
RT-11, RSTS/E FORTRAN IV
User's Guide
Order No. AA-5749B-TC
and
Update Notice No . 1 (AD-5749B-T1)

March 1983

This document describes the operating procedures for the FORTRAN IV
Compiler and Object Time System (OTS) for the operating systems listed
below. In conjunction with the PDP-11 FORTRAN IV Language Reference
Manual, this document provides the information required to write and run a
FORTRAN IV program under the operating systems listed below .

SUPERSESSION/UPDATE INFORMATION : This document includes
Update Notice No . 1
(AD-5749B-T1) .

OPERATING SYSTEM AND VERSION :

	

RT-11 V5 .0
RSTS/E V8 .0

SOFTWARE VERSION :

	

FORTRAN IV V2 .6

digital equipment corporation • maynard, massachusetts

The following are trademarks of Digital

DEC

	

DIBOL
DEC/CMS

	

EduSystem
DECnet

	

IAS
DECsystem-10

	

MASSBUS
DECSYSTEM-20

	

PDP
DECUS

	

PDT
DECwriter

	

RSTS

HOW TO ORDER ADDITIONAL

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire, Alaska, and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6146 (all other Canadian)

DIRECT MAIL ORDERS (USA & PUERTO RICO)`
Digital Equipment Corporation
P .O . Box CS2008
Nashua, New Hampshire 03061

'Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

First Printing, December 1975
Revised : September 1977

Revised : June 1980
Revised : March 1983

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation . Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document .

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license .

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies .

Copyright

	

1975, 1977, 1980, 1983
by Digita Equipment Corporation

All Rights Reserved .

Printed in U .S .A .

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation .

Equipment Corporation :

RSX
UNIBUS
VAX
VMS
VT

dB g

DOCUMENTATION

DIRECT MAIL ORDERS (CANADA)
Digital Equipment of Canada Ltd .
940 Belfast Road
Ottawa, Ontario K1G 4C2
Attn : A&SG Business Manager

DIRECT MAIL ORDERS (INTERNATIONAL)
Digital Equipment Corporation
A&SG Business Manager
c/o Digital's local subsidiary or
approved distributor

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

ZK2269

CONTENTS

Page

PREFACE vii

CHAPTER

	

1

	

OPERATING PROCEDURES

	

1-1

1 .1 USING THE FORTRAN IV SYSTEM 1-1
1 .1 .1 Compiler-Generated Code 1-1
1 .1 .1 .1 Code Options 1-2
1 .1 .1 .2 Code Selection and Error Messages 1-2
1 .1 .2 File Name Specifications 1-3
1 .1 .3 Locating a File 1-7
1 .2 RUNNING THE FORTRAN IV COMPILER 1-7
1 .2 .1 Under RT-11 (with Keyboard Monitor Commands) 1-7
1 .2 .1 .1 Under RSTS/E 1-8
1 .2 .2 Compiler Options (Switches) 1-9
1 .2 .3 Listing Formats 1-11
1 .2 .3 .1 Options Listing 1-15
1 .2 .3 .2 Source Listing 1-15
1 .2 .3 .3 Storage Map Listing 1-15
1 .2 .3 .4 Generated Code Listing 1-15
1 .2 .3 .5 Compilation Statistics 1-16
1 .2 .4 Compiler Memory Requirements 1-16
1 .2 .4 .1 Compiler Memory Requirements Under RT-11 1-16
1 .2 .4 .2 Compiler Memory Requirements Under RSTS/E 1-16
1 .3 LINKING PROCEDURES 1-17
1 .3 .1 Linking Under RT-11 1-17
1 .3 .2 Linking Under RSTS/E 1-20
1 .4 LIBRARY USAGE 1-24
1 .4 .1 Overlay Usage 1-25
1 .4 .2 Extended Memory Overlays (RT-11 Only) 1-27
1 .4 .3 Stand-Alone FORTRAN 1-28
1 .4 .4

	

FORTRAN Programs Run as VIRTUAL Jobs
(RT-11 Only) 1-28

1 .4 .5 Unformatted Byte I/0 1-29
1 .4 .6 Smaller Execution-Time Programs 1-30
1 .5 EXECUTION PROCEDURES 1-30
1 .5 .1 Execution Under RT-11 1-30
1 .5 .2 Execution Under RSTS/E 1-30
1 .6

	

DEBUGGING A FORTRAN IV PROGRAM

	

1-31

CHAPTER

	

2

	

FORTRAN IV OPERATING ENVIRONMENT

	

2-1

2 .1 FORTRAN IV OBJECT-TIME SYSTEM 2-1
2 .2 OBJECT CODE 2-1
2 .2 .1 Processor-Defined Functions 2-3
2 .2 .2 VIRTUAL Array Options (RT-11 Only) 2-4
2 .2 .3 NOVIR .OBJ 2-5
2 .2 .4 VIRP .OBJ 2-5
2 .2 .5 VIRNP .OBJ 2-5
2 .2 .6

	

Converting a Program to Use VIRTUAL Arrays

	

2-6

iii

CONTENTS

iv

Page

2 .3 SUBPROGRAM LINKAGE 2-9
2 .3 .1 Subprogram Register Usage 2-11
2 .4 VECTORED ARRAYS 2-12
2 .5 PROGRAM SECTIONS 2-14
2 .5 .1 Compiled Code PSECT Usage 2-14
2 .5 .2 Common Block PSECT Usage 2-14
2 .5 .3 OTS Library PSECT Usage 2-15
2 .5 .4 Ordering of PSECTs in Executable Programs 2-16
2 .6 TRACEBACK FEATURE 2-17
2 .7 RUN-TIME MEMORY ORGANIZATION (RT-11 ONLY) 2-18

CHAPTER 3 FORTRAN IV SPECIFIC CHARACTERISTICS 3-1

3 .1 OPEN/CLOSE STATEMENT RESTRICTIONS 3-1
3 .1 .1 Keyword Constraints 3-2
3 .2 SOURCE LINES 3-3
3 .3 VARIABLE NAMES 3-4
3 .4 INITIALIZATION OF COMMON VARIABLES 3-4
3 .5 CONTINUATION LINES 3-4
3 .6 STOP AND PAUSE STATEMENTS 3-4
3 .7 DEVICE/FILE DEFAULT ASSIGNMENTS 3-5
3 .8 MAXIMUM RECORD LENGTHS 3-6
3 .9 DIRECT ACCESS I/0 3-6
3 .9 .1 DEFINE FILE Statement 3-6
3 .9 .2 Creating Direct Access Files 3-6
3 .10 INPUT/OUTPUT FORMATS 3-6
3 .10 .1 Formatted I/0 3-7
3 .10 .2 Unformatted I/O 3-7
3 .10 .3 Direct-Access I/0 3-8
3 .11 MIXED-MODE COMPARISONS 3-3
3 .12 FORTRAN BUFFERED I/0 3-9

CHAPTER 4 INCREASING FORTRAN IV PROGRAMMING EFFICIENCY 4-1

4 .1 FACTORS AFFECTING PROGRAM EFFICIENCY 4-1
4 .2 INCREASING COMPILATION EFFECTIVENESS 4-1
4 .3 PROGRAMMING TECHNIQUES 4-5

CHAPTER 5 CONCISE COMMAND LANGUAGE OPTION 5-1

5 .1 INTRODUCTION TO THE RSTS/E FORTRAN IV CCL
OPTION 5-1

5 .2 COMMAND INTERFACE 5-1
5 .2 .1 CCL Command Restrictions 5-2
5 .2 .2 CCL Command Comparison 5-2

APPENDIX A FORTRAN DATA REPRESENTATION A-1

A .1 INTEGER FORMAT A-1
A .2 FLOATING-POINT FORMATS A-1
A .2 .1 REAL Format (Two-Word Floating Point) A-2
A .2 .2 DOUBLE PRECISION Format (Four-Word Floating

Point) A-2
A .2 .3 COMPLEX Format A-2
A .3 LOGICAL*1 FORMAT A-3
A .4 HOLLERITH FORMAT A-3
A .5 LOGICAL FORMAT A-3
A .6 RADIX-50 FORMAT A-4

CONTENTS

APPENDIX B LIBRARY SUBROUTINES

Page

B-1

B .1 LIBRARY SUBROUTINE SUMMARY B-1
B .2 ASSIGN B-2
B .3 OPEN (RSTS/E ONLY) B-4
B .4 CLOSE B-6
B .5 DATE B-6
B .6 IDATE B-7
B .7 EXIT B-7
B .8 USEREX B-7
B .9 RANDU,RAN B-8
B .10 SETERR B-8
B .11 ERRTST B-8
B .12 ERRSNS B-9

APPENDIX C FORTRAN IV ERROR DIAGNOSTICS C-1

C .1 COMPILER ERROR DIAGNOSTICS C-1
C .1 .1 Errors Reported by the Initial Phase of the

Compiler C-2
C .1 .2 Errors Reported by Secondary Phases of the

Compiler C-4
C .1 .3 Warning Diagnostics C-12
C .1 .4 Fatal Compiler Error Diagnostics C-13
C .2 OBJECT-TIME SYSTEM ERROR DIAGNOSTICS C-14

APPENDIX D COMPATIBILITY WITH FORTRAN-77 D-1

	

I
D .1 DIFFERENCES BETWEEN FORTRAN-77 AND FORTRAN IV D-1

	

I
D .1 .1 Language Differences D-1
D .1 .2 Implementation Differences D-1

APPENDIX E THE FORTRAN IV SYSTEM SIMULATOR ($SIMRT) E-1

E .1 $SIMRT CAPABILITIES AND RELATIONSHIP TO RT-11 E-1
E .2 $SIMRT TERMINAL HANDLING E-1
E .3 SYSLIB CALLS UNDER $SIMRT E-2
E .4 MODIFYING SIMRT E-3

INDEX Index-1

CONTENTS

vi

Page

FIGURES

FIGURE 1-1 Steps in Compiling and Executing a FORTRAN
IV Program 1-1

1-2 A Sample Compilation Listing 1-13
1-3 Finding the Base Address Section 1-32
2-1 Array Vectoring 2-13
2-2 The Traceback Feature 2-18
2-3 RT-11 8K System Run-Time Memory Organization 2-19

TABLE 1-1

TABLES

Valid Options vs . Configuration 1-2
1-2 Threaded Code Error Messages 1-3
1-3 Device Specifications 1-5
1-4 File Name Types (Extensions) 1-6
1-5 File Protection Codes 1-6
1-6 Compiler Options (Switches) 1-9
1-7 Linker Options Available Under RT-11 1-18
1-8 Linker Options (Switches) Under RSTS/E 1-21
2-1 Comparison of Threaded and In-line Code for

the Statement : I=J*K+REAL 2-3
2-2 Return Value Convention for Function

Subprograms 2-11
2-3 Compiler Organization of Program Sections 2-14
2-4 Organization of OTS Library Modules 2-15
3-1 Keyword Constraints Under RT-11 and RSTS/E 3-2
3-2 FORTRAN Logical Device Assignments 3-5
A-1 ASCII/Radix-50 Equivalents A-4

MANUAL OBJECTIVES

The RT-11, RSTS/E FORTRAN IV User's Guide is intended for use in
developing new FORTRAN programs, and compiling and executing existing
FORTRAN programs on RT-11 and RSTS/E systems . FORTRAN IV language
elements are described in the PDP-11 FORTRAN Language Reference
Manual .

INTENDED AUDIENCE

This manual should be used only after some knowledge of the FORTRAN
language, as implemented on the PDP-11, has been acquired . The
associated document that can be used for this purpose is the PDP-11
FORTRAN Language Reference Manual . The user should also be familiar
with the operating system as described in either the RT-11 System
User's	Guide

	

or the RSTS/E System User's Guide .

	

The RSTS/E
Documentation Directory and the RT-11 Documentation Directory contain
additional information on the respective documentation sets .

STRUCTURE OF THIS DOCUMENT

This manual is organized as follows :

• Chapter 1, "Operating Procedures," contains the information
needed to compile, link, and execute FORTRAN IV programs . It
includes a new section about virtual jobs, and covers
additional linker options .

• Chapter 2, "FORTRAN IV Operating Environment," describes how
to use the facilities of the PDP-11 FORTRAN IV Object-Time
System . It includes information about virtual and vectored
arrays, program sections, and run-time error detection and
memory organization .

• Chapter 3, "FORTRAN IV Specific Characteristics," discusses
FORTRAN IV access methods and input/output, including
information on logical device assignments and record
structure .

• Chapter 4, "Increasing FORTRAN IV Programming Efficiency,"
covers programming considerations relevant to typical FORTRAN
IV applications .

• Chapter 5, "Concise Command Language Option," describes how to
invoke RSTS/E system programs using the Concise Command
Language .

•

	

Appendix A, "FORTRAN Data Representation," summarizes internal
data representation .

PREFACE

vii

• Appendix B, "Library Subroutines," describes user-accessible
FORTRAN Library subroutines .

• Appendix C, "FORTRAN IV Error Diagnostics," describes compiler
and Object-Time System diagnostic messages . It includes a
number of new messages .

• Appendix D, "Compatibility with Other PDP-11 Language
Processors," covers FORTRAN language and implementation
differences .

ASSOCIATED DOCUMENTS

The following documents are relevant to RT-11 and RSTS/E FORTRAN IV
programming :

•

	

PDP-11 FORTRAN Language Reference

•

	

RSTS/EFORTRAN UtilitiesManual

•

	

RSTS/E System User's Guide

•

	

RT-11 System User's Guide

DOCUMENTATION CONVENTIONS

All monitor and system program command lines are terminated by
pressing the RETURN key . Since this is a nonprinting character, at
certain places in the text the notation represents the RETURN
key .

In examples, user responses shown in upper case characters indicate
that you should type the characters exactly as shown .

In format descriptions, uppercase characters represent information
that must be entered exactly as shown ; lowercase characters represent
variable information that must be supplied by the user .

Some special keyboard characters require that the CTRL (control) key
be pressed simultaneously with a second character . These characters
are denoted by " (up arrow) for example ;

	

Z (CTRL Z) .

Ellipsis marks (. . .) indicate the omission of one or more words within
a passage and show that the passage continues in the same vein .

viii

Manual

1 .1 USING THE FORTRAN IV SYSTEM

Figure 1-1 outlines the steps required to prepare a FORTRAN IV source
program for execution under the RT-11 or RSTS/E executive : (1)
compilation, (2) linking, and (3) execution .

CHAPTER 1

OPERATING PROCEDURES

SOURCE
PROGRAM

COMPILER OBJECT
MODULE

LISTING

1-1

LINK

(USER

LIBRARIES

SYSTEM
LIBRARIES

MEMORY
IMAGE

1

	

2

	

3

MAP

EXECUTING
PROGRAM

Figure 1-1 Steps in Compiling and Executing a FORTRAN IV Program

Step 1 in Figure 1-1 is initiated by running the FORTRAN IV Compiler,
FORTRAN, accompanied by a command string that describes the input and
output files, and desired options to be used by the compiler . The
compiler generates an object file which must be linked by the Linker
prior to execution .

Step 2 is initiated by running the Linker, LINK, accompanied by a
similar command string . The Linker combines all program units and the
necessary routines from the FORTRAN Library, and generates a memory
image file .

Step 3 is initiated by the monitor RUN command .

1 .1 .1 Compiler-Generated Code

The FORTRAN IV compiler translates the symbolic (FORTRAN) program into
an object program in binary form, resulting in machine instructions .
If you find that procedures and instructions in a high level language
like FORTRAN sometimes restrict your freedom to handle data as you
would like, you can insert an assembly language routine as you find it
desirable . This process is covered more fully in Section 2 .3 .

OPERATING PROCEDURES

The FORTRAN IV compiler produces two types of object code for a
program :

in-line (PDP-11 machine language)

threaded (linked OTS references)

See Section 2 .2 for a further description of the object code produced .
The default value assumed for the /CODE (or /I) option (see Section
1 .1 .1 .1) is determined at installation time to satisfy the
configuration in which the compiler is installed .

1 .1 .1 .1 Code Options - In-line code is selected for RT-11 through the
keyboard monitor command* options /CODE :EAE, /CODE :EIS, or /CODE :FIS ;
and ,for RSTS/E through options /I :EAE, /I :EIS, or /I :FIS . Throughout
this guide, the RT-11 option is given first, followed by the RSTS/E
equivalent in parentheses . Thus : /NOLINENUMBERS (/S) . Take care to
select the option suitable to the available hardware configuration .
Some configurations will not support execution of in-line code . Table
1-1 shows valid options for certain configurations .

Table 1-1
Valid options vs Configuration

1 .1 .1 .2 Code Selection and Error Messages - When the compiler
produces in-line code (/CODE : [/I :] followed by EAE or EIS or FIS)
the object program executes at greater speed and generally uses less
physical memory . In-line code achieves this optimization, in part, by
omitting instructions to detect or report certain error conditions .
However, you can generate code for error checking by including the
/CODE :THR (/I :THR) option in the compiler command line . Table 1-2
demonstrates the diagnostic benefits of the threaded code option .

1-2

Hardware Arithmetic Options Valid Code Options

Hardware
Configuration KEll-A,B KE11-E

KE11-F
KE11 /CODE : (/I :)

PDT-11/130, - - - THR
PDT-11/150

LSI-11, 11/03 - - NO THR
- - YES EIS, FIS or THR

11/04, 11/05, NO - - THR
11/10, 11/15, YES - - EAE or THR
11/20

11/35, 11/40 NO NO NO THR
YES NO NO EAE or THR
NO YES NO EIS or THR
NO YES YES EIS, FIS or THR

11/23, 11/34, - - - EIS or THR
11/44, 11/45,
11/50, 11/55,
11/60, 11/70

1 .1 .2 File Name Specifications

The FORTRAN and LINK commands, respectively, pass file name
specifications to the FORTRAN IV compiler and Linker . The designator
.typ (type) is used for RT-11 . The RSTS/E equivalent is ext
(extension) . See Table 1-3 for device specifications, and Section
1 .2 .2 for compiler options .

Each file name specification (filespec) has the form :

RT-11

	

RSTS/E

dev :filnam .typ

	

dev :[p,pn]filnam .ext<prot>/sw

where

dev : is an optional two to three character name (up to
six characters for RSTS) specifying a legal device
code as shown in Table 1-3 for a logical device
name . If the device code is omitted, the default
storage (DK :) is used for RT-11 and the public
structure (SY :) is used for RSTS/E .

filnam

	

is any one to six character alphanumeric file
name .

.typ (RT-11)

	

is any zero to three character

	

alphanumeric
.ext (RSTS/E) extension .

If one is not specified, the FORTRAN IV Compiler
supplies, by default, certain extensions as shown
in Table 1-4 .

OPERATING PROCEDURES

Table 1-2
Threaded Code Error Messages

Error Result

in-line code threaded code

1 . The result of an No diagnostic message A fatal error occurs
integer multiply is produced . and the diagnostic
operation can not Execution continues message : "?Err 1
be expressed as a and the result of the Integer Overflow" is
one-word integer . operation is truncated

to 15 bits .
produced .

2 . A divide by zero No diagnostic message A fatal error occurs
occurs during integer is produced and the and the diagnostic
arithmetic . result of the operation

is undefined .
message "?Err 2
Integer zero divide"
is produced .

3 . The value of the No diagnostic message The warning diagnostic
arithmetic expression is produced . Execution "?Err 4 Computed GOTO
of a computed GOTO is continues at the next out of range" is
less than one or executable statement . produced . Execution
greater than the number resumes at the next
of labels in the list . executable statement .

OPERATING PROCEDURES

The following apply to RSTS/E only :

[p,pn] is a RSTS/E project (p), programmer number (pn),
which is used to identify the account under which
the , file is stored .

<prot> is a RSTS/E protection code restricting access to
a file . The degree of restriction is determined
by a code or combination of codes, as shown in
Table 1-5 . Protection codes have effect only on
output files .

/sw is a RSTS/E option consisting of either or both
the following RSTS/E file specification switches .
(Refer to the RSTS/E Programming Manual for
further information .)

/CL :n set clustersize of (output) file to n .

/MO :n use mode n when opening the file .

The protection code is a string of one to three decimal digits
enclosed by angle brackets <> . The protection code determines the
file's degree of protection on two levels : the actions - reading,
writing, and deleting - against which it is protected, and the user or
class of users against whom it is protected . There are three such
user classes, which the system recognizes by project-programmer
numbers :

1 . The individual user (owner),
who is recognized by his programmer number :

	

[200,25] .

2 . The user's project group,
which is recognized

	

by

	

the

	

user's

	

project

	

number :
[200,251,[200,571,[200,701 .

3 . All other users on the system,
who

	

are

	

recognized

	

by

	

the

	

existence

	

of

	

valid
project-programmer numbers :

	

[225,60],[250,35],[254,10] .

Typically, a file's total protection
combination

	

of individual codes .
<60> - the usual system default -
writing, and deleting by all
For detailed information, see

code is the sum of the desired
A data file with protection

is protected against reading,
users except its owner : <60>=4+8+16+32 .
the RSTS/E System User's Guide .

OPERATING PROCEDURES

Table 1-3
Device Specifications

For more information on device specifications, refer to the RT-11
System User's Guide and the RSTS/ESystem User's Guide .

Device RT-11 RSTS/E

Card reader CR : CR :

TAll cassette (n=O or 1) CTn : -

Default storage DK : SY :

RK05 disk (n=O to 7)

RK06 or RK07 disk (n=O to 7) DMn : DMn :

RP02 or RP03 disk DPn :(n=O to 1) DPn :(n=O to 7)

RLO1 or RL02 disk DLn :(n=O to 4) DLn :

RM02 or RM03 disk (n=0 to 7) - DRn :

RP04, RP05 or RP06 disk (n=O to 7) - DBn :

RS03 or RSO4 disk (n=0 to 7) DSn : DSn :

TC11 DECtape DTn :(n=0 to 7) DTn :(n=O to 7)

TU58 DECtape II DDn :(n=O to 4) DDn :(n=O to 7)

PDT-11/130 DECtape II(n=O to 1) PDn : -

RXO1 floppy disk DXn :(n=O to 3) DXn :(O to 7)

PDT-11/150 floppy disk

Serial line printer

RX02 floppy disk

PDn :

LS :

DYn :(n=O to 3) DYn :(n=O to 7)

Line printer LP : LPn :(n=O to 7)

TU16, TE16, TU45, or TU77 magtape (n=O to 7) MMn : MMn :

TU10, TE10, or TS03 magtape (n=O to 7) MTn : MTn :

TS11 magtape (n=O to 3) MSn : MSn :

High speed paper tape punch PC : PP :

High speed paper tape reader PC : PR :

RF11 fixed-head disk drive RF : DFO :

System device SY : SY :

Specified unit from which the
system was bootstrapped SYn : SYO :

Current user
terminal TT : KB :

Auxiliary terminal - KBn :

OPERATING PROCEDURES

Table 1-4
File Name Types (Extensions)

Table 1-5
File Protection Codes

1-6

Code Meaning

1 Read protection against owner

2 Write protection against owner

4 Read protection against owner's project group

8 Write protection against owner's project group

16 Read protection against all others who do not
have owner's project number

32 Write protection against all others who do not
have owner's project number

64 Executable program : can be run only

Individual codes added

	

to

	

the

	

compiled
protection <64> have meanings different from
those of the data file protection codes above .
These compiled codes follow :

1 Execute protection against owner

2 Read and write protection against owner

4 Execute protection against owner's project
group

8 Read and write protection against owner's
project group

16 Execute protection against all others who do
not have owner's project number

32 Read and write protection against all others
who do not have owner's project number

128 Program with temporary privileges (normally
occurs only when file's protection includes
<64>)

File
Default Type (Extension)

on Output File

Source file FOR
Object file OBJ
Listing file LST
Load Map file MAP
Save Image file SAV
Absolute Binary file LDA (/LDA)
Relocatable Image file REL (/R) Foreground

(RT-11 only)

OPERATING PROCEDURES

1 .1 .3 Locating a File

The FORTRAN IV compiler locates a file by searching the specified
device for the file name with the specified file type (RT-11), or
extension (RSTS/E) . The compiler searches default storage (public
structure on RSTS/E) when the device is not specified and assumes FOR
when a file type or extension is not specified .

Under the RSTS/E operating system, the computer seeks the specified
account [project, programmer] number . When the account number is not
specified, the compiler searches the current user's directory and
proceeds to the system library [1,2] if the file is not in the user's
directory . The protection code identifies the read and write access
to be granted the user of the located file . If a protection code is
not specified on output, the system default code (usually 60) is used .

If the file cannot be located or is protected against the user, the
compiler prints the following message :

?FORTRAN-F-FILE NOT FOUND

A similar form of this message appears if a file name specification
given to a utility program (such as, MACRO, LINK,) references a , file
that cannot be found or is protected against the user .

1 .2 RUNNING THE FORTRAN IV COMPILER

The FORTRAN IV Compiler accepts a command string of the form :

output = input/option (/sw)

where

output

	

is the output file name specification(s) .

input

	

is the input file name specification(s) .

/option (RT-11) is one or more options used to request certain
/sw (RSTS/E) functions from the FORTRAN IV Compiler . Options

are covered in Section 1 .2 .2 . Options may be
appended to any file specification in the command
string .

Note that imbedded blanks are not permitted in command string
specifications .

1 .2 .1 Under RT-11 (with Keyboard Monitor Commands)

To

or

compile a FORTRAN program, either of these commands is given :

FORTRAN[/option . . .] filespec[/option . . .][. . .filespec[/option . . .]]

FORTRAN[/option . . .]
FILES? filespec[/option . . .][. . .filespec[/option . . .]]

(where filespec represents a source file to be compiled) .

OPERATING PROCEDURES

When more than one file is listed for a single compilation, separate
the files by plus (+) signs . FORTRAN will create an output file with
the same name as the first input file and give it a OBJ file type .
However, if you separate the input files by commas, FORTRAN will
produce an OBJ file for each input file listed .

For example :

FORTRAN/LIST/SHOW :ALL/NOLINENUMBERS TEST1+TEST2

compiles TEST1 .FOR and TEST2 .FOR together and produces TEST1 .OBJ. A
listing of the compilation complete with source, storage map and code
listings will be sent to the line printer device, LP : . Generation of
Internal Sequence Numbers (ISNs) in the object program will be
disabled .

1 .2 .1 .1 Under RSTS/E - To compile a FORTRAN program, the command is
given :

RUN $FORTRAN
*

The FORTRAN IV Compiler then prints an asterisk (*) to indicate that
it is ready to accept a command string .

The FORTRAN IV Compiler can produce two output files : an object file
and a listing file . As many as six FORTRAN IV source language files
are permitted as input files . If multiple input files are given, they
are considered to be logically concatenated . However, source lines
must not be broken over file boundaries .

An input file that resides on a random access device can contain more
than one program unit . The object code for all program units to be
concatenated at LINK time goes to the resulting single object file .

A sample FORTRAN IV Compiler command sequence is shown below :

RUN $FORTRAN
*OBJECT, LIST=FILE1

This command string directs the compiler to take the source file
FILE1 .FOR from the current account on the public structure, and output
the files LIST .LST and OBJECT .OBJ to the current account on the public
structure .

Either of the compiler output files can be eliminated by omitting its
file specification from the command string . For example :

RUN $FORTRAN
*FILE1=FILE1

produces FILE1 .OBJ on the default device but no listing file, while

*,LP :=FILE1

produces a listing on the line printer, but no object module output .

1 .2 .2 Compiler Options (Switches)

The FORTRAN IV Compiler command strings utilize specified options
(switches) of either octal or decimal values on the input and output
file specifications . Any option of the form /S :n causes n to be
interpreted as an octal value (as long as n contains only the digit
0-7) ; whereas /S :n . causes n to be interpreted as a decimal value .
RT-11 and RSTS/E FORTRAN IV Compiler options (switches) are described
in Table 1-6 .

Table 1-6
Compiler Options (Switches)*

(defaults are determined at installation time)

OPERATING PROCEDURES

* RT-11 users may use the RSTS/E switch when the compiler is
with the RUN command .

1-9

invoked

(continued on next page)

RT-11
Option

RSTS/E
Switch Explanation

/ALLOCATE :n

/CODE :xxx

/DIAGNOSE

/EXTEND

/HEADER

/I :xxx

/B

/E

/0

Used after the /OBJECT or /LIST
option to guarantee space for a
maximum file size of n blocks .

Selects type of object code to be
generated .

	

Defaults

	

to value
selected at installation .

	

The
valid values are :

EAE (selects EAE hardware)
EIS (selects EIS hardware)
FIS (selects

	

EIS

	

and

	

FIS
hardware)

THR (selects threaded code)

Enables

	

expanded

	

listings

	

of
compiler

	

internal

	

diagnostic
information .

Allows source line input

	

from
columns 73-80 .

Prints

	

an

	

"Options-In-Effect"

/14 /T

section prefacing the listing .

Defaults to

	

two

	

word-integers

/LINENUMBERS

/LIST[:filespec]

/NOLINENUMBERS

/NOOBJECT

/S

(1*4)

	

(normally

	

defaults

	

to
one-word integers (1*2)) .

Indicates

	

internal

	

sequence
numbers are to be included in the
executable program for

	

routine
diagnostics .

Generates a listing . A file name
can be optionally specified .

Suppresses generation of internal
sequence numbers .

Does not generate object files .

OPERATING PROCEDURES

Table 1-6 (Cont .)
Compiler Options (Switches)*

(defaults are determined at installation time)

* RT-11 users may use the RSTS/E switch when the compiler is
with the RUN command .

1-10

invoked

(continued on next page)

RT-11
Option

RSTS/E
Switch Explanation

* /Q Inhibits printing names of program

/NOSWAP /U

units

	

(from

	

program,

	

FUNCTION,
SUBROUTINE,

	

and

	

BLOCK

	

DATA
statements) as each program unit is
compiled . Note that MAIN .

	

refers
to

	

the main program and

	

DATA .
refers to an unnamed BLOCK DATA .

Disables USR swapping at run time .

/NOVECTORS /V Suppresses

	

array

	

vectoring

	

of

/OBJECT[:filespec] -

multidimensional arrays .

Produces an object file (default) .

/ONDEBUG

The destination for the object file
can be optionally specified .

Compile lines with a "D" in column

*

one (for debugging purposes) .

Causes pure code and pure

	

data

/RECORD :n /R :n

sections

	

to take RO (read-only)
attribute .

Specifies the maximum record length
(in

	

bytes)

	

on

	

run

	

time

	

I/0
(4<n<4095) .

