I
SWCFG

	

Set software configuration parameters ; for example,

	

I
installation name .+-----------+--+

I

	

I

	

I
SWCTL

	

Control software components ; for example, turn
DECnet/E on and off .+-----------+--+

I

	

I
SYSIO

	

(Perform restricted I/0 operations ; for example, gain
write access to files in account [0,*), or set the
privilege bit on executable files .+-----------+--+

I

	

I

	

I
SYSMOD

	

Perform functions that could easily modify the system ;
for example, poke memory .+-----------+--+

I

	

I
TUNE

	

I Control system tuning parameters ; for example, caching
I or job priority .+-----------+--+

I

	

I

	

I
USERO-7

	

Available for customer applications . Not used by
RSTS/E .+-----------+--+

I

	

I

	

I
I WACNT

	

I Perform accounting operations on any account .

	

I+-----------+--+
I

	

I

	

I
WREAD

	

Read or execute any file regardless of protection
code .+-----------+--+

I

	

II WRTNFS

	

I Read/write a disk non-file-structured .

	

I+-----------+--+
I

	

I

	

I
WWRITE

	

Write any file regardless of protection code .
Create/rename any file except in account [0,*] .+-----------+--+

$

HWCTL_PRIV = F$PRIVILEGE("HWCTL")

$

IF HWCTL_PRIV THEN GOTO CONTINUE

$

WRITE 0 "?Privilege HWCTL required"

$

EXIT

$

CONTINUE

:

DCL

Functions in Command Procedures

F$PRIVILEGE

The

following example uses the F$PRIVILEGE function to determine if a

user

has HWCTL privilege

:

In

this command procedure, if the user has HWCTL privilege, the

procedure

continues to execute

.

If the user does not have HWCTL

privilege,

DCL displays a message on the user's terminal and the

procedure

exits

.

DCL

Functions in Command Procedures

FRIGHT

F$RIGHT

The

FRIGHT function extracts a substring from a string starting at

the

position you specify and ending at the right-most position of the

string .

This function is similar to the BASIC-PLUS RIGHT function

.

The

format of the FRIGHT function is

:

F$RIGHT(string,position)

where :

string

	

is

the string from which to extract the substring

.

position

	

is

an integer that specifies the starting position of

the

substring

.

If the position argument is negative

or

0, the function returns the entire string

.

If the

position

argument is greater than the length of the

string,

the function returns a null string

.

The

following example uses the FRIGHT function

:

$

CHARS = F$RIGHT("ABCDEFGHI",6)

$

SHOW SYMBOL CHARS

CHARS

= "FGHI"

In

this example, the FRIGHT function returns the string starting at

position

6

.

DCL then assigns the resultant substring, "FGHI", to the

symbol

CHARS

.

F$SEARCH

The

F$SEARCH function searches a disk directory for the file you

specify

and returns its full RSTS/E file specification as a string

.

The

format of the F$SEARCH function is

:

F$SEARCH([file-spec])

where :

You

cannot use the F$SEARCH function at the

interactive

level

.

file-spec

	

is

a string expression that specifies the file to

locate .

You must specify a file-spec the first time

you

use the F$SEARCH function

.

A complete RSTS/E

file-spec

consists of the fields

:

Use

F$SEARCH to return information about one file, or about a series

of

files in your directory

.

You can also display information about

files

in other directories, if you have read access to those files

.

The

first example shows how to use the F$SEARCH function to obtain

information

about one file

:

$

REPORT-FILE = F$SEARCH("REPORT

.DAT")

After

this command executes, the symbol REPORT-FILE is assigned the

string

value

:

_SY :[4,214]REPORT .DAT

Note

-dev :[proj,prog]filnam .typ

You

can use wildcard characters in the proj, prog,

filnam,

or typ fields

.

If you specify an invalid

file-spec

or a device other than a disk, DCL displays

an

error message

.

DCL

returns a null string when you do not include the

file-spec

argument in the initial use of the F$SEARCH

function,

or when the F$SEARCH function cannot find

the

specified file(s)

.

DCL

Functions in Command Procedures

F$SEARCH

DCL

Functions in Command Procedures

F$SEARCH

The

second example uses the F$SEARCH function with a loop to obtain

information

about all files in your account that have the same file

type :

NEXT

FILE = F$SEARCH(" SY

:* .B2S")
LOOP :
IF

NEXT_FILE	

EQS .

	

""

THEN EXIT

WRITE

0 NEXT_FILE

NEXT_

FILE = F$SEARCH()

GOTO

LOOP

This

example uses a wildcard and a loop to locate all occurrences of

files

with the file type

.B2S .

DCL returns a null string, after

displaying

all B2S files in your directory

.

If

you have read access to other directories, you can also obtain

information

about files in those directories

.

For example

:

SYSTEM

_WIDE = F$SEARCH("_SY

:[*,*]* .LST")
LOOP :
IF

SYSTEM_WIDE	

EQS .

	

""

THEN EXIT

WRITE

0 SYSTEM_WIDE

SYSTEM_

WIDE = F$SEARCH()

GOTO

LOOP

This

command procedure displays all LST files (in all directories on

the

system) to which you have read access

.

F$STRING

The

F$STRING function converts an integer expression to a string

The

format of the F$STRING function is

:

F$STRING(expression)

where

expression is an integer expression or symbol that equates to an

integer

expression

.

The

following example uses the F$STRING function

:

$

A = 5

$

B = F$STRING(-2 + A)

$

SHOW SYMBOL B

B

	

=

	

It

3 11

DCL

Functions in Command Procedures

F$STRING

In

this example, the F$STRING function converts the result of the

expression

(-2 + A) to the numeric string "3"

.

Note that the symbol A

has

the integer value 5

.

DCL

Functions in Command Procedures

FSTERMINAL

FSTERMINAL

The

FSTERMINAL function returns the keyboard (KB) number for the

current

job, as an integer

.

The

format of the FSTERMINAL function is

:

FSTERMINAL()

Use

the FSTERMINAL function in command procedures that need to

determine

a job's keyboard number or determine if a job is currently

detached .

If the job is detached, this function returns a negative

value,

which is the two's complement of the terminal from which the

job

detached

.

The

following example shows the use of the FSTERMINAL function

:

$

!Broadcast message to my terminal

$

TERM = FSTERMINAL

$

BROADCAST KB'TERM' "Assembly finished"

DCL

Functions in Command Procedures

F$TIME

F$TIME

The

F$TIME function returns the current date and time

.

The

format of the F$TIME function is

:

F$TIMEO

This

function returns a string of the form

:

date

time

where :

date

	

is

the current date, in a format defined by your

system

manager

.

The date can have the format

dd-mmm-yy

or yy

.mm .dd .

time

	

is

the current time, in a format defined by your

system

manager

.

Time can be either 24-hour or AM/PM

format .

The

F$TIME function always returns a string

.

The length of the string

depends

on the format of the system date

;

no trailing blanks are

returned .

However, the time field is always returned starting at

position

11 in the string, regardless of the format of the system date

returned,

because one or more spaces are inserted between the date and

time

fields to force the time string to begin at position 11

.

The

following example shows the use of the F$TIME function

:

$

WRITE 0 "Program started on ", F$TIME

Program

started on 12-Jun-85 07

:36

AM

DCL

Functions in Command Procedures

F$TYPE

F$TYPE

The

F$TYPE function returns a string indicating the type of a symbol

or

expression

.

The

format of the F$TYPE function is

:

F$TYPE(symbol)
F$TYPE(expression)

The

F$TYPE function returns one of the following keyword strings

:

Keyword

	

Meaning

INTEGER

	

The

symbol has an integer value, or the expression

result

is an integer

.

STRING

	

The

symbol has a string value, or the expression

result

is a string

.

null

string	

The

symbol is not defined, or the expression contains

one

or more undefined symbols

.

The

following example uses the F$TYPE function

:

$

!Initialize COUNT if not yet defined

$

IF F$TYPE(COUNT) EQS

.

"UNDEFINED" THEN COUNT == 0

In

this example, the F$TYPE function determines the symbol's type

.

If

COUNT

is an undefined symbol, then the procedure starts counting at 0

.

F$USER

The

FUSER function returns the project-programmer number (PPN) for

the

current job

.

The

format of the FUSER function is

:

F$USER()

The

F$USER function returns a string of the form

:

[proj,prog]

where :

DCL

Functions in Command Procedures

F$USER

proj

	

is

the project number for the current job

.

prog

	

is

the programmer number for the current job

.

Use

this function in command procedures that need to use their own

job's

PPN as input to a task or compare and extract information from a

list,

such as a DIRECTORY or SYSTAT listing

.

For example

:

$

ID = F$USER()

$

WRITE 0 "You are account

You

are account [1,214]

"ID' .'1

In

this example, DCL assigns the PPN returned by FUSER to the symbol

ID .

The WRITE command then displays the PPN at the user's terminal

because

you specified channel 0

.

DCL

Functions in Command Procedures

F$VERIFY

F$VERIFY

The

F$VERIFY function returns the current verification status as an

integer,

indicating 1 if verification is on, and 2 if verification is

off .

If you specify an argument, this function also turns

verification

on or off

.

The

format of the F$VERIFY function is

:

F$VERIFY([value])

where :

value

	

is

an optional argument that you can specify to turn

verification

on or off

.

DCL examines the low-order

bit

in the argument and turns verification off if the

value

is 0, or on if the value is 1

.

Use

the F$VERIFY function to enable or disable verification for a

group

of commands and then restore verification to its previous state

.
For

example

:

$

!Save verify state and set NOVERIFY

$

SAVE_VERIFY = F$VERIFY()

$

SET NOVERIFY

$

!Restore verify state

$

IF SAVE VERIFY THEN SET VERIFY

In

this example, the assignment statement saves the current

verification

status in the symbol SAVE_VERIFY

.

	

Then

the SET NOVERIFY

command

disables verification

.

The IF command tests the value of

SAVE

_VERIFY

.

	

If

it is 1,	

showing

that verification was previously on,

the

SET VERIFY command executes and verification is restored

.

If

SAVE_

VERIFY has a value other than 1, verification was initially off

.
In

this case, the SET VERIFY command is not executed, so verification

remains

off

.

$

!Save verify state and set NOVERIFY

$

SAVE VERIFY = F$VERIFY(O)

$

!Restore verify state

$

SAVE VERIFY = F$VERIFY(SAVE VERIFY)

DCL

Functions in Command Procedures

F$VERIFY

When

you use an argument, F$VERIFY still returns the current

verification

status

.

However, the command interpreter then examines

the

low-order bit in the argument and turns verification off if the

value

is 0, or on if the value is 1

.

For example

:

In

this example, the F$VERIFY function turns verification off, and

then

restores the previous setting at the end of the procedure

.

Passing

Data

Chapter

5

Interacting

with Command Files

This

chapter describes how to control input to and output from command

procedures .

It tells you how to

:

o

Pass data to a command procedure

o

Return data from a command procedure

o

Display data from a command procedure

o

Supply data to a program in a command procedure

When

you write a command procedure, you need to be able to pass input

data

to the procedure when it executes

.

DCL provides the following

ways

to do this

:

o

You can pass data to a command procedure using parameters

o

You can issue a prompt to the user at the terminal, and the

user

can enter data interactively

The

following sections describe these methods in greater detail

.

Interacting

with Command Files

You

can also read data from a file within a command

procedure .

For example, you could design a command

procedure

that displays informational records at a

terminal,

or that reads the records of an assembly

listing

file to search for possible errors

.

See

Chapter 6 for descriptions of the OPEN, READ, and

CLOSE

commands, which you use to read data from a file

within

a command procedure

.

Passing

Parameters

Note

When

you invoke a command procedure using the at (@) command, you can

pass

it up to eight parameters by placing the values of the parameters

after

the file specification of the command procedure

.

Separate the

parameters

with one or more spaces or tabs

.

You can specify a

parameter

value as one of the following

:

o

Literal -- Specify the literal with or without quotation

marks

("), depending on whether you want to preserve spaces,

tabs,

and lowercase characters

.

The following example passes

the

values "JOHN" and "DOE" to DATA

.COM :

$

@DATA John Doe

Use

quotation marks to preserve spaces, tabs, or lowercase

characters .

The following example passes the single value

"John

Doe" to DATA

.COM :

$

@DATA "John Doe"

o

Symbol -- To pass the value of a symbol, place an apostrophe

(')

before and after the symbol

.

The following example

passes

the values "JOHN" and "DOE" to DATA

.COM :

$

NAME = "John Doe"

$

@DATA 'NAME'

When

DCL passes a symbol, it removes quotation marks that

enclose

a literal

.

To preserve spaces, tabs, and lowercase

characters

in a symbol value, specify the enclosing quotation

marks

as part of the symbol value

.

To include quotation

marks

as part of a literal value, double the quotation marks

inside

the literal string

.

The following example passes the

single

value "John "Mr

.

Average" Doe" to DATA

.COM :

$

@DATA "John ""Mr

.

Average"" Doe"

5-2

DCL

treats all types of parameters as literal string values and

assigns

them to the local symbols Pl through P8

:

Pl is assigned the

first

parameter value

;

P2 the second

;

P3 the third

;

and so on

.

If you

pass

more than eight values, DCL returns an error message and does not

execute

the procedure

.

If you pass fewer than eight values, DCL

assigns

null values to the remaining symbols

.

In addition, you can

pass

a null parameter explicitly, by using double quotation marks in

the

list of parameters

.

In

the next example, you pass parameters to the procedure DATA

.COM :

$

@DATA "John Doe" "" 24 "(603) 555-8003"

When

DCL processes this command string, it assigns the following

values

to Pl through P8

:

Pi
P2
P3
P4
P5
P6
P7
P8

"John

Doe"

fill
112411
"(603)

555-8003"

fill

Interacting

with Command Files

When

DCL enters a nested procedure, it assigns the local symbols Pl

through

P8 the new parameters passed by the invoking procedure

.

Note

that

the local symbols Pl through P8 in the nested procedure are not

related

to the local symbols Pl through P8 in the invoking procedure

.
For

example, suppose

DATA .COM

invokes

NEWDATA .COM

with the command

:

$

@NEWDATA 'Pl'

In

NEWDATA

.COM,

Pl through P8 are defined as follows

:

P1 "JOHN"

P2 "DOE"
P3 fill

P4
P5
P6
P7
P8

Interacting with Command Files

Prompting for Symbol Values

When you want a user to enter data interactively at a terminal, you

can use the INQUIRE command to define a value for a symbol while the

procedure is executing . INQUIRE prompts for a value at a user's

terminal and waits for a response . After the user enters a response,

INQUIRE reads the value from the terminal and assigns it to the

specified symbol name .