/SHOW[:n] /L[:n] Specifies the listing options .

	

The
argument n is encoded as follows :

0 or null - list diagnostics only
1 or SRC - list source program and

diagnostics only
2 or MAP - list storage map

	

and
diagnostics only

4 or COD - list generated code and
diagnostics only

Any combination of the above list
options may be specified by summing
the numeric argument values for the
desired list options . For example :

7 or ALL

requests a source listing, a storage
map, and a generated code listing .
If this option is omitted,

	

the
default option is /SHOW :3, (/L :3)
source and storage map .

OPERATING PROCEDURES

Table 1-6 (Cont .)
Compiler Options (Switches)*

(defaults are determined at installation time)

* RT-11 users may use the RSTS/E switch when the compiler is
with the RUN command .

1 .2 .3 Listing Formats

You can direct the compiler to furnish any combination of five
optional sections in the compilation listing . Use the options
(switches) described in Section 1 .2 .2 to call for the list of options
in effect, the generated code and the compiler statistics . The source
program and the storage map are included by default . Figure 1-2
describes each section and gives an example of the information
included .

FORTRAN IV listings of generated code list the first instruction
starting at location 6 of the procedure . This section explains the
two instructions generated that are not listed .

The first two lines of code are not generated in the FORTRAN IV
listings for either subroutines or the main segment .

invoked

RT-11
Option

RSTS/E
Switch Explanation

/STATISTICS /A Prints compilation statistics .

/SWAP - Allows the USR
FORTRAN program

to swap over the
(default) .

/UNITS :n /N :n Allows

	

a
simultaneously

maximum

	

of

	

n
open I/0 channels

at run time (1<n<15) .

/VECTORS - Uses

	

tables

	

to

	

access
multidimensional arrays (default) .

/WARNINGS /W Enables

	

compiler

	

warning
diagnostics ;

	

used in conjunction
with /SHOW (/L) option .

* /X :xxx Indicates cross-compilation

	

for
the target environment specified .
Compiler diagnostic messages will
be generated as if compilation had
occurred

	

under

	

the

	

foreign
environment . Values are :

RT

	

(selects RT-11)
RST (selects RSTS/E)
RSX (selects RSX-11)

OPERATING PROCEDURES

In the case of the main program unit, the two lines generated are :

JSR

	

R4,$$OTI

	

(IN-LINE CODE)
.WORD NAMPTR

or

JSR

	

R4,$OTI

	

(THREADED CODE)
.WORD NAMPTR

The location that NAMPTR contains is the address of the two-word
segment name in RAD50, which is the name of the main program . If no
main-program name is specified by means of a PROGRAM statement, the
default main-program name, .MAIN ., is used .

In a subprogram unit, the two lines generated are :

JSR

	

R4,$OTIS
.WORD NAMPTR

The location that NAMPTR contains is the address of the two-word
segment name in RAD50, which is the name of the routine .

OPERATING PROCEDURES

FORTRAN IV

	

V02.6

	

Thu 01-Mar-83 00240558

,EX2=EX2/L ',ALL/I',THR/O/A

OPTIONS IN EFFECTS

SOURCE
MAP
CODE
LEAP YEAR

NOREADONLY
LRECL=0136
STAT
ISNS

NOCOLSO
USRSWAP

NODIAGNOSE
NOINTEGER*4

NLCHN=06
NODE BUG

VECTOR
NO WARN

CODE',THR
LOG

Subroutines, Functions, Statement and Processor-Defined Functions',

Name

	

Tv¢e

	

Name

	

Twee

	

Name

	

Twee

	

Name

	

Twee

	

Name Twee
CMPLX

	

C*8

Figure 1-2 A Sample Compilation Listing

1 -13

	

March 1983

I

FORTRAN IV V02 .6

	

Thu 01-Mar-83 00540558

	

I
0001 INTEGER INT
0002 REAL REAL
0003 COMPLEX IMAG
0004 DOUBLE PRECISION DBLE
0005 DATA INT/100/
0006 REAL = INT/2 + 5 .
0007 DBLE = REAL/2 . + 3 .1415926535D0
0008 IMAG = CMPLX(REAL, 3 .21)
0009 WRITE (5,10) IMAG
0010 10 FORMAT(1X,2F8 .5)
0011 STOP
0012 END

FORTRAN IV

Local Variables,

Storage Map for Program Unit MAIN .

PSECT *DATA, Size = 000030 (12 . words)

Name Tope Offset

	

Name

	

Type Offset Name Twee Offset
DBLE R*8 000020

	

IMAG

	

C*8 000010 INT 1*2 000002
REAL R*4 000004

Statement #0011
000130 LSN$

	

#000013
000134 STP$

Compilation Statistics :

Symbol table size : 00091 words
Internal form size : 00039 words
Free dynamic memory : 19983 words

Compilation time : 00 :00 :01

OPERATING PROCEDURES

FORTRAN IV

	

Generated Code for Program Unit MAIN .

Statement #0006

Figure 1- 2 A Sample Compilation Listing (Cont .)

000006
000012
000016
000022
000024
000030

LSN$
MOI$MS
DII$IS
CFI$
ADF$IS
MOF$SM

#000006
$BATA+#000002
#000002

#040640
$11ATA+#000004

Statement #0007
000034 ISN$
000036 MOI$MS $DATA+#000004
000042 DIF$IS #040400
000046 CDF$
000050 ADD$MS $DATAP+#000020
:00054 MOF$SM $DATA+#000020

Statement #0008
000060 ISN$
000062 REL$ $DATAP+#000030
000066 REL$ $DATA+#000004
000072 CAL$ #000002 CMPLX+#000000
000100 MOD$RM $DATA+#000010

Statement #0009
000104 ISN$
000106 REL$ $DATAP+#000016
000112 REL$ $DATAP+#000010
000116 IFW$
000120 REL$ $DATA+#000010
000124 TVC$
000126 EOL$

OPERATING PROCEDURES

1 .2 .3 .1 Options Listing - Use the options-in-effect list as a quick
reference to the status of each possible compiler option . Those
preceded by 'NO' are not in effect . The maximum number of logical
units that can be concurrently open (NLCHN) and the maximum record
length (LRECL) are given as the default values or the values specified
by the /UNITS :n (/N :n) and /RECORD :n (/R :n) options respectively . The
day of the week, date, and time of compilation and a copy of the
compiler command string for identification purposes are also
furnished .

1 .2 .3 .2 Source Listing - This section lists the source program as it
appeared in the input file . The compiler adds internal sequence
numbers for easier reference . Note that internal sequence numbers are
not always incremented by 1 . For example, the statement following a
logical IF has an internal sequence number two greater than that of
the IF, because the compiler assigns one for the comparison and one
for the associated statement .

1 .2 .3 .3 Storage Map Listing - This section lists all symbolic names
referenced by the program unit . Local variables are allocated in the
$DATA psect . The addresses of parameter variables and arrays are
placed in the $DATA psect at subroutine invocation and are denoted by
"@" preceding the offset or section name . The listing includes the
symbolic name, data type, usage, psect, and offset . In the case of
COMMON blocks, VIRTUAL arrays, and array names, the listing includes
the defined size in bytes (octal) and words (decimal) as well as the
dimensions .

NOTE

Blank COMMON is described as COMMON
BLOCK / / in the storage map, but is
located on a LINK map as a PSECT named
.$$$$.

1 .2 .3 .4 Generated Code Listing - This section contains :

•

	

a symbolic representation of the object code generated by the
compiler (see Section 2 .2) .

•

	

includes a location offset into psect $CODE

•

	

the symbolic Object Time System (OTS) routine name

• routine arguments of threaded code plus the equivalent
assembler code for the in-line code . When the /DIAGNOSE (/B)
compiler option is used, the right-hand coulmn of the in-line
generated code listing shows those registers available for use
following an operation . The code generated for each statement
provides easy cross-reference by showing the same internal
sequence number (ISN) as was specified in the source program
listing .

If the compiler runs out of
message is delivered to
this case, you can take
compilation :

OPERATING PROCEDURES

1 .2 .3 .5 Compilation Statistics - This section provides a report on
memory usage during the compilation process and elapsed wall-clock
time for the compilation .

1 .2 .4 Compiler Memory Requirements

RT-11 and RSTS/E differ in the amount of memory available to each for
compilation, and the options available for obtaining additional space .
Under RT-11, device handlers and the symbol table require a portion of
memory during compilation . When more memory is required after
minimizing the number of different physical devices and variable names
specified, you can segment the program into program units small enough
to compile in the available space .

Under RSTS/E, you acquire additional space by switching from a
nonprivileged to a privileged account, increasing the system swap
maximum, or segmenting the program . These options and the amount of
memory available are treated in greater detail in the following
subsections .

1 .2 .4 .1 Compiler Memory Requirements Under RT-11 - During
compilation, the following must reside in main memory : the RT-11
Resident Monitor (RMON), the compiler root segment, one overlay
region, the stack, and the required device handlers (other than the
handler for the system device, which is included in the RMON) . Note
that FORTRAN will dynamically load device handlers required for
compilation . The remaining memory provides for the symbol table and
the internal representation of the program . In a machine with 8K
words of memory, this allows the compilation of a program unit as
large as several hundred statements . However, if the compiler runs
out of memory during compilation, an error message is delivered to the
user's terminal ; see Section C .1 . The program must be divided into
two or more program units, each small enough to compile in the
available memory .

Since device handlers and the symbol table must be resident in memory
during compilation, minimize the number of different physical devices
specified in the command string and reduce the number of variable
names to increase the amount of memory available for object code
generation .

1 .2 .4 .2 Compiler Memory Requirements Under RSTS/E - The RSTS/E
FORTRAN IV compiler acquires the maximum free memory (up to 28K words)
allocated to the current user . The private memory maximum for the
user's account will never exceed the SWAP MAX currently set by the
system manager, who may also restrict the dynamic memory requested by
FORTRAN IV for every user .

free space during a compilation, an error
the user's terminal ; see Section C .1 . In
several actions

	

to

	

accommodate

	

the

1 . If the compilation was attempted by a nonprivileged user
whose private swap maximum is smaller than the system swap
maximum, the compilation may proceed, but under a privileged
account . This may allow the compiler to acquire a larger
memory area . Or, you can request the system manager to
increase the private swap maximum .

1 -16

2 .

OPERATING PROCEDURES

If a compilation terminates with insufficient space under a
privileged account, do either of the following :

• Ask the system manager to
compilation size limit
compilations, or

•

	

Segment the program unit into
program units, and reduce the
arrays, and constants to save compiler
space .

1 .3 LINKING PROCEDURES

When SYSLIB is created under RT-11 or RSTS/E to include FORLIB, the
/LINKLIBRARY :FORLIB (/F) option is redundant, because FORLIB is part
of SYSLIB and is not called separately .

1 .3 .1 Linking Under RT-11

The RT-11 linker, LINK, combines one or more user-written program
units with selected routines from any user libraries and the default
FORTRAN IV OTS Library to form the default system subroutine library,
SYSLIB . LINK generates a single runnable memory image file and an
optional load map from the one or more object files created by the
MACRO assembler or the FORTRAN IV compiler .

The default types for the executable file are SAV for a background or
mapped environment program, and REL for a foreground program . The
default output device is DK : .

The default name of the SAV or REL file is that of the first
concatenated input object file specified . When FORLIB resides in
SYSLIB, the required elements of the FORTRAN library will be linked
automatically since any undefined global references are correlated and
resolved through SYSLIB .

The LINK command adheres to the following syntax :

LINK[/option . . .] filespec[/option . . .][. . . . filespec[/option . . .]]

or

LINK[/option . . .]
FILE?

	

filespec[/option . . .][. . . . filespec[/option . . .]]

where "filespec" represents the file to be linked and "options" are
those described in Table 1-7 .

increase

	

the

	

FORTRAN
to

	

accommodate

	

large

two or more smaller
number of variables,

symbol table

OPERATING PROCEDURES

Table 1-7
Linker Options Available Under RT-11

(continued on next page)

Option Explanation

/ALLOCATE :n

/ALPHABETIZE

/BITMAP

/BOTTOM :n

/BOUNDARY :value

Guarantees space for a maximum file of n
blocks .

Lists

	

program's

	

global

	

symbols
alphabetically in the load map .

Creates a memory usage bitmap (default
setting) .

Specifies a

	

bottom

	

address

	

for

	

a
background program .

Starts a specific program section on a
particular address boundary .

	

Argument
value, must be a power of 2 .

	

Prompts
you :

Boundary section?

Enter name of section, then 00 .

/DEBUG[:filespec] Links ODT to the linked program .

/EXECUTE[:filespec] Designates the executable file .

/EXTEND :n Extends a program section to octal value
n . Prompt :

Extend section?

/FILL :n Initializes unused locations in the load
module to n (an octal value) .

/FOREGROUND

[:stacksize]

Generates a REL file for a foreground
link .

/INCLUDE Allows subsequent entry at the keyboard
of global symbols to be taken from any
library and included in the

	

linking
process .

	

When the /INCLUDE option is
typed, the linker prints :

Library search?

Reply with the list of global symbols to
be included in the load module . Press
the carriage return key

	

(M

	

to enter
each symbol in the list .

/LDA Produces executable file in LDA format
for use with the Absolute Loader .

/LIBRARY Same as /LINKLIBRARY .

	

(Included

	

for
compatibility with other systems .)

OPERATING PROCEDURES

Table 1-7 (Cont .)
Linker Options Available Under RT-11

1-1 9

(continued on next page)

Option Explanation

/LINKLIBRARY :filespec This option is ignored unless a file
specification

	

is

	

typed .

	

The

	

file
specification is included as an object
module library in the linking operation .

/MAP[:filespec] Produces a link map on the
in the file specified .

listing device
LP :

	

or

/NOEXECUTE Does not create a SAV file .

/PROMPT Causes the LINKer and LIBRarian
for

	

CSI

	

formatted
LINKer/LIBRarian

	

treat

to prompt
commands .

	

The
the

	

command
strings
is seen .

as continuation lines until a //
/PROMPT is equivalent to //

this option tomode of continuation . Use
specify overlays, for example :

.LINK/PROMPT ROOT
*OVR1/0 :1
*OVR2/0 :1
*OVR3/0 :2
*OVR4/0 :2//

This creates two overlay regions with two
segments each .

/ROUND :n Rounds up a section so that the root is a
whole number multiple of n (a power of
2) .

	

Prompt :

Round section :

/RUN For background jobs only,
resulting SAV file .

executes the

/SLOWLY Allows largest memory area
table .

for symbol

/STACK[:n] Modifies the stack address (default is
loc . 42) . Give an octal value (:nnnnnn)
or else system prompts for a global
symbol :

Stack symbol?

/SYMBOLTABLE[:filespec] Creates a

	

file containing

	

symbol
definitions for all global symbols .
Enter the symbol table file specification
as the third output specification in the
LINK command .

/TOP :value Specifies
by the

the highest address to be used
relocatable code . The argument

value represents an unsigned, even octal
number .

OPERATING PROCEDURES

Table 1-7 (Cont .)
Linker Options Available Under RT-11

1 .3 .2 Linking Under RSTS/E

The LINK command under RSTS/E has the form :

RUN $LINK
* command string

command string has the following format :

dev :binout,dev :mapout=dev :objl,dev :obj2, . . ./sl/s2/s3

The

where

dev : is a random access device for the save image output
file (binout), and any appropriate device in all other
instances . If dev : is not specified, the default
device is assumed . If the output is to be LDA format
(that is, the /L switch was used), the output file need
not be on a random access device .

1- 2 0

Option Explanation

/TRANSFER[:n] Prompts for a global symbol to be used as
the starting address of the program . The
user can specify a starting

	

address
(represented by n) .

/WIDE

/XM

Sets the number of columns for the width
of the link map to 6 . The default width
is normally 3 for an 80 column wide
listing .

Enables special SETTOP features in the
XM monitor . This option allows a virtual
job to map a scratch region in extended
memory

	

with

	

the

	

SETTOP programmed
request .

	

See the RT-11

	

Programmer's
Reference manual for further information
on these special SETTOP features .

Examples of linker options under RT-11 are :

1) LINK

	

A,B,C

	

Links A .OBJ, B .OBJ, and C .OBJ on DK :
creates A .SAV on DK :

and

2) LINK/MAP A

	

Links A .OBJ and creates A .SAV on DK :
a map on LP :

and

3) LINK/MAP :RK1 :/EXE :RKO :

	

A,B,C
Links A .OBJ, B .OBJ, and C .OBJ .

	

The map
A .MAP goes to RK1 : and the executable
file A .SAV goes to RKO : .

4) LINK/MAP/EXE :F00

	

B,C,D,E,LIB/LIB
Links B .OBJ, C .OBJ, D .OBJ, E .OBJ, and the
Library LIB .OBJ to create FOO .SAV on DK :
and a map on LP : .

OPERATING PROCEDURES

binout is the name to be assigned to the linker's save image,
or LDA , format output file . This file is optional ; if
not specified, no binary output is produced . (Save
image is the assumed output format unless the /L switch
is used .)

mapout

	

is the optional load map file .

objl, . . . are files of one or more object modules to be input to
the linker (these may be library files) .

/sl/s2/s3 are optional switches, as explained in Table 1-8 .

An example of the LINK command format as used with FORTRAN IV follows :

RUN $LINK
*LOAD,MAP=MAIN,SUB1,SUB2/F

This command string requests LINK to combine the object module
MAIN .OBJ with the object modules SUB1 .OBJ and SUB2 .OBJ into the single
save image file LOAD .SAV . A load map file MAP .MAP is also produced .
All files are on the public structure .

The switch, IF, specifies that the default FORTRAN Library in the
system library account [1 .2] on the public structure, SY :FORLIB .OBJ,
is to be searched for any routines that are not found in the other
object modules . These include any library functions, system
subroutines, or object-time system routines . Note that the switch
alone, without the explicit file specification, causes the default
FORTRAN Library to be searched . This switch should be included if any
of the object modules specified in the command string were created by
the FORTRAN Compiler . This switch can be omitted, however, if the
FORTRAN Library file specification, SY :$FORLIB, is explicitly included
in the command string or if FORLIB has been installed under the name
SYSLIB, as illustrated in the following example .

RUN $LINK
*LOAD,MAP=MAIN

The optional load map file specification, if included, requests the
linker to output a list of module names, common blocks, and global
symbols, together with their absolute memory address assignments .

See the RSTS/E FORTRAN IV Utilities Manual for a more detailed
description of LINK . Refer to Chapter 5 of this guide for an
alternative procedure for invoking LINK .

Table 1-8
Linker 0 tions (Switches) Under RSTS/E

1- 2 1
(continued on next page

Option
(Switch)
Name

Command
Line Meaning

/A First Alphabetizes the entries in the load map.

/B :n First Bottom address of program is indicated as
n .

	

The bottom address determines the
amount of stack (SP) space available to the
program being linked . The default bottom
is

	

1000

	

(octal),

	

which

	

provides
approximately 80 words of stack . This can
be increased by specifying the /B switch
with an argument greater than 1000 (octal) .

Option
(Swi tch)
Name

/C

/E : n

/F

/H : n

/I

/K : n

Command
Line

Any

First

First

First

First

First

First

OPERATING PROCEDURES

Table 1-8 (Cont .)
Linker Options (Switches) Under RSTS/E

Continues

	

input specification on another
command line . Used also with /0 .

Allows a specified program section to be
extended to the value given . When the /E
switch is specified, the linker prints :

EXTEND SECTION?

Reply with the name of the program section,
whose length then becomes greater than or
equal to the value given . It will be
"greater than" when the object code requires
a space larger than the value specified .

Instructs the linker to use the default
FORTRAN library, FORLIB .OBJ, to resolve any
undefined global references . Note that this
option is not specified in the command line
when FORLIB has been incorporated into
SYSLIB .

Specifies the top (highest) address to be
used by the relocatable code in the load
module . The high value must be specified or
the error message /H NO VALUE will be
returned . The high value must be an unsigned
even octal number . If the value is odd, /H
ODD VALUE error is returned . If the value is
not large enough for the relocatable code, /H
VALUE TOO LOW error message is returned .

Use care with the /H switch because most
RT-11 programs use the free memory above the
relocatable code as a dynamic working area
for I/0 buffers, device handlers, symbol
tables, etc . The size of this area varies
with different memory configurations as
programs linked to a high address may not run
in a system with less physical memory . /R,
/B, and /H are mutually exclusive and give
the error /x-BAD SWITCH . /H is the
counterpart to /B .

Includes in the core image (see Section
1 .3 .3) the library object modules that
declare the specified global symbols .

Intended for RSTS/E ; not normally used for
RT-11 . Puts the specified value in word 56
of the image file block 0 . This value states
that the program requires nK words of memory .
Range for the required value is 1 through 28 .

Produces an output file in LDA format .

Meaning

1- 2 2

(continued on next page)

OPERATING PROCEDURES

Table 1-8 (Cont .)
Linker Options (Switches) Under RSTS/E

1- 2 3

(continued on next page

Option
(Switch)
Name

Command
Line Meaning

/M or
/M :n

/O :n

/R

/S

/T or
/T :n

/U :n

First

Any but
the first

First

First

First

First

i

Specifies the stack address at the terminal
keyboard or via n .

Indicates that the program has an overlay
structure : n specifies the overlay region
to which the module is assigned .

(RT-11 only) . Produces an output file in
relocatable image format for execution as a
foreground job .

Allows the maximum amount of space in
memory to be available for the linker's
symbol table . (This switch should only be
used when a particular link stream causes a
symbol table overflow .)

Specifies the transfer address at terminal
keyboard or as the octal value for the
switch .

Prompts the user with "ROUND SECTION" : The

/W :n

j

First

user replies with the name of the program
section to be rounded up, that must be in
the root segment . The value given must be
a power of 2 . The specified section will
be rounded up to a size that is a whole
number multiple of n . An example would be
to make the first overlay start on a block
boundary (/U :1000), so that

	

the

	

root
section and the first overlay region can be
read in with only one read .

	

If

	

the
specified section is not found, the error
message will be "ROUND SECTION NOT FOUND" .

Specifies the width of the map to be

/X First

produced . The value is the number of ENTRY(
ADDR combinations to print across the page .
If no /W is given, the default is 3 (normal
for 80 column paper) . If only /W is given,
n defaults to 6, which is ideal for a 132
column page . Useful range is 1 through 7 .

Intended for RSTS/E ; not normally used for
RT-11 .

	

Meaning : do not output (Xmit) the
bitmap if code below

	

400 .

	

Locations
360-377 in block 0 of the load module are
used for the bitmap . The linker normally
stores the program usage bits in these
eight words . Each bit represents 256-word
block of memory . This information is used
by the R, RUN, and GET commands when
loading the program . Therefore care should
be exercised in using this switch .

1 .4 LIBRARY USAGE

You can create a library of commonly used assembly language and
FORTRAN functions and subroutines through the system program, LIBR,
which provides for library creation and modification . The librarian
chapter of the RT-11 System User's Guide or the RSTS/E FORTRAN IV
Utilities manual describes the LIBR program in detail .

Include a library file in the LINK command string simply by adding the
file specification to the input file list . LINK recognizes the file
as a library file and links only the required routines . The LINK
command string ;

*LOAD=MAIN,LIB1/F

requests LINK to combine MAIN .OBJ with any required functions or
subroutines contained in LIB1 .OBJ . The default FORTRAN system
library, FORLIB .OBJ ($FORLIB .OBJ on RSTS/E), is then searched for any
other required routines . IF is not specified if FORLIB has been
incorporated into SYSLIB . At this point, any unresolved GLOBALS are
resolved through SYSLIB . The entire memory image is output to the
file LOAD .SAV .

If the /F option or switch is used, all user-created libraries are
searched before the default FORTRAN system library, FORLIB .OBJ
($FORLIB .OBJ on RSTS/E) . Consult the linker chapter of the RT-11
System User's Guide for a detailed description of multilibrary global
resolution .

OPERATING PROCEDURES

Table 1-8 (Cont .)
Linker Options (Switches) Under RSTS/E

1-2 4

Option
(Switch)
Name

Command
Line Meaning

// First This method provides an alternative to the
and
last

/C (Continue) switch, which must be given
on every line except the last .

	

The //
switch allows additional lines of command
string input . // is typed on the first
command line and the linker will continue
to request input until the next occurrence
of

	

// .

	

The second occurrence of //
terminates specification of command strinq
input . The second occurrence may be on the
last command line with an object file name
or on a command line by itself .

CAUTION : The use of /C and // cannot be
mixed

	

in a link command string input
sequence .

Example :

.R LINK
*LINK,LP :=LINKO/B :500/W//
*LNKOV1/0 :1

*LNKOV8/0 :1//

OPERATING PROCEDURES

If the linker fails for lack of symbol table space, use the /S linker
option in your next attempt . This could slow the linking process, but
it allows the maximum possible symbol table space .

To maintain the integrity of the DEC-distributed FORTRAN Library,
create a user library rather than modifying or adding to the FORTRAN
Library (FORLIB) or to the System Library (SYSLIB) .

1 .4 .1 Overlay Usage

Use the overlay feature of the linker to segment the memory image so
that the entire program is not memory-resident at one time . This
allows the execution of a program too large for the available memory .

An overlay structure consists of a root segment and one or more
overlay regions . The root segment contains the FORTRAN IV main
program, COMMON, subroutines, function subprograms, and any PSECT
that has the GBL attribute and is referenced from more than one
segment . An overlay region is an area of memory allocated for two or
more overlay segments, only one of which can be resident at one time .
An overlay segment consists of one or more subroutines or function
subprograms .

When a call is made at run time to a routine in an overlay segment,
the overlay handler verifies that the segment is resident in its
overlay region . If the segment is in memory, control passes to the
routine . If the segment is not resident, the overlay handler reads
the overlay segment from the memory image file into the specified
overlay region . This destroys the previous overlay segment in that
overlay region . Control then passes to the routine .

Give careful consideration to placing routines when you divide a
FORTRAN IV program into a root segment and overlay regions, and
subsequently divide each overlay region into overlay segments .
Remember that it is illegal to call a routine located in a different
overlay segment in the same overlay region, or an overlay region with
a lower numeric value (as specified by the linker overlay /O :n) than
the calling routine . Divide each overlay region into overlay segments
that never need to be resident simultaneously .

The FORTRAN IV main program unit must be placed in the root segment .

In an overlay environment, subroutine calls and function subprogram
references must refer only to one of the following :

•

	

A FORTRAN library routine (for example, ASSIGN or DCOS) .

•

	

A FORTRAN or assembly language routine contained in the root
segment .

•

	

A FORTRAN or assembly language routine contained in the same
overlay segment as the calling routine .

• A FORTRAN or assembly language routine contained in a segment
whose region number is different from that of the calling
routine .

In an overlay environment, you must place the COMMON blocks so that
they are resident when you reference them . Blank COMMON is always
resident because it is always placed in the root segment . You must
place all named COMMON either in the root segment or in the segment
whose region number is lowest of all the segments that reference the
COMMON block . A named COMMON block cannot be referenced by two
different segments in the same region unless the COMMON block appears

1-25

	

March 1983

I

I

OPERATING PROCEDURES

in a segment of a different region number . The linker automatically
places a COMMON block into the root segment if it is referenced by the
FORTRAN main program or by a subprogram that is located in the root
segment . Otherwise, the linker places a COMMON block in the first
segment encountered in the linker command string that references that
COMMON block .

All COMMON blocks that are data-initialized (by use of DATA
statements) must be so initialized in the segment in which they are
placed .

The entire overlay initialization process is handled by LINK . The
command format outlined below (and further explained in the linker
chapter of the RT-11 System User's Guide or the RSTS/E FORTRAN IV
Utilities Manual) is used to describe the overlay structure to the
linker . LINK combines the run-time overlay handler with the user
program, making the overlay process completely transparent to the
user's program .

The size of the overlay region is automatically computed to be large
enough to contain the largest overlay segment in that overlay region .

The root segment and all overlay segments are contained in the memory
image file generated by LINK .

Two options are used to specify the overlay structure to LINK .

	

The
overlay option is of the form :

/O :n

where n is an octal number specifying the overlay region number .
command continuation option has two forms :

/C

	

and //

The

/C at the end of each continuation line allows the user to continue
long command strings on the next line of input . // is used at the end
of the first line and again at the end of the last line of input (see
Table 1-8) .

The first line of the LINK overlay structure command string should
contain, as the input list, all object modules that are to be included
in the root segment . This line should be terminated with the /C
option . The /O :n option cannot appear in the first line of the
command string . If all modules that are to be placed in the root
segment cannot be specified on the first command line additional
modules can be specified on subsequent command lines, each ending with
a /C . The entire root segment must be specified before any overlays .

All subsequent lines of the command string should be terminated with
the /O :n option (switch) specifying an overlay region and/or the /C
option (switch) . The presence of only the /C option (switch)
specifies that this is a continuation of the previous line, and
therefore a continuation of the specification of that overlay segment .
The object modules on each line, or set of continuation lines,
constitute an overlay segment and share the specified overlay region
with all other segments in the same numeric value overlay region . All
but the last line of the command string should contain the /C option
(switch) .

1-26

	

March 1983

OPERATING PROCEDURES

For example, assume that FORLIB has been built into SYSLIB and given
the following overlay structure description :

1 . A main program and the object module SUB1 are to occupy the
root segment .

2 . The object module SUB2 is to share an overlay region with the
object module SUB3 (never coresident) .

3 . The object modules SUB4 and SUB5 are to share a second
overlay region with the object modules SUB6 and SUB7 .

The following command string could be used :

RT-11

.LINK/PROMPT/EXE :LOAD MAIN+SUB1
*SUB2/0 :1/C
*SUB3/0 :1/C
*SUB4/0 :2/C
*SUB5/C
*SUB6/0 :2/C
*SUB7//

1 .4 .2 Extended Memory Overlays (RT-11 Only)

You can use LINK to create an overlay structure that uses extended
memory for privileged or virtual FORTRAN jobs . You will need an XM
monitor and a hardware configuration that includes a Memory Management
Unit to run a program having overlays in extended memory, but you can
link such a program on any RT-11 system .

The extended-memory overlay structure is different from the low-memory
overlay structure in that extended-memory overlays can reside
concurrently in extended memory . This difference allows for speedier
execution because, once a program is read in, it requires fewer I/O
transfers with the auxiliary mass-storage volume . In fact, if all
program data is resident, and the program is loaded, the program may
be able to run without an auxiliary mass-storage volume .

Note that you must observe with extended-memory overlays the same
restrictions that apply to low-memory overlays, especially those
pertaining to return paths .

The following command string illustrates the use of extended-memory
overlays to create a privileged FORTRAN job instead of the low-memory
overlays used in the Section 1 .4 .1 example :

.LINK/PROMPT/EXE :LOAD MAIN+SUB1
*SUB2/V :1/C
*SUB3/V :1/C
*SUB4/V :2/C
*SUB5/C
*SUB6/V :2/C
*SUB7//

Refer to the RT-11 System User's Guide for more information on low- or
extended-memory overlays .

RSTS/E

RUN $LINK
*LOAD=MAIN,SUB1/C
*SUB2/0 :1/C
*SUB3/0 :1/C
*SUB4/0 ;2/C
*SUB5/C
*SUB6/0 :2/C
*SUB7

1-27

	

March 1983

I

1 .4 .3 Stand-Alone FORTRAN

You can develop FORTRAN programs under the RT-11 or RSTS/E FORTRAN IV
systems and receive output in an absolute binary format for execution
on a satellite machine with minimum peripherals . The satellite
machine needs only a minimum of 4K words of memory and only a
paper-tape reader or a serial line unit for program loading .

You can also use the stand-alone FORTRAN capability to construct
Read-Only Memory (ROM) applications programs . See Section 2 .5 .4 for
more details on ROM environments .

When operating in the stand-alone environment, the terminal is the
only input/output device supported by FORTRAN-level input/output .
Other devices or equipment interfaces can be supported by appropriate
user-written assembly language subroutines .

To generate a stand-alone program, the source program units should be
compiled as usual . At link time, special options are specified to
generate a stand-alone program . The /L option must be included in the
LINK command string to cause an absolute binary format (LDA) output
file to be generated . The /I option must also be given to allow a
special module to be requested form the FORTRAN IV Library . This
module is :

$SIMRT

	

FORTRAN IV system simulator

Since the library used must reflect the hardware arithmetic options
available on the satellite machine, you must be careful to use the
proper FORTRAN IV library . Hence, the system default library
(SY :FORLIB .OBJ), which is used when the /F option (switch) is
specified to LINK, may not be appropriate . Consult with the system
manager (RSTS/E users) or the FORTRAN IV Installation Guide (RT-11
users) for information on the various libraries .

The following command sequence generates a file, LOAD .LDA, which can
be punched on paper tape and loaded, using the Absolute Loader, on any
PDP-11 .

RT-11

	

RSTS/E

.LINK/LDA/INCLUDE/EXE :LOAD MAIN,SUBS

	

RUN $LINK
Library search? $SIMRT

	

*LOAD,LP :=MAIN,SUBS/F/L/I
Library search? (RET)

	

Library search? $SIMRT
* . C
READY

See Appendix E for further information on stand-alone

	

FORTRAN
capabilities .

1 .4 .4 The FORTRAN Programs Run as Virtual Jobs (RT-11 Only)

You can develop FORTRAN programs which can access a full 32K words of
address space, and which you can run as virtual jobs . (Virtual jobs
cannot access the I/O page .) When a FORTRAN job becomes a virtual job,
the FORTRAN OTS initialization code uses the special features of the
.SETTOP programmed request to allocate a full 32K words of address
space . The initialization code then places the OTS work area in
extended memory at the high limit returned by the SETTOP request .
This allocation method differs from that of privileged FORTRAN jobs .
Even if they use extended memory overlays, privileged jobs allocate
all the free space in low memory for the OTS work area .

OPERATING PROCEDURES

.LINK/EXE :VIRFOR/INCLUDE/XM

	

MAIN+SUBS
Library search? $QBLK
Library search? a

For more information on virtual and privileged jobs, see the RT-11
System User's Guide, the RT-11 Software Support Manual, and the RT-11
Programmer's Reference Manual .

NOTE

The module $QBLK sets the virtual bit in
the Job Status Word through an Asect ;
therefore, effect all other changes to
the Job Status Word at runtime with
IPEEK and IPOKE System Functions .

1 .4 .5 Unformatted Byte 1/0

An optional module, named UIOBYT .OBJ, is included in the distribution
kit . If this module is placed in the FORTRAN IV OTS Library, each
byte element in an unformatted I/0 statement is transferred as a byte
rather than as a word . UIOBYT .OBJ can be used to save disk space when
you do unformatted byte I/0 . Select one of the following procedures,
as appropriate for your system .

To add this module to the FORTRAN IV OTS Library (FORLIB), type :

.R LIBR
*FORLIB[-l]=FORLIB,UIOBYT/U/G
Global? $ERRS
Global? $ERRTB
Global?
* - C

If FORLIB is incorporated in SYSLIB, type :

.R LIBR
*SYSLIB[-1]=SYSLIB,UIOBYT/U/G
Global? $ERRS
Global? $ERRTB
Global? $OVRH
Global?
* "C

OPERATING PROCEDURES

To make a FORTRANtprogram a virtual job, you compile the source-
program units as usual, but then at link time, you specify special
options .

You specify the /INCLUDE (/I) option to allow a special module to be
requested from the FORTRAN IV Library . This module is : $QBLK, which
is the FORTRAN IV Data Area definition for Queue Elements . Next you
specify the /XM option or the /V option (specified on the first line
of input to link) to allow the special SETTOP features of the XM
monitor to be enabled .

The following command sequence generates a file, VIRFOR .SAV, which can
be run as a virtual job .

1-29

OPERATING PROCEDURES

1 .4 .6 Smaller Execution-Time Programs

The default error message module included from the FORTRAN library
when linking FORTRAN programs contains the ASCII text corresponding to
each possible object time error . However, the FORTRAN library also
incorporates an alternate error message module which contains no text ;
when using this module, when a object time error occurs, only the
error number is printed . The resulting core savings in using the
shorter form is approximately 850 words ; the corresponding on-disk
savings in the size of each SAV or REL file is 3-4 blocks . (The
core savings can be particularly significant when generating programs
to be run in the foreground .) The shorter error message module can be
included when linking a FORTRAN program as follows :

1 .5 EXECUTION PROCEDURES

Section 1 .5 .1 describes program execution under the RT-11 operating
system . Section 1 .5 .2 describes execution under the RSTS/E operating
system .

1 .5 .1 Execution Under RT-11

Use the monitor RUN command to start execution of the memory image
file generated by LINK . The command :

.RUN dev :filespec

causes the file on the device (DEV :) to be loaded into memory and
executed . Filespec .sav is the file name specification as described in
Section 1 .1 .1 .

The following example takes three FORTRAN source files containing a
main program and several subroutines through the procedures necessary
to compile, link, and execute that program :

.FORTRAN/LIST MAIN+SUB,SUBT

.LINK/MAP MAIN,SUBT

.RUN MAIN

This searches SYSLIB when any undefined references are present . (The
FORTRAN OTS is assumed to have been incorporated into SYSLIB upon
system installation .)

1 .5 .2 Execution Under RSTS/E

The following command starts execution of the memory image file
generated by link :

RUN filespec

RT-11 Filespecs RSTS/E

.LINK/INCLUDE MAIN Short error message checking is
Library search? $SHORT an OTS generation option .
Library search? Refer to the RSTS/E Installation

Guide/Release Notes for information .

For example, a user has two files on his account,

SAMPLE .BAC and
SAMPLE .BAV

and the default RTS is BASIC-PLUS .

Typing

RUN SAMPLE

will cause SAMPLE .BAC to begin execution .

To execute SAMPLE .BAV, the extension must be given explicitly :

RUN SAMPLE .BAV,

At the start of execution of a FORTRAN program, an internal
initialization routine will determine exactly how much memory is
required by the program from two parameters :

1 . /N :xxx switch (number of logical units)

2 . /R :xxx switch (maximum record length)

If necessary, additional memory

	

is

	

acquired

	

to

	

meet

	

other
requirements .

1 .6 DEBUGGING A FORTRAN IV PROGRAM

The "debug line" capability of FORTRAN IV is effective in debugging
because it allows a FORTRAN statement to be conditionally compiled .
Here are some suggestions for using that capability .

OPERATING PROCEDURES

Where no extension is specified in filespec, the following search
occurs :

Beginning with the first Run-Time System (RTS) in the monitor's
RTS listl and progressing sequentially through the list, the
monitor will append each RTS's default "executable file"
extension to the file-name given in filespec and search for the
file in the appropriate directory . When a satisfactory extension
is found, the associated RTS is used to execute the file .

Try to locate the statement in
and results . Place a "D" in
added for debugging purposes .
you specify the debug option (/D for RSTS/E, and the keyboard
command option /ONDEBUG for RT-11) in the compiler command
The program can be recompiled without the /D option after the
has been corrected . All the debugging statements will be treated
comments .

Use the operating system's ODT debugging aid for in-line code .

error by typing out intermediate values
column one of each source line you have
These lines will not be compiled unless

monitor
string .
problem

as

1-31

1 . The ordering of RTS in the list will be displayed by typing the
SYSTAT/R command to RSTS/E .

	

The resulting display is the entire
contents, in order, of the monitor's RTS list with associated
executable file extensions .

SUBR : :

+2

+4

$CODE Section

JSR R4,

	

$$OTI

$$OTIS

.WORD $DATAP+m

-a-

OPERATING PROCEDURES

ODT debugging requires the generated code listing for the program (see
Section 1 .2 .2, /L or /SHOW listing control option) . The resulting
numbers printed in the left margin of the listing are the octal
offsets of the listed machine instructions within the local PSECT
$CODE .

Note that only one base address is listed for $CODE in the LINK map
when multiple program units are present . To find the base of $CODE
for a specific subprogram unit, locate the address of the entry point
to the unit .

The variables and data items referenced symbolically in the generated
code listing are located in the PSECT $DATAIat the offsets indicated
by the storage map section of the compiler . All local $DATA sections
are formed into a single allocation on the link map when multiple
programs units are linked to form a single executable program . To
find the base address section for a particular program unit, examine
the word at offset 4 in the unit's $CODE section . This value will be
the address of the base of the unit's pure data section ($DATAP) .
Examining the word at offset 6 from the $DATAP section will give the
base address of the associated $DATA impure section . See Figure 1-3 .

m

m+2

m+4

m+6

$DATAP Section

Program Unit Name

in RAD50

of arguments

.WORD $DATA + n
n

Note : Only one of the following will be found in any program or subprogram unit .
MAIN :: JSR R4, $OTI - threaded main program
SUBR : : JSR R4, $OTIS - threaded SUBR or FUNCT
MAIN :: JSR R4, $$OTI - inline main program
SUBR : : JSR R4, $$OTIS - inline SUBR or FUNCT

Figure 1-3 Finding the Base Address Section

$DATA Section

CHAPTER 2

FORTRAN IV OPERATING ENVIRONMENT

2 .1 FORTRAN IV OBJECT-TIME SYSTEM

The PDP-11 FORTRAN IV Object-Time System (OTS) provides the user with
a library of common sequences of PDP-11 machine instructions invoked
by compiled FORTRAN programs . OTS consists of many small functional
modules from which the compiler selects only those required to
implement the FORTRAN program . The required sequences are integrated
with the compiler-generated code during linkage to form the executable
program . For example, if the user program performs only sequential
access, formatted I/0, none of the direct access I/0 routines is
included .

The FORTRAN IV OTS comprises the following :

• Mathematics routines, including the FORTRAN IV Library
functions and other arithmetic routines (for example,
floating-point routines)

•

	

Miscellaneous utility routines (RANDU, DATE, SETERR, etc .)

•

	

Routines that handle various types of FORTRAN I/0

•

	

Error-handling routines that process arithmetic errors, I/0
errors, and system errors

•

	

Miscellaneous routines required by the compiled code

2 .2 OBJECT CODE

The FORTRAN IV compiler translates programs written in the symbolic
PDP-11 FORTRAN language into "object code" (machine language) . The
resulting object modules, combined with required modules from the
FORTRAN IV OTS, form executable programs of PDP-11 machine
instructions .

The compiler produces two distinctly different types of object
programs by generating either threaded code or in-line code .

FORTRAN IV OPERATING ENVIRONMENT

When you select in-line code (through the options
/CODE : [/I :] EAE, EIS, or FIS), the compiler produces the one-to-one
PDP-11 machine instructions required for the specific arithmetic
hardware in the system configuration . Symbolic FORTRAN library
routines are referenced to perform only those functions that cannot be
achieved in short sequences of machine instructions . A program
compiled through an in-line code option produces an object program
that conforms specifically to the type of hardware selected at
compilation time .

When threaded code is generated (through the /CODE :THR [/I :THR]
option), the object program produced uses a symbolic library routine
to perform each operation required for program execution ; the
executable program consists of a "threaded" list of the addresses of
library routines and appropriate operand addresses . This type of code
generation produces an object module that operates independently of
hardware arithmetic configuration . It may be combined with any of the
FORTRAN IV OTS libraries to produce a valid executable program for
each type of arithmetic hardware without any need for recompilation .

Consider the following when you decide whether to use in-line or
threaded code .

When the program does not contain REAL*4, REAL*8, or COMPLEX*8
arithmetic operations,

•

	

In-line code always executes faster than threaded .

•

	

The differences in size between in-line and threaded programs
are slight .

When the program contains large amounts of REAL*4, REAL*8, and
COMPLEX*8 arithmetic (scientific computation),

•

	

Threaded code is much smaller than in-line code .

•

	

Execution speed is nearly the same for both .

See Table 2-1 .

NOTE

Although the above relationships are
generally true, they do vary from
program to program . Therefore, DIGITAL
recommends that production programs be
compiled and tested with both in-line
and threaded code . This procedure will
allow you to determine the best type of
code in terms of size and speed, for
your application .

1 . $EAE represents the
register (AC) .

FORTRAN IV OPERATING ENVIRONMENT

Table 2-1
Comparison of Threaded and In-line Code

for the Statement : I=J*K+REAL

address of the KE11-A (or -B) accumulator

2 . Note that the threaded code sequence for this floating-point
addition requires only two words of memory plus the size of the ADF$MS
routine, whereas the in-line code uses five words (FIS), four words
(EIS), or six word (EAE) . This demonstrates the savings in storage in
using threaded code for floating-point operations .

2 .2 .1 Processor-Defined Functions

The

	

compiler

	

generates

	

code

	

in

	

line

	

for

	

the

	

following
processor-defined functions (PDFs) :

Function

	

Definition

IABS(I)

	

Integer absolute value
IDIM(I,J)

	

Integer positive difference
ISIGN(I,J)

	

Integer transfer of sign
MOD(I,J)

	

Integer remainder
MINO(I,J)

	

Integer minimum of integer list
MAXO(I,J)

	

Integer maximum from integer list

IFIX(A)

	

Real to integer conversion
FLOAT(I)

	

Integer to real conversion

REAL(C)

	

Complex to real conversion, obtain real part
DBLE(A)

	

Real to double conversion
SNGL(A)

	

Double to real conversion

Since the code for a PDF is generated by the compiler, no global
reference to the function name is produced . A problem could arise
when the function call is to be interpreted as a call to a
user-written routine . To force the compiler to treat the apparent PDF
call as a reference to a user routine, specify the routine as external
to the program with an EXTERNAL statement .

Threaded Code In-line Code

For FIS For EIS For EAE

MOI$MS J MOV, J,Rl MOV J,Rl MOV #$EAE,R5 1

MUI$MS K MUL

MOV

Kt,Rl

R1,-(SP)

MUL

MOV

K,Rl

Rl,-(SP)

MOV
MOV
MOV

3,(R5)+
K,@R5
-(R5),-(SP)

CFI$ JSR PC .$CVTIF JSR PC,$CVTIF JSR PC,$CVTIF

ADF$MS REAL 2 MOV
MOV
FADD

REAL+2,-(SP)
REAL,-(SP)
SP

MOV
MOV
JSR

REAL+2,-(SP)
REAL,-(SP)
PC,$ADDF

MOV
MOV
JSR

REAL+2,-(SP)
REAL,-(SP)
PC,$ADDF

CIF$ JSR PC,$CVTFI JSR PC,$CVTFI JSR PC,$CVTFI

MOI$SM I MOV (SP)+,I MOV (SP)+,I MOV (SP)+,I

FORTRAN IV OPERATING ENVIRONMENT

For example, when compiling the statement :

I = IABS(J)

code equivalent to the following is produced :

MOV

	

J, I
BPL

	

1$
NEG

	

I
1$:

By including the statement :

EXTERNAL LABS

code equivalent to the following will

.GLOBL LABS

be produced :

2 .2 .2 VIRTUAL Array Options (RT-11 Only)

The VIRTUAL statement declares arrays that are assigned space outside
the program's directly addressable memory and are manipulated through
the virtual array facility of FORTRAN IV . The VIRTUAL statement
allows arrays to be stored in large data areas that are accessed at
high speed . The VIRTUAL array statement is supported for RT-11, but
is not currently available under RSTS/E . See the PDP-11 FORTRAN
Language Reference Manual for detailed VIRTUAL array information .

VIRTUAL arrays are limited only by the number of elements, not by the
total storage available . Under RT-11, all memory above the initial
28K words is available for VIRTUAL array storage . Except for the size
of physical memory, there is no limit to the number or to the total
size of all VIRTUAL arrays a program can access . The maximum number
of elements in a VIRTUAL array is 32767 . Thus the largest LOGICAL*l
VIRTUAL array is 16K words, or 32767 bytes . The largest REAL*8
VIRTUAL array is 128K words or 262136 bytes . This is a total of 32767
elements, each of which occupies 8 bytes . The limit is 32767 elements
because FORTRAN IV requires array subscripts to be positive integers .

VIRTUAL support for RT-11 uses the Program Logical Address Space
(PLAS) extensions when it operates under the XM monitor . The FORTRAN
OTS directly manipulates the KT-11 mapping registers to provide
VIRTUAL support when operating under RT-11 single job and FB monitors .

All VIRTUAL arrays declared in a program unit are allocated in a
.VSECT, a type of program section . The compiler concurrently
generates a VSECT additive type of relocation as it references the
VIRTUAL array in the object program .

The VSECT program section is unnamed and has the "concatenate"
attribute . This allows the accumulating of all VIRTUAL storage
requirements for a linked job or task as the concatenation of the
.VSECTS .

MOV
MOV
MOV
JSR
CMP
MOV

#J,- (SP)
#1,-(SP)
SP,R5
PC,IABS
(SP)+,(SP)+
RO,I

FORTRAN IV OPERATING ENVIRONMENT

The syntax of the VIRTUAL statement is identical to that of the
DIMENSION statement and involves only substituting the keyword VIRTUAL
for the keyword DIMENSION . However, there is a significant semantic
difference between the two because of the limitations imposed on the
DIMENSION statement . Local arrays declared by the DIMENSION statement
are limited by the maximum memory available to the program . Section
2 .2 .6 demonstrates how to convert an existing program to use the
VIRTUAL feature . The three VIRTUAL array options available in
building the RT-11 OTS are :

NOVIR .OBJ
VIRP .OBJ
VIRNP .OBJ

2 .2 .3 NOVIR .OBJ

This module specifies no VIRTUAL array support and is intended for the
user who prefers to optimize the size of FORLIB rather than use
VIRTUAL array support . When NOVIR .OBJ is included in the library, all
references to the VIRTUAL array routines (made by the compiler when
VIRTUAL arrays are available), produce ERROR 64, Virtual Array
Initialization Failure .

2 .2 .4 VIRP .OBJ

This module is for PLAS support and requires both the XM Monitor and
EIS (or FIS or FPU) hardware for program execution . Failure to adhere
to these requirements will result in run-time error #64 -- VIRTUAL
array initialization failure . VIRP uses the 4K words of VIRTUAL
memory addresses starting at 160000 octal -- normally the PDP-11 I/0
page -- for a window . For this reason, programs using VIRP support
may not reference the I/0 page .

The program initialization code uses the PLAS ALLOC directive to
allocate a region of the required size from the extended memory pool .
This region is a contiguous section of physical memory large enough to
include all VIRTUAL arrays declared in the executable program .

NOTE

If FORTRAN is unable to allocate a
region of the proper size, a FATAL
FORTRAN error message results .

A window of 4K words initially maps the first 4K words of the VIRTUAL
array region . When a VIRTUAL array element lies outside the window,
the PLAS REMAP directive causes a window-turn operation to allow
access .

2 .2 .5 VIRNP .OBJ

This module provides VIRTUAL array support for the single job (SJ) and
the foreground/background (FB) monitors . VIRNP supports full 11/70
22-bit addressing capability . The largest amount of VIRTUAL memory
available is 4068K words (4096K minus 28K) . VIRNP supports the KT11
Memory Management Unit directly, mapping the job and RT-11 to kernel

2-5

FORTRAN IV OPERATING ENVIRONMENT

space and the VIRTUAL array to user space . The_ module turns on the
KT11 immediately before a VIRTUAL array fetch/store, and off
immediately after, thus keeping KT11 mapping overhead to a minimum .

When VIRNP support is used under the FB monitor, the foreground and
the background jobs cannot use VIRTUAL arrays concurrently, because
both will reference the same region of extended memory for array
storage . The XM monitor and PLAS VIRTUAL support must be used when
two concurrent jobs require access to VIRTUAL arrays .

2 .2 .6 Converting a Program to Use VIRTUAL Arrays

First, be sure to observe the usage restrictions for VIRTUAL arrays
covered in the PDP-11 FORTRAN Language Reference Manual . To convert
the existing program, declare the arrays by using the VIRTUAL instead
of the DIMENSION statement . The program does not require additional
access coding .

The following example illustrates a general, minimum-effort program
conversion .

1 . Identify the non-VIRTUAL arrays that are to be converted to
VIRTUAL arrays .

2 . Locate the DIMENSION and the type declaration statements in
which these arrays are declared . Replace DIMENSION
statements with equivalent VIRTUAL statements . Replace
array-declarative type declaration statements with VIRTUAL
statements to define the array dimensions, and remove the
dimensioning information from the type declaration
statements .

3 . Compile the program . Observe all compilation errors ; these
will occur where the syntax restrictions outlined in the
PDP-11 FORTRAN Lanquaqe Reference Manual have been violated .
In some cases, you may need to reformulate the data
structures to use VIRTUAL arrays effectively .

4 . Check the code to ensure that VIRTUAL array parameters are
passed correctly to subprograms .

a . If the argument list of a subprogram call includes an
unsubscripted VIRTUAL array name, the argument list of
the SUBROUTINE or FUNCTION statement must have an
unsubscripted VIRTUAL array name in its corresponding
dummy argument . This establishes access to the VIRTUAL
array for the subprogram . The declaration of the VIRTUAL
array in the subprogram must be dimensionally compatible
with the VIRTUAL declaration in the calling program . All
changes to the VIRTUAL array that occurred during
subprogram execution are retained when control returns to
the calling program .

FORTRAN IV OPERATING ENVIRONMENT

When you pass entire arrays as subprogram parameters, be
certain that the matching arguments are defined as both
VIRTUAL or both non-VIRTUAL . Mismatches of array types
are not detectable at either compilation or execution
time, and the results are undefined .

b . If the argument list of a subprogram reference includes a
reference to a VIRTUAL array element, the matching formal
parameter in the SUBROUTINE or FUNCTION statement must be
a non-VIRTUAL variable . Value assignments to the formal
parameter occurring within the subprogram do not alter
the stored value of the VIRTUAL array element, the
calling program . To alter the value of that element, the
calling program must include a separate assignment
statement that references the VIRTUAL array element
directly .

The following example demonstrates the process of changing non-VIRTUAL
arrays to VIRTUAL arrays .

DIMENSION A(1000,20)
INTEGER*2 B(1000)
DATA D/1000*0/
CALL ABC(A,B,1000,20)
WRITE(2,*)(A(I,l),I=l,l000)
END

SUBROUTINE ABC(X,Y,N,M)
DIMENSION X(N,M)
INTEGER*2 Y(N)
DO 10, I=1,N

10

	

X(I,1)=Y(I)
RETURN
END

This program contains two arrays, named A and B .

Array A is declared in a DIMENSION statement and is of the default
data type . Thus, substituting the keyword VIRTUAL for the keyword
DIMENSION is sufficient for its conversion .

Note, however, that array B and its dimensions are declared in a type
declaration statement (in the second line of the program) .

To convert B into a VIRTUAL array, its declarator must be moved to a
VIRTUAL statement ; also, the variable B must remain in the type
declaration statement, but without a dimension specification .

A and B are both passed to subroutine ABC as arrays, rather than array
elements . Thus the associated subroutine parameters must also be
converted to VIRTUAL arrays .

The following compiled listing illustrates the program after the first
phase of the conversion .

FORTRAN IV OPERATING ENVIRONMENT

Note that the main program compilation causes an error message . DATA
statements must not refer to VIRTUAL arrays . The user substitutes a
DO loop to achieve the same result .

The following listing shows the program after the conversion is
completed .

I FORTRAN IV V02 .6

	

Thu 01-Mar-83 00241238

0001
0002
0003
0004
0005
0006

VIRTUAL A(1000,20), B(1000)
INTEGER*2 B
DATA B/1000*0/
CALL ABC(A,Br1000r20)
WRITE(2r*)(A(Ir1)rI=1,1000)
END

FORTRAN IV

In line 0003,

FORTRAN IV

Diagnostics for Program Unit MAIN .

Error'.

	

Usage of variable 'B' invalid

Storage Map for Program Unit MAIN .

Local Variables, PSECT fDATAr Size = 000006 (3 . words)

Name
I

Tvpe
1*2

Offset

	

Name Tvpe Offset Name

	

Twpe Offset
000000

VIRTUAL Arrawsr Total Size = 00240200 (41024 . words)

Name
A
B

Twpe Offset	Size	Dimensions
R*4 Vec 00000000 00234200 (40000 .)

1000 .)
(1000,20)
(1000)1*2

	

00234200 00003720 (

Subroutines, Functions, Statement and Processor-Defined Functions'#

Name
ABC

Tie
R*4

Name

	

Twpe

	

Name

	

Tape

	

Name

	

Twpe

	

Name Tape

I FORTRAN IV V02 .6

	

Thu 01-Mar-83 00'.41'.40 Page 001

0001 SUBROUTINE ABC(X,Y,M,N)
VIRTUAL Y(N), X(N,M)
INTEGER*2 Y
DO 10, I=1,N
X(I,1)=Y(I)
RETURN
END

0002
0003
0004
0005 10
0006
0007

FORTRAN IV

	

Storage Map for Program Unit ABC

Local Variables, PSECT $DATA, Size = 000012 (

	

5 .words)

Name
I

Twpe Offset

	

Name
1*2

	

000010

	

M
Twpe Offset Name Twpe

N

	

1*2 9
Offset
0000061*2 P 000004

VIRTUAL Arraws, Total Size = 00000000 (0 . words)

Name Twpe

	

Offset	Size	 Dimensions
X R*4

	

@

	

000000

(****) (N,M)
Y 1*2

	

@

	

000002

(****) (N)

FORTRAN IV OPERATING ENVIRONMENT

PDS> COPY DKO :BADVRT .LST/RT TI'*

2 .3 SUBPROGRAM LINKAGE

Subprogram linkage operates identically for all subprograms, including
those written by the user in FORTRAN IV and in assembly language .

The following instruction is used to pass control to the subprogram :

JSR

	

PC, routine name

2- 9

	

March 1983

FORTRAN IV V02 .6 Thu 01-Mar-83 00 :41225 PAGE 001

0001
0002
0003
0004 5
0005
0006
0007

VIRTUAL A(1000,20),
INTEGER*2 B

B(1000)

DO 5, 1=1,1000
B(I)=0
CALL ABC(A,B,1000,20)
WRITE(2,*)(A(I,1),1000)
END

FORTRAN IV

Local Variables,

Storage Map for Program Unit MAIN .

Offset

PSECT $DATA, Size = 000006 (3 . words)

Name

	

Twpe Offset Name Type Offset Name Twee
I

	

1*2 000000

VIRTUAL Arrays, Total Size = 00240200 (41024 . words)

Name Type Offset 	Size	Dimensions
A

	

R*4 Vec 00000000 00234200 (40000 .)
1000 .)

(1000,20)
(1000)B

	

1*2 00234200 00003720 (

Subroutines, Functions, Statement and Processor-Defined Functions'*

Name

	

Twee
ABC

	

R*4
Name

	

Tape

	

Name

	

Type Name Type Name Type

FORTRAN IV V02 .6

	

Thu 01-Mar-83 00 :41 :27 PAGE 001

0001
0002

SUBROUTINE ABC(X,Y,M,N)
VIRTUAL Y(N), X(N,M)

0003

	

INTEGER*2 Y
0004

	

DO 10, I=1,N
0005

	

10

	

X(I,1)=Y(I)
0006

	

RETURN
0007

	

END

FORTRAN IV

	

Storage Map for Program Unit ABC

Local Variables, PSECT $DATA, Size = 000012 (

	

5.words)

Name
I

Twpe Offset

	

Name

	

Type Offset Name Twpe
N

	

1*2 @
Offset
0000061*2

	

000010

	

M

	

1*2 @ 000004

VIRTUAL Arrays, Total Size = 00000000 (0 . words)

Name Type

	

Offset	Size	 Dimensions
X R*4

	

@

	

000000

(****) (N,M)
Y 1*2

	

@

	

000002

(****) (N)

FORTRAN IV OPERATING ENVIRONMENT

Register 5 (R5), prior to calling the subprogram, is set to the
address of an argument list having the following format :

R5
1

undefined # of arguments

address of argument #1

address of argument #2

address of argument #n

ZK-1197-82

The value -1 is stored in the argument list as the address of any null
arguments . Null arguments in CALL statements appear as successive
commas, for example, CALL SUB (A ,, B)

NOTE

Be certain that the called subprogram
does not modify the argument list passed
to it by the calling program .

The instruction

RTS

	

PC

causes control to return to the calling program .

The following is an example of argument transmission : An assembly
language subroutine is written to sum all integer arguments it finds
in each parameter list, and to return the result to the FORTRAN IV
program as the value of a final, additional argument . The FORTRAN
CALL statements that invoke this routine take the form :

CALL IADD(numl,num2, . . .,numn,isum)

where numl through numn represent a variable number of integer
quantities to be summed, and isum represents the variable or array
element in which the sum is to be placed .