+--+

Format

INQUIRE symbol-name [prompt-string]

Command Qualifiers

	

Defaults

/[NO]PUNCTUATION /PUNCTUATION

	

I

/[NO]ECHO /ECHO

/EXIT[=label]

	

See discussion

	

I

/TIME_OUT=seconds

	

See discussion

/GLOBAL

	

I

/LOCAL
+---

Command Parameters

symbol-name

Is a name from 1 to 255 characters long . DCL assigns a string

value to the symbol name .

prompt-string

Is the prompt to display at the terminal when the INQUIRE command

executes . If you do not specify a prompt string enclosed in

quotation marks, the command uses the symbol name to prompt for a

value .

Command Qualifiers

/[NO]PUNCTUATION

Indicates whether to append a colon and a space to the prompt

string when INQUIRE displays it . The default is /PUNCTUATION .

To suppress the colon and space, use the /NOPUNCTUATION

qualifier .

/[NO]ECHO

Indicates

whether to display the user's response to the prompt at

the

terminal

.

The default is /ECHO

.

To suppress the display of

sensitive

information at the terminal, such as passwords, use the

/NOECHO

qualifier

.

/EXIT[=label]

/TIME

OUT=seconds

/GLOBAL

/LOCAL

Specifies

the label of the line in the command procedure to be

given

control when a CTRL/Z is encountered

.

If you do not

specify

/EXIT, or if you specify /EXIT without a label, the

command

procedure exits on a CTRL/Z

.

Specifies

the number of seconds to wait for input

.

If no input

is

received within the specified time, DCL assigns a null string

to

the symbol name

.

The number of seconds must be in the range 1

to

32767

.

Places

the symbol in the global symbol table

.

/GLOBAL is the

default

at the interactive command level

.

Places

the symbol in the local symbol table for the current

command

procedure

.

/LOCAL is the default for all command levels

except

the interactive level

.

DCL displays an error message when

you

specify /LOCAL at the interactive command level

.

Examples

showing how to use the INQUIRE command follow

.

Interacting

with Command Files

Interacting

with Command Files

Use

the /NOPUNCTUATION qualifier to suppress the colon and space that

are

normally added after the prompt

.

For example

:

$

INQUIRE/NOPUNCTUATION IN "Input from?

$

INQUIRE/NOPUNCTUATION OUT "Output to?

When

these commands execute, the following prompts appear at the

terminal :

Input

from?

Output

to?

To

define a global symbol name with the INQUIRE command, use the

/GLOBAL

qualifier

.

For example

:

$

INQUIRE/GLOBAL FILE "Filename"

When

this command executes, DCL enters the symbol name FILE and the

response

in the global symbol table

.

To

define a local symbol name with the INQUIRE command, use the /LOCAL

qualifier .

For example

:

$

INQUIRE/LOCAL FILE "Filename"

When

this command executes, the following prompt appears at the

terminal :

Filename :

After

you enter a response, DCL places the symbol name FILE and the

value

you enter in the local symbol table for the current command

procedure .

If

you press the RETURN key in response to an INQUIRE command, DCL

assigns

a null value to the specified symbol name

.

For example

:

$

INQUIRE FILE "File"

$

IF FILE EQS

.

"" THEN EXIT

In

this example, the INQUIRE command is followed by a test to

determine

whether a null value was entered

.

If a null value was

entered,

the procedure exits

.

Returning

Data

To

return a value from a command procedure (either to a calling

procedure

or to the interactive level), you must assign the value to a

global

symbol

.

The global symbol can be read at any command level

.
Use

comments to explain the use of any global symbols

.

To

create a global symbol, specify the value to be passed on the right

side

of a global assignment statement

.

For example

:

$

@DATA "John Doe"

DATA .COM

$

! Pl is a full name

$

!

NAME .COM

returns the last name in the

$

! global symbol LAST NAME

$

@NAME 'P1'

NAME .COM

$

! Pl is a first name

$

! P2 is a last name

$

! return P2 in the global symbol LAST-NAME

$

LAST_NAME == P2

$

EXIT

$

	

!

	

write

LAST_NAME to the terminal

$

WRITE 0 "LAST_NAME = ""'' LAST_NAME"""'

LAST

NAME = "DOE"

Interacting

with Command Files

In

this example,

DATA .COM

passes a full name to

NAME .COM .

NAME

.COM
places

the last name in the global symbol

LAST-NAME .

DATA

.COM

reads

the

value by referencing the global symbol

.

Interacting

with Command Files

Displaying

Data

You

can display data in a command procedure by using the WRITE

command .

Use

the WRITE command to display literal or symbol values, or a

combination

of both, at a terminal

:

o

Literal -- Enclose the text in quotation marks (")

.

The

following

example displays the text "Two files were

written ." :

$

WRITE 0 "Two files were written

."

o

Symbol Value -- The following example displays the text

"STATUS .DAT" :

$

FILE = "STATUS

.DAT"
$

WRITE 0 FILE

o

Combination of literals and symbol values -- Enclose the text

in

quotation marks

.

Where a symbol appears, precede it with

two

apostrophes and follow it with one apostrophe

.

The

following

example displays the text "STAT1

.DAT

and STAT2

.DAT
were

written

." :

$

AFILE = "STAT1

.DAT"
$

BFILE = "STAT2

.DAT"
$

WRITE 0 " "AFILE' and "BFILE' were written

."

See

Chapter 6 for a complete description of the WRITE command

.

Supplying

Data to a Program

The

following sections describe how to supply data to a program either

from

inside a command procedure or interactively at a terminal while

the

procedure executes

.

Reading

Data in a Program

when

a program requiring terminal input runs directly under control of

a

keyboard monitor, the program receives its input directly from the

user's

keyboard

.

However, when the same program runs under control of

a

command procedure, all input normally received from the terminal is

read

from the current command file

.

For

example, the following program prompts a user for a list of

numbers

and prints the average value

.

In interactive mode, the

program

dialogue is

:

$

RUN AVRAGE

4

You

can also run the AVRAGE program from a command procedure using a

predefined

set of numbers

.

The procedure would look like this

:

$

RUN AVRAGE

4
86
91
89
90
$

EXIT

Interacting

with Command Files

When

the AVRAGE program requests data from the terminal, the monitor

intercepts

the request and reads the data lines from the command file

instead .

When you design this type of noninteractive command

procedure,

you must eliminate any unexpected prompting that could

cause

the procedure to read the wrong data

.

You

can also use the SET NODATA command (see the next section) to run

a

program from a command procedure that supplies the program with

input

from the terminal

.

How many

numbers?

lst number? 86
2nd number? 91
3rd number? 89
4th number? g0
The average is

89

.0

Interacting

with Command Files

Supplying

Data to a Program from a Terminal

By

default, the SET DATA command is in effect when you invoke a

command

procedure

.

Thus, any data that a program or a keyboard

monitor

(other than DCL) requests must be supplied in the command

file .

However, you can redirect data input back to a terminal by

issuing

the SET NODATA command

.

The SET NODATA command tells DCL to

read

all data required by a program or a command from the terminal

rather

than from the command file

.

+___-_______________________-__------____-__------__----__-+
Format

SET

[NO]DATA

Command

Qualifiers	

Defaults

/END_

OF-DATA="char"	

/END_OF-DATA="$"

Command

Qualifiers

/END

OF DATA="char"

Identifies

an alternate prefix character to signal the end of

data .

Whenever a line is read from the command file that begins

with

the alternate prefix character, control returns to the DCL

keyboard

monitor and any command following the alternate prefix

executes .

The

alternate prefix character stays in effect until the data

list

terminates

.

After control returns to DCL, the standard $

character

is reenabled

.

Note

that you should never begin a data line with a $ character in the

first

space, even if you define an alternate prefix character with the

SET

DATA/END_OF DATA command

.

	

In

cases where a program requires its

data

to begin with a $ character, insert a leading space or a tab

space

before the $ character to distinguish it from a DCL command

line .

(Most programs routinely remove leading spaces and tabs from

its

data lines

.)

For

example, the following command file runs PIP to copy a file from

your

account to the system library ($) account

:

$

SET DATA

$

RUN $PIP

<TAB>$F00=BAR
$

EOD

Interacting

with Command Files

Since

PIP's data line begins with a tab space, RSTS/E correctly treats

it

as a data line

.

The tab space does not affect the PIP command,

since

PIP strips leading spaces and tab spaces

.

Note that if you did

not

include the tab space in this example, RSTS/E would handle the

data

line as a DCL command line -- in this case, by stopping PIP and

executing

the line as a DCL assignment statement

.

Use

the SET DATA command to supply data to a program from inside a

command

procedure, specifying an alternate prefix character that

signals

the end of data

.

For example

:

$

SET DATA/END_OF_DATA="<"

$

CREATE

LOGIN .COM
$RUN

$SYSTAT

$SYSTAT .DAT

(data

lines)

$

EXIT

In

this example, $RUN $SYSTAT and $SYSTAT

.DAT

are data lines for the

CREATE

command

.

When the alternate prefix character (<) is read,

control

returns to the DCL keyboard monitor

.

Note that if the prefix

character

were a $, the procedure would interpret the first $ in $RUN

$SYSTAT

as the end of data signal

.

Use

the SET NODATA command to supply a program with input from the

terminal .

The SET NODATA command stays in effect until you issue a

SET

DATA command or until the current command procedure exits

.

In

nested command procedures, each level maintains its own [NO]DATA

setting

and alternate prefix character

.

When a command procedure

exits,

DCL restores the [NO]DATA setting and alternate prefix

character

of the higher-level procedure

.

The

following example shows the command procedure

AVRAGE .COM

that runs

the

program AVRAGE

.TSK,

letting you supply data at your terminal

:

$

SET NODATA

$

RUN AVRAGE

$

EXIT

AVRAGE .COM

Interacting

with Command Files

Note

that this procedure does not include data lines for the AVRAGE

program .

The SET NODATA command tells DCL to read data from the

terminal

rather than from the command file

.

For example, the dialogue

at

your terminal would appear as

:

$

@AVRAGE

How

many numbers?

4

By

using the SET NODATA command, you can supply different sets of data

to

a program without modifying the command file

.

Signaling

the End of a Data List

Use

the end-of-data ($EOD) command to signal the end of a data list

and

exit from a program within a command procedure

.

+--+
Format

$EOD
--

The

only function of the $EOD command is to terminate data lists to a

program

or to another DCL command

.

Although you can use any DCL

command

preceded by the $ character to exit from a program, the $EOD

command

provides a standard way to end a data list, and return to the

DCL

keyboard monitor

.

Exiting

from a Program in a Command File

The

RSTS/E monitor takes the following steps to exit from a program

and

return to the DCL keyboard monitor

.

Whenever the monitor

encounters

a $ prefix character, a special prefix character, an $EOD

command,

or when it reaches the end of the current command file, it

:

o

Forces up to five CTRL/Z characters to the program, as

needed .

This step causes most RSTS/E programs to exit

normally .

5-12

1st number? 91
2nd number? 87
3rd number? 92
4th number? 90
The average is

90

.0

Interacting

with Command Files

o

Forces up to two CTRL/C exits to the program, as needed

.
This

step aborts any program that does not perform its own

CTRL/C

handling

.

o

Forces a double CTRL/C exit to the program

.

This step aborts

any

program that uses CTRL/C as a normal way to exit

.

o

Aborts the program immediately, and returns control to the

DCL

keyboard monitor

.

This step is unconditional, and

specifically

guards against CTRL/C trapping

.

Detaching

Programs in a Command Procedure

When

designing command files to run programs that detach, you

generally

want the command procedure to continue executing after a

program

detaches

.

For example, the

START .COM

start-up command file

must

continue processing after the OPSER program detaches

.

RSTS/E

allows a command procedure to continue executing when it runs

programs

that detach

.

If a program running within a command procedure

detaches,

RSTS/E detaches the current job, creates a new job at your

terminal,

and then transfers all of the DCL context from the detached

job

to the new job so that the command procedure can continue

executing .

Therefore,

you should consider the following points when writing

command

files that include programs that detach

:

o

RSTS/E does not create a new job if the detach request leaves

the

terminal either allocated to the job or open on any

non-zero

channels

.

In this case, the job detaches, and the

command

procedure detaches with it

.

You can set the "close"

flag

in the detach system call to deallocate the terminal and

close

any non-zero channels on which the terminal is open

.

o

RSTS/E does not detach a job if no job slots are available to

create

the new job

.

o

When a program detaches, the command procedure continues to

execute,

but in the newly created job

;

therefore, the F$JOB

function

will return a different job number than the number

it

returned before the program detached

.

See Chapter 4 for a

complete

description of the F$JOB function

.

o

If you later attach to a job that detached within a command

procedure,

it will not contain any DCL symbols, since all DCL

syntax

was moved to the newly created job

.

Interacting

with Command Files

Passing

Symbol Values to a Program

only

applications that run under DCL can perform symbol substitution

.
Therefore,

you must take a different approach when you need to pass a

symbol

value to a program running under control of another run-time

system .

For example, the following incorrect command procedure runs

the

PIP program under the RT11 run-time system

:

$

RUN $PIP

LB :* .*

= 'P1'

$

EOD

Suppose

you execute this procedure with the command

:

$

@MOVE TEST

.FIL

You

might expect the value TEST

.FIL

to be substituted for the symbol

Pl

during execution

.

However, this does not occur because the RT11

run-time

system does not perform symbol substitution

.

Only DCL

command

lines can include symbol substitution

.

To

pass the value TEST

.FIL

to PIP, you must create a temporary command

file

and execute it as a nested procedure within

MOVE .COM .

For

example :

$

OPEN/WRITE/REPLACE 1 MOVE1

.COM
$

WRITE 1 "$RUN $PIP"

$

WRITE 1 "LB

:* .*

= "P1"'

$

WRITE 1 "$EOD"

$

WRITE 1 "$EXIT"

$

CLOSE 1

$

@MOVEl

$

DELETE MOVE1

.COM

MOVE .COM

MOVE .COM

You

create a temporary command file using a series of OPEN and WRITE

commands

that are executed under DCL, which performs the symbol

substitution .