Given the following MACRO-11 subprogram :

.TITLE

	

ADDER
.GLOBL

	

IADD
IADD :

	

MOV

	

(R5)+,RO

	

;GET # OF ARGUMENTS
CLR

	

R1

	

;PREPARE WORKING REG .
DECB

	

RO

	

;FIND # OF TERMS TO ADD
1$

	

ADD

	

@(R5)+,Rl

	

;ADD NEXT TERM
DECB

	

RO

	

;DECREMENT COUNTER
BNE

	

1$

	

;LOOP IF NOT DONE
MOV

	

Rl,@(R5)+

	

;RETURN RESULT
RTS

	

PC

	

;RETURN CONTROL

FORTRAN IV OPERATING ENVIRONMENT

the sequence of FORTRAN IV calls :

CALL IADD(1,5,7,I)
CALL IADD(15,30,10,20,5,J)

would cause the variable I to be given the value 13, and the variable
J to be assigned the value 80 .

2 .3 .1 Subprogram Register Usage

A subprogram that is called by a FORTRAN IV program need not preserve
any registers . However, the contents of the hardware stack must be
kept so that each 'push' onto the stack is matched by a 'pop' from the
stack prior to exiting from the routine .

User-written assembly language programs that call FORTRAN IV
subprograms must preserve any pertinent registers before calling the
FORTRAN IV routine and restore the registers, if necessary, upon
return .

Function subprograms return a single result in the hardware registers .
The register assignments for returning the different variable types
are listed in Table 2-2 .

Table 2-2
Return Value Convention for Function Subprograms

In addition, assembly language subprograms which use the FP11 Floating
Point unit may be required to save and restore the FPU status .
FORTRAN IV assumes that the FPU status is set by default to :

• Short floating mode (SETF)

• Short integer mode (SETI)

•

	

Floating truncate mode

2-11

Type Result in

INTEGER*2
LOGICAL*l

INTEGER*4
LOGICAL*4

RO

RO -- low-order result

REAL

R1 -- high-order result

RO -- high-order result

DOUBLE
PRECISION

R1 -- low-order result

RO -- highest-order result
R1 --
R2 --

COMPLEX

R3 -- lowest-order result

RO -- high-order real result
Rl -- low-order real result
R2 -- high-order imaginary result
R3 -- low-order imaginary result

FORTRAN IV OPERATING ENVIRONMENT

Should the assembly language routine modify these defaults, it must
preserve the FPU status on entry by executing the following
instruction :

STFPS

	

-(SP)

and restore the status (prior to returning to the calling program) by
executing the instruction :

LDFPS

	

(SP)+

2 .4 VECTORED ARRAYS

Array vectoring decreases the time necessary to reference elements of
a multidimensional array by using additional memory to store the
array .

Since multidimensional arrays are stored sequentially in memory,
certain address calculations determine the location of individual
elements . Typically, a mapping function performs this calculation .
For example, to locate the element LIST(1,2,3) in an array dimensioned
LIST(4,5,6), use a function equivalent to the following . This
function identifies a location as an offset from the origin of the
array storage .

(sl-1) + dl * (s2 - 1) + dl * d2 * (s3 - 1) =
(

	

0) + 4

	

* (

	

1

	

) + 4 * 5 *

	

(

	

2

	

) = 44

where

si = subscript i
di = dimension i

Such a mapping function requires multiplication operation(s), and some
PDP-11 hardware configurations do not have the MUL instruction . The
compiler can reduce execution time at the expense of memory storage by
"vectoring" some arrays .

Since array vectors map only the declared dimensions of the array, you
must ensure that references to arrays are within their declared
bounds . A reference outside the declared bounds of a vectored array
causes unpredictable results (for example a program interrupt) . You
must give particular attention to arrays passed to subprograms where
the dimensions declared in the subprogram differ from those specified
in the calling program . In such cases, two sets of vectors are
created : one for the calling program and one for the subprogram . The
subprogram vectors map only that portion of the array declared by the
subprogram . (The PDP-11 FORTRAN Language Reference Manual contains
more information on dimensions .)

A specific element in a vectored array can be located by a simplified
mapping function, without the need for multiplication . Instead, a
table lookup determines the location . For example, a vectored
two-dimensional array B(5,6) automatically has associated with it a
one-dimensional vector that would contain relative pointers to each
column of array B . The location of the element B(m,n), relative to
the beginning of the array, could then be computed as :

Vector(n) + m

using only addition operations .

	

Figure 2-1 depicts the

	

array
vectoring process .

2-12

FORTRAN IV OPERATING ENVIRONMENT

Figure 2-1 Array Vectoring

The compiler bases the decision to vector a multi-dimensional array on
the computed ratio of the space required to vector the array to the
total storage space it requires . The array is not vectored if this
ratio is greater than 25 percent . A standard mapping function is used
instead . Arrays with adjustable dimensions are never vectored .
Vectored arrays are noted as such in the storage map listing .

The compiler option /NOVECTORS (/V) suppresses all array vectoring .

The amount of memory required to vector an array is the sum of all
array dimensions except the first . For example, the array X(50,10,30)
requires 10+30=40 words of vector table . Note that the array V(5,100)
requires 100 words of vector storage, whereas the array Y(100,5)
requires only 5 words of vector storage . It is good programming
practice to place an array's largest dimension first when it will be
vectored .

Wherever possible, vector tables are shared among several different
arrays . The compiler arranges shareable vectors under the following
conditions :

Arrays are in the same program unit .

For the ith
dimensions to
each array .

For example, given
share a 20-word

dimension vector to be shared by the arrays,
the left of the ith dimension must be equivalent in

the statement DIMENSION A(10,10),B(10,20), A and B
vector for the second dimension that contains the

values 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140,
150, 160, 170, 180, 190, of which the array A uses only the first 10
elements .

Array B (5,6) Associated

B(1,1) P1
Vector
0 P1

B(2,1) 5 P2
B(3,1) 10 P3
B(4,1) 15 P4
B(5,1) 20 P5
B(1,2) P2 25 P6
B(2,2)
B(3,2)

B(1,6) P6

The location of element B(m,n) _

Vector (n) + m

B(2,6) the example the location of B(4,3) _
B(3,6)
B(4,6) Vector (3) + 4 = 10 + 4 = 14
B(5,6)

2 .5 .1 Compiled Code PSECT Usage

The compiler organizes compiled output into three program sections
which have the names, attributes and contents shown in Table 2-3 .

Table 2-3
Compiler Organization of Program Sections

FORTRAN IV OPERATING ENVIRONMENT

2 .5 PROGRAM SECTIONS

Program Sections (PSECTS) contain code and data and are identified by
unique names as segments of the object program . The attributes
associated with each PSECT direct the Link utility to combine several
separately compiled FORTRAN program units, assembly language modules,
and library routines into an executable program . The following
attributes are associated with these sections :

* The RO/RW attribute for sections $CODE and $DATAP is controlled
by the compiler /Z command option . See Section 1 .2 .2 .

When named PSECTS with the CON attribute are concatenated by the LINK
utility, all PSECTS with the same name are allocated together
beginning at the same address . The length of the resulting PSECT is
the sum of the individual sections so defined .

2 .5 .2 Common Block PSECT Usage

FORTRAN COMMON storage is placed in named PSECTs . The PSECT name is
identical to the COMMON block name specified in the FORTRAN program .
PSECTs used for COMMON storage are given the attributes RW, D, GBL,
REL, OVR .

2-14

Section
Name Attributes Contents

$CODE RW*, I, LCL, REL, All executable code, including
CON threaded

program
and

unit
in-line, for

	

a

$DATAP RW*, D, LCL, REL, Pure data (for example,
CON constants,

vectors),
FORMATs, array

which cannot change
during program execution

$DATA RW, D, LCL, REL, Impure data, variables, temporary
CON storage, and arrays used

FORTRAN program
in the

Concatenate (CON) or Overlay (OVR)

Data (D) or Instruction (I)

Global (GBL) or Local (LCL)

Relocatable (REL) or Absolute (ABS)
Read/Write (RW) or Read-Only (RO)

FORTRAN IV OPERATING ENVIRONMENT

For example, the statement :

COMMON /X/ A,B,C

produces the equivalent of the following MACRO-11

When named PSECTs with the OVR attribute are combined by the LINK
utility, all PSECTs with the same name are allocated together
beginning at the same address . The resulting PSECT has a length that
is the maximum of the individual sections so combined .

2 .5 .3 OTS Library PSECT Usage

Modules included in the OTS library and referenced
program are segmented into five program sections,
2-4 .

code :

Table 2-4
Organization of OTS Library Modules

by the compiled
as shown in Table

Section
Name Attributes Contents

OTS$I RW, I, LCL, REL, All pure code and data for the
CON module

OTS$P RW, D, GBL, REL, Pure tables of addresses of other
OVR OTS library modules

OTS$D RW, D, LCL, REL, Pure data referenced by the
CON module

OTS$S RW, D, LCL, REL, Scratch storage referenced by the
CON module

OTS$O RW, I, LCL, REL, OTS routines sensitive to USR
CON swapping

.RSECT X, RW, D, GBL, REL, OVR
A :

	

BLKW

	

2
B :

	

BLKW

	

2
C :

	

BLKW

	

2

FORTRAN blank COMMON uses the section
statement :

name .$$$$. ; thus the

COMMON C,B /X/ A

produces the equivalent of :

.PSECT .$$$$., RW, D, GBL, REL, OVR
C :

	

BLKW

	

2
B :

	

BLKW

	

2
.PSECT X, RW, D, GBL, REL, OVR

A :

	

BLKW

	

2

FORTRAN IV OPERATING ENVIRONMENT

2 .5 .4 Ordering of PSECTs in Executable Programs

The order in which program sections are allocated in the executable
program is controlled by the order in which they are first presented
to the LINK utility .

Applications that are sensitive to this ordering typically separate
those sections that contain read-only information (such as executable
code and pure data) from impure sections containing variables .

The main program unit of a FORTRAN program (normally the first object
program in sequence presented to LINK) declares the following PSECT
ordering :

In the RT-11 environment, the User Service Routine (USR) may swap over
pure code, but must not be loaded over constants or impure data that
may be passed as arguments to it .

The above ordering, collects all pure sections before impure data in
memory and USR may safely swap over sections $CODE, OTS$I, OTS$P,
SYS$I, and USER$I .

Assembly-language routines used in applications sensitive to PSECT
ordering, should use the same program sections as output by the
compiler for this purpose . That is, place pure code and read-only
data in section USER$I, and all impure storage in section USER$D .
This will ensure that the assembly language routines will participate
in the separation of code and data .

Note that the ordering of PSECTs in an overlay program will follow the
guidelines herein for each overlay segment (for example, the root
segment will contain pure sections followed by impure, and each
overlay segment will have a similar separation of pure and impure
internal to its structure) .

In overlay environments, PSECTs with the GBL attribute will be
allocated in the root segment if they are referenced by more than one
overlay segment in the same region .

To build an application based on read-only memory (ROM), include
sections $CODE, OTS$I, OTSP, SYSI, USER$I, $DATAP, OTS$O, and OTS$D
in the read-only memory . Use the "round section" capability of the
LINK utility to increase the size of the section OTS$D, to round the
base address of section OTS$S up to the first available read-write
memory location following the ROM .

Section Name Attributes

OTS$I RW, I, LCL, REL, CON
OTS$P RW, D, GBL, REL, OVR
SYS$I RW, I, LCL, REL, CON
USER$I RW, I, LCL, REL, CON
$CODE RW, I, LCL, REL, CON
OTS$O RW, I, LCL, REL, CON
SYS$O RW, I, LCL, REL, CON
$DATAP RW, D, LCL, REL, CON
OTS$D RW, D, LCL, REL, CON
OTS$S RW, D, LCL, REL, CON
SYS$S RW, D, LCL, REL, CON
$DATA RW, D, LCL, REL, CON
USER$D RW, D, LCL, REL, CON
.$$$$. RW, D, GBL, REL, OVR
Other COMMON Blocks RW, D, GBL, REL, OVR

where coml, com2, . . ., comn represent the names of the read-only
COMMON blocks that will contain pure data .

For further information on ROM applications, see the PROM/RT-11 User's
Guide .

2 .6 TRACEBACK FEATURE

The traceback feature included in RT-11, RSTS/E FORTRAN IV fatal
runtime error messages locates the actual program unit and line number
of a runtime error . Immediately following the error message, the
error handler lists the line number and program unit name in which the

FORTRAN IV OPERATING ENVIRONMENT

ROM-based applications created in this manner must obey

	

these
programming restrictions :

•

	

Variables or arrays may not be initialized with a DATA
statement . Use assignment statements instead .

• Formatted READ statements may not transfer ASCII data into
Hollerith fields in the FORMAT statement itself . Instead,
place the data in a variable or array .

The PSECT ordering specified by the compiler may not be suitable for
some applications . The user can define ordering by creating a
MACRO-11 source file that contains only PSECT declarations . The order
in which the declarations appear in this file will be the order in
which the sections will be allocated in the executable program . Be
sure that the attributes specified in this file agree with those
assigned by the compiler .

The MACRO-11 source file containing the desired ordering must be
assembled and used as the first input file in the LINK command .

The above technique allows the use of data-initialized COMMON blocks
in ROM applications (if the program does not attempt to modify the
values in these COMMON blocks, which will be placed in read-only
memory) . The new ordering defined by the MACRO-11 source file should
then be :

.PSECT OTS$I RW, I, LCL, REL, CON

.PSECT OTS$P RW, D, GBL, REL, OVR

.PSECT SYS$I RW, I, LCL, REL, CON

.PSECT USER$I RW, I, LCL, REL, CON

.PSECT $CODE RW, I, LCL, REL, CON

.PSECT OTS$O RW, I, LCL, REL, CON

.PSECT SYS$O RW, I, LCL, REL, CON

.PSECT $DATAP RW, D, LCL, REL, CON

.PSECT coml RW, D, GBL, REL, OVR

.PSECT com2 RW, D, GBL, REL, OVR

.PSECT comn RW, D, GBL, REL, OVR

.PSECT OTS$D RW, D, LCL, REL, CON

.PSECT OTS$S RW, D, LCL, REL, CON

.PSECT SYS$S RW, D, LCL, REL, CON

.PSECT $DATA RW, D, LCL, REL, CON

.PSECT USER$D RW, D, LCL, REL, CON

.PSECT .$$$$. RW, D, GBL, REL, OVR

FORTRAN IV OPERATING ENVIRONMENT

error occurred . If the program unit is a SUBROUTINE or FUNCTION
subprogram, the error handler traces back to the calling program unit
and displays the name of that program unit and the line number where
the call occurred (see Figure 2-2) . This process continues until thecalling sequence has been traced back to a specific line number in the
main program . This allows an exact determination of the location of
an error even if the error occurs in a deeply nested subroutine .

0001

	

A=0 .0
0002

	

CALL SUB1(A)
0003

	

CALL EXIT
0004

	

END

0001

	

SUBROUTINE SUB1(B)
0002

	

CALL SUB2 (B)
0003

	

RETURN
0004

	

END

0001

	

SUBROUTINE SUB2(C)
0002

	

CALL SUBS (C)
0003

	

RETURN
0004

	

END

0001

	

SUBROUTINE SUB3(D)
0002

	

E=1 .0
0003

	

F=E/D
0004

	

RETURN
0005

	

END

Traceback of Fatal Error :

?ERR 12 FLOATING ZERO DIVIDE

IN ROUTINE "SUB3 11 LINE 3
FROM ROUTINE "SUB2 " LINE ?
FROM ROUTINE "SUB1 " LINE 2
FROM ROUTINE " .MAIN ."

	

LINE 2

Figure 2-2 The Traceback Feature

Note in Figure 2-2 that the line number in the traceback of routine
'SUB2' is simply a question mark (?) . This is because the module was
compiled with the /NOLINENUMBERS option (/S) in
1 .2 .2) .

2 .7 RUN-TIME MEMORY ORGANIZATIONi (RT-11 ONLY)

2 -18

effect (see Section

The run-time memory organization in both a USR (User Service Routines)
swapping system and a USR resident system operates as shown in Figure
2-3 . When user-written interrupt-handling routines are linked with a
FORTRAN IV program, avoid USR swapping over the interrupt routines and
any associated data . The USR is swapped in above the interrupt
vectors at location $$OTSI, and extends about 2K words from that point
(see Figure 2-3) . Interrupt routines must therefore be loaded above
the area used for USR swapping when the USR will be actively swapped .
Unless explicitly disabled by the compiler option /NOSWAP (/U), the
USR is actively swapped .

Some run-time memory segments are fixed in size . These include the
resident monitor, the OTS work area, the stack and interrupt vector
areas, and, in the USR resident system, the User Service Routine area .

FORTRAN IV OPERATING ENVIRONMENT

Other run-time memory segments vary in length in accordance with the
length of the user program . The device handlers, channel tables, and
I/0 buffers are allocated space dynamically . Only those handlers
needed for currently active devices are resident . I/0 buffers are
allocated and deallocated as required .

However, there is a limit to the amount of space that can be allocated
to the varying-length memory segments . In an 8K swapping system,
approximately 5K words are available ; in an 8K resident system, the
total is approximately 3K words .

If a large FORTRAN IV program cannot be run in the amount of memory
available, reduce the size of a run-time memory segment to allow
successful program execution . Use overlay capabilities (see Section
1 .4 .1) to reduce the amount of memory needed for the user program .
Minimize the number of different physical devices used for I/0 to
reduce the number of handlers that must be resident . When the program
finishes I/0 to a file, close it by using the CALL CLOSE routine (see
Section B .4) or the CLOSE statement, thereby reallocating the buffer
space to any new file to be opened .

37777

5K

1000

0

SWAPPING SYSTEM

37777

1000

0

RESIDENT SYSTEM

3K

Figure 2- 3 RT-11 8K System Run-time Memory Organization

RMON

USR

OTS WORK
AREA

136 BYTE
LINE BUFFER

CHANNEL TABLES

DEVICE HANDLERS

1

I/O BUFFERS

OTS

PROGRAM

STACK

VECTORS

RMON

OTS WORK
AREA

136 BYTE
LINE BUFFER

CHANNEL TABLES

DEVICE HANDLERS

I/O BUFFERS

1

OTS

PROGRAM

STACK

VECTORS

--l

CHAPTER 3

FORTRAN IV SPECIFIC CHARACTERISTICS

This chapter applies specifically to the FORTRAN IV language as it
operates under the RT-11 and RSTS/E systems . The material presented
here both relaxes the restrictions imposed by the PDP-11 FORTRAN
Language Reference Manual and provides additional material essential
to RT-11 and RSTS/E users but not covered in the Manual .

Note that these deviations from the FORTRAN syntax requirements of the
manual apply only to RT-11 and RSTS/E . Your resulting program cannot
be freely transported to another operating system without careful
planning for that system's peculiarities and language requirements .
RT-11, RSTS/E FORTRAN IV relaxes the strict statement ordering
specifications of the manual and makes only the following three
statement ordering requirements :

1 . The first noncomment line in a subprogram must be a FUNCTION,
SUBROUTINE, or BLOCK DATA statement .

2 . The last line in a program unit must be an END statement .

3 . Statement functions must be defined

	

before

	

they

	

are
referenced .

If you do not follow the statement ordering requirements of the
manual, you can have a warning diagnostic included with the source
listing by using the /WARNINGS option (/W) .

3 .1 OPEN/CLOSE STATEMENT RESTRICTIONS

Although the OPEN and CLOSE statements have an optional "ERR=label"
error exit, only the following OPEN/CLOSE error conditions will cause
control to be passed to "label" :

Syntax error in filespec for NAME=

File not found NAME=

CLOSE (UNIT=n, DISPOSE='PRINT', . . .) RSTS/E only - when an error
occurs from sending the file to QUEMAN

OPEN (UNIT=n, . . .) when a file is already open on unit n

CLOSE (UNIT=n, . . .) when no file is open on unit n

FORTRAN IV SPECIFIC CHARACTERISTICS

3 .1 .1 Keyword Constraints

Valid keywords in the FORTRAN IV OPEN/CLOSE statements are the same
for RT-11 and RSTS/E as those described in the FORTRAN Language
Reference Manual .

However, since FORTRAN IV does not support some keywords and options
under RT-11 and RSTS/E, certain constraints must be recognized in
constructing OPEN/CLOSE statements . These constraints are shown in
Table 3-1 .

Table 3-1
Keyword Constraints Under RT-11 and RSTS/E

(continued on next page)

Keyword RT-11 RSTS/E

ACCESS="APPEND" Not supported . Results
in error at compile
time and at run time .

Appends data to the end of
an existing file .

BUFFERCOUNT= Specifies the number of Accepted, but ignored . The
be buffers (one or two) to be RSTS/E file system does not

BUFFERSIZE=

used when outputting data
on the logical unit . if
not specified, one buffer
is allocated .

Not supported . Results in

support multiple buffering .

Same as RT-11
bs

CARRIAGE

error at compile time
and run time .

Formatted files must have Same as RT-11
CONTROL

DISPOSE=

the attribute 'FORTRAN' or
'LIST' . Unformatted or
random access files must
have the attribute 'NONE' .

Results in a compile-time Causes the file to be printed
'PRINT' error . Not supported . by the system line printer

EXTENDSIZE= Not supported . Results in

spooler under direction of
Queue Manager ("QUEMAN") .
The FORTRAN "QUEMAN" request
includes these attributes :
DEVICE= LPO
PRIORITY= 128
FILETYPE= 0 (EMB) or 1 (FTN),
whichever describes the file
type .

Specifies the cluster size for
es error at compile time and the file . The cluster size

at run time . value is the first power of
two greater than or equal to
es . If this value is less than
pack cluster size, or if
EXTEND SIZE is not specified,
the pack cluster size is
assumed .

3 .2 SOURCE LINES

A valid RT-11, RSTS/E FORTRAN IV source line
following :

FORTRAN IV SPECIFIC CHARACTERISTICS

Table 3-1 (Cont .)
Keyword Constraints Under RT-11 and RSTS/E

consists of the

1 . An optional, one- to five-character, numeric statement label,
followed by

2 . Sufficient blanks to position the next character at column 7
(if not a continuation line) or column 6 (for continuations ;
a continuation signal character will be typed)

or

a tab character followed by any nonalphabetic character to
signal continuation,

or

a tab character, if the line is not a continuation,

3-3

Keyword RT-11 RSTS/E

FORM=
'FORMATTED'

INITIALSIZE=
is

MAXREC=
mr

Not allowed on direct
access files .

The default initial allo-
cation is the larger of
two areas : the second
largest empty area or one
half of the largest area .
INITIALSIZE controls the
entire allocation for the
file since extension is
not supported .

The size of the initial
allocation made for a
direct access file is the
larger of two parameters :
INITIALSIZE or the prod-
uct RECORDSIZE and
MAXREC .

Same

The default initial alloca-
tion is zero blocks . The file
is dynamically extended as
required for write operations .

Same

NOSPANBLOCKS Not supported ; error Accepted, but ignored . The

RECORDSIZE Must be specified for

RSTS/E file system does not
support NOSPANBLOCKS .

Same

SHARED

direct access files .

Not supported . Results causes the file to be opened
in error at compile time
and at run time .

in "UPDATE" mode (mode=l) for
shared access by enabling
disk block locks . See also the
CALL UNLOCK system routine .
(App B)

FORTRAN IV SPECIFIC CHARACTERISTICS

3 . A valid FORTRAN statement, or the continuation

	

of

	

a
statement, and

4 . An optional comment field delimited on the left by an
exclamation point (!) .

Totally blank records (a source line of only a carriage return/line
feed combination) are ignored on input . If a line is not totally
blank, it must contain a FORTRAN statement .

3 .3 VARIABLE NAMES

RT-11, RSTS/E FORTRAN IV allows variable names to exceed six
characters . However, only the first six characters are significant
and should be unique among all variable names in the program unit . A
warning diagnostic occurs for each variable name which exceeds six
characters in length . Warning diagnostics will appear in a
compilation listing if the /WARNINGS option (/W) is included in the
compiler command string .

3 .4 INITIALIZATION OF COMMON VARIABLES

RT-11/RSTS/E FORTRAN IV allows any variables in COMMON, including
blank COMMON, to be initialized in any program unit by use of the DATA
statement .

3 .5 CONTINUATION LINES

A line is assumed to be a continuation line if
following a tab on an input line to the compiler

RT-11/RSTS/E FORTRAN IV does not place any limits
continuation lines that a statement may contain .

3 .6 STOP AND PAUSE STATEMENTS

The PAUSE statement causes the
temporarily suspended by typing the
text string (if any) on the user
execution, type a carriage return .

I

For example, use of the FORTRAN statement :

PAUSE 'MOUNT A NEW TAPE'

causes the following line to be printed at the user's terminal :

PAUSE -- MOUNT A NEW TAPE

Execution of the STOP statement closes all files and returns control
to the operating system . To terminate a program execution without
printing the STOP message, use CALL EXIT .

	

(See Section B .7 .)

the first character
is nonalphabetic .

on the number of

execution of a program to be
word PAUSE and the contents of the
s terminal .

	

To resume program

FORTRAN IV SPECIFIC CHARACTERISTICS

The STOP statement causes the following output to be printed :

STOP -- text

where text is the optional text string from the source statement .

3 .7 DEVICE/FILE DEFAULT ASSIGNMENTS

The device and file name default assignments are listed in Table 3-2 .
The default device assignments can be changed prior to execution by
using the OPEN statement or the monitor ASSIGN command .

The RT-11 monitor command :

.ASSIGN LP : 7

connects logical unit 7 to a physical device, the line printer . The
device and file name assignments can be changed at execution time by
use of the ASSIGN system subroutine or the FORTRAN OPEN statement .
Valid logical unit numbers other than those listed below (10-99) are
assigned to the system default device (public structure on RSTS/E) .
The default filename conventions hold for logical units not listed
below, for example, unit number 49 will have a default file name of
FTN49 .DAT . Refer to the RT-11 System User's Guide or the RSTS/E
System User's Guide .

Table 3-2
FORTRAN Logical Device Assignments

Although any combination of valid logical unit numbers can be used,
there is an imposed maximum number of units that can be simultaneously
active . By default, six logical units can be concurrently active .
The number can be changed by use of the /UNITS option (/N) in the
compiler command string while compiling the main program unit (see
Section 1 .2 .2) .

A formatted READ statement of the form :

READ f,list

is equivalent to :

READ(l,f) list

3-5

Logical Unit
Number

Default Device Default File name

1 System disk, or
public structure SY :

FTN1 .DAT

2 Default device FTN2 .DAT
3 Default device FTN3 .DAT
4 Default device FTN4 .DAT
5 Terminal, TT :(Input) FTN5 .DAT
6 Line printer, LP : FTN6 .DAT
7 Terminal, TT :(Output) FTN7 .DAT
8 High-speed paper

tape reader, PC : FTN8 .DAT
9 High-speed paper

tape punch, PC : FTN9 .DAT

FORTRAN IV SPECIFIC CHARACTERISTICS

For all purposes these two forms function identically . For example,
assigning logical unit number 1 to the terminal, in both cases, causes
input to come from the terminal .

The ACCEPT, TYPE, and PRINT statements also have similar functional
analogies . Assigning devices to logical units 5, 7, and 6 affects the
ACCEPT, TYPE, and PRINT statements respectively .

3 .8 MAXIMUM RECORD LENGTHS

The line buffer allocated to store I/0 records temporarily is by
default 136 bytes . This restricts all I/0 records in formatted I/0
statements to a maximum of 136 characters . The size of this buffer,
and consequently the maximum record length, can be changed by
including the /RECORD option (/R) in the compiler command string while
compiling the main program unit . The maximum size of the line buffer
is 4095 bytes (7777 octal) .

3 .9 DIRECT ACCESS I/0

RT-11, RSTS/E FORTRAN IV,allows creation and modification of direct
access files .

3 .9 .1 DEFINE FILE Statement

The first parenthesized argument in a DEFINE FILE statement specifies
the length, in records, of the direct access file being initialized .
However, if the statement is part of a file creation procedure, this
value may not be readily available . RT-11, RSTS/E FORTRAN IV allows
some extra flexibility in this situation . Under RT-11, a file length
specification of zero records causes a large contiguous file to be
allocated initially and the unused portion to be automatically
deallocated when the file is closed . The "END=" construction is
particularly useful in this situation for determining the actual
length of the file .

Under RSTS/E a file length specification of zero records causes the
file to be extended dynamically as required by the highest record
number referenced during program execution, if the record size is an
exact multiple of 256 . The DEFINE FILE statement must not be used
with the OPEN statement . The OPEN statement specifies a record size
in units of 2 words ; whereas the DEFINE FILE statement specifies a
record size in units of 1 word .

3 .9 .2 Creating Direct Access Files

The first I/0 operation performed on a direct access file during file
creation must be a WRITE operation . A READ or FIND operation under
such circumstances produces a fatal error condition .

3 .10 INPUT/OUTPUT FORMATS

RT-11, RSTS/E FORTRAN IV allows formatted input and output for
transferring ASCII files, and unformatted and direct access input and
output for transferring binary records . Note, however, that FORTRAN
IV does not support ACCEPT or SEND I/0 to other KB :'s .

3-6

3 .10 .1 Formatted I/0

The formatted input/output routines read or write variable-length,
formatted ASCII records . A record consists of a number of ASCII
characters, transmitted under control of a format specification,
followed by a record separator character(s) .

On input, the parity bit of each input character is removed (set to
zero) ; only the seven-bit ASCII character is transferred . Also, null
characters (bytes of zero) are not transmitted on input .

On output to a printing device (KB :, TT :, or LP :), the record
separator appended to each record consists of a carriage return
character . The carriage return can be suppressed by use of the "$"
format separator character in the FORMAT statement (see Chapter 6 of
the PDP-11FORTRAN Language ReferenceManual) . The first character of
each record is deleted from the record and is interpreted as a
carriage control character .

3 .10 .2 Unformatted I/0

When unformatted I/0 routines read or write variable-length binary
records, they add control and file positioning information to the user
data . The control information is contained in each block of the file
and allows file positioning through auxiliary I/0 statements, for
example, BACKSPACE . The block consists of 256 words, numbered from 0
to 255, and contains a directory describing the records that end in
the block . The directory begins at word 254 and builds backward
towards the start of the block . Word 255 is the number of records
that end in the block ; bit #15 indicates end-of-file (EOF) for the
file . Each directory entry is one word long and points to the end of
a record ; its high order bit flags an end of file record .

FORTRAN IV SPECIFIC CHARACTERISTICS

Some run-time errors can be intercepted and control transferred to a
predetermined program label by use of the ERR= parameter . This
parameter can be specified in the READ, WRITE, ENCODE, or DECODE
statements . Note that a count n error will become fatal on the nth
occurrence of the error .

The following errors can be intercepted :

ERROR
NUMBER

ERROR
TYPE MESSAGE

5 Count 3 Input conversion error

23 Fatal Hardware I/0 error

45 Fatal Incompatible variable and format

46 Fatal Infinite format loop

spans blocks beginning at block 0, byte 40 and extending to (but not
including) block 1, byte 46 . Block 1 also contains record 4 (byte 46
to 56) and record 5 (byte 56 to 106) . Since the high-order bit of
word 255 of block 1 is set, this file contains only 5 records .

This file format is unique to FORTRAN and may not be easily accessed
by programs written in another language . To read or write a file
constructed in a programming language other than FORTRAN, use
formatted I/0 for ASCII data and direct access I/0 for binary data .

3 .10 .3 Direct-Access I/0

The direct access input/output routines read or write fixed-length,
binary records . The logical record structure for a direct-access file
is determined by the DEFINE FILE statement or the /RECORDSIZE option
in the OPEN statement . The records contain only the specified data ;
no control information or record separators are used .

The direct access record structure is independent of the physical
block size of the I/0 device . However, more efficient operation
results if the record size is an exact divisor or multiple of 256
words .

3 .11 MIXED-MODE COMPARISONS

When comparing a single precision number to a double-precision number,
the double-precision number may appear to be not equal to the
single-precision number in magnitude even though they should be equal .
For example :

DOUBLE PRECISION D

A=55 .1

D=55 .1DO

IF (A . LT . D) STOP

In the example above, A compares less than D because 55 .1 is a
repeating binary fraction . Before the comparison, the 24-bit
fractional (mantissa) part of A is extended with 32 zero bits . These
low-order 32 bits are now less than the low-order 32 bits of D, and D
therefore compares greater than A .

	

With some other values (for

FORTRAN IV SPECIFIC CHARACTERISTICS

As an example, assume the last three words (in octal) of block 0 of
an unformatted file to be :

100040, 40, 2

and the last four words (in octal) of block 1 of the same unformatted
file to be :

106, 56, 46, 100003

This is interpreted as follows :

Block 0 contains records 1, 2, and the start of record 3 . Record 1
extends from block 0, byte 0 to (but not including) block 0, byte 40 .
Record 2 is an ENDFILE record, denoted by bit #15 being on in the
end-of-record pointer ;

	

ENDFILE records have no length . Record 3

FORTRAN IV SPECIFIC CHARACTERISTICS

example, 5 .51), the single-precision value will compare greater than
the double-precision value owing to the conversion rounding
conventions in going from double to single precision .

3 .12 FORTRAN BUFFERED I/0

FORTRAN output to sequential files other than the console terminal is
sent to a 512-character buffer, which is written to the output device
only when the buffer is filled or the file is closed ; this process is
most noticeable in a program that generates line-printer output .

If you want to force the current buffer to output to the line printer
without the file being closed and reopened, include a 'REWIND'
statement at each of those points .

CHAPTER 4

INCREASING FORTRAN IV PROGRAMMING EFFICIENCY

4 .1 FACTORS AFFECTING PROGRAM EFFICIENCY

This chapter is directed to the programmer who is interested in
minimizing program execution time or storage space requirements .

The relative efficiency of an RT-11, RSTS/E FORTRAN IV object program
derives from several factors, which fall into two classes :

1 . The way in which the programmer codes the source program, and

2 . The way in which the compiler treats the source program .

These two factors are interrelated . Compiler optimizations can be
increased by certain programming techniques in the source program .
The programmer should code the source program so as to utilize those
FORTRAN constructs which the compiler handles most efficiently .

Section 4 .2 deals with the situations in which the compiler generates
the most efficient code . Section 4 .3, Programming Techniques,
contains hints on improving programming efficiency .

Each topic discussed in the following section is flagged with one of
the following remarks :

(space) indicates that the primary function of the
discussion is to minimize program memory
requirements .

(time)

	

indicates that the primary concern is minimization
of execution time .

A particular topic can have both designations, indicating a savings in
both space and time .

4 .2 INCREASING COMPILATION EFFECTIVENESS

The following 12 programming suggestions will increase compilation
effectiveness .

1 . Using the Optimizer effectively (space,time)

Avoiding certain programming constructs allows the optimizer
greater freedom to discover common subexpressions in source
programs . Specifically, avoid the following situation :

Usage of equivalenced

	

and

	

COMMON

	

variables,

	

and
SUBROUTINE and FUNCTION dummy arguments .

4- 1

INCREASING FORTRAN IV PROGRAMMING EFFICIENCY

2 . Passing arguments to subprograms (space, time)

To minimize overhead in FUNCTION and SUBROUTINE calls,
parameters should be passed in COMMON blocks rather thanstandard argument lists . Variables in COMMON are handled as
efficiently as local variables .

Minimizing the number of elements in the argument list (by
placing others in COMMON) reduces the time required to
execute the transfer of control to the called routine .

3 . Statement functions (time)

Arithmetic and logical statement functions are implemented as
internal FUNCTION subprograms . Hence, all suggestions
concerning argument lists apply to statement functions also .

4 . Minimizing array vector table storage (space)

The RT-11, RSTS/E FORTRAN IV array-vectoring feature is
designed to decrease the time required to compute the address
associated with an element of a multidimensional array by
precomputing certain of the multiplication operations
involved . The values precomputed are stored in a table
called the "vector" for the particular array dimension . It
is desirable to minimize the space allocated to these
vectors .

The following steps can be taken by the programmer to reduce
the space required for array vectors :

• Specify the largest dimensions first in the statement
that allocates the array . This minimizes the number of
vector table entries, as the first dimension is never
vectored . For example,

INTEGER A(350,10)

	

requires 10 words to vector

INTEGER A(10,350)

	

requires 350 words to vector

The compiler computes a space tradeoff factor that
relates the number of words required for vector storage
to the number of words required to store the array . If
this tradeoff is favorable (for example, the vector table
is small compared to the array), the array is vectored .
Therefore, the proper ordering of dimensions not only
saves table space for all vectored arrays, but can also
cause other arrays to be made eligible for vectoring .

• Try to keep similar arrays dimensioned in the same order .
This will cause certain arrays to share vector tables .
For example :

INTEGER A(9,4,5), B(9,4,7), C(9,8)

all share the same two vectors, one for the second array
dimension and one for the third . The vector for the
second dimension will have eight elements (@ 1 word each)
because C has the largest second dimension, 8 .
Similarly, the vector for the third dimension has seven
elements .

INCREASING FORTRAN IV PROGRAMMING EFFICIENCY

In the general case, two arrays share a vector table for
dimension i if each dimension less than i in each array is
identical to the same dimension for the other array . In
the example given above, arrays A, B, and C share the
vector for the second dimension because each array has a
first dimension equal to 9 .

• Vectoring can be disabled completely by specifying the
/NOVECTORS (/V) option in the command string to the
compiler . This causes no vector tables to be generated,
but the resulting program executes more slowly than with
vectoring . This tradeoff can be made if array usage is
not heavy in speed-critical sections of the program, or if
space is the primary goal .

5 . Multidimensioned array usage (time)

When using multidimensional arrays, the number of specified
variable subscripts affects the time required to make the
array reference . Therefore, the following steps can be taken
to optimize array references :

•

	

Use arrays with as few dimensions as possible .

• Use constant subscripts whenever possible . Constant
subscripts are computed during compilation and require no
extra operations at execution time .

• Make totally constant array references wherever
appropriate . These references receive the highest level
of optimization . For example,

I = 1
A(I) = 0 .0

is not as efficient as

I = 1
A(1) = 0 .0

The former case requires a run-time subscript operation ;
in the latter, the compiler can calculate the address of
the first element of array A at compilation time .

6 . Formatted input/output (space,time)

RT-11, RSTS/E FORTRAN IV precompiles and compacts FORMAT
statements that are presented in the source program . This
affects the space required to store the format at run time,
and the speed of the input/output operations that make use of
the format .

For this reason, object-time formats (for example, those
formats specified in arrays rather than as FORMAT statements)
are considerably less efficient .

7 . Data type selection (space,time)

Because of the addressing modes of the PDP-11 processors and
various optimization considerations internal to FORTRAN IV,

4- 3

	

March 1983

INCREASING FORTRAN IV PROGRAMMING EFFICIENCY

more efficient code can be generated for certain data types
than for others . Specifically :

• Use the INTEGER data type wherever possible . RT-11,
RSTS/E FORTRAN IV performs extensive optimization on this
data type .

• Use REAL*4 rather than DOUBLE PRECISION (REAL*8) wherever
possible . Single-precision operations are significantly
faster than double-precision, and storage space is saved .

•

	

Avoid unnecessary mode mixing . For example :

A = 0 .0

is preferable to

A = 0

• Use two REAL*4 variables rather than a COMPLEX*8 if usage
of COMPLEX variables in the program is not heavy . REAL*4
operations receive more optimization than COMPLEX
operations .

8 . Testing "flag" variables (space)

Wherever possible, comparisons with zero should be used .
Comparing any data type to a zero value is a special case
that requires less executable code . An example of such a
case is the following :

IF (I LT . 1) GOTO 100

requires more code than

IF (I LE . 0) GOTO 100

9 . *2, **2 operations (time)

Explicitly specifying *2 when doubling the value of an
expression, or **2 when squaring the value of an expression
can lead to more efficient code . For example :

A = (B + ARRAY(C))**2

is preferable to

A = (B + ARRAY(C)) * (B + ARRAY(C))

despite the fact that (B + ARRAY(C)) is computed only once in
either case . Note that this applies only to expression
values ; I**2 is as efficient as I*I .

10 . Compilation options (space)

To minimize the space required for program execution, the
following options should be supplied to the compiler :

/NOLINENUMBERS (/S)

	

to suppress line number traceback
/VECTORS

	

(/V)

	

to suppress all array vectoring

In addition, the /14 (/T) (two-word integer default) option
should not be specified unless required .

INCREASING FORTRAN IV PROGRAMMING EFFICIENCY

The /NOSWAP (/U) OPTION should not be specified if it is not
required (i .e ., no user-written interrupt or completion
routines exist in the linked program) .

Specify minimal values for the /UNITS (/N) and /RECORDS (/R)
compiler options to conserve space at execution time . The
/UNITS (/N) value should be the number of logical units that
can be concurrently active . Set the /RECORDS (/R) option to
the maximum formatted record length plus two (for the
carriage return/line feed combination that can accompany a
record) .

12 . Compilation options (time)

Specify the following compiler options to optimize an object
program for execution time .

Do not specify the following option, because global array
vectoring speeds program execution .

/NOVECTORS

	

(/V)

	

will disable array vectoring

4 .3 PROGRAMMING TECHNIQUES

The following examples compare different programming methods . These
comparisons show more efficient programming techniques available to
the user . While both methods are correct for the particular
operation, the technique on the right has been found more efficient
than the technique on the left .

20 A(J)=A(J)+TEMP2
10 CONTINUE

1 . Make use of the increment parameter in DO loops :

INEFFICIENT

DIMENSION A(20)

EFFICIENT

DIMENSION A(20)
DO 100 1=1,10 DO 100 I=2,20,2
A(2*I)=B

100 CONTINUE
A(I)=B

100 CONTINUE

In the inefficient example, an additional
is performed each time through the loop .
are avoided in the efficient example by
incremented by two .

calculation (2*1)
These calculations
having the count

2 . Avoid placing calculations within loops whenever possible :

INEFFICIENT EFFICIENT

DO 10 1=1,20 TEMP1=B*C
DO 20 J=1,50 DO 10 I=1,20

20 A(J)=A(J)+I*B*C
10 CONTINUE

TEMP2=I*TEMP1
DO 20 J=1,50

/NOLINENUMBERS (/S) to suppress line number traceback
/NOSWAP (/U) to prevent the USR (RT-11 file

service routines) from swapping at
run time (RT-11 only ;

	

ignored
under RSTS/E)

INCREASING FORTRAN IV PROGRAMMING EFFICIENCY

The calculation (B*C) within the loop of the inefficient
example is evaluated 1000 times . Calculations are handled
more economically when done outside the loop . In the
efficient example, 980 "FLOATS" and 1979 floating multiplies
were saved by performing the (B*C and I) calculations outside
the loop .

3 . Proper nesting of DO loops can increase speed by minimizing
the loop initialization .

60 A(I,J)=B

	

60 A(I,J)=B

In the first example, the inner DO loop is initialized 100
times, while in the efficient example it is only initialized
10 times .

4 . The most efficient way to zero a large array, or to set each
element to some value, is to equivalence it to a ,
single-dimension array . This technique is even useful for
copying large multidimensional arrays .

20 A(J,I)=0

	

DO 20 I=1,500
20 ATEMP(I)=0 .ODO

The efficient example makes use of the eight bytes in REAL*8
and, by equivalencing, places four integers in the array and
zeroes them in one operation, thus quartering the number of
iterations .

5 . Do as much calculation in INTEGER mode as possible .

INEFFICIENT

	

EFFICIENT

A=B+I+J

	

A=B+(I+J)

Also, do as much calculation in REAL mode when the dominant
mode of an expression is DOUBLE PRECISION or COMPLEX .
Calculation is most efficient in integer mode, less efficient
in REAL mode, and least efficient in DOUBLE PRECISION or
COMPLEX . Remember, in the absence of parentheses, evaluation
generally proceeds from left to right .

INEFFICIENT EFFICIENT

DIMENSION A(100,10) DIMENSION A(100,10)
DO 60 I=1,100 DO 60 J=1,10
DO 60 J=1,10 DO 60 I=1,100

INEFFICIENT EFFICIENT

INTEGER A ,(20,100) INTEGER A(20,100)
DO 20 I=1,100 REAL*8 ATEMP(500)
DO 20 J=1,20 EQUIVALENCE (A .ATEMP)

INCREASING FORTRAN IV PROGRAMMING EFFICIENCY(

6 . Use COMMON to pass arguments and

	

return

	

results

	

of
subprograms whenever possible .

INEFFICIENT

	

EFFICIENT

COMMON/SUBRA/A,B,C,D,E
COMMON/FUNCTA/Y,Z

CALL SUBR(A,B,C,D,E) CALL SUBR
X=FUNCT(Y,Z) X=FUNCT()
CALL SUBR(A,B,C,D,E)

	

CALL SUBR

END

	

END
SUBROUTINE SUBR(A,B,C,D,E) SUBROUTINE SUBR

COMMON/SUBRA/A,B,C,D,E

END
END

FUNCTION FUNCT(Y,Z)

	

FUNCTION FUNCT
COMMON/FUNCTA/Y,Z

END
END

COMMON is handled more efficiently than formal argument
lists . Generally, it is possible to use COMMON for argument
passage if a subprogram is referenced from only one place, or
if it is always referenced with the same actual arguments .

NOTE

In PDP-11 FORTRAN IV, function subprograms are not
required to have arguments, but they must have empty
parentheses for the compiler to recognize them as
functions ; for example, IGETCO .

7 . Avoid division within programs wherever possible .

INEFFICIENT

	

EFFICIENT

A=B/2 .

	

A= B* .5

Multiplication is faster than division and thus

	

saves
execution time .

CHAPTER 5

CONCISE COMMAND LANGUAGE OPTION

5 .1 INTRODUCTION TO THE RSTS/E FORTRAN IV CCL OPTION

The Concise Command Language (CCL) commands provide an alternative
method for invoking RSTS/E system programs . CCL commands allow a user
to run a system program by specifying a single command for the program
to execute . The user types the CCL command and the program command on
one line and enters it to the system . The system loads the program
into the user's job area and writes the program command to the core
common area . This operation destroys the current contents of the
user's job area . The program runs, reads the command from the core
common area, and executes . If an error is encountered, the program
prints a related message and terminates . CCL options are available
for the following system programs : FORTRAN, LINK, AND MACRO .

RSTS/E users should contact the system manager for the availability of
these commands on their system .

5 .2 COMMAND INTERFACE

The CCL command to invoke the FORTRAN IV Compiler has the form :

FOR[TRAN] command line

where

FOR[TRAN]

	

indicates that the FORTRAN command can be
abbreviated to these characters (FOR) .

command line

	

has the form : output = input/sw
The output and input file name specifications
are described in Section 1 .1 .1 ; the compiler
switches are described in Section 1 .2 .1 .

The command to invoke the linker, LINK, has the form :

LINK command line

where

command line

	

has the form : output = input/sw
The output and input file name specifications
and switch options are described in Section
1 .3 .

The command to invoke MACRO has the form :

MACRO command line

5-1

where

5 .2 .1 CCL Command Restrictions

Several switch options included in the LINK utility are not acceptable
to the LINK CCL command line . These switch option restrictions do not
apply to the "RUN $LINK" invocation of the linker utility but only to
one line of input to the LINK CCL command . The restricted switches
are the following :

/C

	

continue input specification on multiple lines

/E

	

extend PSECT

/I

	

include requested library modules

/M

	

specify stack address as global symbol
(/M :n form is acceptable)

/0

	

indicate overlay structure

/T

	

specify transfer address as global symbol
(/T :n form is acceptable)

/U

	

round PSECT

//

	

indefinite continuation

5 .2 .2 CCL Command Comparison

The following example illustrates the two methods available to the
user for creating a source and assembly program, as well as linking
and execution .

RSTS/E Command String

	

CCL

RUN $FORTRAN

	

FOR MAIN=MAIN,SUBR/S
*MAIN=MAIN,SUBR/S
* .Z

READY

	

READY

RUN $MACRO

	

MACRO MACSUB=MACSUB
*MACSUB=MACSUB

	

ERRORS DETECTED :O
ERRORS DETECTED :O

	

FREE CORE : 1024 WORDS
FREE CORE : 1024 WORDS
* - z

CONCISE COMMAND LANGUAGE OPTION

command line

	

has the form : output = input/sw
The output and input file name specifications
and switch options are described in the
RSTS/E FORTRANIVUtilitiesManual .

READY

	

READY

RUN $LINK

	

LINK PROG=MAIN,MACSUB/F~~

	

*PROG=MAIN,MACSUB/F

*"Z

READY

	

READY

RUN PROG

	

RUN PROG

CONCISE COMMAND LANGUAGE OPTION

r~~

A .1 INTEGER FORMAT

Sign

0=+
1=_ Binary number

15 14

Integers are stored in a two's complement representation . If the /14
(/T) compiler option (see Section 1 .2 .1) is used, an integer is
assigned two words, although only the low-order word (for example, the
word having the lower address) is significant . By default, integers
will be assigned to a single storage word . Explicit length integer
specifications (INTEGER*2 and INTEGER*4) will always take precedence
over the setting of the /14 (/T) option . Integer constants must lie
in the range -32767 to +32767 . For example :

+22 = 000026 (octal)
-7 = 177771 (octal)

A .2 FLOATING-POINT FORMATS

The exponent for both two-word and four-word floating-point formats is
stored in excess 128 (200(octal)) notation . Binary exponents from
-128 to +127 are represented by the binary equivalents of 0 through
255 (0 through 377(octal)) . Fractions are represented in
sign-magnitude notation with the binary radix point to the left .
Numbers are assumed to be normalized and, therefore, the most
significant bit is not stored because of redundancy (this is called
hidden bit normalization) . This bit is assumed to be a 1 unless the
exponent is 0 (corresponding to 2-128), in which case it is assumed to
be 0 . The value 0 is represented by two or four words of zeros . For
example, +1 .0 would be represented by :

40200
0

in the two-word format, or :

40200
0
0
0

APPENDIX A

FORTRAN DATA REPRESENTATION

0

in the four-word format, -5 would be :

in the two-word format, or :

140640
0
0
0

in the four-word format .

word 2 :

word 3 :

word 4 :

15

	

0

The effective precision is 56 bits (or approximately 17 decimal digits
of accuracy) . The magnitude range lies between .29 X 10-38 and .17 X
1039 .

15

15

15 14

140640
0

1=-
Binary excess
128 exponent

High-order
mantissa

76

Since the high-order bit of the mantissa is always 1, it is discarded,
giving an effective precision of 24 bits (or approximately 7 digits of
accuracy) . The magnitude range lies between approximately .29 X 10-38
and .17 X 1039 .

A .2 .2 DOUBLE PRECISION Format (Four-Word Floating Point)

Sign

word 1 :

0

Low-order mantissa

0

Lower-order mantissa

0

Lowest-order mantissa

FORTRAN DATA REPRESENTATION

A .2 .1 REAL

Sign

Format (Two-Word Floating Point)

0=+ Binary excess High-orderword 1 :
1=- 128 exponent mantissa

15 14 76 0

word 2 : Low-order mantissa

15 0

Any non-zero value is considered to have a logical value of TRUE .
The range of numbers from +127 to -128 can be represented in LOGICAL*l
format . LOGICAL*l array elements are stored in adjacent bytes .

A .4 HOLLERITH FORMAT

word 1 :

word 2 :

word 3 :

7

15

15

15

Hollerith constants are stored internally, one character per byte .
Hollerith values are padded on the right with blanks to fill the
associated data item, if necessary .

A .5 LOGICAL FORMAT

True: word 1 :

word 2 :

False : word 1 :

word 2 :

Data item

0

char 2 char 1

87

char 4 char 3

15

15

87

I

	

blank = 40 (octal) I

	

char n (n <255)

15

87

FORTRAN DATA REPRESENTATION

87

87

0

0

0

unspecified 377

unspecified

unspecified 000

unspecified

15

	

0

Logical (LOGICAL*4) data items are treated as LOGICAL*l values for use
with arithmetic and logical operators . Any non-zero value in the low
order byte is considered to have a logical value of true in logical
expressions .

A-3

0

0

I

I
0

A .2 .3 COMPLEX
Sign

Format

word 1 : 0=+
1=-

Binary excess
128 exponent

High-order
mantissa

15 14 76 0 Real
Part

word 2: Low-order mantissa

15
Sign

0

word 3 :
0=+ Binary excess High-order
1=- 128 exponent mantissa

15 14 76 0 Imaginary
Part

word 4 : Low-order mantissa

15

A .3 LOGICAL*l FORMAT

0

FORTRAN DATA REPRESENTATION

A .6 RADIX-50 FORMAT

Radix-50 character set

Character

	

Octal

	

Radix-50
ASCII

	

Equivalent

	

Equivalent

space

	

40

	

0
A-Z

	

101-132

	

1-32
$

	

44

	

33
56

	

34
unused

	

35
0-9

	

60-71

	

36-47

The following table provides a convenient means of translating between
the ASCII character set and its Radix-50 equivalents . For example,
given the ASCII string X2B, the Radix-50 equivalent with (arithmetic
is performed in octal) is as follows :

X =113000
2 =002400
B=000002

X2B=115402

Table A-1
ASCII/Radix-50 Equivalents

(continued on next page)

Single Character
or

First Character
Second

Character
Third

Character

space 000000 space 000000 space 000000
A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
C 011300 C 000170 C 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 1 000550 1 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
0 056700 0 001130 0 000017
P 062000 P 001200 P 000020
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
S 073300 S 001370 S 000023
T 076400 T 001440 T 000024
U 101500 U 001510 U 000025
V 104600 V 001560 V 000026
W 107700 W 001630 W 000027
X 113000 X 001700 X 000030
Y 116100 Y 001750 Y 000031
Z 121200 Z 002020 Z 000032
$ 124300 $ 002070 $ 000033

FORTRAN DATA REPRESENTATION

Table A-1 (Cont .)
ASCII/Radix-50 Equivalents

Single Character
or

First Character
Second

Character
Third

Character

. 127400 . 002140 . 000034
unused 132500 unused 002210 unused 000035

0 135600 0 002260 0 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

B .1 LIBRARY SUBROUTINE SUMMARY

In addition to the functions intrinsic to the FORTRAN IV system, the
FORTRAN library contains the following subroutines that the user can
call in the same manner as a user-written subroutine .

ASSIGN allows specification at run time of the file name or
device and file name to be associated with a FORTRAN IV
logical unit number .

OPEN

	

(RSTS/E only) causes the specified file to be opened and
associated with a particular FORTRAN IV logical unit .

CLOSE

	

closes the specified logical unit after writing any
active buffers to the file .

DATE

	

returns a nine-byte

	

string

	

containing

	

the

	

ASCII
representation of the current date .

IDATE

	

returns three integer values representing the current
month, day, and year .

EXIT

	

terminates the execution of a program and returns control
to the executive .

USEREX

	

allows specification of a routine to be invoked as part
of program termination .

RANDU,

	

returns a pseudo random-real number with a uniform
RAN

	

distribution between 0 and 1 .

SETERR

	

allows the user to set a count specifying the number of
times to ignore a certain error condition .

ERRTST

	

allows the user program to monitor the types of errors
detected during program execution .

ERRSNS allows the user program to obtain information about the
most recent error that has occurred during program
execution .

APPENDIX B

LIBRARY SUBROUTINES

B-1

	

March 1983

B .2 ASSIGN

The CALL ASSIGN statement should not be used in conjunction with the
CALL OPEN statement . In proper context, the ASSIGN subroutine allows
the association of device and file name information with a logical
unit number . The ASSIGN call, if present, must be executed before the
logical unit is opened for I/0 operations (by READ or WRITE) for
sequential access files, or before the associated DEFINE FILE
statement for random access files . The assignment remains in effect
until the end of the program or until the file is closed by CALL CLOSE
or the CLOSE statement, and a new CALL ASSIGN performed . The call to
ASSIGN has the general form :

CALL ASSIGN(n, name, icnt, mode, control, numbuf)

CALL ASSIGN requires only the first argument all others are optional,
and if omitted, are replaced by the default values as noted in the
argument descriptions . However, if any argument is to be included,
all arguments that precede it must also be included .

NOTE

Under RSTS/E, any project-programmer
number or protection code information
supplied to CALL ASSIGN is ignored . If
the ability to supply such information
is desired, CALL OPEN should be used .

A description of the arguments to the ASSIGN routine follows :

n

	

logical unit number expressed as an integer constant or
variable .

name Hollerith or literal string containing any standard
RT-11 or RSTS/E file specification . If the device is
not specified, then the device remains unchanged from
the default assignments . If a file name is not
specified, the default names, as described in Section
3 .7, are used . The three options that can be included
in the file specification are :

/N specifies no carriage control translation .
This option overrides the value of the
'control' argument .

/C specifies carriage control translation . This
option overrides the value of the 'control'
argument .

/B :n specifies the number of buffers, n, to use
for I/0 operations . The single argument, n,
should be of value 1 or 2 . This option
overrides the value of the 'numbuf' argument .
Multibuffering is not supported under RSTS/E .

If name is simply a device specification, the device is
opened in a non-file-structured manner, and the device
is treated in a non-file-structured manner .
Indiscriminate use of this feature on directory devices
such as disk or DECtape can be dangerous (for example,
damage the directory structure) .

LIBRARY SUBROUTINES

LIBRARY SUBROUTINES

icnt specifies the number of characters in the string
'name' . If 'icnt' is zero, the string 'name' is
processed until the first blank or null character is
encountered . If 'icnt' is negative, program execution
is temporarily suspended . A prompt character (*) is
sent to the terminal, and a file name specification,
with the same form as 'name' above, terminated by a
carriage return, is accepted from the keyboard .

mode

	

specifies the method of opening the file on this unit .
This argument can be one of the following :

'RDO' the file is read only . A fatal error occurs
if a FORTRAN write is attempted on this unit .
If the specified file does not exist,
run-time error 28 (OPEN FAILED FOR FILE) is
reported .

'NEW' a new file of the specified name is created ;
this file does not become permanent until the
associated logical unit is closed via the
CALL CLOSE routine, the CLOSE statement or
program termination . If execution is aborted
by typing CTRL"C, the file is not preserved .

'OLD' the file already exists . If the specified
file does not exist, run-time error 28 (OPEN
FAILED FOR FILE) is reported .

'SCR'

	

the file is only to be used temporarily and
is deleted when it is closed .

If this argument is omitted, the default is determined
by the first I/0 operation performed on that unit . If
a WRITE operation is the first I/0 operation performed
on that unit, 'NEW' is assumed . If a READ operation is
first, 'OLD' is assumed .

control

	

specifies whether carriage control translation is to
occur . This argument can be one of the following :

'NC' all characters are output exactly as
specified . The record is preceded by a line
feed character and followed by a carriage
return character .

'CC' the character in column one of all output
records is treated as a carriage control
character . (See the PDP-ll FORTRAN Language
Reference Manual .)

If not specifically changed by the CALL ASSIGN
subroutines, the terminal and line printer assume by
default 'CC', and all other devices assume 'NC' .

numbuf specifies the number of internal buffers to be used for
the I/0 operation . A value of 1 is appropriate under
normal circumstances . If this argument is omitted, one
internal buffer is used . Multibuffering is not
supported under RSTS/E .

B .3 OPEN (RSTS/E ONLY)

The CALL OPEN statement should not be used in conjunction with the
OPEN statement . The subroutine OPEN is an extension of the ASSIGN
routine for RSTS/E . OPEN allows a specified file to be opened and
associated with a particular FORTRAN logical unit . In the OPEN call,
all arguments (except "n" and "name") are optional and will default if
not specified . However, if any argument is to be included, all
arguments that precede it must also be included .

A description of the arguments to the OPEN subroutine follows :

CALL OPEN (n, name, icnt, disp, control, numbuf, iotype, p, pn, prot,
mode, cluster)

where

n

	

is the integer specification of the logical unit to be
associated with the file .

name is a variable array, or quoted string, whose contents
specify the name (and possibly the project-programmer
number and protection code) of the file to be opened .

icnt is an integer value that controls the interpretation of
the 'name' argument . If 'icnt' is positive, it
specifies the number of characters to be taken from the
'name' argument as the file name string . If 'icnt' is
zero, 'name' is scanned until the first blank or null
character is encountered . If a negative value is given
for 'icnt', program execution is temporarily suspended,
a prompt character (*) is sent to the terminal, and a
filename specification, terminated by a carriage
return, is accepted from the keyboard .

disp is a string specification of the disposition of the
file on this unit . This argument can be one of the
following :

'RDO' the file is read only . A fatal error occurs if a
FORTRAN write is attempted on this unit . If the
specified file does not exist, run-time error 28
(OPEN FAILED FOR FILE) is reported .

'NEW' a new file of the specified name is created ;
this file does not become permanent until the
associated logical unit is closed via the CALL
CLOSE routine, the CLOSE statement or program
termination . If execution is aborted by typing
CTRL -C, the file is not preserved .

'OLD' the file is assumed to exist . If the file is not
found in the specified directory, or is protected
against access by the user, a fatal error
results .

'SCR' the file is only to be used temporarily and will
be deleted when it is closed .

If this argument is not given, the default is set to
'NEW' .