Now execute

MOVE .COM

with the command

:

During

execution, DCL substitutes the value TEST

.FIL

for the symbol

P1,

and PIP copies TEST

.FIL

from SY

:

to LB

: .

Chapter

6

File

Input and Output

This

chapter describes how to combine DCL commands with the

programming

and symbolic capabilities of command procedures to

manipulate

disk files on RSTS/E systems

.

This chapter includes

techniques

for using

:

o

The OPEN command to create new files or access existing files

o

The READ command to read from files

o

The WRITE command to write to files

o

The CLOSE command to explicitly close files that you open

The

basic steps in reading and writing to files from a command

procedure

are

:

1 .

Open the file -- Use the OPEN command to open the file for

reading

or writing

.

You must also assign a channel number in

the

range 1 to 13 so that you can later refer to the file

.

2 .

Read or write to the file -- Use the READ or WRITE command to

read

from or write to the file, specifying the channel number

on

which the file is open

.

3 .

Close the file -- Use the CLOSE command to close the file,

specifying

the channel number on which the file is open

.
Note

that a file stays open until you close it or until you

log

out of the system

.

You

can open, read, write, or close disk files that have the following

file

organizations and record formats

:

o

RSTS/E stream ASCII (native mode)

o

RMS sequential

File

Input and Output

o

RMS stream

o

RMS variable

o

RMS fixed

o

RMS carriage control IMPLIED/NONE

o

RMS span/nospan

Opening

Files

The

OPEN command opens a file either for reading or writing

.

+--+
I

Format	

I

OPEN

channel-number file-spec

Command

Qualifiers	

Defaults

/APPEND

/READ

/READ

	

/READ
/[NO]REPLACE

	

See

discussion

/WRITE

	

/READ

Prompts

Channel :

channel-number

File :

file-spec

+--+

Command

Parameters

channel-number

Is

a channel number in the range 1 to 13 on which to open the

file .

You can specify channel-number either as a literal or as a

symbol

that evaluates to a number

.

Subsequent READ, WRITE, and

CLOSE

commands refer to the file by using the channel-number

.
You

get an error message if you specify a channel-number outside

the

range of 1 to 13, or when you specify a channel number

already

in use

.

file-spec

Specifies

the file to open for input or output

.

You can use any

valid

RSTS/E file specification

;

however, you cannot use

wildcards

in the file specification

.

If you omit the file type,

it

defaults to DAT

.

Command

Qualifiers

/APPEND

/READ

File

Input and Output

Specifies

that new records are to be appended to the end of an

existing

disk file

.

If the file does not exist, RSTS/E creates a

new

file

.

/REPLACE
/NOREPLACE

Note

You

can only use the /APPEND qualifier for RSTS/E

stream

ASCII (native mode) disk files

.

An error

message

displays if you use /APPEND for non-disk

files

or files with RMS attributes

.

Opens

a file for reading

.

/READ is the default when you do not

specify

a qualifier with the OPEN command

.

Specifies

whether to replace an existing file with a new file

.
If

the file that you specify already exists

:

o

/REPLACE tells RSTS/E to delete the existing file and create

a

new file

.

o

/NOREPLACE tells RSTS/E not to replace the file if it exists

;
in

this case, an error message displays

.

If

you specify neither qualifier, then RSTS/E issues a warning

message

and asks if you want to replace the file

.

File

Input and Output

/WRITE

You

should always specify this qualifier from within a command

procedure

if you are not sure the file exists

.

You can use the

F$SEARCH

function (see Chapter 4) to check the existence of a

file

within a command procedure

.

Note

that the /[NO]REPLACE qualifier requires the /WRITE

qualifier

and conflicts with the /APPEND qualifier

.

Opens

a file for writing

.

If the file already exists, then DCL

deletes

it and creates a new file (depending on the /[NO]REPLACE

qualifier) .

When

you open a file, you specify whether it is to be read from or

written

to and assign it a channel number

.

Use the channel number in

subsequent

READ and WRITE commands to refer to the file

.

You cannot

use

READ or WRITE commands to access an open file either from within a

program,

or from keyboard monitors other than DCL

.

In addition,

because

channel 0 always specifies the user's terminal, you do not

need

to use an explicit OPEN command to write to the user's terminal

.

The

following example uses the OPEN command in a command procedure

:

ON

ERROR THEN GOTO OPEN-ERROR

FILE

= "FILEI

.DAT"
OPEN/READ

1 'FILE'

FILE

= "FILE2

.DAT"
OPEN/WRITE

2 'FILE'/REPLACE

ON

ERROR THEN EXIT

$

CLOSE 1

$

CLOSE 2

$

EXIT

$

OPEN_ERROR

:
$

WRITE 0 "Error opening file ''FILE"'

$

STOP

In

this example, the first assignment statement assigns the string

value

"FILEI

.DAT"

to the symbol FILE, and the OPEN/READ command opens

the

file for reading on channel 1

.

The second assignment statement

assigns

the string value "FILE2

.DAT"

to the symbol FILE, and the

OPEN/WRITE

command opens the file for writing on channel 2

.

If an

error

occurs while the system attempts to open either file, the

procedure

branches to the OPEN_ERROR routine, displays an error

message,

and returns to the interactive level

.

Otherwise, the

procedure

continues executing until it closes the open files and exits

to

either the calling command procedure or to the interactive level

.

6-4

Reading Files
The READ command reads the next record from a file that you open for
reading with the OPEN command and assigns the contents of the record
to the symbol name you specify .

--
I Format
READ channel-number symbol-name
Command Qualifiers

	

Defaults
I

/[NO]DELIMITER /NODELIMITER
/END_OF_FILE=label None
/GLOBAL

	

See discussion
/LOCAL

	

See discussion

	

j
Prompts
Channel : channel-number

	

j
Symbol : symbol-name+--+

Command Parameters
channel-number

symbol-name

o You specify a channel number outside the range 1 to 13 .
o No file is open on the specified channel .
o The file on the specified channel is not open for reading .

File Input and Output

A channel-number in the range 1 to 13, that identifies the file
to be read . You can specify channel-number either as a literal
or as a symbol that evaluates to a number . You get an error
message when :

Is the symbol name to which DCL assigns the contents of the
record read in the READ command, as a string value . If you use
the same symbol name for more than one READ command, each READ
command redefines the value of the symbol name . The /GLOBAL and
/LOCAL qualifiers determine whether the symbol is global or
local .

File Input and Output
Command Qualifiers
/[NO]DELIMITER

/END OF FILE=label

/GLOBAL

/LOCAL

Tells DCL whether to include the record delimiter (such as CR/LFor FF) in the returned string . The default is /NODELIMITER . The/DELIMITER qualifier tells DCL to append the record delimiter tothe string .

Specifies the label of the line in the command procedure to begiven control when DCL detects an end-of-file (EOF) condition onthe read . When this condition occurs, no record is returned . Ifyou do not specify an /END OF-FILE qualifier, the action takendepends on the current setting of the ON command . See Chapter 8for a complete description of the ON command and error handlingin command procedures .

Tells DCL to search the global symbol table for the symbol youspecified . If DCL finds the symbol, it replaces its value . IfDCL does not find the symbol, then it enters the symbol into theglobal symbol table . DCL searches the global symbol table bydefault when you execute a READ command at the interactive level .

Tells DCL to search the local symbol table for the symbol youspecified . If DCL finds the symbol, it replaces its value . IfDCL does not find the symbol, then it enters the symbol into thelocal symbol table . DCL searches the local symbol table bydefault when you execute a READ command at command levels otherthan the interactive level . In addition, you get an errormessage if you specify /LOCAL at the interactive level .
Follow these steps to read data from a file :

1 . Open the file -- The OPEN/READ command opens the file forread access and associates the file name with a channelnumber .
2 . Begin the read loop -- File I/0 is usually done in a loopunless you are reading or writing a single record .

File

Input and Output

3 .

Read the data from the file -- Use the READ command with the

/END-OF

FILE qualifier to read the next record in the file

and

assign its contents to a symbol

.

The /END_OF_FILE

qualifier

causes DCL to pass control to the label you specify

when

you reach the end of the file

.

Generally, you specify

the

label that marks the end of the read loop

.

4 .

Process the data -- Because you must read a file

sequentially,

process the current record before reading the

next

one

.

5 .

Branch to the beginning of the loop -- You stay in the loop

until

you reach the end of the file

.

6 .

End the loop and close the file -- The CLOSE command

disassociates

the file name from the channel number and

closes

the file

.

When

you issue a READ command, DCL returns the next record in the file

as

a string value and assigns it to the symbol name you specify

.

Note

that

the returned string does not include any trailing line delimiter

characters .

You

can read a record up to 255 characters long

.

You get an error

message

if DCL encounters a record that exceeds this limit

.

DCL

updates the $STATUS and $SEVERITY symbols whenever an error (other

than

an EOF trapped by the /END_OF_FILE qualifier) occurs on a read,

and

then bases control on the current ON setting

.

See Chapter 8 for

more

information

.

The

following example uses a READ command in a command procedure

:

OPEN/READ

1 NOTICE

.TXT
LOOP :
READ/END_OF_FILE=END

1 DATA

WRITE

0 DATA

GOTO

LOOP

END :
CLOSE

1

EXIT

In

this command procedure, you open the file NOTICE

.TXT

for reading on

channel

1

.

The LOOP routine uses a READ command to read a record from

the

file opened on channel 1 and assign it, as a string value, to the

symbol

DATA

.

The WRITE command displays the symbols value at the

terminal .

Each time the loop is executed, a new record is read and

assigned

to the symbol DATA, and written to the terminal, until the

entire

file is read and displayed at the terminal

.

When the procedure

reaches

EOF, control branches to the END routine, which closes the

file

before the procedure exits

.

File Input and Output

Writing Files

The WRITE command writes records to a file that you open for writing
or appending with an OPEN command .

+--+

j Format j

j WRITE channel-number data[, . . .]

I

	

I
j Command Qualifiers

	

Defaults

j /[NO]DELIMITER

	

/DELIMITER j

j Prompts

	

j

Channel : channel-number

j Data : data[, . . .]
+--+

Command Parameters

channel-number

data[

A channel-number in the range 0 to 13 that identifies the file to
be written . You can specify channel-number either as a literal
or as a symbol that evaluates to a number . If you specify
channel 0, the data is written to the terminal . You get an error
message when :

o You specify a channel number outside the range 0 to 13

o No file is open on the specified channel

o The file on the specified channel is not open for writing or
appending

The data to write to the file . The data list can contain one or
more string expressions separated by commas . If you include
integer expressions in the data list, DCL automatically converts
them to string expressions before writing to the file .

DCL writes each data item to the file as a string with no
intervening characters between each item . You must include
spaces if you want to separate data strings written to the file .

Command

Qualifiers

/[NO]DELIMITER

Tells

DCL whether or not to write the string with trailing

carriage

return/line feed (CR/LF) characters

.

The default is

/DELIMITER .

The /NODELIMITER qualifier is useful when you need

several

WRITE commands to write a single record, or when you want

a

record delimiter other than CR/LF, such as form feed (FF)

.

Note

that you specify an alternate record delimiter in the data

list .

For example

:

FF

= F$CHR(12)

WRITE/NODELIMITER

0 TEXT,FF

In

this example, you define and use form feed as an alternate record

delimiter .

DCL

performs automatic symbol substitution when processing

expressions ;

therefore, do not use apostrophes (') to enclose symbol

names

that you include in the data list of a WRITE command

.

Whenever

an error occurs on a write, DCL updates the $STATUS and

$SEVERITY

symbols accordingly, and then bases control on the current

ON

setting

.

See Chapter 8 for more information

.

The

following

procedures :

LOOP :
INQUIRE/EXIT=END

VALl "1st number"

VAL1

= F$INTEGER(VAL1)

INQUIRE

VAL2 "2nd number"

VAL2

= F$INTEGER(VAL2)

WRITE

0 VAL1," + ",VAL2," = ",VAL1+VAL2

WRITE

0 VAL1," * ",VAL2," = ",VAL1*VAL2

GOTO

LOOP

END :
EXIT

In

this command procedure, t

values .

The WRITE commands

processing

the expressions,

When

the procedure executes,

1st

number

:

10

2nd

number

:

20

10

+ 20 = 30

10

* 20 = 200

1st

number

:

<CTRL/Z>

examples

show how to use the WRITE command in command

6-9

File

Input and Output

he

INQUIRE commands prompt for symbol

perform

automatic symbol substitution

displaying

the result at the terminal

.
the

following appears at the terminal

:

when

File

Input and Output

The

next example shows how to read the records from one file and how

to

write those records selectively to a new file in a command

procedure :

$

INQUIRE IN_FILE "Specify the file to read"

$

INQUIRE OUT_FILE "Specify the file to write"

$

OPEN 1 'IN FILE'

$

OPEN/WRITE 2 'OUT FILE'

$

LOOP

:
$

	

READ/END_OF_FILE=DONE

1 RECORD

$

	

IF

RECORD EQS

.

"" THEN GOTO LOOP

$

WRITE 2 RECORD

$

GOTO LOOP

$

DONE

:
$

CLOSE 1

$

CLOSE 2

$

EXIT

This

command procedure

:

o

Uses INQUIRE commands to prompt for a file to read (IN-FILE)

and

the new file to write (OUT FILE)

o

Uses OPEN commands to open both files

o

Uses a read/write loop (specifying the label to branch to

when

the last record is read) to read the records from a file

and

write those records to a new file with blank lines

suppressed

o

After the last record is read, branches to the DONE routine

and

exits

Closing Files

I CLOSE channel-number

Command Parameters

channel-number

Command Qualifiers

/ALL

Tells DCL to close all open data files .

Note

File Input and Output

The CLOSE command closes a file opened for reading, writing, or
appending with the OPEN command and removes its channel number from
the list of open channels .

--
I Format
I

I

	

I
II Command Qualifiers

	

Defaults
I

	

I

I

	

I
Prompts

I

	

I
Channel : channel-number

--

Is a channel-number in the range 1 to 13, on which to close the
file . You can specify channel-number either as a literal or as a
symbol that evaluates to a number . If you specify a channel
number on which no file is currently opened, no error message
appears . However, DCL does return an error if you specify a
channel-number outside the range 1 to 13 .