LIBRARY SUBROUTINES

LIBRARY SUBROUTINES

control

	

is a string argument-specifies whether carriage control
translation is to occur . This argument can be one of
the following :

'NC' all characters are output exactly as specified .
The record is preceded by a line feed character
and followed by a carriage return character .

'CC' the character in column one of all output records
is treated as a carriage control character . (See
the PDP-11 FORTRAN Language Reference Manual .)

If not specifically changed by the OPEN routine, the
user's terminal and the line printer assume by default
'CC', and all other devices assume 'NC' .

p

numbuf retained for argument list compatibility with the RT-11
ASSIGN system subroutine ; has no function under RSTS/E
and should be omitted or given the value 1 .

iotype is a string argument that specifies the range of
input/output operations to be performed on a unit .
This argument can be one of the following :

'FOR' the unit is to

	

be

	

opened

	

for

	

formatted
input/output .

'UNF'

	

the unit is
input/output .

'RAN' the unit is to
input/output .

to be opened for

	

unformatted

be opened for random access

If this argument is not specified, it defaults to
'FOR' .

is an integer value giving the default project code to
be used (in conjunction with the "pn" argument) if no
project-programmer number specification is found in
"name" .

pn is an integer value giving the default programmer code
to be assumed if no project-programmer specification
appears in "name" .

prot is an integer value specifying the protection code to
be assigned by default if no protection code indication
occurs in "name" . This argument takes effect only on
output files .

mode is an integer specification of the RSTS/E mode to be
used on opening the file (refer to the RSTS/E
Programming Manual for device-specific mode
information) .

cluster is an integer specification of the cluster size to be
assigned to the file to be opened . This argument only
takes effect on output files (for example, files with
the 'NEW' or 'SCR' attribute) .

B .4 CLOSE

The user has the option of the CALL CLOSE routine and the CLOSE
statement . The CALL CLOSE routine is a subset of the CLOSE statement
(see the PDP-11FORTRANLanguageReference Manual) . CLOSE explicitly
closes any file open on the specified logical unit . If the file was
open for output, any partially filled buffers are written to the file
before closing it . After the execution of CALL CLOSE, any buffers
associated 'with the logical unit are freed for reuse and all
information supplied in any previous CALL ASSIGN for the logical unit
is deleted . The logical unit is thus free to be associated with
another file .

An implicit CLOSE operation is performed on all open logical units
when a program terminates (due to a fatal error condition, or the
execution of STOP or CALL EXIT) .

The format of the call is :

CALL CLOSE (ilun)

where

ilun is an integer constant, variable, array element,

	

or
expression specifying the logical unit to be closed .

B .5 DATE

The DATE subroutine can be used in a FORTRAN program to obtain the
current date as set within the system . The DATE subroutine is called
as follows :

CALL DATE(array)

where array is a predefined array able to contain a nine-byte string .
The array specification in the call can be expressed as the array name
alone :

CALL DATE(a)

in which the first three elements of the real array a are used to hold
the date string, or :

which
array

LIBRARY SUBROUTINES

CALL DATE(a(i))

causes the nine-byte string to begin at the i(th) element of the
a .

The date is returned as a 9-byte (nine-character) string in the form :

dd-mmm-yy

where

dd is the two-digit date (with leading zero if necessary)
mmm is the three-letter month specification (all capital
letters)
yy is the last two digits of the year

LIBRARY SUBROUTINES

For example :

25-DEC-76

The 9-byte array is set to blanks, if the system date has not been
set .

B .6 IDATE

IDATE returns three integer values representing the current month,
day, and year . The call has the form :

CALL IDATE(i,j,k)

If the current date were March 19, 1976, the values of the integer
variables upon return would be :

i = 3
j = 19
k = 76

i is returned as zero, if the system date has not been set .

B .7 EXIT

A call to the EXIT subroutine, in the form :

CALL EXIT

is equivalent to the STOP statement except that no STOP message
appears on the user's terminal . Use of the EXIT statement causes
program termination, the closing of all files, and return to the
monitor .

B .8 USEREX

USEREX is a subroutine that allows specification of a routine to which
control is passed as part of program termination . This allows
disabling of interrupts enabled in non-FORTRAN routines . If these
interrupts are not disabled prior to program exit, the integrity of
the operating system cannot be assured . The form of the subroutine
call is :

CALL USEREX (name)

where

'name' is the routine to which control is passed and should
appear in an EXTERNAL statement somewhere in the program unit .
Control is transferred with a JMP instruction after all
procedures required for FORTRAN IV,program termination have been
completed . The transfer of control takes place instead of the
normal return to the monitor . Thus, if the user desires to have
control passed back to the monitor, the routine specified by
USEREX must perform the proper exit procedures .

B .9 RANDU,RAN

The random number generator can be called as a subroutine, RANDU, or
as an intrinsic function, RAN . The subroutine call is performed as
follows :

CALL RANDU (i(1) ,i(2)

	

x)

where

i(1) and i(2) are previously defined integer variables and x is
the real variable name, in which a random number between 0 and 1
is returned . i(1) and i(2) should be initially set to 0 . i(l)
and i(2) are updated to a new generator base during each call .
Resetting i(l) and i(2) to 0 repeats the random number sequence .
The values of i(l) and i(2) have a special form ; only 0 or saved
values of i(l) and i(2) should be stored in these variables .

The random number generator can also be called as a function, as
follows :

x=RAN(i(1) ,i(2))

B .10 SETERR

SETERR allows the user to specify the disposition of certain OTS
detected error conditions . Only OTS error diagnostics 1 - 16 should
be changed from their default error classification (see Section C .2) .
If errors 0 or 20 - 69 are changed from the default classification of
FATAL, execution continues but in an undetermined state . The form of
the call is :

CALL SETERR (number,ncount)

where

'number' is an integer variable or expression specifying the OTS
error number (see Section C .2), and 'ncount' is a LOGICAL*1
variable or expression with one of the following values :

Value

	

Meaning

0

	

Ignore all occurrences after logging them on the user
terminal .

1

	

First occurrence of the error will be fatal .

2-127 The nth occurrence of the error will be fatal ; the
first n-l occurrences will be logged on the user
terminal .

128-255

	

Ignore all occurrences of the error .

B .11 ERRTST

ERRTST allows the user program to monitor the types of errors detected
during program execution . The general form of the call is :

CALL ERRTST (ierr,ires)

LIBRARY SUBROUTINES

B-8

where

ierr is an INTEGER*2 quantity specifying the error number for
which the test is to be done .

ires is an INTEGER*2 variable or array element which is to
receive the status of the error .

ires=l if an error has occurred
ires=2 if an error has not occurred

LIBRARY SUBROUTINES

A call to ERRTST will reset the flag governing the specified error
condition .

B .12 ERRSNS

ERRSNS allows specifying from zero to two arguments . When ERRSNS is
called with zero arguments, previous error data is cleared, thus
allowing testing for errors in certain program sections . The general
call is :

CALL ERRSNS (ires,iunit)

where

ires is an INTEGER*2 variable or array element into which the
numeric code for the most recent error will be stored . A zero
will be stored if there is no error .

iunit is an INTEGER*2 variable or array element into that the
logical unit number of input/output errors will be stored, if the
most recent error was input/output related .

1-1

APPENDIX C

FORTRAN IV ERROR DIAGNOSTICS

C .1 COMPILER ERROR DIAGNOSTICS

The FORTRAN IV Compiler, while reading and processing the FORTRAN
source program, can detect syntax errors (or errors in general form)
such as unmatched parentheses, illegal characters, unrecognizable key
words, and missing or illegal statement parameters .

The error diagnostics are generally clear in specifying the exact
nature of the error . In most cases, a check of the general form of
the statement in question as described in the PDP-11 FORTRAN Language
Reference Manual will help determine the location of the error .

Some of the most common causes of syntax errors, however, are typing
mistakes . A typing mistake can sometimes cause the compiler to give
very misleading error diagnostics . The user should note, and take
care to avoid, the following common typing mistakes :

•

	

Missing commas or parentheses in a complicated expression or
FORMAT statement .

• Misspelling of particular instances of variable names . If the
compiler does not detect this error (it usually cannot),
execution may also be affected .

•

	

An inadvertent line continuation signal on the line following
the statement in error .

• If the user terminal does not clearly differentiate between 0
(zero) and the letter 0, what appear to be identical spellings
of variable names may not appear so to the compiler, and what
appears to be a constant expression may not appear so to the
compiler .

If any error or warning conditions are detected in a compilation, the
following message is printed on the initiating terminal :

?FORTRAN-I- [name]Errors :n,Warnings :m

where :

[name] is the six-character name of the program unit being
compiled . MAIN. i s the default name of the main
program if no PROGRAM statement is used . The default
name for BLOCK program units is .DATA . .

n represents the number of error-class messages (for
example, those messages that cause the statement in
question to be deleted) .

FORTRAN IV ERROR DIAGNOSTICS

m represents the number of warning-class messages (for
example, those messages indicating conditions that can
be ignored or corrected, such as missing END statements
or questionable programming practices) . Note that some
warning conditions will only be detected if the /W
switch is specified (see Section C .1 .3 .) .

The next four sections describe the initial phase and secondary phase
error diagnostics and the fatal FORTRAN IV Compiler error diagnostics .

C .1 .1 Errors Reported by the Initial Phase of the Compiler

Some of the easily recognizable FORTRAN syntax errors are detected by
the initial phase of the compiler . Errors that cause the statement in
question to be aborted are tabulated in the ERROR count, whereas those
that are correctable by the compiler are counted as WARNINGS .

C- 2

	

March 1983

I

The following is an example of a FORTRAN IV program with diagnostics
issued by the compiler .

FORTRAN IV V02 .6

	

Thu 01-Mar-83 00241551

	

PAGE 001

0001 DOUBLE PRECISION DBLE DBLE2
0002 DATA INT/100/ DBLE2/500 ./
0003 DBLE2

	

INT/2 + 5 . + DBLE
0004 WRITE,(6,10) DBLE,DBLE
0005 10 FORMAT(1X,2F12 .6)
0006 10 STOP
***** M
0007 INTEGER INT
0008 END

FORTRAN IV Diagnostics for Program Unit .MAIN .

In line 0004, Error'. Syntax error
In line 0008, Warring'. Variable 'DBLEDB' name exceeds 6 characters
In line 0009, Warning*. Non-standard statement ordering

FORTRAN IV

Local Variables,

Storage Map for Program Unit MAIN .

PSECT $DATA, Size = 000024 (10 . words)

Name Tspe Offset

	

Name

	

Type Offset Name Type Offset
DBLE R*4 000020

	

DBLEDB R*8 000010 DBLE2 R*4 000004
INT 1*2 000002

FORTRAN IV ERROR DIAGNOSTICS

The error diagnostics are printed after the source statement to which
they apply (the L error diagnostic is an exception) . The general form
of the diagnostic is as follows :

Where

c is a code letter whose meaning is described below .

INITIAL PHASE ERROR DIAGNOSTICS

Code Letter

	

Description

• Columns 1-5 of a continuation line are not blank .
Columns 1-5 of a continuation line must be blank
except for a possible 'D' in column 1 ; the
columns are ignored (WARNING) .

C Illegal continuation . Comments cannot be
continued and the first line of any program unit
cannot be a continuation line . If-a line consists
only of a carriage return/line feed combination,
then it is considered to be a blank line . If it
has a label field, then it must have a statement
field . The line is ignored (WARNING) .

• Missing END statement . An END statement is
supplied by the compiler if end-of-file is
encountered (WARNING) .

• Hollerith string or quoted literal string is
longer than 255 characters or longer than the
remainder of the statement ; the statement is
ignored .

I Non-FORTRAN character used . The line contains a
character that is not in the FORTRAN character set
and is not used in a Hollerith string or comment
line . The character is ignored (WARNING) .

• Illegal statement label definition . Illegal
(non-numeric) character in statement label ; the
illegal statement label is ignored (WARNING) .

• Line too long to print . There are more than 80
characters (including spaces and tabs) in a line .
Note : this diagnostic is issued preceding the
line . containing too many characters . The line is
truncated to 80 characters (WARNING) .

M

	

Multiply defined label .

	

The label is ignored
(WARNING) .

•

	

Statement contains unbalanced parentheses . The
statement is ignored .

• Syntax error such as multiple equal signs, etc .
The statement is not of the general FORTRAN
statement form ; the statement is ignored .

•

	

Statement could not be identified as a legal
FORTRAN statement . The statement is ignored .

C-3

compiler error diagnostics not reported by the initial phase of
the compiler appear immediately after the source listing and
immediately before the storage map . Since the diagnostics appear
after the entire source program has been listed, they must designate

using the internal sequence

Those

the statement to which they apply by
numbers assigned by the compiler .

The general form of the diagnostic is :

Error :
IN LINE nnnn,

	

text
Warning :

where

nnnn is the internal sequence number of the statement in
question, and text is a short description of the error .

Below, listed alphabetically, are the error diagnostics . Included
with each diagnostic is a brief explanation . Refer to the PDP-11
FORTRAN Language Reference Manual for information to help correct the
error .

The notation **** signifies that a particular variable name or
statement label appears at that place in the text .

SECONDARY PHASE ERROR DIAGNOSTICS

ACCESS='DIRECT' REQUIRES FORM='UNFORMATTED'
FORM='FORMATTED' has been specified for a direct access
file . FORTRAN IV supports only unformatted direct
access input/output . Correct the program logic .

ADJUSTABLE DIMENSIONS ILLEGAL FOR ARRAY ****
An adjustable array was not a dummy argument in a
subprogram or the adjustable dimensions were not
integer dummy arguments in the subprogram . A dimension
of one is used . Correct the source program .

ARRAY EXCEEDS MAXIMUM SIZE or
ARRAY **** EXCEEDS MAXIMUM SIZE

The storage required for a single array or for all
arrays in total is more than is physically addressable
(>32K words) . This particular error may reference
either the actual statement containing the array in
question, or the first statement in the program unit .
Correct the statement in error or reduce the space
necessary for array storage .

ARRAY **** HAS TOO MANY DIMENSIONS
An array has more than seven dimensions . Correct the
program . The legal range for dimensions is one to
seven .

ATTEMPTS TO EXTEND COMMON BLOCK BACKWARDS
While attempting to EQUIVALENCE arrays in COMMON, an
attempt was made to extend COMMON past the recognized
beginning of COMMON storage . Correct the program
logic .

FORTRAN IV ERROR DIAGNOSTICS

C .1 .2 Errors Reported by Secondary Phases of the Compiler

FORTRAN IV ERROR DIAGNOSTICS

COMMON BLOCK EXCEEDS MAXIMUM SIZE
An attempt was made to allocate more space to COMMON
than is physically addressable (>32K words) . Correct
the statement in error .

CONSTANT IN FORMAT STATEMENT NOT IN RANGE
An integer constant in a FORMAT statement was not in
the proper range . Check that all integer constants are
within the legal range (1 to 255) .

DANGLING OPERATOR
An operator

	

etc .) is missing an operand .
Example : I=J+ . Correct the statement in error .

DEFECTIVE DOTTED KEYWORD
A dotted relational operator was not recognized or
there is a possible misuse of a decimal point . Check
the format for relational operators ; correct the
statement in error .

DEFINE FILE MODE MUST BE 'U'
The third argument inside parentheses in a DEFINE FILE
statement is not 'U' (unformatted) . Correct the mode
specification .

DO TERMINATOR **** PRECEDES DO STATEMENT
The statement specified as the terminator of a DO loop
did not appear after the DO statement . Correct the
program logic .

EXPECTING LEFT PARENTHESIS AFTER ****
An array name or function name reference is not
followed by a left parenthesis . Correct the statement
so that the left parenthesis is included .

EXPECTING LEFT PARENTHESIS AFTER SUBPROGRAM NAME
A SUBROUTINE or FUNCTION name occurs without an
argument list specification . Check for a typographical
error, or the use of the same name for a local variable
and a subprogram .

EXTRA CHARACTERS AT END OF STATEMENT
All the necessary information for a syntactically
correct FORTRAN statement has been found on this line,
but more information exists . Check that a comma is not
missing from the line or that an unintentional
continuation signal does not appear on the next line .

FLOATING CONSTANT NOT IN RANGE
A floating constant in an expression is too close to
zero to be represented in the internal format . Use
zero if possible .

ILLEGAL ADJACENT OPERATOR
Two operators (*,/, logical operators, etc .) are
illegally placed next to each other . Example : I/*J .
Correct the statement in error .

ILLEGAL CHARACTERS IN EXPRESSION
An illegal character has been found in an expression .
Check for a typographical error in the statement .

FORTRAN IV ERROR DIAGNOSTICS

ILLEGAL DO TERMINATOR ORDERING AT LABEL ****
DO loops are nested improperly . Verify that the range
of each DO loop lies completely within the range of the
next outer loop .

ILLEGAL DO TERMINATOR STATEMENT ****
A DO statement terminator was not valid . Verify that
the DO statement terminator is not a GOTO, arithmetic
IF, RETURN, another DO statement, or logical IF
containing one of these statements .

ILLEGAL ELEMENT IN I/0 LIST
An item, expression, or implied DO specifier in an I/0
list is of illegal syntax . Correct the I/0 list .

ILLEGAL ENCODE/DECODE FORMAT SPECIFIER
The format specification (second argument inside
parentheses) in an ENCODE/DECODE statement is not a
FORMAT statement label or array name . Correct the
FORMAT specification .

ILLEGAL ENCODE/DECODE LENGTH EXPRESSION
The length specification (first argument inside
parentheses) in an ENCODE or DECODE statement is not an
integer expression . Correct the length expression .

ILLEGAL ENCODE/DECODE TARGET
The third argument inside parentheses in an ENCODE or
DECODE statement is not the name of an array, array
element, or variable . Correct the target
specification .

ILLEGAL INITIAL VALUE EXPRESSION IN DO STATEMENT
A valid integer expression does not follow the equals
sign in a DO statement . Correct the initial value
expression .

ILLEGAL STATEMENT IN BLOCK DATA
An illegal statement was found in a BLOCK DATA
subprogram . Verify that a FORMAT or executable
statement does not occur in a BLOCK DATA subprogram .

ILLEGAL STATEMENT ON LOGICAL IF
The statement contained in a logical IF was not valid .
Verify that the statement is not another logical IF or
DO statement .

ILLEGAL SUBSCRIPTS OR SUBPROGRAM ARGUMENT
An illegal element occurred within a subscript list or
argument list to a subprogram . Correct the erroneous
statement .

ILLEGAL TYPE FOR OPERATOR
An illegal variable type has been used with an
exponentiation or logical operator . Check that the
variable type is valid for the operation in question .

ILLEGAL USAGE OF OR MISSING LEFT PARENTHESIS
A left parenthesis was required but not found, or a
variable reference or constant is illegally followed by
a left parenthesis . Correct the format of the
statement in error .

FORTRAN IV ERROR DIAGNOSTICS

INTEGER OVERFLOW
An integer constant or expression value is outside the
range -32767 to +32767 . Correct the value of the
integer constant or expression so that it falls within
the legal range (-32767 to +32767) .

INVALID COMPLEX CONSTANT
A complex constant has been improperly formed . Correct
the statement in error .

INVALID DIMENSIONS FOR ARRAY ****
An attempt was made, while dimensioning an array, to
explicitly specify zero as one of the dimensions .
Verify that zero is not used as a dimension .

INVALID END= OR ERR= KEYWORD
The END= or ERR= specification in an input/output
statement is incorrectly formatted . Check for a
typographical error in the statement .

INVALID EQUIVALENCE
An illegal EQUIVALENCE,
contradictory

	

to

	

a
encountered . Correct the

or

	

EQUIVALENCE

	

that
previous

	

EQUIVALENCE,
program logic .

is
was

INVALID FORMAT SPECIFIER
A format specifier was illegally used . Correct the
statement so that the format specifier is the label of
a . FORMAT statement or an array name .

INVALID IMPLICIT RANGE SPECIFIER
An illegal implicit range specifier, (i .e .,
non-alphabetic specifier, or specifier range in reverse
alphabetic order) was encountered . Verify that the
implicit range specifier indicates alphabetic
characters in alphabetic order .

INVALID LOGICAL UNIT
A logical unit reference was incorrect . Correct the
logical unit reference so that it is an integer
variable or constant in the range 1 to 99 .

INVALID OCTAL CONSTANT
An octal constant is too large or contains a digit
other than 0-7 . Correct the constant so that it
contains only legal digits that fall within the octal
range 0 to 177777 .

INVALID OPTIONAL LENGTH SPECIFIER
A data type declaration optional length specifier is
illegal . For example, REAL*4 and REAL*8 are legal, but
REAL*6 is not . Correct the statement so that it
contains only a valid data type declaration length .

INVALID RADIX-50 CONSTANT
An illegal character was detected in a RADIX-50
constant . Verify that only characters from the
RADIX-50 character set are used in a RADIX-50 constant .

INVALID STATEMENT LABEL REFERENCE
Reference has been made to a statement number that is
of illegal construction . For example, GOTO 999999 is
illegal since the statement number is too long . Check
that the statement number consists of one to five

C-7

FORTRAN IV ERROR DIAGNOSTICS

decimal digits placed in the first five columns of a
statement's initial line and that it does not contain
only zeroes .

INVALID PROGRAM NAME
A name used in a CALL statement or function reference
is not valid . For example, use of an array name in a
CALL statement routine name reference is illegal .
Verify that the name specified in the statement is
spelled correctly .

INVALID TARGET FOR ASSIGNMENT
The left side of an arithmetic assignment statement is
not a variable name or array element reference .
Correct the statement in error .

INVALID TYPE SPECIFIER
An unrecognizable data type was used . Verify that the
data type indicated is valid .

INVALID USAGE OF SUBROUTINE OR FUNCTION NAME
A function name appeared in a DIMENSION, COMMON, DATA,
or EQUIVALENCE or data type declaration statement .
Correct the statement in error .

INVALID VARIABLE NAME
A variable name contains an illegal character, is
missing, or does not begin with an alphabetic
character . Correct the statement in error .

LABEL ON DECLARATIVE STATEMENT
A label was found on a declarative statement . Correct
the program so that declarative statements do not have
labels .

MISSING ASSIGNMENT OPERATOR
The first operator seen in an arithmetic assignment
statement was not an equal sign (=) . For example,
I+J=K . Correct the arithmetic assignment statement in
error .

MISSING COMMA
The comma delimiter was expected but not

	

found .
Correct the format of the statement in error .

MODE OF EXPRESSION MUST BE INTEGER
An integer variable or expression is required, or, for
example, in the initial, terminal, and incremental
parameter of a DO statement .

MISSING COMMA IN OPEN OR CLOSE KEYWORD LIST
Two options in an OPEN/CLOSE keyword list are not
separated by a comma . Check for a typographical error
in the statement .

MISSING DELIMITER IN EXPRESSION
Two operands have been placed next to each other in an
expression with no operator between them . Correct the
statement in error .

FORTRAN IV ERROR DIAGNOSTICS

MISSING EXPRESSION
A required expression (for example, the limit
expression in a DO statement) was omitted . Correct the
syntax of the statement .

MISSING LABEL
A statement label was expected but not found . For
example, ASSIGN J TO I is illegal ; a valid statement
label reference should precede 'TO' but does not .
Verify that the reference preceding 'TO' is a valid
statement label of an executable statement in the same
program unit as the ASSIGN statement .

MISSING LABEL LIST AFTER COMMA
In an assigned GOTO statement, the integer variable was
followed by a comma but no list was found . Check for a
typographical error in the statement .

MISSING LEFT PARENTHESIS AFTER OPEN OR CLOSE
An OPEN or CLOSE statement does not have a left
parenthesis preceding the keyword list . Check for a
typographical error in the statement .

MISSING OPERATOR AFTER EXPRESSION
An expression was not terminated by a comma, right
parenthesis, or other operator . Check for a
typographical error in the statement .

MISSING QUOTATION MARK
In a FIND statement, the logical unit number and record
number were not separated by a single quotation mark .
Correct the statement in error .

MISSING RIGHT PARENTHESIS
A right parenthesis was expected but not found . For
example, READ(5,100,) is illegal ; the first nonblank
character after the format reference should be a right
parenthesis but is not. Correct the format of the
statement in error .

MISSING 'TO' IN ASSIGN STATEMENT
The keyword 'TO' does not follow the label
specification in an ASSIGN statement . Check for a
typographical error in the statement .

MISSING VALUE FOR KEYWORD IN OPEN OR CLOSE STATEMENT
A keyword requiring a value was specified without a
value . Correct the syntax of the statement .

MISSING VARIABLE
A variable was expected but not found . For example,
ASSIGN 100 TO 1 is illegal ; a variable name should
follow the 'TO' but does not . Verify that the
reference following 'TO' is a valid integer variable
name .

MISSING VARIABLE OR CONSTANT
An operand (variable or constant) was expected but a
delimiter (comma, parenthesis, etc .) was found . For
example, WRITE() is illegal ; a unit number should
follow the open parenthesis, but a delimiter (close
parenthesis) is encountered instead . Correct the
format of the statement in error .

FORTRAN IV ERROR DIAGNOSTICS

MODE OF EXPRESSION MUST BE INTEGER
An integer variable or expression is required, as, for
example, in the initial, terminal, and incremental
parameters of a DO statement .

MODES OF VARIABLE **** AND DATA ITEM DIFFER
The data type of each variable and its associated data
list item must agree in a DATA statement . Correct the
format of the items in the DATA statement .

MULTIPLE DECLARATION FOR VARIABLE ****
A variable appeared in
declaration

	

statement
Subsequent declarations
program logic .

more than one data type
or dimensioning statement .
are ignored .

	

Correct

	

the

MULTIPLE DECLARATION OF OPEN OR CLOSE KEYWORD
A~keyword has been specified more than once in a single
OPEN or CLOSE statement . Remove the incorrect or
duplicate reference to the keyword .

OPEN OR CLOSE KEYWORD VALUE MUST BE QUOTED STRING
A keyword that requires a quoted-string value was given
an expression value . Correct the syntax of the
statement .

OPEN OR CLOSE STATEMENT REQUIRES UNIT= SPECIFIER
No UNIT= specification is present in the OPEN or CLOSE
statement in question to select the desired logical
unit . Add the UNIT= specification to the s"Dtement .

PARENTHESES NESTED TOO DEEPLY
Group repeats in a FORMAT statement have been nested
too deeply . Limit group repeats to eight levels of
nesting .

PROGRAM OR BLOCK DATA STATEMENT MUST BE FIRST
If either a program name statement or block data name
statement is used, it should always be the first
statement .

P-SCALE FACTOR NOT IN RANGE -127 TO +127
P-scale factors were not in the range -127 to +127 .
Correct the statement in error .

REFERENCE TO INCORRECT TYPE OF LABEL ****
A statement label reference that should be a label on a
FORMAT statement is not such a label, or a statement
label reference that should be a label on an executable
statement is not such a label . Correct the program
logic .

REFERENCE TO UNDEFINED STATEMENT LABEL
A reference has been made to a statement label that has
not been defined anywhere in the program unit . Correct
the program logic .

STATEMENT MUST BE UNLABELED
A DATA, SUBROUTINE, FUNCTION, BLOCK DATA, arithmetic
statement function definition, or declarative statement
was labeled . Correct the statement in error .

FORTRAN IV ERROR DIAGNOSTICS

STATEMENT TOO COMPLEX
An arithmetic statement function has more than ten
dummy arguments or the statement is too long to
compile . Verify that the number of dummy arguments in
an arithmetic statement does not exceed ten ; break
long statements into two or more smaller statements .

SUBROUTINE OR FUNCTION STATEMENT MUST BE FIRST
A SUBROUTINE, FUNCTION, or BLOCK DATA statement is not
the first statement in a program unit . Ensure that, if
present, these statements appear first in a program
unit .

SUBSCRIPT OF ARRAY **** NOT IN RANGE
Array subscripts that are constants or constant
expressions are found to be outside the bounds of the
array's dimensions . The operation in question is
aborted . Correct the program .

SYNTAX ERROR
The general form of the statement was not formatted
correctly . Check the general format of the statement
in error and correct the program .

SYNTAX ERROR IN INTEGER OR FLOATING CONSTANT
An integer or floating constant has been incorrectly
formed .

	

For example, 1 .23 .4 is an illegal floating
constant because it contains two decimal points .
Correct the format of the integer or floating constant
in question .

SYNTAX ERROR IN LABEL LIST
The list of labels for an assigned or computed GOTO
statement is improperly formatted, or contains a
reference to an entity that is not the label on an
executable statement . Correct the format of the list .

TARGET MUST BE ARRAY
An array element was referenced in an ENCORE or DECODE
statement without having been previously dimensioned .

UNARY OPERATOR HAS TOO MANY OPERANDS
Two operands have been specified for an operator (such
as .NOT .) that accepts only one operand . Check for a
typographical error in the statement ."

UNLABELED FORMAT STATEMENT
A FORMAT statement was not labeled . Correct the FORMAT
statement in error by assigning it the proper label .

UNRECOGNIZED KEYWORD IN OPEN OR CLOSE STATEMENT
The OPEN or CLOSE statement in question contains a
keyword that is not recognized by the compiler . Check
for a misspelling or typographical error in the
keywords used in the statement .

UNRECOGNIZED VALUE FOR OPEN OR CLOSE KEYWORD
A keyword which requires a quoted-string value was
specified with an unrecognized value string .

	

For
example,

	

DISPOSE = 'SURE' . Specify a valid value for
the keyword .

FORTRAN IV ERROR DIAGNOSTICS

USAGE OF VARIABLE **** INVALID
An attempt was made to EXTERNAL a common variable, an
array variable, or a dummy argument . Or an attempt was
made to place in COMMON a dummy argument or external
name . Correct the program logic .

VALUE OF CONSTANT NOT IN RANGE
An integer constant in the designated source program
line exceeds the maximum unsigned value (65535) . This
error is also printed if an invalid dimension is
specified for an array or if the exponent of a floating
point constant is too large . Correct the statement in
error .

VARIABLE **** INVALID IN ADJUSTABLE DIMENSION
A variable used as an adjustable dimension was not an
integer dummy argument in the subprogram unit . Correct
the program .

WRONG NUMBER OF OPERANDS FOR BINARY OPERATOR
An operator that requires two operands was specified
with only one operand . Example : I=*J . Check for a
typographical error in the statement .

WRONG NUMBER OF SUBSCRIPTS FOR ARRAY ****
An array reference does not have the same number of
subscripts as specified when the array was dimensioned .
Correct the statement in error .

C .1 .3 Warning Diagnostics

Warning diagnostics report conditions that are not true error
conditions, but that can be potentially dangerous at execution time,
or can present compatibility problems with FORTRAN compilers running
on other DEC operating systems . The warning diagnostics are normally
suppressed, but can be enabled by use of the /WARNINGS (/W) compiler
option . The form and placement of the warning diagnostics are the
same as those for the secondary phase error diagnostics (see Section
C .1 .2) . A listing of the warning diagnostics follows .

LOOP ENTRY AT LABEL ****
A transfer of control occurs from outside the
containing DO loop to the label indicated . This may
indicate a programming error (if the loop does not have
extended range) .

POSSIBLE MODIFICATION OF ****
The indicated variable, which is used as a control
parameter of a DO loop, may be modified within the body
of that loop .

NON-STANDARD STATEMENT ORDERING
Although the FORTRAN IV Compiler has less restrictive
statement-ordering requirements than those outlined in
Chapter 7 of the PDP-11 FORTRAN Language Reference
Manual, non-adherence to the stricter requirements may
cause error conditions on other FORTRAN compilers . See
Section 3 .1 of this document .

VARIABLE **** IS NOT WORD ALIGNED
Placing a non-LOGICAL*l variable or array after a
LOGICAL*1 variable or array in COMMON, or equivalencing

C-12

FORTRAN IV ERROR DIAGNOSTICS

non-LOGICAL*l variables or arrays to LOGICAL*l
variables or arrays can cause this condition . An
attempt to reference the variable at run time will
cause an error condition .

VARIABLE **** NAME EXCEEDS SIX CHARACTERS
A variable name of more than six characters was
specified . The first six characters were used as the
true variable name . Other FORTRAN compilers may treat
this as an error condition . See Section 3 .2 of this
document .

C .1 .4 Fatal Compiler Error Diagnostics

Listed below are the fatal compiler error diagnostics . These
diagnostics, which are sent directly to the initiating terminal,
report hardware error conditions, conditions that may require
rewriting of the source program, and compiler errors that may require
attention from your Software Support Representative .

?FORTRAN-F-CODE GENERATION STACK OVERFLOW
A statement is too complex to process .

	

Simplify
complex statements .

?FORTRAN-F-COMPILER FATAL ERROR, ANALYSIS FOLLOWS
Some type of unexpected error was encountered by
FORTRAN . Please send the console listing with a copy
of your program (on some machine-readable medium) with
an SPR report .

?FORTRAN-F-CONSTANT SUBSCRIPT STACK OVERFLOW
Too many constant subscripts have been employed in a
statement . Simplify the statement .

?FORTRAN-F-DEVICE FULL
There is insufficient room available on an output
device specified to create the object or listing files
required . Make more space available on the device by
deleting unnecessary files and/or using the SQUEEZE
command, or by redirecting the object on listing files
to another device .

?FORTRAN-F-DYNAMIC MEMORY OVERFLOW
The program unit currently being compiled cannot be
processed in the available memory space . Break the
program unit in question into smaller subprograms, or
recompile on a larger machine .

?FORTRAN-F-ERROR READING SOURCE FILE
An unrecoverable error occurred while the compiler was
attempting to read a source program input file .
Correct the hardware problem and recompile .

?FORTRAN-F-ERROR WRITING LISTING FILE
An unrecoverable error occurred while the compiler was
attempting to write the listing output file . Make sure
that the output device is write-enabled, and that
sufficient free space exists on the device for the
output file . Recompile the program .

FORTRAN IV ERROR DIAGNOSTICS

?FORTRAN-F-ERROR WRITING OBJECT FILE
An unrecoverable error occurred while the compiler was
attempting to write the object program output file .
Make sure that the output device is write-enabled, and
that sufficient free space exists on the device for the
output file . Recompile the program .

?FORTRAN-F-FILE NOT FOUND
An input file specified in the command string was not
found . Correct the command string to refer to an
existing file .

?FORTRAN-F-HELP FILE NOT FOUND
The FORTRAN IV help file, SY :FORTRA .HLP, was not
present on the system device when the help switch was
given to the compiler . No help information is
available . Replace the file from the FORTRAN
distribution medium if help information is required .

?FORTRAN-F-ILLEGAL VALUE FOR /x SWITCH
An illegal value has been specified for a compiler
command string switch . Refer to Section 1 .2 .2 for
compiler option information .

?FORTRAN-F-ILLEGAL COMMAND
The command string presented to the compiler was
illegal in format . Correct the command string .

?FORTRAN-F-ILLEGAL DEVICE
A device specification in a compiler command string was
illegal . Correct the command string .

?FORTRAN-F-OPTIMIZER STACK OVERFLOW
A statement is too complex to process, or too many
common subexpressions occurred in one basic block of
the source program . Simplify complex statements .

?FORTRAN-F-SUBEXPRESSION STACK OVERFLOW
An attempt was made to compile a statement that could
overflow the runtime stack at execution time . Simplify
complex statements .

?FORTRAN-F-UNKNOWN SWITCH-/x
An illegal switch has been specified in the compiler
command string . Refer to Section 1 .2 .2 for compiler
option information .

C .2 OBJECT-TIME SYSTEM ERROR DIAGNOSTICS

The Object-Time System detects certain I/0, arithmetic, and system
failure error conditions and reports them on the user terminal . These
error diagnostics are printed in either a long or short form .

The short form of the message appears as :

?ERR nn

where nn is a decimal error identification number .

FORTRAN IV ERROR DIAGNOSTICS

The long form of the message appears as :

?ERR nn text

where nn is a decimal error identification number and text is a short
error description .

For RT-11, the default message form is long . The short message error
module can be linked to the program by using the /I linker switch .
The global named $SHORT should be included from the FORTRAN library .
For RSTS/E, whether the message format is long or short depends upon
how the OTS Library was built .

There are four classes of OTS error conditions . Each error condition
is assigned to one of these classes . An error condition
classification for the error codes 1-16 can be changed by using the
system subroutine SETERR . (See Section B .10) . Error codes 0 and
20-69 should not be changed from their FATAL classification or
indeterminable results will occur . The classifications are :

IGNORE

	

the error is detected but no error message is sent
to the terminal . Execution continues .

WARNING

	

the error message is sent to the terminal and
execution continues .

FATAL

	

the error message is sent to the terminal and
execution is terminated .

COUNT :n the error message is sent to the terminal and
execution continues until the nth occurrence of
the error, at which time the error will be treated
as FATAL .

If a program is terminated by a fatal error condition, active files
may not be closed . Under RT-11, when control is returned to the
Monitor, a CLOSE command can be given to close all active files,
although some of the output to these active files may have been lost .

The OTS error diagnostics are listed below, along with the error type
and a brief explanation, where necessary .

Error

	

Error

	

Message
number

	

type

0

	

FATAL

	

NON-FORTRAN ERROR CALL
This message indicates an error condition (not
internal to the FORTRAN run-time system) that may
have been caused by one of four situations :

(RT-11 only)
1 . A foreground job using SYSLIB completion

routines was not allocated enough space (using
the FRUN /N option) for the initial call to a
completion routine .

Check Chapter 4 (SYSTEM SUBROUTINE LIBRARY0) of
the RT-11 Advanced Programmers Guide for the
formula used to allocate more space .

(continued on next page)

Error

	

Error
number

	

type

	

Message

FORTRAN IV ERROR DIAGNOSTICS

(RT-11 only)
2 . There was not sufficient memory for the background

job .

Make more memory available by unloading
unnecessary handlers, deleting unwanted files,
compressing the device .

(RT-11 only)
3 . Under the single-job monitor, a SYSLIB completion

routine interrupted another completion routine .

Use the FB Monitor to allow more than one active
completion routine .

4 . An assembly language module linked with a FORTRAN
program issued a TRAP instruction with an error
code that was not recognized by the FORTRAN error
handler .

Check the program logic .

1

	

FATAL

	

INTEGER OVERFLOW
During an integer multiplication, division, or
exponentiation operation, the value of the result
exceeded 32767 in magnitude .

Correct the program logic .

2

	

FATAL

	

INTEGER ZERO DIVIDE
During an integer mode arithmetic operation, an
attempt was made to divide by zero .

Correct the program logic .

3

	

FATAL

	

COMPILER GENERATED ERROR
An attempt was made to execute a FORTRAN statement
in which the compiler had previously detected
errors .

Consult the program listing generated by the
compiler (if one was requested) and correct the
program for the errors detected at compile time .

4

	

WARNING

	

COMPUTED GOTO OUT OF RANGE
The value of the integer variable or expression in
a computed GOTO statement was less than one or
greater than the number of statement label
references in the list .

Control is passed to the next executable
statement . Examine the source program and correct
the program logic .

5

	

COUNT :3

	

INPUT CONVERSION ERROR
During a formatted input operation, an illegal
character was detected in an input field .

(continued on next page)

C-16

FORTRAN IV ERROR DIAGNOSTICS

Error

	

Error
number

	

type

	

Message

A value of zero is returned .

	

Examine the input
data and correct the invalid record .

6

	

IGNORE

	

OUTPUT CONVERSION ERROR
During a formatted output operation, the value of
a particular number could not be output in the
specified field length without loss of significant
digits .

The field is filled with asterisks ('*') . Correct
the FORMAT statement to allow a greater field
length .

10

	

COUNT :3

	

FLOATING OVERFLOW
During an arithmetic operation, the absolute value
of a floating-point expression exceeded the
largest representable real number .

A value of zero is returned . Correct the program
logic .

11

	

IGNORE

	

FLOATING UNDERFLOW
During an arithmetic operation, the absolute value
of a floating-point expression became less than
the smallest representable real number .

The real number is replaced with a value of zero .
Correct the program logic .

12

	

FATAL

	

FLOATING ZERO DIVIDE
During a REAL mode arithmetic operation an attempt
was made to divide by zero .

The result of the operation is set to zero .
Correct the program logic .

13

	

COUNT :3

	

SQRT OF NEGATIVE NUMBER
An attempt was made to take the square root of a
negative number .

The result is replaced by zero .

	

Correct the
program logic .

14

	

FATAL

	

UNDEFINED EXPONENTIATION OPERATION
An attempt was made to perform

	

an

	

illegal
exponentiation operation .

	

(For example, -3 .** .5
is illegal because the result would

	

be

	

an
imaginary number .)

The result of the operation is set to zero .
Correct the program logic .

15

	

FATAL

	

LOG OF ZERO OR NEGATIVE NUMBER
An attempt was made to take the logarithm of a
negative number or zero .

The result of the operation is set to zero .
Correct the program logic .

(continued on next page)

C-17

FORTRAN IV ERROR DIAGNOSTICS

Error

	

Error
number

	

type

	

Message

16

	

FATAL

	

WRONG NUMBER OF ARGUMENTS
One of the FORTRAN Library functions, or one of
the system subroutines that checks for such an
occurrence, was called with an improper number of
arguments . Check the format of the particular
library function or system subroutine call, and
correct the call .

The following error diagnostics should not be changed from the FATAL
classification by use of the system subroutine SETERR :

20

	

FATAL

	

INVALID LOGICAL UNIT NUMBER
An illegal logical unit number was specified in an
I/0 statement .

A logical unit number must be an integer within
the range 1 to 99 . Correct the statement in
error .

21

	

FATAL

	

OUT OF AVAILABLE LOGICAL UNITS
An attempt was made to have too many logical units
simultaneously open for I/0 .

The maximum number of active logical units is six
by default . To increase the maximum, recompile
the main program using the /UNITS (/N) option to
specify a larger number of available channels .

22

	

FATAL

	

INPUT RECORD TOO LONG
During an input operation, a record was
encountered that was longer than the maximum
record length .

The default maximum record length is 136 (decimal)
bytes . To increase the maximum, recompile the
main program using the /RECORDS (/R) option to
specify a larger run-time record buffer (the legal
range is 4 to 4095) .

23

	

FATAL

	

HARDWARE I/0 ERROR
A hardware error was detected during an I/0
operation .

Check the volume for an off-line or write-locked
condition, and retry the operation . Try another
unit or drive if possible, or use another device .

24

	

FATAL

	

ATTEMPT TO READ/WRITE PAST END OF FILE
During a sequential READ operation, an attempt was
made to read beyond the last record of the file .
During a random access READ, this message
indicates that an attempt was made to reference a
record number that was not within the bounds of
the file .

(continued on next page)

FORTRAN IV ERROR DIAGNOSTICS

Error

	

Error
number

	

type

	

Message

Use the "END=" parameter to detect this condition,
or correct the program logic so that no request is
made for a record outside the bounds of the file .

During a WRITE operation, this message indicates
that the space available for the file is
insufficient .

(RT-11 action)
Try to make more file space available by deleting
unnecessary files and compressing the device, or
by using another device .

(RSTS/E action)
This condition is equivalent to the "NO ROOM FOR
USER ON DEVICE" system error . Make more space
available by deleting files from the current
account, or use another device .

25

	

FATAL

	

ATTEMPT TO READ AFTER WRITE
An attempt was made to read after writing on a
sequential file located on a file-structured
device .

A write operation must be followed by a REWIND or
BACKSPACE before a read operation can be
performed . Correct the program logic .

26

	

FATAL

	

RECURSIVE I/0 NOT ALLOWED
An expression in the I/0 list of a WRITE statement
caused initiation of another READ or WRITE
operation . (This can happen if a FUNCTION that
performs I/0 is referenced within an expression in
an I/0 list .)

Correct the program logic .

27

	

FATAL

	

ATTEMPT TO USE DEVICE NOT IN SYSTEM
An attempt was made to access a device that was
not legal for the system in use .

Use the system ASSIGN command to create the
required logical device name, or change the
statement in error .

28

	

FATAL

	

OPEN FAILED FOR FILE
The file specified was not found, there was no
room on the device, or there was an attempt to
create a file which already exists as a protected
file .

Verify that the file exists as specified . Delete
unnecessary files from the device, or use another
device .

29

	

FATAL

	

NO ROOM FOR DEVICE HANDLER (RT-11 only)
There was not enough free

	

memory

	

left

	

to
accommodate a specific device handler .

(continued on next page)

C-19

FORTRAN IV ERROR DIAGNOSTICS

Error

	

Error
number

	

type

	

Message

Move the file to the system device or to a device
whose handler is resident . Make more memory
available by unloading unnecessary handlers,
unloading the foreground job, using the single-job
Monitor, or SET USR SWAP, if possible .

30

	

FATAL

	

NO ROOM FOR BUFFERS
There was not enough free memory left to set up
required I/0 buffers .

(RT-11 only)
Reduce the number of logical units that are open
simultaneously at the time of the error . If using
double buffering or if another file is currently
open, use single buffering . Make more memory
available by unloading unnecessary handlers,
unloading the foreground job, using the single-job
Monitor, or SET USR SWAP, if possible .

(RSTS/E only)
Increase the space available for buffering by
specifying the appropriate value for the /K switch
to LINK, or reduce the number of logical units
that are open simultaneously at the time of the
error .

31

	

FATAL

	

NO AVAILABLE I/0 CHANNEL
More than the maximum number of channels available
to the FORTRAN IV run-time system (15 for RT-11 ;
14 for RSTS/E, exclusive of the terminal) were
requested to be simultaneously opened for I/0 .

IASIGN SYSLIB routine .

(continued on next page)

C-20

Close any logical units previously opened that
need not be open at this time .

32 FATAL FMTD-UNFMTD-RANDOM I/0 TO SAME FILE
An attempt was made to perform any combination of
formatted, unformatted, or random access I/0 to
the same file .

Correct the program logic .

33 FATAL ATTEMPT TO READ PAST END OF RECORD
An attempt was made to read a larger record than
actually existed in a file .

Check the construction of the data file ;

	

correct
the program logic .

34 FATAL UNFMTD I/0 TO TT OR LP
An attempt was made to perform an unformatted
write operation on the terminal or line printer .

Assign the logical unit in question to

	

the
appropriate

	

device,

	

using the ASSIGN system
command, the OPEN statement, the ASSIGN or OPEN
FORTRAN library routine, or (RT-11 only) the

FORTRAN IV ERROR DIAGNOSTICS

Error

	

Error
number

	

type

	

Message

35

	

FATAL

	

ATTEMPT TO OUTPUT TO READ ONLY FILE
An attempt was made to write on a file designated
as read only .

Check the OPEN statement, the ASSIGN or OPEN
(RSTS/E only) system routine, or IASIGN SYSLIB
function (RT-11 only) to ensure that the correct
arguments were used . Check for a possible
programming error .

36

	

FATAL

	

BAD FILE SPECIFICATION STRING
The Hollerith or literal string specifying the
device/file name OPEN statement, in the CALL
ASSIGN or CALL OPEN system subroutine, could not
be interpreted .

Check the format of the OPEN statement, CALL
ASSIGN, or CALL OPEN statement .

37

	

FATAL

	

RANDOM ACCESS READ/WRITE BEFORE DEFINE FILE
A random access read or write operation was
attempted before a DEFINE FILE was performed .

Correct the program so that the DEFINE FILE
operation is executed before any random-access
read or write operation .

38

	

FATAL

	

RANDOM I/0 NOT ALLOWED ON TT OR LP
Random access I/0 was illegally attempted on the
terminal or line printer .

Assign the logical unit in question to the
appropriate device, using the ASSIGN keyboard
monitor command, OPEN statement, the ASSIGN or
OPEN FORTRAN library routine, or (RT-11 only) the
IASIGN SYSLIB routine .

39

	

FATAL

	

RECORD LARGER THAN RECORD SIZE IN DEFINE FILE
A record was encountered that was larger than that
specified in the DEFINE FILE statement for a
random access file .

Shorten the I/0 list or redefine

	

the

	

file
specifying larger records .

40

	

FATAL

	

REQUEST FOR A BLOCK LARGER THAN 65535
An attempt was made to reference an absolute disk
block address greater than 65535 .

Correct the program logic .

41

	

FATAL

	

DEFINE FILE ATTEMPTED ON AN OPEN UNIT
A file was open on a unit and another DEFINE FILE
was attempted on that unit .

Close the open file using the CLOSE statement
before attempting another DEFINE FILE .

(continued on next page)

C-21

FORTRAN IV ERROR DIAGNOSTICS

Error

	

Error
number

	

type

	

Message

42

	

FATAL

	

MEMORY OVERFLOW COMPILING OBJECT TIME FORMAT
The OTS ran out of free memory while scanning an
array format generated at run time .

(RT-11 only)
Use a FORMAT statement specification at compile
time rather than object-time formatting, or make
more memory available by unloading unnecessary
handlers, unloading the foreground job if
possible, using the single-job monitor, or SET USR
SWAP, if possible .

(RSTS/E only)
Use a FORMAT statement specification at compile
time rather than object-time formatting, or
allocate more space by using the /K switch to
LINK .

43

	

FATAL

	

SYNTAX ERROR IN OBJECT TIME FORMAT
A syntax error was encountered while the OTS was
scanning an array format generated at run time .

Correct the programming error .

44

	

FATAL

	

2ND RECORD REQUEST IN ENCODE/DECODE
An attempt was made to use ENCODE and DECODE on
more than one record .

Correct the FORMAT statement associated with the
ENCODE or DECODE so that it specifies only one
record .

45

	

FATAL

	

INCOMPATIBLE VARIABLE AND FORMAT TYPES
An attempt was made to output a real variable with
an integer field descriptor or an integer variable
with a real field descriptor .

Correct the FORMAT statement associated with the
READ or WRITE, ENCODE or DECODE .

46

	

FATAL

	

INFINITE FORMAT LOOP
The format associated with an I/0 statement, which
includes an I/0 list, had no field descriptors to
use in transferring those variables .

Correct the FORMAT statement in error .

47

	

FATAL

	

ATTEMPT TO STORE OUTSIDE PARTITION (RT-11 only)
In an attempt to store data into a subscripted
variable, the address calculated for the array
element in question did not lie within the section
of memory allocated to the job . The subscript in
question was out of bounds . (This message is
issued only when bounds checking modules have been
installed in FORLIB and threaded code is selected
at compile time .)

Correct the program logic .

(continued on next page)

C-22

FORTRAN IV ERROR DIAGNOSTICS

Error

	

Error
number

	

type

	

Message

48

	

FATAL

	

UNIT ALREADY OPEN
An attempt was made to perform

	

an

	

illegal
operation on an open file .

49

	

FATAL

	

ENDFILE ON RANDOM FILE
An ENDFILE statement contains a unit number of a
file that is open as a random access file .

50

	

FATAL

	

KEYWORD VALUE ERROR IN OPEN STATEMENT
A numeric value specified for a keyword in the
OPEN statement is not within the accepted range .

Check the expression in the OPEN statement, and
modify to yield a valid value .

51

	

FATAL

	

INCONSISTENT OPEN/CLOSE STATEMENT SPECIFICATIONS
The specifications in an OPEN or subsequent CLOSE
statement have indicated one or more of the
following :

•

	

A 'NEW' or 'SCRATCH' file that is 'READONLY' .

•

	

'APPEND' to a 'NEW', 'SCRATCH', or 'READONLY'
file .

•

	

'SAVE' or 'PRINT' of a 'SCRATCH' file .

•

	

'DELETE' or 'PRINT' of a 'READONLY' file .

Correct the OPEN or CLOSE statement to remove the
conflict .

52

	

WARNING

	

ATTEMPT TO DELETE A PROTECTED FILE (RT-11 only)
An attempt was made through a DISP= 'DELETE'
option in an OPEN or CLOSE statement to delete a
protected file . Either unprotect the file or
correct the conflict in the OPEN and/or CLOSE
statement .

53

	

WARNING

	

LIST DIRECTED I/0 SYNTAX ERROR
The repeat count of the input record has the wrong
type or value . The repeat count must be a
positive non-zero integer .

59

	

WARNING

	

USR NOT LOCKED (RT-11 only)
This message is issued when the FORTRAN program is
started . If the program was running in the
foreground, the /NOSWAP option was used during
compilation, and the USR was swapping (for
example, a SET USR NOSWAP command has not been
done) .

Reexamine the intent of the /NOSWAP option at
compile time and either compile without /NOSWAP or
issue a SET USR NOSWAP command .

(continued on next page)

FORTRAN IV ERROR DIAGNOSTICS

Error

	

Error
number

	

type

	

Message

60

	

FATAL

	

STACK OVERFLOWED
The hardware stack overflowed . More stack space
may be required for subprogram calls and opening
of file . Proper traceback is impaired . This
message occurs in the background only . Allocate
additional space by using the /BOTTOM (/B) option
at link time . Check for a programming error .

61

	

FATAL

	

ILLEGAL MEMORY REFERENCE
Some type of bus error occurred, most probably an
illegal memory address reference .

If an assembly language routine was called, check
for a coding error in the routine . Otherwise,
insure that the correct FORTRAN library was
called .

62

	

FATAL

	

FORTRAN START FAIL
The program was loaded into memory but there was
not enough free memory remaining for the OTS to
initialize work space and buffers .

(RT-11 only)
If running a background job, make more memory
available by unloading unnecessary handlers, using
the single-job Monitor . If running a foreground
job, specify a larger value using the FRUN /BUFFER
option . Refer to Chapter 4 (SYSTEM SUBROUTINE
LIBRARY) of the RT-11 Advanced Programmers Guide
for the correct formula .

(RSTS/E only)
Allocate more space by using the /K switch to
LINK .

63

	

FATAL

	

ILLEGAL INSTRUCTION
The program attempted to execute an illegal
instruction (for example, floating-point
arithmetic instruction on a machine with no
floating-point hardware) .

If an assembly language routine was called, check
for a coding error in the routine . Otherwise,
ensure that the correct FORTRAN library was
called .

64

	

FATAL

	

VIRTUAL ARRAY INITIALIZATION FAILURE

• The total storage requirements for VIRTUAL
arrays in the program exceeds the currently
available memory on the system .

•

	

Another job is currently using VIRTUAL support
under the FB or SJ monitor .

•

	

PLAS VIRTUAL array support is attempted under
the FB or Si monitor .

(continued on next page)

C- 2 4

	

March 1983

FORTRAN IV ERROR DIAGNOSTICS

Error

	

Error
number

	

type

	

Message

•

	

Any non-PLAS VIRTUAL array support is
attempted under XM monitor .

•

	

PLAS support is attempted without EIS
hardware .

•

	

VIRTUAL array support is attempted without OTS
Library VIRTUAL support .

If another job is currently executing (under XM
monitor with PLAS VIRTUAL support), make sure that
the total VIRTUAL storage demands for both
programs are satisfied by the available memory on
the machine .

Reduce VIRTUAL storage requirements by decreasing
the size of VIRTUAL arrays declared in the
program .

65

	

FATAL

	

VIRTUAL ARRAY MAPPING ERROR
An attempt has been made to reference outside the
bounds of the extended memory region allocated to
VIRTUAL arrays in this program, probably caused by
a subscript out of bounds .

Verify that the subscripts of the VIRTUAL arrays
referenced in the statement indicated are within
the declared bounds .

66

	

FATAL

	

UNSUPPORTED OPEN/CLOSE KEY14ORD OR OPTION
A keyword or keyword value in the OPEN or CLOSE
statement indicated is invalid under this
particular operating system .

Refer to Section 3 .1 .1

	

for

	

system-dependent
restrictions .

67

	

WARNING

	

UNSUPPORTED OPEN/CLOSE KEYWORD OR OPTION
A keyword or keyword value in the OPEN or CLOSE
statement indicated is not meaningful in the
current operating system environment .

The presence of the keyword or option is ignored .

68

	

FATAL

	

DIRECT ACCESS RECORD SIZE ERROR
The size of a direct access record exceeds 32767
double words .

Correct the program logic .

69 FATAL Cannot send to QUEMAN (RSTS/E only) . An error
occurred when closing a file with attribute
DISPOSE='PRINT' .

APPENDIX D

COMPATIBILITY WITH FORTRAN-77

FORTRAN IV is an implementation of FORTRAN for the PDP-11, available
under RT-11, RSTS/E, RSX-11M, RSX-11M-PLUS, and VAX/VMS under AME .

D .l DIFFERENCES BETWEEN FORTRAN -77 AND FORTRAN IV

This section summarizes differences that may affect conversion from
FORTRAN IV to FORTRAN-77 .

D .1 .1 Language Differences

F77 transforms FORTRAN defined function name references into a special
kind of internal calling form, while FORTRAN IV does not . If a user
supplies a routine of his own to replace the F77 FORTRAN defined
routine (for example, writes his own SIN routine) it will generally be
necessary to include EXTERNAL statements (with the user name prefixed
by an asterisk, '*') to cause that routine to be referenced . This is
not necessary in FORTRAN IV .

D .1 .2 Implementation Differences

1 . FORTRAN IV logical tests treat any non-zero bit pattern in
the low-order byte of a LOGICAL variable as .TRUE ., and an
all-zero bit pattern as FALSE .

F77 tests only the highest-order bit of the value and treats
a one as TRUE and a zero as FALSE .

2 . In FORTRAN IV, INTEGER*4 causes 32-bit allocation (4 bytes),
but only 16 bits are used for computation . In F77, INTEGER*4
causes both 32-bit allocation and 32-bit computation .

3 . FORTRAN IV checks that the labels used in an assigned GOTO
are valid labels in the program unit, but it does not check
at run time whether an assigned label is in the list in the
GOTO statement . F77 does check at run time .

4 . FORTRAN IV permits an unlimited number of continuation lines .
In F77, up to 5 continuation lines are permitted by default,
and up to 99 may be obtained by means of the compiler /CO
switch .

5 . For unformatted input/output operations, both sequential and
direct access, FORTRAN IV reads/writes four bytes of data if
the variable is allocated four bytes of storage .

	

F77 does

D- 1

	

March 1983

I

I

I
I

I

I

I

I

I

COMPATIBILITY WITH FORTRAN-77

D- 2

	

March 1983

also .

	

However,

	

since INTEGER*4 values in FORTRAN IV
generally have an undefined high-order part, they generally
may not be read as INTEGER*4 values by F77 . Similarly, since
FORTRAN IV and F77 logical tests are different (see item 1
above), care must be taken when interchanging logical values .

6 . For random access input/output operations, FORTRAN IV takes

I

7 .

the END= exit on an end-file condition and the ERR= exit only
for hardware I/0 errors . F77 ignores any END= specification
and takes the ERR= exit for both .

In performing formatted I/0 under A format, FORTRAN IV clears

I
the high-order bit of each transferred character and discards
null characters (bytes of zeroes) ; FORTRAN IV on RSX and
FORTRAN-77 do neither .

COMPATIBILITY WITH OTHER PDP-11 LANGUAGE PROCESSORS

compiler option affects allocation of unspecified size
INTEGER variables only ; unspecified LOGICAL variables are
always allocated two words in FORTRAN IV .

11 . The FTN and F4P implementations of adjustable dummy arrays
copy dummy argument dimension variables into an internal
array descriptor upon entry to a subprogram . A subsequent
assignment to a dummy argument dimension variable within that
subprogram does not affect the array subscript calculation .

FORTRAN IV, does not use array descriptor blocks, but rather
references dummy argument dimension variables directly during
subscript calculations . Hence, an assignment to a dummy
argument dimension variable will affect array subscript
calculations .

12 . FTN, in contrast to FORTRAN IV and F4P, does not enforce the
PDP-11 Language Reference Manual's restrictions concerned
with modifying the control variable and the parameters of a
DO loop within the body of the loop .

13 . Unlike FORTRAN IV and F4P, FTN defines named COMMON blocks in
terms of named CSECTs .

D .Q DIFFERENCES BETWEEN FORTRAN IV-PLUS AND FORTRAN IV

This section summarizes differences that may affect conversion from
FORTRAN IV to FORTRAN IV PLUS .

D .2 .1 Language Differences

F4P transforms FORTRAN defined function name references into a special
kind of internal calling form, while FORTRAN IV. does not . If a user
supplies a routine of his own to replace the F4P FORTRAN defined
routine (for example, writes his own SIN routine) it will generally be
necessary to include EXTERNAL statements (with the user name prefixed
by an asterisk, '*') to cause that routine to be referenced . This is
not necessary in FORTRAN IV .

D .2 .2 Implementation Differences

1 . FORTRAN IV logical tests treat any non-zero bit pattern in
the low-order byte of a LOGICAL variable as .TRUE ., and an
all-zero bit pattern as FALSE .

F4P tests only the highest-order bit of the value and treats
a one as TRUE . and a zero as FALSE .

2 . In FORTRAN IV, INTEGER*4 causes 32-bit allocation (4 bytes),
but only 16 bits are used for computation . In F4P, INTEGER*4
causes both 32-bit allocation and 32-bit computation .