Any file that you open with an OPEN command stays open until you
explicitly close it using the CLOSE command, or until you log out .

If the system manager deletes your job, or if you
delete a batch entry, and you have files open for
writing or appending, the most recent data written to
the file may be lost .

File

Input and Output

Note

that, because channel 0 always specifies the user's terminal, any

attempt

to close channel 0 results in an error

.

The

following example uses the CLOSE command in a command procedure

:

$

!Make sure that channels 1-5 are closed

$

CHANNEL = 1

$

LOOP

:
$

	

CLOSE

CHANNEL

$

	

IF

CHANNEL EQ

.

5 THEN GOTO END

$

	

CHANNEL

= CHANNEL + 1

$

GOTO LOOP

$

END

:
$

EXIT

In

this command procedure, you assign the value 1 to the symbol

CHANNEL .

Each time the loop is executed, DCL closes a channel,

increments

the channel number, and so forth, until all five channels

are

closed

.

Chapter

7

Controlling

Execution Flow in Command Procedures

Normal

execution flow in a command procedure is sequential

:

DCL

executes

the commands in the procedure in order, until reaching the

end-of-file

(EOF)

.

However, in some cases you may want to repeat a

series

of commands, skip a series of commands, or abort the command

procedure .

The

basic commands for controlling execution flow in a command

procedure

are

:

o

The IF command -- Tests the value of a symbol or expression

and

executes a given command string based on the result of

the

test

o

The GOTO command -- Transfers control to a label in the

procedure

o

The at (@) command -- Invokes another command procedure and

begins

execution at another command level

o

The EXIT and STOP commands -- Terminate the current procedure

and

restore control to either the calling command procedure

or

the interactive command level

The

IF Command

The

IF command tests the value of an expression and executes the DCL

command

after the THEN keyword if the result of the expression is

true .

An expression is true if its integer result is odd, otherwise

it

is false

.

DCL converts string values to integer values before

performing

the test

.

See Chapter 3 for a description of how DCL

converts

strings to integers

.

Controlling

Execution Flow in Command Procedures

--

IF

expression THEN command

--

Command

Parameters

expression

command

Defines

the test to be performed

.

The test may consist of any

valid

DCL expression

.

An expression is true if the result is odd

and

false if the result is even

.

See

Chapter 3 for a summary of operators and details on how to

specify

expressions

.

Defines

the action to take if the result of the expression is

true .

You can specify any valid DCL or CCL command after the

THEN

keyword, optionally preceded by a $ character

.

If

the result of the expression is false, control resumes at the

next

line in the command procedure

.

The

following example uses the IF command

:

$

COUNT = 0

$

LOOP

:
$

	

COUNT

= COUNT + 1

$

	

IF

COUNT LE

.

10 THEN GOTO LOOP

$

EXIT

In

this example, the IF command sets up a loop in a command procedure

.
The

IF command checks the value of the symbol COUNT and performs an

EXIT

command when the value of COUNT is greater than 10

.

The

target command of an IF command can be another IF command

.

For

example :

$

IF A EQ

.

B THEN -

IF

C EQ

.

D THEN -

IF

E EQ

.

F THEN -

RESULT

= 1

In

this example, the IF command tests each expression in turn

.

If the

result

of the first expression is true, the second IF command is

executed ;

if that expression is true, the next IF command is executed

.
If

all the IF command expressions are true, RESULT is assigned a value

of

1

;

otherwise, the assignment statement is not executed

.

You

can use the @ command in an IF command to invoke another command

procedure .

For example

:

Controlling

Execution Flow in Command Procedures

Command

line labels let you identify lines in a command procedure to

which

control passes when a GOTO command executes

.

You can precede

any

command string in a command procedure with a label

.

The rules for

entering

labels are

:

o

A label must appear as the first item on a command line and

must

be preceded by a $ character

o

A label must end with a colon (

:)

o

You can specify only one label on a command line

Keep

the following in mind when you enter labels

:

o

Excessive use of labels can exhaust the space available for

local

symbols

o

DCL returns an error when insufficient space exists for

storing

a label definition

o

DCL does not allow symbol substitution (apostrophes) in

labels

because it performs label processing before it

performs

symbol substitution

$

IF A EQ

.

B THEN @FILE2

If

the result of the expression A

EQ . B

is true, DCL executes the

nested

procedure FILE2

.COM .

After

the nested

procedure executes,

control

returns to the next line in

the calling

procedure

.

Command

Line Labels

Controlling

Execution Flow in Command Procedures

When

DCL finds a label at the beginning of a command line, it enters

the

label into a local label table that shares space in the local

symbol

table

.

If the label already exists in the table, DCL displays

an

error message and immediately ends the procedure with a STOP

command .

For example

:

$

LABELI

:

$

GOTO LABEL2

$

LABELI

:

$

LABEL2

:

In

this command procedure, DCL enters LABEL1 in the local label table

while

processing the procedure

.

When DCL finds the GOTO command,

LABEL2

is not yet in the local label table

.

DCL scans forward through

the

procedure to locate the label

.

While scanning forward, however,

DCL

finds a duplicate LABEL1, displays an error message,, and

terminates

the procedure with a STOP command

.

Control immediately

returns

to the interactive level

.

The

GOTO Command

The

GOTO command passes control to a labeled line in a command

procedure .

-

- -

Format

GOTO

label

--

Command

Parameters

label

Specifies

a 1 to 255 character label that appears as the first

item

on a command line

.

When the GOTO command executes, control

passes

to the command following the specified label

.

The

label can precede or follow the GOTO command in the current

command

procedure

.

The

GOTO command is useful after a THEN clause to cause a procedure to

branch

forward or backward according to variable conditions or

parameters

that you pass to the procedure

.

For example

:

$

IF Pl EQS

.

"" THEN GOTO ERROR

$

ERROR

:

(normal

processing)

(error

processing)

In

this example, DCL tests to determine if P1 is null

.

If it is, then

control

passes to the label ERROR, where error processing occurs

.

If

P1

is not null, then control resumes at the next line after the GOTO

command .

You

can also use the GOTO command to set up loops in a command

procedure .

For example

:

$

NUM = 0

$

LOOP

:
$

	

NUM

= NUM + 1

IF

NUM LT

.

11 THEN GOTO LOOP

Controlling

Execution Flow in Command Procedures

In

this example, you use the GOTO command in a loop that executes a

specified

number of times

.

The first line in the procedure sets up a

counter

named NUM

.

The loop increases the value of the counter, does

some

processing and then tests the counter's value

.

The command

procedure

exits from the loop when the value of NUM is greater than or

equal

to 11

.

Controlling

Execution Flow in Command Procedures

You

can use the GOTO command in loops that prompt the user to indicate

whether

execution should continue

.

During each iteration of the loop,

the

procedure prompts for input data or a value for a variable

.

For

example :

$

LOOP

:
$

	

INQUIRE

FILE "Filename"

$

	

IF

FILE EQS

.

"" THEN GOTO SKIP

$

	

GOTO

LOOP

$

SKIP

:

In

this example, the INQUIRE command requests a file name

.

If the

user's

response is a null value, the loop does not execute

.
Otherwise,

the loop executes iteratively until the user enters a null

value

by pressing only the RETURN key

.

Nesting

Command Procedures

The

GOTO command described in the previous section provides one way to

divide

command procedures into more easily read and understood

sections .

In a more complex procedure, however, you may want to

separate

different sections into several smaller procedures

.

Or you

may

find it convenient to develop small, generalized procedures that

perform

common functions and then invoke these procedures from other

procedures

that you write

.

You can call one command procedure from

inside

another by using the @ command

.

Using the @ command to invoke

new

levels of command execution is similar to using a CALL statement

in

a high-level programming language

.

When

you enter a procedure, the command level increases by one

.

For

instance,

if you invoke procedure SUB from interactive command level

(level

0), SUB executes at command level 1

.

If SUB then calls SUB1,

which

calls SUBSB1, SUB1 executes at command level 2 and SUBSB1 at

command

level 3

.

The deepest permissible command level is 13

.

By

convention, the interactive level is the highest command level

;

and

command

level 13 the lowest

.

Therefore, if you move from command

level

3 to command level 2, you move to the next higher command level

.

Controlling

Execution Flow in Command Procedures

Figure

7-1 shows the flow of control when you execute nested command

procedures ;

the figure also shows how DCL creates new command levels

when

you execute nested command procedures

.

command

command	

command

command

level

0	

level

1	

level

2	

level

3

$

@SUB

-----------SUB .COM
$

t------,	

$

first command

$

second command

$

@SUB1 ------------im- SUB1

.COM
$

	

.

t--i	

$

first command

$

	

$

second command

$

	

$

@SUBSB1 -------)i,-SUBSB1

.COM

$

	

EXIT

	

$

	

.---w

-----7	

$

	

first

	

command
$

	

$

second command

$

	

$

-

$ EXIT	

$

$ EXIT

Figure

7-1

:

Command Levels in Nested Command Procedures

If

you need to pass information from one command level to another, use

one

of the following techniques

:

o

Passing parameters -- You can pass up to eight parameters to

a

procedure you invoke using the @ command

.

See Chapter 5

for

a description of techniques for passing parameters

.

o

Using global symbols -- You can use global symbols to pass

data

from one procedure to another

;

a global symbol defined

in

a nested command procedure can be referred to in all

command

procedures

.

See Chapter 2 for a description of

global

symbols

.

o

Using data files -- You can write data to a data file using

the

WRITE command, then read the data back in a nested

command

procedure using the READ command

.

See Chapter 6 for

information

on writing and reading files

.

Controlling Execution Flow in Command Procedures

Exiting from a Command Procedure

A command procedure exits when it reaches the end of the procedure, an

EXIT command, or a STOP command . If the exit is caused by the end of

the procedure or an EXIT command, control returns to the next higher

command level . For instance, if you invoke SUB at interactive command

level, and SUB calls SUB1, then :

o Exiting from SUB1 returns you to SUB at the command line

following the call to SUB1 .

o Exiting from SUB returns you to interactive command level .

When you use the EXIT command to cause an exit, you can return a

status value to the next higher command level by specifying the value

as the parameter of the EXIT command . This status value is placed in

the global symbols $STATUS and $SEVERITY . Upon returning from the

lower level routine, the higher level procedure performs any error

handling based on its ON . . . THEN setting and the value of $SEVERITY .

See Chapter 8 for a description of error handling in command

procedures .

If the STOP command causes the exit, control immediately returns to

interactive command level .

The following sections describe the EXIT and STOP commands in greater

detail .

The EXIT Command

The EXIT command ends a command procedure and returns control to the

next higher command level .

+----__-------------------__--___---__---------___---___--_+

I

EXIT [status-code]

.--___--------__----__+

Format

Command

Parameters

status-code

A

numeric expression that defines a value for the reserved global

symbols

$STATUS and $SEVERITY

.

Note that the reserved global

symbol

$SEVERITY is affected by the value placed in the $STATUS

symbol .

You can specify the status-code as an integer or an

expression .

If you do not specify a status-code, DCL does not

change

the values of $STATUS and $SEVERITY from the most recently

executed

command or program

.

See Chapter 8 for a complete

description

of the $STATUS and $SEVERITY symbols

.

You

can use the EXIT command to make sure that a procedure does not

execute

certain lines

.

For example, if you write an error-handling

routine

at the end of a procedure, you can place an EXIT command

before

the routine

:

$

EXIT ! End of normal execution path

$

ERROR

:

Controlling

Execution Flow in Command Procedures

The

EXIT command is also useful in procedures that have more than one

execution

path

.

For example

:

$

START

:
$

	

IF

Pl EQS

.

"TAPE" OR

.

Pl EQS

.

"DISK" THEN GOTO 'Pl'

$

	

INQUIRE

Pl "Enter device (TAPE or DISK)"

$

	

GOTO

START

$

TAPE

:

! Process tape files

$

EXIT

$

DISK

:

! Process disk files

$

EXIT

To

execute this command procedure, you must enter either TAPE or DISK

as

a parameter

.

The IF command uses a logical OR to test if either of

these

strings was entered

.

The GOTO command branches appropriately,

using

the parameter as the branch label

.

If Pl is not TAPE or DISK,

the

INQUIRE command prompts for a correct parameter

;

the GOTO START

command

establishes a loop

.

7-9

Controlling

Execution Flow in Command Procedures

The

commands after the labels TAPE and DISK provide different paths

through

the procedure

.

The EXIT command before the label DISK ensures

that

the commands after the label DISK are not executed unless the

procedure

explicitly branches to DISK

.

Note

that the EXIT command at the end of the procedure is not required

because

an implicit exit occurs when DCL detects the end-of-file

(EOF) .

However, DIGITAL recommends that you use the EXIT command at

the

end of a command procedure

.

When

a command procedure has multiple levels of interaction, you can

use

the EXIT command to pass status values from nested levels back to

the

calling procedure

.

The exit code defines values for the reserved

global

symbols $STATUS and $SEVERITY

.

For

example, suppose the procedure

A .COM

contains these lines

:

$

@B

$

IF $STATUS EQ

.

2 THEN GOTO CONTROL

In

addition, the procedure

B .COM

contains the line

:

$

EXIT 2

This

EXIT command places the value 2 in the global symbols $STATUS and

$SEVERITY .

The calling procedure, A

.COM,

tests $STATUS

.

The

STOP Command

The

STOP command ends a command procedure and immediately returns

control

to the interactive level, thus terminating any intermediate

command

procedures

.

+--+
Format

i

STOP

--

The

following example uses the STOP command

:

$

ON ERROR THEN GOTO OPEN-ERROR

$

OPEN 2 FILE/READ

$

OPEN_ERROR

:
$

WRITE 0 "Error opening file"

$

STOP

Controlling

Execution Flow in Command Procedures

In

this command procedure, if an error occurs while attempting to open

a

file,	

the

procedure goes to the label OPEN_ERROR,	

prints

a message,

stops

executing, and returns immediately to the interactive level

.

Controlling

Error Conditions and CTRL/C Interrupts

This

chapter describes how to control command procedure execution when

an

error condition or a CTRL/C interrupt occurs

.

An error condition

occurs

when a command does not terminate successfully

.

A CTRL/C

interrupt

is the result of pressing CTRL/C during command procedure

execution .

Error

Condition Handling

Error

conditions are stored as codes in the reserved global symbol

$STATUS .

If an EXIT command does not explicitly set a value for

$STATUS,

then DCL returns its current value

.

This value is set

implicitly

by individual commands and programs that execute in a

procedure .

The value that is set, called a condition code, provides

information

about the execution of

:

o

The most recent command

o

The most recent program

o

The most recent procedure

Chapter

8

The

following sections describe how you can include action routines

and

error handling statements in your procedures based on values in

$STATUS .

$STATUS

and $SEVERITY Symbols

DCL

reserves two global symbols, $STATUS and $SEVERITY, to maintain an

error

condition code called "exit status

."

The

lowest three bits of the $STATUS value represent the severity of

the

exit status

.

The remaining bits of the $STATUS value are

reserved,

and are currently undefined

.

The $SEVERITY symbol contains

Controlling Error Conditions and CTRL/C Interrupts

the same value as the lowest three bits of the $STATUS value .

DIGITAL recommends that you test severity values using the $SEVERITY
symbol instead of the $STATUS symbol . This lets you avoid unnecessary
modifications in the future, if other bits in $STATUS are defined .

Table 8-1 lists the severity values and their meanings .

Table 8-1 : Severity Values

+_______+___-____--____+---______-______________-________-______---__+
Value j Severity

	

Meaning
+_______+__-_____-_____+---_-____-__-____________________-___-__-____+

II This condition indicates that an operation
completed, but not necessarily as expected .
For example, if you try to mount a disk
initialized read-only using the /WRITE
qualifier, the following warning message
appears :

I

	

I

	

I

	

I
oDisk is mounted read-only

I

	

I RSTS/E prefixes all WARNING messages with I
the percent sign (o) character .

+_____-_+__-__---_____-+-_____________-___-___-________-____-__-__---+

WARNING

I
1

	

SUCCESS

	

This condition indicates that an operation
j completed successfully, that is, with no
errors or warnings . Informational or action
messages also receive this status value .

+_______+-_________--__+____--______________-_____-_-_____-__________+
I

	

i

	

I
2

	

ERROR

	

This condition indicates that an operation
did not complete . For example, an ERROR
message appears after you enter an illegal
command or after you enter a command using
invalid syntax .

RSTS/E prefixes all ERROR messages with the
question mark (?) character .

-------- --

4

	

I

	

I

	

I
SEVERE-ERROR

	

This condition indicates that an operation
did not complete, but for more serious
reasons .

I
RSTS/E prefixes all SEVERE_ERROR messages
with double question marks (??) .

+______-+________--___-+--__-_______-___________-________-_____-__--_+

$

IF $SEVERITY THEN

. . .

Controlling

Error Conditions and CTRL/C Interrupts

Note

that the success code has an odd numeric value, while warning and

error

codes have even numeric values

.

Because DCL evaluates all odd

values

as true (1) and all even values as false (0), you can use the

IF

command to test the severity codes and determine if an operation

completed

successfully

.

For example

:

This

IF command executes the command after the THEN clause when the

severity

value is odd, indicating success

.

$

IF NOT

.

$SEVERITY THEN

. .

This

IF command executes the command after the THEN clause if the

severity

value is even, indicating that a warning, error, or severe

error

occurred

.

Note

The

following DCL commands, if they complete

successfully,

do not affect the $STATUS or $SEVERITY

setting :

o

GOTO

o

STOP

o

$EOD

o

IF

o

SHOW SYMBOL

o

ON (see the next section for more information)

o

an assignment statement

Controlling

Error Conditions and CTRL/C Interrupts

The

ON Command

By

default, DCL performs an EXIT command when an error or severe error

occurs

and continues processing when a warning occurs

.

You can

override

this default with the ON command

.

The

ON command specifies an action to be performed whenever DCL

detects

a warning, error, or severe error in a command procedure

.
Whenever

a command, program, or command procedure completes, DCL

checks

the exit status and takes action based on the current setting

of

the ON command

.

+--+

ON

severity-level THEN command

+--+

Command

Parameters

severity-level

command

Specifies

the severity level at which to perform the command

action .

You can specify one of the following severity-level

keywords :

o

WARNING

o

ERROR

o

SEVERE ERROR

Specifies

the CCL or DCL command to be executed if the status

code

returned from the last command, program, or command

procedure

is greater than or equal to the severity level you

specify .

You can specify any valid CCL or DCL command after the

THEN

keyword, optionally prefixed with a $ character

.

When

DCL finds an ON command, it stores the command following the THEN

keyword

in a special area of the local symbol table and executes it

whenever

an error greater than or equal to the specified severity

level

occurs

.

Controlling Error Conditions and CTRL/C Interrupts

If you define an ON command action for a specific severity level, DCL

performs the specified action when errors of the same or worse
severity occur . When less severe errors occur, DCL continues to
process the file .

Table 8-2 summarizes how the ON command controls error handling .

Table 8-2 : ON Command Keywords and Actions

+--------------+---+

ON Keyword

	

j

	

Action Taken
+--------------+---+

WARNING

	

Command procedure performs the specified action if
a warning, error, or severe error occurs .

+--------------+---+

I

	

I
ERROR

	

Command procedure performs the specified action if
an error or severe error occurs ; the procedure
continues if a warning occurs .

---------------+---+

I

	

I
SEVERE_ERROR

	

Command procedure performs the specified action if
a severe error occurs ; the procedure continues if a j
warning or error occurs .

	

I
+--------------+---+

For example, if you want a command procedure to exit whenever a
warning, error, or severe error occurs, use the command :

$ ON SEVERE ERROR THEN GOTO ERROR TRAP

This ON command requests that the procedure branch to the label
ERROR-TRAP only in the case of a severe error . If any command in the

procedure causes a warning or error condition, execution continues
with the next command in the procedure .

Note that severe errors always cause the command following the THEN

keyword to be executed, regardless of the severity level you specify
in the ON command . You must disable error checking with the SET NOON

command for processing to continue when a severe error occurs .

When DCL executes the command following the THEN keyword, it resets
the ON setting to its default (ON ERROR THEN EXIT) . For example :

$ ON WARNING THEN GOTO ERROR TRAP

8- 5

$ ON WARNING THEN EXIT

If you want the command procedure to continue if a warning or an error
occurs, but to branch to another part of the file if a severe error

occurs, use a command such as :

Controlling

Error Conditions and CTRL/C Interrupts

In

this example, if a warning occurs in the command procedure then

control

passes to the first command following the label ERROR-TRAP,

and

the ON setting is reset to ON ERROR THEN EXIT

.

If you want to

restore

the previous ON setting, you must reissue the ON WARNING THEN

GOTO

ERROR TRAP command

.

The

action specified by an ON command applies only within the command

procedure

in which the command is executed

.

Therefore, if you execute

an

ON command in a procedure that invokes another procedure, the ON

command

action does not apply to the nested procedure

.

Enabling

and Disabling Error Checking

The

SET NOON command lets you override default error checking

.

You

can

use SET NOON to tell DCL not to check the status code returned

from

the last command, program, or command procedure executed

.

.F.-------------____----------------------------------__-----+
Format

I

	

I
SET

[NO]ON

+---------------------------__-----------------------------+

During

command procedure execution, DCL normally checks the status

code

returned when a command, program, or command procedure completes,

and

saves the numeric value of this code in the reserved global symbol

$STATUS .

The low-order three bits of this value are also saved in the

reserved

global symbol $SEVERITY

.

When

SET NOON is in effect, DCL continues to place the status code

value

in $STATUS and the severity level in $SEVERITY, but does not

perform

any action based on the value

.

As a result, the command

procedure

continues to execute regardless of how many errors are

returned .

Like

SET ON, the SET NOON command applies only at the current command

level .

If you use the SET NOON command in a command procedure that

executes

another procedure, DCL establishes the default, SET ON, while

the

second procedure executes

.

$

ON WARNING THEN EXIT

$

SET NOON

$

MOUNT MMO

:

$

SET ON

CTRL/C

Interrupt Handling

Controlling

Error Conditions and CTRL/C Interrupts

The

following example uses the SET NOON and SET ON commands

:

In

this example, you temporarily disable error checking and attempt to

mount

a tape

.

If any error occurs, processing continues

.

The SET ON

command

restores the current setting of the ON command

;

that is, the

procedure

exits if later warnings, errors, or severe errors occur

.

Note

Whenever

an input error other than EOF occurs when

reading

from a command file, DCL displays an error

message,

generates a SEVERE_ERROR, and terminates the

command

procedure

.

DCL takes this action regardless

of

the current ON setting or severity level

.

You

can design a command procedure so that DCL takes a certain course

of

action when the user presses CTRL/C during execution of the

procedure .

When

the user presses CTRL/C at a logged-in terminal, the RSTS/E

terminal

service routine sets a CTRL/C event flag

.

DCL initially

clears

this flag when a user logs in to the system

.

Once the CTRL/C

flag

is set, it remains set until examined by a monitor directive,

which

clears the flag automatically

.

This design lets DCL read the

CTRL/C

event flag to determine if a CTRL/C interrupt occurs during

command

procedure execution

.

If

you execute a program within a command procedure that is designed

to

abort or to perform clean-up operations and then abort when you

press

CTRL/C, the CTRL/C event flag remains set and DCL takes action

based

on the ON CONTROL_C setting

.

Some

programs (such as MAIL), however, are designed to continue to

operate

properly when the user presses CTRL/C

.

In this case, DCL will

take

CTRL/C action when the program exits

.

Because this may not be

desirable,

make sure that the event flag remains clear by issuing the

8- 7

Controlling

Error Conditions and CTRL/C Interrupts

SET

NOCONTROL=C command to disable CTRL/C checking before you execute

the

program

.

Then, after the program executes, you can issue the SET

CONTROL=C

command to reenable checking

.

In

addition, you can completely disable a terminal's CTRL/C key by

using

the SET TERMINAL/NOCONTROL=C command

.

command

Note

You

should use the SET NOCONTROL=C and SET

TERMINAL/NOCONTROL=C

commands for special applications

that

have been thoroughly tested

.

Generally, DIGITAL

does

not recommend that you disable CTRL/C interrupts

.

For

example, if a procedure that disables CTRL/C

interrupts

begins to loop uncontrollably, you cannot

gain

control to stop the procedure from your terminal

;
you

must use another terminal to terminate the

procedure

or you must request the system manager to

terminate

it for you

.

The

following sections describe how to establish a CTRL/C action

routine,

and how to enable or disable CTRL/C checking

.

Setting

a CTRL/C Action Routine

The

ON CONTROL-C command specifies the action to take when a CTRL/C

interrupt

occurs during execution of a command procedure

.

The

specified

action applies only within the command procedure in which

the

command is executed

.

+---_+
1

Format

ON

CONTROL_C THEN command

+-----------

--+

Command

Parameters

Specifies

the DCL or CCL command to be executed if a CTRL/C

condition

occurs

.

You can specify any valid DCL or CCL command

after

the THEN keyword, optionally prefixed with a $ character

.

Using

the standard rules of substitution, DCL first performs a syntax

check

and substitutes any symbol value following the THEN clause

.

DCL

8-8

then

stores the command in a special area of the local symbol table

and

executes it whenever a CTRL/C interrupt occurs

.

The

following example shows the use of ON CONTROL-C

:

$

ON CONTROL-C THEN GOTO CTRL EXIT

$

CTRL_EXIT

:
$

CLOSE 1

$

CLOSE 2

$

EXIT

Controlling

Error Conditions and CTRL/C Interrupts

When

a CTRL/C interrupt occurs during execution of this procedure, DCL

executes

the GOTO command, which transfers control to the line labeled

CTRL

_EXIT

: .

	

At

this label,	

the

procedure performs clean-up

operations .

In this example, clean-up consists of closing files

opened

on channels 1 and 2, and exiting

.

When

you do not specify a CTRL/C action routine and a CTRL/C interrupt

occurs,

DCL executes an EXIT command by default and returns control to

the

next higher-level command procedure

.

Because control returns with

the

CTRL/C event flag still set, the higher-level procedure takes

whatever

action you specify for CTRL/C handling at that level

.

When

you do specify a CTRL/C action routine, anytime DCL takes a

CTRL/C

action,	

the

default setting (ON CONTROL_C THEN EXIT)	

is
reinitialized

in the current procedure

.

Therefore, to establish a

setting

other than the default, the procedure must reexecute the ON

CONTROL

-C command after a CTRL/C interrupt occurs

.

Disabling

and Reenabling CTRL/C Interruptions

The

SET NOCONTROL=C command disables CTRL/C checking by DCL within a

command

procedure

.

That is, if a command procedure executes the SET

NOCONTROL=C

command, pressing CTRL/C will not cause the ON CONTROL_C

command

to be executed

.

Pressing CTRL/C will still have its normal

effect

on running programs (unless a SET TERMINAL/NOCONTROL=C command

is

in effect)

.

On

the other hand, the SET CONTROL=C command reenables CTRL/C

checking .

THE SET [NO]CONTROL=C setting applies only at the current

command

level

.

Controlling Error Conditions and CTRL/C Interrupts

- -

I

	

I
SET [NO]CONTROL=C

--

Use the SET NOCONTROL=C command in procedures where you do not want
For example :

In this example, the command procedure executes a program, which could
generate a CTRL/C condition . You issue the SET NOCONTROL=C command,
execute the program, and then reenable CTRL/C checking with the SET
CONTROL=C command .

DCL to take special action if a CTRL/C interrupt occurs .

$ SET NOCONTROL=C
$ RUN PROW
$ SET CONTROL=C

o

SET ECHO command

o

SET VERIFY command

o

Terminal logging commands

SET

[NO]ECHO Command

Format

SET

[NO]ECHO

Command

Qualifiers	

Defaults

1,

/[NO]WARNINGS	

/WARNINGS
+_----------------------__------

Chapter

9

Controlling

Terminal Output

RSTS/E

provides the following ways to enable and disable command line

display

and program output to your terminal during its execution of a

command

procedure

:

You

can use these commands interactively or within a command

procedure .

However, they only affect output to your terminal when a

command

procedure is executing

.

By

default, RSTS/E displays all output except DCL command lines during

command

procedure execution

.

However, you may sometimes want to

disable

all terminal output for "silent" command procedure processing,

or

to enable command line display to help debug a command procedure

.

You

use the SET ECHO and SET NOECHO commands when you want to enable

and

disable the display of all output from a command procedure on your

terminal .