3 . FORTRAN IV. checks that the labels used in an assigned GOTO
are valid labels in the program unit, but it does not check
at run time whether an assigned label is in the list in the
GOTO statement . F4P does check at run time .

COMPATIBILITY WITH OTHER PDP-11 LANGUAGE PROCESSORS

4 . FORTRAN IV permits an unlimited number of continuation lines .
In F4P, up to 5 continuation lines are permitted by default,
and up to 99 may be obtained by means of the compiler /CO
switch .

5 . For unformatted input/output operations, both sequential and
direct access, FORTRAN IV reads/writes four bytes of data if
the variable is allocated four bytes of storage . F4P does
also . However, since INTEGER*4 values in FORTRAN IV
generally have an undefined high-order part, they generally
may not be read as INTEGER*4 values by F4P . Similarly, since
FORTRAN IV and F4P logical tests are different (see item 1
above), care must be taken when interchanging logical values .

6 . For random access input/output operations, FORTRAN IV takes
the END= exit on an end-file condition and the ERR= exit only
for hardware I/0 errors . F4P ignores any END= specification
and takes the ERR= exit for both .

7 . In performing formatted I/0 under A format, FORTRAN IV clears
the high-order bit of each transferred character and discards
null characters (bytes of zeroes) ; FORTRAN IV RSX/IAS and
FORTRAN IV PLUS do neither .

D .3 RSTS/E FORTRAN IV FILE COMPATIBILITY

RSTS/E FORTRAN IV can read and write files compatible with the other
language processors available on the RSTS/E operating system
(BASIC-PLUS and BASIC-PLUS-2) . Certain file formats, however, are not
supported under FORTRAN IV . Also, care must be taken when creating
files with FORTRAN if they are to be processed by a program written in
another language .

D .3 .1 Sequential Stream ASCII Files

FORTRAN IV, BASIC-PLUS, and BASIC-PLUS-2 share the concept of
sequential stream files composed of ASCII data . In FORTRAN, this type
of file is accessed with formatted READ and WRITE statements .
BASIC-PLUS and BASIC-PLUS-2 process stream files through the INPUT,
INPUT LINE, and PRINT statements .

A stream ASCII file consists of variable-length data records
terminated by a carriage control sequence, usually CR - LF . No
extraneous formatting information (such as byte counts or checksums)
is included in the file .

BASIC-PLUS and BASIC-PLUS-2 programs create this type of file by
default . FORTRAN will accept files structured in this fashion in
formatted READ statements .

To create compatible files with the FORTRAN formatted WRITE statement,
care must be taken to assure proper positioning of carriage control
information . By default, FORTRAN records begin with the vertical
forms control characters required for the record to be written,
followed by the data record itself, and terminated by a carriage
return character . For example, the statements :

TYPE 100
100

	

FORMAT(' HELLO')

COMPATIBILITY WITH OTHER PDP-11 LANGUAGE PROCESSORS

will create the following record :

LF HELLO

where

0 represents the line feed character and denotes the carriage
return character . It is desirable to create records terminated by the
carriage return-line feed sequence for compatibility . The previous
example may be rewritten to achieve this :

TYPE 200
200

	

FORMAT('+HELLO'/)

The '+' character suppresses the initial line feed generated by
default, and the '/' record terminator causes the line feed to be
generated at the end of the record, as desired .

Note that the above technique applies only to files that have been
created with the 'CC' attribute in CALL ASSIGN or CALL OPEN . By
default, files output to non-printing devices have carriage control
translation suppressed . Such files consist of an initial line feed
character, followed by records in the standard stream ASCII format
(i .e ., terminated by

	

029 - LF

	

sequences) .

D .3 .2 Virtual Array Files

The BASIC-PLUS language provides the capability to create files which
are accessed from the program as arrays of data elements . All
'records' in the file are of a fixed length, usually one integer or
floating-point value . String virtual arrays are also provided .

FORTRAN programs can read and write virtual array files in a very
straightforward fashion . For example, consider the integer virtual
array referenced by the following BASIC-PLUS dimension statement :

DIM #chan,I%(9999%)

To read this array file from FORTRAN, the programmer would first
describe the file format with the DEFINE FILE statement as follows :

DEFINE FILE unit (10000,1,U,ivar)

Note that this statement establishes the size of each record as one
word (the second argument inside parentheses), and indicates that the
number of such records in the file is 10000 . The file may now be
accessed by the statement :

READ (unit'index)ivalue

where index represents the subscript to be used (note that FORTRAN
subscripts begin at one, whereas BASIC-PLUS uses zero-origin
indexing) . The value of the selected element will be read into the
integer variable specified by ivalue . To handle virtual arrays of
floating-point values, the same format for the DEFINE FILE statement
is used, replacing the size of the record in words with the value
appropriate to the math package used by the BASIC-PLUS program in
question . (If the two-word math package was used to create the file,
the value 2 should be specified as the second argument inside
parentheses ; 4 is appropriate to the four-word math package .)

COMPATIBILITY WITH OTHER PDP-11 LANGUAGE PROCESSORS

To handle two-dimensional virtual arrays, the DEFINE FILE statement
must be coded to account for the total number of elements in the
array . For example, the following BASIC-PLUS dimension statement
allocates a two-dimensional integer array :

DIM #chan,I%(m,n)

where m and n specify the array dimensions (remember that indexing
starts at zero in BASIC) . The equivalent DEFINE FILE statement is :

DEFINE FILE unit ((m+l)*(n+l),l,U,ivar)

The expression (m+l)*(n+l) computes the number of array elements
specified by the previous DIM statement . To access this array as in
the following BASIC-PLUS line :

I1% = I%(J%,K%)

the FORTRAN programmer must compute the vector index as :

READ (unit' (J*(n+l) + K + 1))Il

To access a string virtual array, the DEFINE FILE statement should
specify the maximum string size divided by two (as element sizes are
specified in words) . For example, the BASIC-PLUS statement :

DIM #chan,A$(100%) = 128%

would be equivalent to the DEFINE FILE statement :

DEFINE FILE unit (101,64, U, ivar)

The strings may be stored in the FORTRAN program in LOGICAL*l arrays
of the appropriate length . The following FORTRAN code will read one
element of the virtual string array specified in the above example :

LOGICAL*l STRING (128)
READ (unit'index) STRING

Strings stored in virtual array files are padded on the right with
null characters (000 octal) to the specified record length .

For more information on string array refer to the BASIC-PLUS Language
Reference .Manual .

D .3 .3 BASIC-PLUS Record I/0 Files

BASIC-PLUS record I/0 files may be accessed from FORTRAN programs
using the direct access I/0 facility . The DEFINE FILE statement
should specify the number of words in each logical record of the file
as the size . FORTRAN direct access I/0 demands that all records of
the file have the same length . If this is true of the record I/0 file
in question, the FORTRAN system will do all record blocking/deblocking
for the user . If the file in question has records of several
different sizes, the programmer should read the file on a
block-by-block basis .

To read the file on a block-by-block basis, the DEFINE FILE statement
specifies 256 as the record size . Each record is read into a 256-word
array area (usually an INTEGER*2 array of 256 elements) . The
programmer must then find the records desired in each block by
indexing through the buffer array .

D-6

COMPATIBILITY WITH OTHER PDP-11 LANGUAGE PROCESSORS

When accessing values stored using the CVT%$ and CVTF$ functions, or
when creating files to be read by BASIC-PLUS programs that will use
the CVT$% and CVT$F functions to retrieve values, special care must be
taken . The CVT%$ and CVTF$ functions store the binary values
byte-reversed from the normal orientation expected by FORTRAN (and the
representation in virtual array files) . For example, the function
call CVT%$(13%) returns the value 000,015 as octal byte values (with
000 as the low-order byte and 015 as the high-order byte) . Hence, the
FORTRAN programmer must reverse the bytes of each word of a value
written by a BASIC-PLUS program that uses these functions . To perform
the required byte-reversal operation on a floating-point value that
has been read into the variable A, the following code can be used :

REAL*4 A
LOGICAL*l TEMP(4),T
EQUIVALENCE (A,TEMP)
T = TEMP(l)
TEMP(1) = TEMP(2)
TEMP(2) = T
T = TEMP(3)
TEMP(3) = TEMP(4)
TEMP(4) = T

When writing files to be read by
operation must also be performed .

BASIC-PLUS, the byte reversal

APPENDIX E

THE FORTRAN IV SYSTEM SIMULATOR ($SIMRT)

E .1 $SIMRT CAPABILITIES AND RELATIONSHIP TO RT-11

Any others create an error condition and a printed message .

E .2 $SIMRT TERMINAL HANDLING

$SIMRT terminal I/0 is fully interrupt-driven and ring-buffered .

The following features are supported :

CTRL-S, CTRL-Q (XON, XOFF) -- "SET TT PAGE" mode

CTRL-O to cancel terminal output

CTRL-U to cancel input line

$SIMRT supports the following RT-11 monitor calls :

EMT 240 WAIT (NOP)

EMT 340 TTYIN, TTINR

EMT 341 TTYOUT, TTOUR

EMT 342 DSTATUS (only for TT :)

EMT 346 LOCK (NOP)

EMT 347 UNLOCK (NOP)

EMT 350 EXIT

EMT 351 PRINT

EMT 353 QSET (NOP)

EMT 354 RCTRLO

EMT 374 Subcode 8 . DATE(returns 0)

EMT 375 Subcode 0, WAIT (NOP)
Subcode 3,
Subcode 16,
Subcode 24,
Subcode 27,

TRPSET
GTJB (no channel table adrs)
SFPA
CNTXSW (NOP)

THE FORTRAN IV SYSTEM SIMULATOR ($SIMRT)

E-2

(continued on next page)

Rubout to delete previous character (echoes backslashes)

CTRL-C to abort execution

Conversion of TABs to spaces on output

Output of altmode (escape) as "$"

Output of CTRL characters as "char"

Support of lowercase input if done with ASECT, for example :

.ASECT
= 44 ;for JSW

.WORD

	

040000

Support of RT-11 style fill character and count with ASECT, i .e . :

.ASECT

. = 56 ;for fill char and count

.BYTE

	

015,004

	

;four nulls after carriage return

The TT$SPC mode (single-character mode) is not supported .

E .3 SYSLIB CALLS UNDER $SIMRT

Routine Name Valid? Routine Name Valid?

CHAIN No ISPY No
CLOSEC No ITIMER No
CONCAT Yes ITLOCK No
CVTTIM . Note #1 ITTINR Yes
DEVICE No ITTOUR Yes
GETSTR Yes ITWAIT No
GTIM No IUNTIL No
GTJB Note #2 IWAIT Note #2
GTLIN No IWRITE,W,C,F No
IADDR Yes JADD Yes
IASIGN Note #2 JCMP Yes
ICDFN No JDIV Yes
ICHCPY No JAFIX Yes
ICMKT No JDFIX Yes
ICSI No IDJFLT,DJFLT Yes
ICSTAT No IAJFLT,AJFLT Yes
IDELET No JICVT Yes
IDSTAT Note #2 JJCVT Yes
IENTER No JMOV Yes
IFETCH No JMUL Yes
IFREEC Note #2 JSUB Yes
IGETC Note #2 JTIME Note #1
IGETSP Yes LEN Yes
IJCVT Yes LOCK Note #2
ILUN Note #2 LOOKUP No
INDEX Yes MRKT No
INSERT Yes MTATCH No
INTSET No MTDTCH No
IPEEK Yes MTGET No
IPEEKB Yes MTIN No
IPOKE Yes MTOUT No
IPOKEB Yes MTPRNT No

added :

.GLOBL

	

$GVAL
$GVAL :

	

CLR

	

RO

	

(if 60-cycle clock)
MOV

	

#40,RO

	

(if 50-cycle clock)
RTS

	

PC
(This routine should be in PSECT USER$I)

Note #2 :

	

Operates correctly, but is not useful in the
$SIMRT environment .

E .4 MODIFYING SIMRT

To modify the - stand-alone FORTRAN support module, SIMRT, obtain a copy
of SIMRT .MAC and FRT .MAC from your binary distribution medium
according to the procedures described in the RT-11 Installation
Guide/Release Notes or the RSTS/E Installation Guide/Release Notes, as
appropriate . If you wish to modify SIMRT .MAC, for example, to support
new devices, be certain that MACRO .SAV, and SYSMAC .SML are on your
system volume . The command procedures (provided below) will not work
without them . Next, assemble SIMRT .MAC by typing the following
command :

.MACRO/LIST :SIMRT/OBJECT :UNI FRT+SIMRT

THE FORTRAN IV SYSTEM SIMULATOR ($SIMRT)

Routine Name Valid? Routine Name Valid?

IQSET
IRAD50
IRCVD,W,C,F
IREAD,W,C,F
IRENAM
IREOPN
ISAVES
ISCHED
ISDAT,W,C,F

Note #2
Yes
No
No
No
No
No
No
No

MTRCTO
MTSET
MWAIT
PRINT
PURGE
PUTSTR
R50ASC
RAD50
RCHAIN

No
No
No
Yes
No
Yes
Yes
Yes
Note #2

ISLEEP
ISPFN,W,C,F

Routine Name

RESUME
SCCA
SCOMP
SCOPY
SECNDS
SETCMD
STRPAD
SUBSTR
SUSPND
TIMASC
TIME
TRANSL
TRIM
UNLOCK
VERIFY

Note #1 :

No
No

RCTRLO
REPEAT

Yes
Yes

Valid?

No
No
Yes
Yes
No
No
Yes
Yes
No
Note #1
No
Yes
Yes
Note #2
Yes

Will operate if the following user routine is

THE FORTRAN IV SYSTEM SIMULATOR ($SIMRT)

If your FORTRAN OTS Library is in FORLIB, however, then proceed as
follows :

.R LIBR

	

R LIBR
*FORLIB[-l)=FORLIB,UNI/U/G

	

*FORLIB[-l]=FORLIB,UNI/U
Global? $ERRS

	

*"C
Global? $ERRTB
Global?
*"C

RT-11

go

The new version of stand-alone FORTRAN support is now part of your
FORTRAN OTS Library .

NOTE

You must assume responsibility for
changes, such as those shown above, that
you make to SIMRT .MAC or to FRT .MAC .
Such changes are not supported by
DIGITAL .

RSTS/E

This command produces
file named UNI .OBJ .

a listing file named SIMRT .LST and an object

Next, place the
Library using

new stand-alone support module
the appropriate command procedure :

in the FORTRAN OTS

If your FORTRAN OTS Library is in SYSLIB, then proceed as follows :

RT-11 RSTS/E

.R LIBR R LIBR
*SYSLIB[-l]=SYSLIB,UNI/U/G *SYSLIB[-l]=SYGLIB,UNI/U
Global? $ERRS *"C
Global? $ERRTB
Global? $OVRH
Global? R~
*"C

A

Absolute binary format (LDA),
1-18, 1-22

ACCEPT statement, 3-6
Argument,

Passing using COMMON, 4-2
transmission of, 2-9

Arguments, ASSIGN routine, B-2
Arrays,

multi-dimensional, 2-12, 2-13
use of, 4-3

passed to subprograms, 2-12
optimizing, 4-2

storage space, 2-12
two-dimensional, 2-13
vector maps, 2-13
vectored, 2-12 to 2-13
table storage reduction, 4-2
virtual, 2-4 to 2-8
zeroing large, 4-6

ASCII characters, 3-7
RADIX-50 equivalents,

table of, A-4
records, 3-6
transfer of files, 3-7

Assembler, MACRO, 1-17
Assembly language subroutines

1-27, 2-10
ASSIGN command, 3-5
ASSIGN subroutine, 1-25, B-1, B-2
Assigned GOTO, 4-4

B

BACKSPACE statement, 3-7
Binary,
conveying data, 3-7
exponents, A-1
output file (binout), 1-20
records, 3-6

Blank COMMON, 1-15
Blank records, 3-4
Blanks, imbedded in command

string, 1-7
BLOCK DATA statement, 2-1
Blocks, COMMON, 1-15, 1-25, 1-26

2-17
Buffered I/0, 3-8
Buffers, internal, B-3

C

Carriage control, 3-7, B-3, B-4
Carriage return, 3-5
CALL statements, 2-10

INDEX

Index-1

Calling program,
passing control to, 2-9

CCL (Concise Command Language)
5-1 to 5-2

restricted switches, 5-2
Character,

ASCII, A-5
line feed, 3-4, 3-7
RADIX-50, A-4

CLOSE subroutine, B-1, B-6
Code,

in-line, 1-2, 1-3, 2-1, 2-2
object, 1-15, 2-1
threaded, 1-2, 1-3, 2-1, 2-2

Code selection, 1-3
Command string, 1-1, 1-7

compiler, 1-1, 5-1
imbedded blanks in, 1-7
linker, 1-1, 1-17
switch options in, 1-9

COMMON,
blank, 1-15
block, 1-15, 1-25, 1-26, 2-17
data initialized, 1-26
DATA statements, 1-26, 1-27

3-1
using to pass arguments, 4-7
variables, initialization of,

3-4
Compatibility, language, D-1
Compiler,

command sequence, 1-1
command string, 1-1, 1-7
error diagnostics, C-1

fatal, C-13
warning, C-12

errors,
initial phase, C-2
secondary phase, C-4

generated code, 1-2, 1-3, 2-1,
2-2

input files, 1-7
listings, 1-8, 1-11
memory requirements, 1-16
object code, 1-15
options, 1-2
output files, 1-7
referencing library

instruction, 2-1
running the, 1-7
switches, 1-9

Compiling a program, steps in,
1-1

example of,
RSTS/E, 1-8
RT-11, 1-7

increasing effectiveness of,
4-1

sample listing, 1-13
statistics listing, 1-14

March 1983

COMPLEX format, A-2
COMPLEX*8, 4-4
Concise Command Language

(CCL), 5-1 to 5-2
Conditional (/D) compilation

switch, 1-31
Configurations and valid object

code options, 1-2
Continued lines, 3-4
Core image file LOAD .SAV, 1-20

D

/D (Comment),
conditional compilation, 1-31

Data,
ASCII, 3-6, 3-7, A-4
binary, 3-7
conversions, 4-4
representation, A-1

DATA statement, 1-26, 3-1, 3-4
4-7

Data types, 4-4
DATE subroutine, B-1, B-6
Debugging FORTRAN IV, 1-31
DECODE statement, 3-4
Default devices and file

names, 3-5
Default memory, 1-7, 1-8
DEFINE FILE statement, 3-6
Device,

changing default, 3-5
code, 1-3
random access, 1-20
specifications, 1-4

Diagnostics, error,
compiler, C-1

fatal, C-13
warning, C-12

Object Time System, C-14
DIMENSION statement, 2-6
Direct access

files, 3-6
input/output, 3-8

Directory, user's, 1-7
Dividing a program, 1-25
DO loops,

increment parameter in, 4-5
nesting of, 4-6

Dollar sign ($),
format separator, 3-7

DOUBLE PRECISION,
data type, 4-4
format, A-2

INDEX

E

ENCODE statement, 3-7
END statement, 3-6
ENDFILE record, 3-8
Equivalents, ASCII/Radix-50,

A-5
ERR= parameter, 3-1, 3-7
Errors,

compiler, C-1
fatal, C-13
initial phase, C-2
secondary phase, C-4
warning, C-12

locating run-time, 2-17
message format, C-1
Object Time System, C-14
run-time, 2-17, 3-7

Execution procedures, 1-30
on a satellite machine, 1-28

EXIT subroutine, B-1, B-7
Exponents, binary, A-1
.ext (extension), 1-3, 1-6
External subroutine,

assigned GOTO, 4-4

F

Fatal errors, compiler, C-13
File,

ASCII, 3-7
transfer of, 3-7

binary (binout), 1-22
compiler output, 1-7

LOAD .SAV, 1-17, 3-6
IAM, D-7
input, 1-3, 1-6, 1-7
library, in command string, 1-24
load map (mapout), 1-17
locating, 1-7
mode,

'NEW', B-3, B-4
'OLD', B-3, B-4
'RDO', B-3, B-4
'SCR', B-3, B-4

multiple input, 1-7
specification, load map, 1-17
VIRTUAL array, 2-4

File name,
default assignments, 3-5
extensions, 1-6
specifications, 1-3, 1-7

FIND statement, 3-6
Floating-point formats, A-1
FORLIB (FORTRAN IV System

Library), 1-7

Index-2

	

March 1983

system library (FORLIB), 1-17
using the system, 1-1

FORTRAN statement, 3-1
Four-word floating point format,

A-2
FPU (floating point unit) status,

2-11, 2-12
Fractions, A-1
Function,

mapping, 2-12
statement, 4-2
subprogram, 2-11

G

Generated code, listing, 1-15
GOTO statements, 4-4

H

Handler, overlay, 1-26
Hardware registers, 2-11
Hollerith format, A-3

I

2-5

J

Job, virtual, 1-27, 1-28

L

LDA output file,
absolute binary format, 1-6,

1-18, 1-20, 1-22, 1-28
save image format, 1-17

Library,
creation, 1-24
file, 1-24
modification of, 1-25
routines, 2-2
subroutine summary, B-1
system, 1-7

Line feed character, 3-6
Linker (LINK), 1-17, 2-16, 5-1

command, 1-17, 1-20
command string, 1-1
linking procedures, 1-17

for subprograms, 2-9
memory value, 1-23
object module, 1-17
overlay feature, 1-25

specification, 1-17, 1-21
LOAD .SAV core image file, 1-21
Locating a file, 1-7
LOGICAL (LOGICAL*4) format, A-3

Index-3

	

March 1983

INDEX

Format separator
FORMAT statement,

($), 3-7
3-7, 4-4

Input/output, (Cont .)
'UNF' (unformatted), B-5

Formatted input/output,
FORTRAN data
FORTRAN IV,

3-7, 4-3
representation, A-1

unformatted routines, 3-7
INTEGER mode,
calculations in, 4-6

debugging, 1-29 data type, A-1, 4-4
differences (IV and F77), Internal buffers, B-3

D-1 Internal sequence numbers, 1-15
operating environment, 2-1
stand-alone, 1-27

Internal subroutines, 4-2
ISN (internal statement numbers)

IDATE subroutine, B-1, B-7
Increment parameter in DO loops,

4-5
Initial phase errors, C-2
In-line code, 1-2, 1-3, 2-1, 2-2
Input files,

root segment, 1-25
RSTS/E linking, 1-20
RT-11 linking, 1-17

1-14

switches, 1-21
Listing,

compilation statistics,
assumed extension, 1-6 expanded, 1-9
file name specification, 1-3 formats, 1-11
multiple, 1-7

Input/output,
generated
optional

code, 1-5
sections, 1-9

direct-access, 3-8 options, 1-15
efficient operation of, 3-8 sample compilation, 1-13
'FOR' (formatted), B-5 source, 1-15
format of, 3-7 storage map, 1-15
formatted routines, 3-7, 4-4 LOAD .LDA command sequence, 1-28
'RAN' (random-access), B-5 Load map (mapout) file, 1-17

LOGICAL* format, A-3
Logical units,

assignments, 3-5
maximum open (NLCHN), 1-15
numbers (LUNs), 3-5

Loop,
calculations outside, 4-6
calculations within, 4-7

LRECL (maximum record length),
1-15

M

MACRO assembler, 1-17
Maps,

array vector, 2-12
load (mapout) file, 1-21
mapping function, 2-12
subprogram vector, 2-12

Memory, 1-16, 2-18, 2-19
read-only, (ROM), 1-27, 2-16,

2-17
VIRTUAL, 2-5

Mode,
calculation in INTEGER, 4-4
file,

'NEW' (new file), B-3, B-4
'OLD' (existing file), B-3,

B-4
'RDO' (read only), B-3, B-4
"SCR" (temporary) , B-3, B-4

mixed, 3-8, 4-4
Modules,

linker object, 1-17
system simulator ($SIMRT),

1-28
Multi-buffering, B-3
Multi-dimensional arrays, 2-12,

2-13, 4-3

N

Nesting of DO loops, 4-6
NLCHN (maximum open logical

units), 1-15
Numbers, A-1

0

C-13
OPEN statement, restrictions, B-4

INDEX

Index-4

OPEN subroutine, B-l, B-3, B-4
Operations (*2, **2), 4-5
Optimizer, effective use of, 4-1
Optional listing sections, 1-9,

RSTS/E, 1-21
RT-11, 1-17

OTS (Object Time System), 2-1
error diagnostics, C-13

Output file,
absolute binary format, 1-22
compiler, 1-12
default extension, 1-6
name specification, 1-3

Output format, 3-7
see also Input/output

Overlay, program, 1-24 to 1-27,
2-16, 5-2

P

Parameter, ERR=, 3-1, 3-7
Parity bit, ASCII, 3-7
PAUSE statement, 3-4, 3-6, 3-8
PRINT statement, 3-6
Program,
calling, 2-10
compiled,

protection code, 1-6
division, 1-15
main, placement of, 1-20
overlay, 2-16
preparing source, 1-1
steps in executing, 1-1
storage required, 1-9
system, invoking RSTS/E, 5-1

Program Logical Address Space
(PLAS), use with VIRTUAL, 2-5

Program sections (PSECT),
1-15, 2-14 to 2-17, 5-2

assembly language in, 2-16
attributes, 2-14
COMMON in, 2-15
compiled output, 2-14
MACRO in, 2-17
ROMs, building in, 2-16
USR in, 2-16

Program termination,
fatal error condition, C-13

March 1983

Programming techniques,
efficient, 4-5

Object,
program efficiency, 4-1

for division in programs,
4-7

time
Object

format, 4-3
code, 1-2, 1-15, 2-1

minimizing execution space,
4-4

Object
Object

modules, linker, 1-17 Project, programmer number
[p,pnl, 1-7Time System (OTS), 2-1,

1-15
Options,
Options,

compiler, 1-2, 1-3,
linker,

1-9

RUN command, 1-1, 1-8
Run-time errors,

interception of, 3-7
locating, 2-17

Run-time memory, 2-18, 2-19

S

Satellite machine, 1-27
ROM applications, 1-27

Secondary phase errors,
compiler, C-4
summary, C-4

Segment,
memory, 2-18
overlay, 1-25

INDEX

function, 2-11
linkage, 2-9
register usage, 2-11
vector maps, 2-13

Subroutines, assembly language,
1-17

internal, 4-2
summary, B-1

Subroutines, library, B-1
ASSIGN, B-2
CLOSE, B-6
DATE, B-6
ERRSNS, B-9
ERRTST, B-8
EXIT, B-7
IDATE, B-7
OPEN, B-3
RANDU, RAN, B-8

Index-5

	

March 1983

Protection code (<prot>), file, SETERR subroutine, B-1, B-8,
1-6

PSECT
see Program sections

C-13
$SIMRT, E-1
Size, overlay,
Source listing,
Source program,

1-26
1-14
preparing a,

R 1-1
Specifications,

device, 1-4
RADIX-50 format, A-4
RANDU, RAN subroutine, B-1,

file name, 1-3
Stack, hardware, 1-21, 1-23

B-5, B-8 contents of, 2-11
format of, B-8 Stand-alone FORTRAN programs, 1-28

READ statement, 3-5, 3-6
REAL format, A-2
REAL*4 data type, 4-4
Record,

ASCII, 3-7

Statement, FORTRAN, 3-1
functions, , 4-2

Statements,
ACCEPT, 3-6
CALL, 2-10

binary, 3-7 CLOSE, B-1, B-6
changing length, 3-6 DATA, 3-1
maximum length, 3-6

formatted, 3-7
DECODE, 3-4
DEFINE FILE, 3-6

Region, overlay, 1-25
Register,
assignments, 2-11
hardware, 2-11

ENCODE, 3-7
END, 3-7
FIND, 3-6
FORMAT, 3-5, 4-3

subprogram usage, 2-11
Register 5 (R5), 2-10
Relocatable code, specifying

GOTO, 4-5
OPEN, 3-1
PAUSE 3-4, 3-6, 3-8

address of, 1-20, 1-22
REWIND statement, 3-8

PRINT, 3-6
READ, 3-6, 3-7

ROM (read-only memory), 1-27 STOP, 3-4, 3-5
2-16, 2-17 TYPE, 3-6

Root segment, linker, 1-25
RSTS/E,
compilation and memory require-

ments, 1-16
linking procedure, 1-20

WRITE, 3-7
STOP statement, 3-4, 3-5
Storage mape listing, 1-15
String, command, 1-7
Structure, overlay, 1-26, 5-2

RT-11, Subprograms,
compilation and memory require-

ments, 1-16
linking procedure, 1-17

arguments passed to, 4-2
arrays passed to, 2-12
control passed to, 2-9

Subroutines, library, (Cont .)
SETERR, B-8, C-13
USEREX, B-7

Switch options, 1-2
Switches, CCL command

restriction, 5-2
Switches, compiler, 1-9
Switches, linker, 1-17, 1-21
System library, 1-7
System simulator, E-1

T

Threaded code, 1-2, 1-3, 2-1,
2-2

Traceback feature, 2-17
Transferring ASCII files, 3-7
Translation of carriage control,

3-7, B-3
Two-dimensional array, 2-12
Two-word floating point format,

A-2
TYPE statement, 3-6

U
Unformatted input/output, 3-7
USEREX subroutine, B-l, B-7

INDEX

Index-6

User's directory, 1-7
USR (User Service Routine), 2-18

V

Variables, COMMON, 3-4
Vectored arrays, 2-12 to 2-13

table storage reduction, 4-2
VIRNP .OBJ, 2-5
VIRP .OBJ, 2-5
VIRTUAL array, 2-4 to 2-8
Virtual job, 1-27, 1-28
VIRTUAL memory, 2-5
VIRTUAL statement, 2-6
.VSECT, 2-4

W

Warning diagnostics, compiler,
C-12

WRITE statement, 3-7

Z

Zeroing a large array, 4-6

March 1983

READER'S COMMENTS

NOTE: This form is for document comments only . DIGITAL will use comments submitted on this form at the
company's discretion . If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form .

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement .

Did you find errors in this manual? If so, specify the error and the page number .

Please indicate the type of user/reader that you most nearly represent .

•

	

Assembly language programmer
[] Higher-level language programmer
•

	

Occasional programmer (experienced)
•

	

User with little programming experience
•

	

Student programmer
(] Other (please specify)

Name	 Date

Organization

Street

City	 State	Zip Code
or Country

RT-11, RSTS/E FORTRAN IV
User's Guide

AA-5749B-TC, AD-5749B-Tl

- Do Not Tear - Fold Here and Tape

da 9

Do Not Tear - Fold Here

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03061

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

No Postage
Necessary

if Mailed in the
United States

i

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144