+------------------------------___--__-------------__-___--+

Controlling

Terminal Output

Command

Qualifiers

/[NO]WARNINGS

Specifies

whether warnings and error messages display on the

terminal .

You can use this qualifier only with the SET NOECHO

command .

When

ECHO is in effect, RSTS/E displays the following during command

procedure

execution

:

o

All program data written to or echoed on the terminal

o

Warnings and error messages

o

DCL command lines if SET VERIFY is in effect (see the

following

section for a description of the SET [NO]VERIFY

command)

When

you first log in to the system, ECHO is in effect

.

You can issue

the

SET ECHO or SET NOECHO command either at the interactive level or

within

a command procedure to change its setting

.

The [NO]ECHO

setting

is global to all command procedures and remains in effect

until

you change it

.

When

NOECHO is in effect, RSTS/E displays only the following

:

o

warnings and error messages (unless you specify the

/NOWARNINGS

qualifier)

o

messages broadcast to your terminal

o

Prompts from an INQUIRE command

o

Data output with the WRITE 0 command

RSTS/E

suppresses all DCL command lines and other program data written

to

the terminal when NOECHO is in effect

.

If you specify the

/NOWARNINGS

qualifier with the SET NOECHO command, then warnings and

error

messages also do not display

.

Note

that NOECHO overrides the [NO]VERIFY setting, described in the

next

section

.

SET

[NO]VERIFY Command

You

use the SET VERIFY and SET NOVERIFY commands when you want to

enable

and disable the display of all DCL command lines as they occur

during

command procedure execution

.

See Chapter 2 for a complete

description

of the SET [NO]VERIFY command

.

SET

[NO]VERIFY also controls whether RSTS/E writes the command lines

to

a log file

.

See the next section for a complete description of the

terminal

logging feature

.

If

SET VERIFY is in effect, command lines are displayed exactly as

they

appear in the procedure, before any substitution has been

performed .

You can specify the /DEBUG qualifier to display the

command

line as it appears after substitution

.

When

you first log in to the system, NOVERIFY is in effect

.

You can

issue

the SET VERIFY or SET NOVERIFY command either at the interactive

level

or within a command procedure to change its setting

.

The

[NO]VERIFY

setting is global to all command procedures and remains in

effect

until you change it

.

When

NOECHO is in effect (see the previous section), command lines are

not

displayed at the terminal, regardless of the VERIFY setting

.
However,

if VERIFY is in effect and a log file is open (see the next

section),

RSTS/E continues to write the command lines to the log file

.

Creating

a Log File of a Terminal Session

The

terminal logging feature lets you create and use a terminal log

file

to save a copy of the output that appears during the execution of

a

command procedure

.

See the RSTS/E System User's Guide for a

complete

description, with examples, of terminal logging

.

Note

that if you enable a log file during execution of a command

procedure,

the SET NOVERIFY command (see the previous section)

disables

output of command lines both to the terminal and to the log

file .

The

following sections describe the commands that you use to

:

o

Open a terminal log file

o

Close a terminal log file

0

Selectively disable and enable output to the log file

Controlling

Terminal Output

Controlling Terminal Output

OPEN/LOG-FILE

The OPEN/LOG_FILE command opens a disk file for terminal logging .

	

You

can issue the OPEN/LOG-FILE command either interactively or within a

command procedure .

You can only open one log file at any given time . If a log file is

already open when you attempt to open a second log file, RSTS/E issues

an error message and does not open the second file ; instead, the

current log file remains open .

+--+

Format

OPEN/LOG-FILE file-spec

I

	

I

Command Qualifiers

	

Defaults

	

j

I
/APPEND

	

See discussion
/DISABLE /ENABLE I
/ENABLE /ENABLE
/[NO]REPLACE

	

See discussion

j /[NOJTIME_STAMP

	

/NOTIME_STAMP

11 Prompts

j File : file-spec

+--+

Command Parameters

file-spec

Command Qualifiers

/APPEND

Specifies the disk file to open for logging terminal output .

RSTS/E displays an error message if you specify a nondisk file,

or if the file-spec is invalid . RSTS/E also displays an error

message if a log file is already open . If you do not specify a

file type, RSTS/E assumes a file type of LOG . Unless you

include the /APPEND qualifier, RSTS/E opens the file for output,

and deletes any existing file of the same name .

Tells RSTS/E to add data to the end of the file you specify .

This qualifier lets you append terminal output to the end of an

existing log file . If the file you specify does not exist, then

RSTS/E ignores this qualifier and opens a new file . Note that

9-4

/DISABLE

/ENABLE

Controlling

Terminal Output

only

RSTS/E stream ASCII files can be appended

:

if you specify a

file

that has RMS attributes, an error message displays

.

Indicates

that terminal output should not be logged to the file

until

you issue the SET LOG-FILE/ENABLE command to enable

terminal

logging

.

Indicates

that output should be logged to the file

.

This

qualifier

is the default when you issue the OPEN/LOG-FILE

command .

/[NO]REPLACE

Specifies

whether to replace an existing file with a new file

.
If

the log file that you specify already exists

:

o

/REPLACE tells RSTS/E to delete the existing file and create

a

new file

.

o

/NOREPLACE tells RSTS/E not to replace the file if it exists

;
in

this case, an error message displays

.

If

you specify neither qualifier, then RSTS/E issues a warning

message

and asks if you want to replace the file

.

Note

that the /[NO]REPLACE qualifier conflicts with the /APPEND

qualifier .

/[NO]TIME-STAMP

Indicates

whether to prefix each line in the log file with a

date/time

stamp

.

The default is /NOTIME STAMP

.

However, if you

specify

/TIME-STAMP, RSTS/E prefixes each line in the log file

with

a date/time stamp specifying the date and time that the line

was

copied to the log file

.

Note that the date and time format

is

based on the system defaults that your system manager

establishes .

The date/time fields occupy the first 22 characters

of

each line

. .

Controlling

Terminal Output

CLOSE/LOG

FILE

The

CLOSE/LOG_FILE command closes a log file that you opened with the

OPEN/LOG

FILE command

.

+--------------__--___-------------------------------------+
Format

CLOSE/LOG-FILE
--

Use

the CLOSE/LOG_FILE command to close an open log file either during

a

session at your terminal or within a command procedure

.

If

logging is enabled when you issue the CLOSE/LOG_FILE command, then

RSTS/E

writes the command itself to the log file before closing it

.
If

no log file is open when you issue this command, then RSTS/E

displays

an error message

.

SET

LOG FILE

After

you open a log file, you can use the SET LOG FILE command to

selectively

enable and disable logging to the file

.

You can also use

this

command to enable or disable the time stamp feature in the log

.

+--__--------------+
Format

SET

LOG FILE

Command

Qualifiers	

Defaults

/DISABLE
/ENABLE
/[NO)TIME

STAMP

+-----___-------------------------------__----------------

Command

Qualifiers

/DISABLE

Indicates that terminal

or command file output should not be

logged

to

the current

log file

.

If logging is currently

disabled, then RSTS/E

ignores this qualifier

.

This qualifier

conflicts with /ENABLE .

/ENABLE

Controlling

Terminal Output

Indicates

that terminal or command file output to the log file

should

be enabled

.

If logging is currently enabled, then RSTS/E

ignores

this qualifier

.

This qualifier conflicts with /DISABLE

.

/[NO]TIME

STAMP

Enables

or disables the time stamp feature, which prefixes each

line

in the log file with a date/time stamp in a format that the

system

manager has defined

.

Appendix A

Sample Command Procedures

The following sample command procedures demonstrate some of the
concepts and techniques that this manual discusses .

In the following example, the command procedure remembers the most
recent file you edited, and automatically places it in the editor when
you type the EDIT command :

0 THEN _INQUIRE/EXIT=GETFIL Pl "File"
0 THEN GOTO GETFIL

$! EDIT .COM - Command file to "remember" last file edited

$! Parameters :
$! Pl - file to edit, or null to edit last file edited

$ y

$! To take full advantage of this command file, add the
$! following global command to your LOGIN .COM file
$ y

$! $ EDIT == "@EDIT"
$ y

$! Then, you edit a file in the usual way :

$! $ EDIT filespec
$ y

$! To edit the file you last edited, simply type :

$! $ EDIT

$ o

$: The last file edited is maintained in the global
$! symbol LAST-EDIT .

-IF F$TYPE(LAST_EDIT) EQS . "UNDEFINED" THEN LAST- EDIT
11

-IF F$LENGTH(P1) EQ . 0 THEN Pl = LAST EDIT

$GETFIL :

$ -IF F$LENGTH(Pl) EQ .

$ -IF
F$LENGTH(Pl) EQ .

LAST EDIT == Pl

Sample

Command Procedures

$

	

_SET

NODATA

$

	

_WRITE

0 "Editing file ",LAST-EDIT,"

. . ."
$

	

_EDIT

'LAST EDIT'

$

	

SET

DATA

In

the following example, the command procedure searches for and reads

files

specified with wildcards

:

$

!

READ .COM

- Command file to EDIT/READ wildcard file-specs

$

! Parameters

:
$

!	

P1

- wildcard filespec (prompt if null)

$

	

_SET

NODATA

$

	

-IF

Pl EQS

.

"" THEN INQUIRE/EXIT=END P1 "Filespec to read"

$

	

P1

= F$EDIT(P1,-1)

$

	

NEXT

FILE = F$SEARCH(P1)

$LOOP :
$

	

-IF

NEXT_FILE	

EQS .

	

""

	

THEN

_EXIT

$

	

INQUIRE/EXIT=END

P1 "Read " NEXT-FILE'	

<yes>"
$

	

-IF

P1 EQS

.

"" THEN P1 = "YES"

$

	

Pl

= F$EDIT(Pl,-1)

$

	

-IF

F$INSTR(l,"YES",P1) EQ

.

1 THEN -EDIT/READ 'NEXT-FILE'

$

	

NEXT

FILE = F$SEARCH()

$

	

_GOTO

LOOP

$END :

In

the following example, the command procedure remembers command

arguments :

$!

MEMCOM - Remember previous arguments for commands

$!

Parameters

:
$!

	

Pl

Name of command to use

$!

	

P2

- P8 Arguments of command to be remembered

$!

Description

:
$!

	

This

procedure remembers its arguments and allows them

$!

	

to

be used again if desired

.

It also understands wild cards

$!

	

if

they are the first argument to the command (i

.e .

P2)

.

$!

	

Parameter

Pl is the name of a DCL or CCL command such as EDT

.

A- 2

A- 3

Sample

Command Procedures

$!

	

This

procedure uses a DCL global variable of the form

$!

	

'Command'_Memory

where 'Command' is the name of the command

$!

	

to

remember the arguments for each command

.

$!

	

If

P2 is a wildcard filespec then MEMCOM will find the first

$!

	

(or

next) occurrence and prompt with the file found as the

$!

	

default .

To accept the file type RETURN

.

To see the next

$!

	

file

type CONTROL/Z

.

To quit type CONTROL/C

.

$!

Examples

:
$!

	

$

E-DT

:==

@MEMCOM EDT

$!

	

$

EDT *

.COM
$!

or

$!

	

$

TY-PE

:=

@MEMCOM TYPE

$!

	

$

TYPE *

.B?S

$START :
$

	

WILD

= 0 ! Initialize wild flag

$!

Set command name

.

If no command is present then write an error

$!

messa+e (which will trigger default ON ERROR THEN EXIT action)

.

$

	

COMMAND

= Pl

$

	

-IF

COMMAND EQS

.

"" THEN WRITE 0 "?MEMCOM - No command present"

$!

If command memory is undefined then set it to ""

$

	

IF

F$TYPE('COMMAND'_MEMORY) EQS

.

"UNDEFINED" THEN -

'COMMAND'

MEMORY

$!

Assume second argument is a file name and save it

.

If a file name

$!

was specified then go process it

.

$

	

FILE

= P2

$

	

IF

FILE NES

.

"" THEN GOTO PARSE FILE

$!

No file name was given

.

If something was saved in command memory

$!

then ask if it is to be used again

;

otherwise, just ask for

$!

	

a

file name

.

$

	

MEMORY

= 'COMMAND'_MEMORY

$

	

_IF

MEMORY EQS

.

"" THEN _GOTO ASK

$

	

_INQUIRE/EXIT=NEXT

FILE "FILE < ''MEMORY'>"

$

	

_IF

FILE EQS

.

"" THEN FILE = MEMORY

$

	

GOTO

PARSE FILE

$!

Ask for a file spec if none was given on the command line and none

$!

was saved in command memory

$

ASK

:
$

	

_INQUIRE/EXIT=EXIT

FILE "FILE"

$

	

IF

FILE EQS

.

"" THEN GOTO ASK

Sample

Command Procedures

$!

This section parses the file spec

.

It separates any switches,

$!

constructs an argument list, and checks the file spec for wildcards

.
$!

After the argument list is constructed it is saved in the

$!

command memory

.

$

PARSE-FILE

:
$

	

POS

= F$INSTR(l,FILE,"/")

$

	

SWITCH

= ""

$!

If the file spec was wildcard then ask for confirmation of any

$!

file that matches the wild card

.

If the user accepted the default

$!

then construct the arg list with the next file

.

$

ASK WILD

:
$

	

_INQUIRE/EXIT=NEXT

FILE "FILE < "NEXT FILE'>"

$

	

_IF

FILE NES

.

"" THEN _GOTO PARSE-FILE

$

	

FILE

= NEXT_FILE

$

	

ARGS :_

'FILE' 'SWITCH' 'P3' 'P4' 'P5' 'P6' 'P7' 'P8'

$!

At last

.

Invoke the command on the constructed arg list

$

DOIT

:
$

	

SET

NODATA

$

	

7COMMAND'

'ARGS'

$

	

SET

DATA

$!

If it was a wildcard file spec then get the next file and

$!

process it too

.

$!

All done

.

Clean up and exit

$

EXIT

:
$

	

VERIFY

= F$VERIFY(VERIFY)

$

	

EXIT

$ NEXT :
$ NEXT_

FILE

$ _IF

WILD THEN NEXT FILE = F$SEARCH()

$ -IF

NEXT-FILE NES_ ""

THEN

-GOTO ASK WILD

IF

POS NE

.

0 THEN SWITCH = F$RIGHT(FILE,POS)

FILE

= F$PARSE(FILE)

ARGS :_

'FILE' 'SWITCH' 'P3' 'P4' 'P5' 'P6' 'P7'

'P8'

_IF

ARGS NES

.

""

THEN

'COMMAND' MEMORY == ARGS

WILD

= (F$PARSE(FILE

�

"FLAGS") AND

.

870) NE

.

0

_IF

NOT

.

WILD THEN _GOTO DOIT

NEXT

FILE = F$SEARCH(FILE)

Appendix

B

RSTS/E

and VAX/VMS Command Processor Differences

Chapter

2 notes that it is desirable, where possible, to provide

compatibility

between RSTS/E and VAX/VMS

.

This helps customers who

use

both operating systems, as well as those who will migrate to VAX

systems

in the future

.

Since RSTS/E and VMS have many inherent

differences,

complete compatibility between the two systems is neither

desirable

nor possible

.

This

appendix lists some of the major differences between the RSTS/E

and

VMS command processors

:

o

Character substring replacement -- RSTS/E does not support

the

VMS substring assignment feature

:

symbol-name[offset,size] :=[=]

string-value

o

Arithmetic overlays -- RSTS/E does not support the VMS binary

overlay

feature

:

symbol-name[bit-position,size]

= expression

o

Exit status values -- RSTS/E recognizes only the following

exit

status values

:

0

(warning)

1

(Success)

2

(Error)

4

(Severe error)

Note

that RSTS/E does not support the VMS exit status value 3

(information) .

o

Symbol substitution -- RSTS/E only supports the apostrophe

character

as a substitution operator

.

RSTS/E does not

support

the VMS ampersand substitution operator

.

Users who

need

the 'multi-level' substitution feature provided by the

ampersand

operator can issue multiple assignments to produce

the

same result

.

RSTS/E

and VAX/VMS Command Processor Differences

o

Symbol name abbreviations -- In order to maintain

compatibility

with other commands, RSTS/E uses the hyphen (-)

character

to identify a symbol name's minimum abbreviation

.
RSTS/E

also accepts the VMS abbreviation character (*)

.

o

RSTS/E accepts abbreviations for all command synonyms and

functions .

o

String operators -- RSTS/E only supports the string

concatenation

operator, not the string reduction operator

.

o

Symbol tables -- RSTS/E does not define local symbols at the

interactive

level

.

If a local symbol assignment is attempted

at

the interactive level, DCL places the symbol in the global

symbol

table

.

If a command that accepts the /GLOBAL and

/LOCAL

qualifiers is issued with /LOCAL at the interactive

level,

DCL issues an error message

.

o

Symbol table searching -- VMS performs symbol searching by

first

searching the local symbol table at the current command

level,

then searching each higher command level's local

symbol

table, and then finally searching the global symbol

table .

RSTS/E first searches the local symbol table at the

current

command level, then the global symbol table

.

No

higher-level

local symbol tables are searched

.

o

VMS String Functions -- Since many RSTS/E users make use of

BASIC-PLUS

as a programming language, the DCL string handling

functions

on RSTS/E are compatible with BASIC-PLUS string

functions .

Use of the VMS string functions would cause

unnecessary

confusion for RSTS/E users, since the VMS

functions

use (0-based) offset arguments, rather than

(1-based)

position arguments

.

The

following list outlines the RSTS/E string handling

functions

and the corresponding VMS function

:

RSTS/E

Function	

VMS

Function

F$ASCII

	

(none)
F$CHR

	

(none)
F$CVTIME

F$CVTIME

F$EDIT

	

(none)
F$INSTR

	

F$LOCATE
F$LEFT

	

(none)
F$LENGTH

F$LENGTH

F$MID

	

F$EXTRACT
F$RIGHT

	

(none)

RSTS/E

and VAX/VMS Command Processor Differences

0

DCL Files -- VMS uses a logical name as the means for

referencing

an open file with the READ, WRITE and CLOSE

commands .

Furthermore, VMS makes use of standard logicals to

refer

to the input, command and output devices (SYS$INPUT,

SYS$COMMAND,

and SYS$OUTPUT)

.

RSTS/E uses a channel number

to

reference files opened with the OPEN command

.

This

technique

lends itself more naturally to the file access

mechanisms

used in BASIC-PLUS

.

Table C-1 lists RSTS/E error messages and their corresponding numeric

values .

Table C-1 : RSTS/E Error Messages

Appendix C

RSTS/E Error Messages

+----------+---+

Decimal ~

	

I

j Value

	

Full Error Text
+----------+---+

I

1

	

??Bad directory for device

2

	

?Illegal file name

3

	

?Account or device in use

j

	

4

	

?No room for user on device

5

	

?Can't find file or account

	

I

6

	

?Not a valid device

7

	

?I/0 channel already open

	

1

8

	

?Device not available

I

	

9

	

?I/0 channel not open

10

	

?Protection violation

11

	

?End of file on device

12

	

??Fatal system I/O failure

13

	

?Data error on device

14

	

?Device hung or write locked

15

	

?Keyboard wait exhausted

III

	

16

	

?Name or account now exists

j

	

17 ! ?Too many open files on unit

18 I ?Illegal SYS () usage

19

	

?Disk block is interlocked

j

	

20

	

?Pack IDs don't match

21

	

?Disk pack is not mounted

	

j

22

	

?Disk pack is locked out

23 !, ?Illegal cluster size

	

j

24

	

?Disk pack is private

25

	

oDisk pack needs REBUILDing

RSTS/E Error Messages

Table C-1 : RSTS/E Error Messages (Cont .)

+----------+---+

Decimal I

	

j

Value

	

Full Error Text

	

j
+----------+---+

!

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

C- 2

26 I ??Disk pack mount error j
27 j ?I/0 to detached keyboard j
28 I Programmable ^ C trap j
29 j ??Unused error message 29
30 j ?Device not file-structured j
31 j ?Illegal byte count for I/0 j
32 j ?No buffer space available j
33 ??Odd address trap j
34 j ??Reserved instruction trap j
35 ??Memory management trap j
36 j ??SP stack overflow
37 ??Disk error during swap
38 ??Memory parity failure j
39 j ?Maptape select error j
40 ?Maptape record length error j
41 1 ??Non-res run-time system j
42 ?Virtual buffer too large j
43 ?Virtual array not on disk j
44 ', ?Matrix or array too big j
45 ?Virtual array not yet open j
46 ?Illegal I/0 Channel j
47 ?Line too long j
48 %Floating point error
49 %Argument too large in EXP
50 %Data format error
51 %Integer error j
52 ?Illegal number j
53 j %Illegal argument in LOG j
54 j %Imaginary square roots j
55 -'Subscript out of range j
56 j ?Can't invert matrix j
57 ?Out of data
58 ?ON statement out of range j
59 ?Not enough data in record j
60 ! ?Integer overflow, FOR loop j
61 oDivision by 0 j
62 ?No run-time system j
63 ?FIELD overflows buffer j
64 ?Not a random access device j
65 ?Illegal MAGTAPE() usage j
66 ?Missing special feature j
67 j ?Illegal switch usage j
68 !, ?End of volume j
69 ?Quota exceeded j
70 ??Unused error message 70

Table C-1 : RSTS/E Error Messages (Cont .)
+----------+--__----_____----+
Decimal I
Value

	

Full Error Text+----------+---__-_+
I

	

Ij

	

71

	

?Statement not found
72

	

?RETURN without GOSUB

	

!,
73

	

?FNEND without function call
74

	

?Undefined function called
75 j ?Illegal symbol
76

	

?Illegal verb
I

	

77

	

?Illegal expression
78

	

?Illegal mode mixing
79

	

?Illegal IF statement
80

	

?Illegal conditional clause
81

	

?Illegal function name
82 j ?Illegal dummy variable
83

	

?Illegal FN redefinition
84

	

?Illegal line number(s)
85

	

?Modifier error
86

	

??Unused error message 86
87 j ?Expression too complicated
88

	

?Arguments don't match
89

	

?Too many arguments
90

	

%Inconsistent function usage
91

	

?Illegal DEF nesting
92

	

?FOR without NEXT
93

	

?NEXT without FOR
94

	

?DEF without FNEND
95

	

?FNEND without DEF
96

	

?Literal string needed
97

	

?Too few arguments
98

	

?Syntax error
99

	

?String is needed
100

	

?Number is needed
101

	

?Data type error
102

	

?l or 2 dimensions only
103

	

??Program lost-Sorry
104 I ?RESUME and no error
105

	

?Redimensioned array
106

	

%Inconsistent subscript use
107

	

?ON statement needs GOTO
108

	

?End of statement not seen
109 ?What?
110

	

?Bad line number pair
111

	

?Not enough available memory
112

	

?Execute only file
113

	

?Please use the RUN command
114

	

?Can't CONTinue
115

	

?File exists-RENAME/REPLACE

C- 3

RSTS/E Error Messages

RSTS/E Error Messages

Table C-1 : RSTS/E Error Messages (Cont .)

+__________+-___________________-______________--_-_-______--_______-+
Decimal

	

I
Value

	

Full Error Text
+__________+__--_______________________________-------_______--______+

I

	

I

	

I
116 ! ?PRINT-USING format error
117

	

?Matrix or array without DIM
118 j ?Bad number in PRINT-USING
119

	

?Illegal in immediate mode
120

	

.PRINT USING buffer overflow

	

I
121

	

?Illegal statement
122

	

?Illegal FIELD variable
123 Stop
124

	

?Matrix dimension error
125

	

?wrong math package
126

	

??Maximum memory exceeded
127

	

%SCALE factor interlock
128

	

?Tape records not ANSI
129

	

?Tape BOT detected
130

	

?Key not changeable
131

	

?No current record
132

	

?Record has been deleted
133

	

?Illegal usage for device
134

	

?Duplicate key detected
135

	

?Illegal usage
136

	

?Illegal or illogical access
137

	

?Illegal key attributes
138

	

?File is locked
139

	

?Invalid file options
140

	

?Index not initialized
141

	

?Illegal operation
142

	

?Illegal record on file
143

	

?Bad record identifier
144

	

?Invalid key of reference
145

	

?Key size too large
146

	

?Tape not ansi labeled
147

	

?RECORD number exceeds max
148

	

?Bad RECORDSIZE on OPEN
149

	

?Not at end of file
150

	

?No primary key specified
151

	

?Key field beyond record end
152

	

?Illogical record accessing
153

	

?Record already exists
154

	

?Record/bucket locked
155

	

?Record not found
156

	

?Size of record invalid
157

	

?Record on file too big
158

	

?Primary key out of sequence
159

	

?Key larger than record
160

	

?File attributes not matched

C- 4

Table C-1 : RSTS/E Error Messages (Cont .)
+----------+--_+

Decimal I
Value

	

Full Error Text+----------+----------------------------------__---------------------+
I

C- 5

RSTS/E Error Messages

182
183
184
185
186

I ?Network
?REMAP
?Unaligned

I %RECORDSIZE
?Improper

operation rejected
overflows buffer

REMAP variable
overflows MAP

error handling
187 j ?Illegal record lock clause
188 ??Unused ERROR message 188
189 ??Unused ERROR message 189
190 j ??Unused ERROR message 190
191 j ??Unused ERROR message 191
192 ??Unused ERROR message 192
193 ??Unused ERROR message 193
194 ??Unused ERROR message 194
195 ??Unused ERROR message 195
196 ??Unused ERROR message 196
197 1, ??Unused ERROR message 197
198 ??Unused ERROR message 198
199 ??Unused ERROR message 199
200 ??Unused ERROR message 200
201 ??Unused ERROR message 201
202 ??Unused ERROR message 202
203 ??Unused ERROR message 203
204 ??Unused ERROR message 204
205 ??Unused ERROR message 205

161 ?Move overflows buffer
162 ?Cannot open file
163 j ?No file name
164 ?Terminal fmt file required
165 ?Cannot position to EOF
166 ?Negative fill or string len
167 ?Illegal record format
168 ?Illegal ALLOW clause
169 ! ??Unused ERROR message 169
170 ?Indexed not fully optimized
171 ?RRV not fully updated
172 ?Record LOCK failed
173 I ?Invalid RFA field
174 ?Unexpired file date
175 ?Node name error
176 ?Negative TAB not allowed
177 ?Too much data in record

I 178 ?OPEN Error - file corrupted
179 ??Unused ERROR message 179
180 ?No support for op in task
181 %Decimal overflow

RSTS/E Error Messages

Table C-1 : RSTS/E Error Messages (Cont .)
----------.---
Decimal

	

I
Value

	

Full Error Text+----------+---+

206

	

??Unused ERROR message 206
207

	

??Unused ERROR message 207
208

	

??Unused ERROR message 208
209

	

??Unused ERROR message 209
210 I ??Unused ERROR message 210
211

	

??Unused ERROR message 211
212 j ??Unused ERROR message 212
213

	

??Unused ERROR message 213
214

	

??Unused ERROR message 214
215

	

??Unused ERROR message 215
216 I ??Unused ERROR message 216
217 j ??Unused ERROR message 217
218

	

??Unused ERROR message 218
219

	

??Unused ERROR message 219
220

	

??Unused ERROR message 220
221

	

??Unused ERROR message 221
222

	

??Unused ERROR message 222
223

	

??Unused ERROR message 223
224 I ??Unused ERROR message 224
225

	

??Unused ERROR message 225
226

	

??Unused ERROR message 226
227

	

?String too long
228

	

?RECORDTYPES not matched
229

	

??Unused ERROR message 229
230

	

?No fields in image
231

	

?Illegal string image
232

	

?Null image
233

	

?Illegal numeric image
234

	

?Numeric image for string
235

	

?String image for numeric
236

	

?TIME limit exceeded
237

	

?1st arg to SEQ$ > 2nd
238

	

?Arrays must be same dim
239

	

?Arrays must be square
240

	

?Cannot change array dims
241

	

?Floating overflow
242

	

?Floating underflow
243

	

?CHAIN to non-existent line
244

	

?Exponentiation error
245

	

?Illegal exit from DEF*
246

	

?Error trap needs RESUME
247

	

?Illegal RESUME to SUBR
246

	

?Illegal subroutine return
249 ?Argument out of bounds
250

	

?Not implemented

C- 6

Table

C-1

:

RSTS/E Error Messages (Cont

.)

-

- -

Decimal
Value

	

Full

Error Text

-__________+___+
i

251

	

?Recursive

subroutine call

252

	

?FILE

ACP failure

253

	

?Directive

error

254

	

??Unused

ERROR message 254

255

	

??Unused

ERROR message 255

--

RSTS/E

Error Messages

Table

D-1 lists all ASCII character codes

.

Table

D-1

:

ASCII Character Codes

Appendix

D

ASCII

Character Codes

+--+
ASCII

+---------+-------+------------+---------------------__--------------+
Decimal

I Octal	

Character

	

Remarks
+---------+-------+------------+-------------------------------------+

I

	

I

	

I

	

I

j

j

0 000 NUL Null,

FILL character

1 001 SOH !

CTRL/A

2 002 STX CTRL/B
3 003 ETX j

CTRL/C

4 004 EOT !

End of transmission, CTRL/D

5 005 ENQ j

CTRL/E

6 006 ACK CTRL/F
7 007

j

BEL Bell,

CTRL/G

8 010 BS Backspace,

CTRL/H

9 j

011

HT Horizontal

tab, CTRL/I

10 012 LF Line

feed, CTRL/J

11 013 VT Vertical

tab, CTRL/K

12 014 FF Form

feed, page, CTRL/L

13 015 CR Carriage

return, CTRL/M

14 016 SO CTRL/N
15 017 SI I

CTRL/O

16 020 DLE CTRL/P
17 021 DC1 CTRL/Q*,

XON

18 022

1

DC2 CTRL/R
19 023

j

DC3 CTRL/S**,

XOFF

20 024 DC4 CTRL/T
21 025 NAK CTRL/U
22 026 SYN CTRL/V
23 027 ETB !

CTRL/W

D-1

ASCII Character Codes

Table D-1 : ASCII Character Codes (Cont .)

+------------------------__-----__----___----------------------__-___+

ASCII
+---------+-------+-___--------+-------------__-------------------___+

Decimal Octal Character

	

Remarks

	

j
+---------+-------+------------+--------------------------------__---+

I

	

~

	

I
j

j

j

j

j

j

24 030 CAN ', CTRL/X
25 031 EM CTRL/Y
26 032 SUB j CTRL/Z, end of file
27 033 ESC Escape***
28 034 FS File Separator

29 035 GS Group Separator
30 036 !, RS !, Record Separator
31 037 j US !, Unit Separator
32 040 SP Space or blank
33 041 ! Exclamation point
34 042 Quotation mark
35 043 # Number sign
36 044 $ Dollar sign
37 045 o Percent sign
38 046 & Ampersand
39 047 Apostrophe
40 050 (Left parenthesis
41 051) Right parenthesis
42 052 * Asterisk
43 053 + Plus
44 054 Comma
45 055 - Hyphen or minus
46 056 Period or decimal point
47 j 057 j / Slash
48 060 0 Zero
99 061 1 One
50 I 062 ! 2 Two
51 063 3 Three
52 064 4 Four
53 065 5 Five
54 066 6 Six
55 067 7 Seven
56 070 8 Eight
57 071 9 Nine
58 072 Colon
59 073 Semicolon
60 074 < ! Left angle bracket, "less than"

sign
61 075 ! = Equal sign
62 076 > Right angle bracket, "greater than"

sign
63 077 ? Question mark
64 100 @ At sign

D-2

Table D-1 : ASCII Character Codes (Cont .)

+---__-_______-+

ASCII
+---------+_--__--+--------__--+----------------___------------------+
I Decimal I Octal I Character 11	Remarks

	

I
+---------+-------+------------+---__--__-------------------___----__+

I

	

I

	

!

	

I
65

	

101

	

A

	

Uppercase A
66

	

102

	

B

	

Uppercase B
67

	

103

	

C

	

Uppercase C
68

	

104

	

D

	

i Uppercase D
69

	

105

	

E

	

j Uppercase E

	

j
70

	

106 j

	

F

	

Uppercase F
71

	

107

	

G

	

Uppercase G
72

	

110

	

H

	

Uppercase H
73

	

111

	

I

	

', Uppercase I
74

	

I 112 j

	

J

	

Uppercase J
75

	

113

	

K

	

Uppercase K
76

	

114

	

L

	

Uppercase L
77

	

115 11	M

	

Uppercase M

78

	

116

	

N

	

Uppercase N

79

	

117

	

0

	

Uppercase 0

80

	

j 120

	

P

	

Uppercase P

81

	

(121

	

Q

	

Uppercase Q

82

	

j 122

	

R

	

Uppercase R

83

	

123

	

S

	

Uppercase S

	

j

84

	

124 I,

	

T

	

Uppercase T

85

	

125

	

U

	

j Uppercase U

j

	

86

	

126

	

V

	

Uppercase V

87

	

127

	

W

	

Uppercase W

88

	

130

	

X

	

Uppercase X

89

	

131

	

Y

	

j Uppercase Y
I

90

	

132 j

	

Z

	

Uppercase Z

91

	

133

	

[

	

Left square bracket

I 92 134 j \

	

Backslash
93

	

135

	

]

	

Right square bracket
94 j 136

	

Circumflex I
95 137 _ Underscore
96

	

140

	

Grave accent
j

	

97

	

j 141

	

a

	

Lowercase a
98

	

142 !,

	

b

	

Lowercase b

	

j
j

	

99

	

143

	

c

	

Lowercase c
100

	

144 !

	

d

	

Lowercase d
101

	

145

	

e

	

Lowercase e
102

	

146

	

f

	

Lowercase f I
103

	

147 !

	

g

	

! Lowercase g
104

	

150

	

h

	

Lowercase h
105

	

151

	

i

	

Lowercase i
106

	

152

	

j

	

Lowercase j

	

j
107

	

153

	

k

	

Lowercase k

D- 3

ASCII Character Codes

ASCII Character Codes

Table D-1 : ASCII Character Codes (Cant .)
+--------------------------------------__----------------------------+

ASCII+---------+----__-+------------+-----------------------------___-----+
I Decimal I Octal I Character j

	

Remarks+--------_+__-----+----------__+------------__------------------------F .
I

	

I

	

I

	

I

	

i108

	

154

	

1

	

Lowercase 1
109

	

155

	

m

	

Lowercase m
I

	

110

	

156

	

n

	

Lowercase n
111

	

157

	

o

	

Lowercase o
j

	

112

	

160

	

p

	

Lowercase p
113

	

j 161

	

q

	

Lowercase q
114

	

I 162

	

r

	

Lowercase r
115

	

163

	

s

	

Lowercase s
116

	

164

	

t

	

j Lowercase t
117

	

165 I

	

u

	

Lowercase u

	

j
118

	

166

	

v

	

Lowercase v
119

	

j 167

	

w

	

j Lowercase w

	

j
120

	

170

	

x

	

Lowercase x
121

	

171

	

y

	

j Lowercase y
122

	

172

	

z

	

Lowercase z
123

	

173

	

{

	

Left brace
124

	

174

	

Vertical line
125

	

175

	

}

	

Right brace ***
126

	

1 176

	

Tilde ***

	

j127 I 177

	

DEL

	

I Delete
128 1 200

	

Reserved
129 201

	

Reserved
130 (202

	

Reserved
j 131 203

	

Reserved
j 132 204 IND Index
j

	

133

	

205 j

	

NEL

	

New line
I 134 206 j SSA
j 135 207 ESA
i

	

136

	

j 210

	

HTS

	

Horizontal tab set
i 137 211 HTJ
I

	

138

	

212

	

VTS

	

Vertical tab set
139

	

213

	

PLD

	

Partial line down
j

	

140

	

j 214

	

PLU

	

Partial line up
j

	

141

	

215

	

RI

	

Reverse Index
142

	

216

	

SS2

	

Single shift 2
143

	

217

	

SS3

	

Single shift 3
144

	

220

	

DCS

	

Device control string
145 221 PU1
146 222 PU2
147 223 STS I
148 224 CCH I
149 225 ; MW

I, 150 226 SPA

D- 4

Table D-1 : ASCII Character Codes (Cont .)

D- 5

ASCII Character Codes

+---------__--__-+

ASCII

+--------_+-------+------------+-------------------------------------+

I Decimal I Octal I Character I

	

Remarks

-.---------+-------+------------+-------------------------------------+

I

	

I

	

I

	

I

	

I

151 227 EPA

152

	

230 1

	

1 Reserved

153

	

231 1

	

(Reserved

154 232

	

Reserved

j

	

155

	

233 I

	

CSI

	

Control sequence introducer

156

	

234

	

ST

	

String terminator

j 157 235

	

OSC

	

I

158 1 236

	

PM

159 237 APC

	

I

160 240

	

Reserved

j

	

161

	

241

	

;

	

Inverted exclamation point

162

	

242 1

	

C

	

Cent sign

163

	

!, 243

	

£

	

Pound sign

164 244

	

Reserved

165

	

1 245

	

y

	

Yen sign

166 246

	

Reserved

167

	

247

	

§

	

Section sign

168

	

250

	

A

	

General currency sign

169

	

251

	

o

	

Copyright sign

170

	

11 252

	

A

	

Feminine ordinal indicator

171

	

253

	

Angle quotation mark left

	

j

172 254

	

Reserved

173 255

	

Reserved

174 256

	

Reserved

175 257

	

Reserved

176

	

j 260

	

°

	

Degree sign

j

	

177

	

261

	

±

	

Plus/minus sign

178

	

262 j

	

z

	

Superscript 2

j

	

179

	

263

	

3

	

Superscript 3

j 180 264

	

Reserved

181

	

265 I

	

N

	

Micro sign

182

	

266

	

~~

	

Paragraph sign, pilcrow

I

	

183

	

267

	

Middle dot

!, 184 270

	

Reserved

185

	

271

	

'

	

Superscript 1

186

	

272

	

°-

	

Masculine ordinal indicator

187

	

273

	

I Angle quotation mark right

188

	

274

	

;

	

Fraction one quarter

	

j

189

	

275

	

=~

	

Fraction one half

190 276 I

	

Reserved

191

	

277

	

Inverted question mark

192

	

300

	

A

	

Uppercase A with grave accent

1

	

193

	

301

	

A

	

Uppercase A with acute accent

ASCII Character Codes

Table D-1 : ASCII Character Codes (font .)
+----------------------------------____----____----------------__----+

ASCII+---------+-------+------------+---____-------__---------------------+
Decimal octal Character

	

Remarks+---------+-------+------------+-------------------------___---------+
I
I
I
I
i
I

I
I
I
I
II
I

umlaut mark
Uppercase I with grave accent
Uppercase I with acute accent
Uppercase I with circumflex accent
Uppercase I with diaeresis or
umlaut mark

umlaut mark

umlaut mark
Uppercase Y with diaeresis or
umlaut mark
Reserved
German lowercase sharp s
Lowercase a with grave accent
Lowercase a with acute accent
Lowercase a with circumflex accent
Lowercase a with tilde
Lowercase a with diaeresis or
umlaut mark
Lowercase a with ring

D- 6

194 302 A
195 303 A
196 304 A
197 305 A
198 306
199 307
200 310 E
201 311 E
202 312 E
203 313 E
204 314 I
205 315 I
206 316 I
207 317 I
208 320
209 321 !, N
210 322 O
211 323 O
212 324 0
213 325 O
214 326 0
215 327
216 j 330 0
217 331 U
218 332 U
219 333 U
220 334 U
221 I335 Y
222 336
223 337 f3
224 340 a
225 341 a226 342 a227 343 a228 344 a
229 345 a

Uppercase A with circumflex accentUppercase A with tildeUppercase A with diaeresis orumlaut markUppercase A with ringUppercase A with dipthongUppercase C with cedillaUppercase E with grave accentUppercase E with acute accentUppercase E with circumflex accentUppercase E with diaeresis or

ReservedUppercase N with tildeUppercase 0 with grave accentUppercase 0 with acute accentUppercase 0 with circumflex accentUppercase 0 with tildeUppercase 0 with diaeresis or
Uppercase OE ligatureUppercase 0 with slashUppercase U with grave accentUppercase U with acute accentUppercase U with circumflex accentUppercase U with diaeresis or

Table D-1 : ASCII Character Codes (Cont .)

ASCII Character Codes

+________---_____-________-________________________-_________________+
ASCII

+-______--+_-__-__+___----_____+________________________-__-__-___-__+
Decimal I Octal ! Character

	

Remarks
--___-___-__----_+__-----_____+-___________-_________-__----____---

!

	

I

	

I

	

I

	

I
230

	

! 346

	

Lowercase ae dipthong
231

	

! 347

	

g

	

Lowercase c with cedilla
232

	

I 350 j

	

e

	

Lowercase e with grave accent233

	

! 351 !

	

6

	

Lowercase e with acute accent234

	

! 352

	

e

	

Lowercase e with circumflex accent235

	

j 353

	

6

	

Lowercase e with diaeresis orumlaut mark236

	

354

	

i

	

! Lowercase i with grave accent237

	

355

	

i

	

Lowercase i with acute accent238

	

! 356

	

i

	

Lowercase i with circumflex accent239

	

357

	

Lowercase i with diaeresis orumlaut mark240 360

	

Reserved

	

!241

	

361

	

n

	

Lowercase n with tilde242

	

! 362

	

o

	

Lowercase o with grave accent243

	

363

	

o

	

Lowercase o with acute accent244

	

! 364

	

o

	

Lowercase o with circumflex accent!

	

245

	

365

	

o

	

Lowercase o with tilde246

	

366

	

o

	

Lowercase o with diaeresis or!

	

umlaut mark247

	

367

	

M

	

I Lowercase oe ligature248

	

370

	

o

	

Lowercase o with slash249

	

371

	

u

	

Lowercase u with grave accent250

	

! 372

	

u

	

Lowercase u with acute accent

	

j251

	

! 373

	

u

	

Lowercase u with circumflex accentj

	

252

	

374

	

Lowercase u with diaeresis orumlaut mark253

	

375

	

y

	

Lowercase y with diaeresis orumlaut mark

	

!254 ! 376

	

Reserved255 j 377

	

', Reserved* CTRL/Q, or XON, resumes output if the TTSYNC terminalcharacteristic is set .** CTRL/S, or XOFF, stops output if the TTSYNC terminalcharacteristic is set .*** ALTMODE(ASCII 125) or PREFIX (ASCII 126) keys, which appear onsome terminals, are translated internally into ESCAPE if theALT MODE terminal characteristic is set .+______________________---______________-____-____-___________-______+

